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Abstract

High product diversity, dynamic market conditions, and a lack of skilled workers are current challenges in manufacturing.
Industrial robots autonomously planning and completing upcoming production tasks can help companies address these
challenges. In this publication, we focus on autonomous task planning within industrial robotics and investigate how to
facilitate the use of automated planning techniques from the field of artificial intelligence for this purpose. First, we present a
novel methodology to automatically adapt abstractly modeled planning domains to the characteristics of individual application
cases a user intends to implement. A planning domain is a formalized representation of the robot’s working environment that
builds the basis for automated planning. Second, we integrate this approach into the procedure for developing skills-based
industrial robotic applications to enable them to perform autonomous task planning. Finally, we demonstrate the use of the
methodology within the application field kitting in two reference scenarios with a mobile robot and a stationary robot cell.
Using our methodology, persons without expertise in automated planning can enable a robot for autonomous task planning
without much extra effort.

Keywords Industrial robot - Task planning - Artificial intelligence - Automated planning - Planning domain definition

language (PDDL) - Skills

Introduction

Due to current challenges, such as high product variety,
unpredictable market dynamics, or the shortage of skilled
workers, manufacturing companies must establish and inte-
grate new strategies based on technological innovations into
their procedures (Koren et al., 2018; Peichl et al., 2022).
In this context, industrial robots are considered enablers:
They can enable flexible production processes, help compa-
nies become resilient to variations in demand, and increase
productivity by supporting workers with tiresome tasks
(International Federation of Robotics, 2020).

However, programming industrial robots with conven-
tional procedures (e.g., teach-in) still requires specialized
knowledge and is time-consuming (Hégele et al., 2016).
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New programming paradigms, for instance, skills-based pro-
cedures, aim to simplify programming industrial robots.
The approach of skills-based robot programming typically
applies at least a tripartite structure (Pantano et al., 2022;
Pedersen et al., 2016; Thomas et al., 2013): The general idea
is to encapsulate the robot’s functionalities into parameteri-
zable function blocks, so-called skills, that can be composed
over different abstraction levels. In this way, users have a
set of primitives (e.g., moving a robot or opening/closing a
gripper) at their disposal, which they can use to create man-
ifold higher-value skills (e.g., picking or assembling a part).
Based on these skills, users instruct the robot to complete
various tasks (e.g., pick a part and assemble it or place it
at another location). As skills are reusable in diverse tasks
and the abstraction level for programming increases, users
require less expertise and time to program a robot (Heuss
et al., 2022; Pedersen et al., 2016; Thomas et al., 2013).
In this way, using industrial robots for high product variety
and smaller batch sizes is becoming increasingly profitable.
Dragé&bot and FRANKA EMIKA already offer commer-
cially available solutions for programming robots similar
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to a skills-based approach and, thus, demonstrate its indus-
trial applicability and potential (drag & bot GmbH, 2023;
FRANKA EMIKA GmbH, 2023). Nevertheless, for the robot
to perform a task, users still have to build the complete skills
sequence and parameterize each individual skill. This leads to
a huge workload when tasks become more complex, increas-
ing the number of skills required to complete them, or when
tasks change frequently (see also Huckaby et al. (2013)).

In that case, the extension of skills-based robots by auto-
mated planning from the field of artificial intelligence has
great potential for simplifying task instruction (Huckaby
et al., 2013; Pedersen et al., 2016; Rovida et al., 2017).
Then, users only need to specify the goal to be achieved
by the robot, while the robot autonomously plans the nec-
essary skills sequence to get there. In this way, robots can
also be used in applications where each task differs from the
previous one (e.g., batch size one production). One example
here, which we will continue to address in this publication,
is a mobile robot for kitting tasks: The robot is handed over
a list of parts that it has to deliver to different workplaces.
Based on this information, the robot autonomously plans and
performs the necessary actions for collecting requested parts
from a storage site and delivering these to workplaces.

In order to use automated planning for robot task plan-
ning within industrial robotics, it is necessary to understand
its basic functionality. This can be broken down into three
main steps (Ghallab et al., 2016): Firstly, the application and
its characteristics (e.g., the kitting application) are described
in a descriptive model called the planning domain. The plan-
ning domain relates to a state-transition system. It defines the
possible states of a system, the actions that can be performed,
and a related state-transition function. Secondly, based on the
planning domain, a planning problem can be described by
the current initial state and the previously mentioned goal to
be accomplished. Thirdly, an automated planning system
takes the specified planning domain and problem as input and
solves the planning problem by finding an action sequence
for proceeding from the initial state to the goal. A robot can
then execute the found action plan with its skills.

The just-introduced planning formalism is domain-
independent (Ghallab et al., 2016). Thus, it is suitable
for various application fields. However, modeling planning
domains is challenging (Kootbally et al., 2015; Ortiz et al.,
2013; Rovida et al., 2017; Vaquero et al., 2013): It is com-
plex and has to be conducted by a person with expertise
in automated planning and the application. In addition, this
mainly manual specification process is error-prone and time-
consuming. In the future, widespread and flexible use of
industrial robots is predicted. If we want to widely deploy
robots that autonomously plan their tasks here, underlying
planning domains must be modeled or adapted individu-
ally for the various robot applications. However, this is not
feasible and profitable for manufacturing companies. First,
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manufacturing companies lack the required expertise in auto-
mated planning. Second, recurring need for modeling and
adapting planning domains would cause frequent and rapidly
increasing workloads.

The overall objective of our work presented in this publi-
cation is to reduce manual effort and the expertise required
for describing planning domains when initially setting up an
industrial robot for a new application case or reconfiguring
it for another one. Our novel idea is to automatically gener-
ate a suitable planning domain for an individual application
case to be implemented by adapting an abstractly modeled
planning domain to the requirements of the specific appli-
cation case. For this, we present a new methodology and
demonstrate its integration into the procedure for developing
skills-based industrial robot applications. In this publication,
we investigate this approach on a conceptual basis and con-
duct a feasibility study based on two reference scenarios. The
presented work contributes to the area of applied science by
introducing a new concept of how to use automated plan-
ning from the field of artificial intelligence within industrial
robotic scenarios. By utilizing our approach, we support man-
ufacturing companies to enable their robots for autonomous
task planning more easily and efficiently. In this way, compa-
nies will benefit from more flexible application possibilities
of industrial robots that will help them to increase their pro-
ductivity and competitiveness in the long term.

In the next section, we review the state of the art. Then,
we present our methodology in “Methodology” section and
its application within two reference scenarios in “Reference
scenarios” section. Afterward, we discuss both in “Discus-
sion” section. Finally, we conclude our work in “Conclusion
and outlook™ section.

State of the art

Potentials of automated planning for task planning
of skills-based robots

We like to start the analysis of state of the art with a summary
of the potential of automated planning for skills-based robots
based on previous works in this field:

e Wide applicability in diverse applications: The subject
area of planning distinguishes between domain-specific
and domain-independent procedures (Ghallab et al.,
2016): Domain-specific approaches address topic-specific
problems and are tailored to solving these. This field
includes, for example, motion planning or simulation-
based process planning. Domain-independent planning
abstracts these topic-specific characteristics and provides
algorithms that build on the commonalities of diverse plan-
ning problems. This domain-independent character makes
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automated planning applicable far beyond the boundaries
of individual thematic application areas. This is especially
promising for industrial robotics, as we assume to use
future robots in various manufacturing applications that
we may even be aware of today.

e Suitability for planning action sequences based on the
robot’s current set of skills: When it comes to task plan-
ning for skills-based robots, we aim to find a sequence of
skills to complete a task specified at an abstract level. This
is precisely the planning problem that automated planning
methods address. Previous works demonstrated the suit-
ability of automated planning for this purpose and showed
that planned actions can be directly mapped to robot skills
(e.g., Pedersen et al. (2016)). In this case, skills implement
a similar interface as the actions used for planning based
on defined input parameters and a set of preconditions and
effects for describing the state change they perform.

e Modular structure and exchangeability of planning models
and algorithms: As introduced in “Introduction” section,
the general structure of automated planning systems is sim-
ple and modular: Domain-specific content is described in
the planning domain and problem. Domain-independent
planning algorithms take this information as input and
output a plan. Through the introduction of the Planning
Domain Definition Language (PDDL) (Ghallab et al.,
1998) also exists a commonly used quasi-standard for
describing planning domains and problems. This allows
easy exchange of planning models and algorithms (Ghal-
lab et al., 1998). Over time, PDDL and related planning
algorithms have constantly evolved (e.g., see Ghallab et al.
(2016) and Green et al. (2023)) for a more thorough
overview). The field of industrial skills-based robotics can
benefit from this easy set-up and defined interfaces of auto-
mated planners and the variety of existing PDDL versions
and planning algorithms. Planning models can be shared
between various robot applications, and different planning
algorithms can be tested against each other to find the best-
fitting approach for a specific scenario. For instance, in the
skills-based robot architecture from Rovida et al. (2017),
users can easily integrate the planning algorithm of their
preference.

e Checking and optimizing planned action sequences: Man-
ual specifying skill sequences is often characterized by
time-consuming trial and error to find consistent and opti-
mized plans. This can be counteracted using automated
planning because the previously mentioned formal speci-
fication of action’s state changes prevents inconsistencies
in found plans, and there exist planners supporting metrics
and optimization (Huckaby et al., 2013).

To sum up, automated planning in combination with PDDL
holds excellent potential for task planning of skills-based

robots in manufacturing applications. For this reason, we put
it in the focus of this work.

Introducing the planning domain definition
language

After the short introduction of PDDL in the previous section,
we describe its basic syntax based on Ghallab et al. (1998)
in this section: Within a planning domain in PDDL, states
are represented by types and predicates. Types are similar
to classes in object-oriented programming. The type object
is a built-in type. New custom types can be subordinated to
it and may, in turn, have subtypes. Predicates are used to
describe the characteristics of a state, taking the previously
defined types as arguments. Predicates can be either true or
false. Actions can be executed to change the state of a system.
Each action takes a set of parameters as input that refer to
the previously defined types. In addition, an action definition
consists of a list of preconditions and effects. Preconditions
describe the state that must be met for an action to be exe-
cutable. Effects specify the state change after completing an
action. Based on the formal definition of a planning domain,
a planning problem can be described. For this, actual objects
of the types defined in the planning domain are initialized.
Based on these, the initial state and goal to be reached are
described by means of a list of declared predicates. The plan-
ning domain and problem are described in two separate files
and are handed over to an automated planning system for
solving the planning problem.

For an easier understanding, we exemplify this theoretical
introduction by means of a robotic pick-and-place applica-
tion. Figure 1a shows a simple exemplary planning domain
in PDDL. We define the robot’s gripper, considered parts,
and areas where parts can be located as types (lines 2—4).
To model possible states, we specify predicates to define the
area a part is located in (part-in-area), to show if a part is
gripped by the robot, and to indicate if the robot’s gripper is
free (lines 5-9). With the action pick, the robot can pick up
a specified part from the area it is currently located in with
its gripper (lines 10-22). Based on this planning domain,
Fig. 1b illustrates a planning problem in PDDL. In the ini-
tial state, the robot’s gripper is free, and there is one part in
the area in front of it (lines 8—11). In the goal state, the part
should be gripped by the robot (lines 16—18). The resulting
plan to complete this planning problem consists of just one
action. The robot needs to pick up the part.

Applying automated planning for task planning
of industrial robots

Automated planning has to be incorporated into the robot’s

system architecture if it is to be used for task planning by
industrial robots. For this, we present three exemplary works.
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1 (define (domain example) 1 (define (problem p1l)
2 (:types 2 (:domain example)
3 gripper part area - object 3 (:objects
4 4 gripperl - gripper
5 (:predicates 5 partl - part
6 (part-in-area ?part - part ?area - area) 6 areal - area
7 (gripped ?part - part) 7 )
8 (free ?gripper - gripper) 8 (:init
9 ) 9 (free gripperl)
10 (:action pick 10 (part-in-area partl areal)
11 :parameters (?gripper - gripper ?part - part || 11 ) TR .
12 ?area - area) 12 ; —gripperl:
13 :precondition (and 13 ; areal
14 (part-in-area ?part ?area) 14 : H:partl
15 (free ?gripper) 15 T
16 ) 16 (:goal
17 :effect (and 17 (gripped partl)
18 (not(part-in-area ?part ?area)) 8 ) R :
19 (not(free ?gripper)) 19)
20 (gripped ?part) '
21 ) .
22 ) T
23)

(a) (b)

Fig. 1 Simple exemplary planning domain (a) and planning problem
(b) written in PDDL (Ghallab et al., 1998). In PDDL planning domains,
arguments of predicates and parameters of actions are described by the

The SkiROS architecture focuses on the requirements of
production industry and provides a software framework for
organizing robot knowledge and skills (Rovida et al., 2017).
It simplifies software integration and allows one to develop
robots with improved reasoning functionalities. In previous
work, we presented the REpac framework, a skills-based
architecture for developing intelligent and easily config-
urable industrial robot applications (Heuss et al., 2022). Here,
we integrated modules from ROSPlan for task planning.
ROSPIan is a more general architecture for integrating task
planning into various robotic applications in the Robot Oper-
ating System (ROS) (Cashmore et al., 2015).

Generally, the underlying functionality of all three system
architectures is similar: In order to maintain the knowledge
relevant for planning, the robot has an internal knowledge
base (also called world model). The task planning system
takes as input a goal to be reached by the robot, extracts the
initial state from the robot’s internal knowledge base, and
writes both information into a planning problem. The task
planning system then calls an automated planner to gener-
ate an action sequence based on this planning problem and a
planning domain. Both the planning problem and domain are
written in PDDL. The actions, modeled within the planning
domain, match the robot’s skills. Thus, the robot executes the
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variable name indicated by a preceding question mark and a type. In the
planning problem, we additionally visualized the initial state and goal

planned action sequence using its skills. Simultaneously, it
constantly updates its internal knowledge base. This general
approach for the system structure of a robot is usable in vari-
ous application fields. Also, all approaches allow one to easily
exchange the used automated planning system as long as it
supports the PDDL version used for modeling the planning
domain. To build a robot to work in a specific application
case, developers mainly need to formalize the knowledge
required therein by the robot for planning or other reasoning
purposes and implement the skills the robot needs to execute
planned actions and update its internal knowledge base.

Creating a planning domain for an application case

The previous section shows that formalizing relevant knowl-
edge of an application case within a PDDL planning domain
is essential for utilizing automated planning for autonomous
task planning by robots. However, manual modeling plan-
ning domains in PDDL is challenging (see also Kootbally
et al., 2015; Ortiz et al., 2013; Rovida et al., 2017; Vaquero
et al., 2013)): Firstly, modeling planning domains is error-
prone and work-intensive. Secondly, this requires specialized
knowledge about automated planning, PDDL, and the indus-
trial application case. In this section, we review related works
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to simplify the modeling and adjustment of PDDL planning
domains for various robotic application cases. Thereby, we
focus on works in the field of industrial robotics and in those
that use PDDL. We identified three research directions and
use these as a classification to present related works.

The firstresearch direction addresses the general modeling
of planning domains in PDDL for industrial robot appli-
cations (A1l). Kootbally (2016) shows how to model robot
capabilities for classifying industrial robots in order to select
the most suitable robot for a certain task in the application
field of kitting. Pane et al. (2021) examine the modeling
of and planning with actions to be performed simultane-
ously (e.g., to avoid collisions while moving to a grasp pose
when a disturbance occurs). With a wider scope, Huckaby
et al. (2013) consider the application field of assembly. They
present a task modeling framework that they use with auto-
mated planning. Based on a taxonomy of skills that a robot
requires to operate in the application field, they provide a suit-
able planning domain. In a similar way, Bezrucav and Corves
(2022) present a generic planning domain for industrial sce-
narios with mobile manipulators which they can manually
configure for different instances of the generic scenario.

The second research direction considers the learning of
action models within a planning domain (A2). Hofmann
et al. (2017) record a set of plans within which they deter-
mine recurring action sequences. From this, they learn macro
actions with preconditions and effects that represent the pre-
viously identified action sequences. Subsequently, planning
times can be reduced by applying the macro actions in the
planning domain. However, the planning system takes the
planning domain as input, so it still needs to be modeled a
priori. Ortiz et al. (2013) and Liang et al. (2019) apply a
learning-by-demonstration approach. Ortiz et al. (2013) use
a sensor network to recognize subordinate actions and states
of a task demonstrated by a human. Based on that, they
learn the action’s preconditions and effects. In the context
of simplifying robot programming, Liang et al. (2019) use a
programming-by-demonstration approach to simultaneously
learn low-level actions by kinesthetic teaching and the param-
eters, preconditions, and effects of high-level actions through
visual perception.

The third research direction deals with automatically
translating PDDL planning domains from other knowl-
edge formats and models (A3). Here, the most widespread
approach is to store necessary knowledge for a robot appli-
cation in an OWL ontology and derive PDDL files for task
planning from this. This approach is applied in the previously
presented SkiROS framework (Crosby et al., 2016; Rovida
et al., 2017) or a robotic assembly pipeline based on the
Factory of the Future (FoF) ontology (Schifer et al., 2021).
Kootbally et al. (2015) store relevant knowledge for robotic
kitting applications in OWL and XDSL/XML files from
which they can automatically generate planning domains

and problems in PDDL. In addition, individual alternative
approaches were also examined: The project itSIMPLE pro-
vides a design environment that supports users in specifying
planning domains and problems using UML diagrams that
are then automatically translated into PDDL (Vaquero et al.,
2013). SmartPM is a process management system that uses
automated planning to find recovery plans in case of execu-
tion failure (Marrella et al., 2018). SmartPM assists users in
specifying domain knowledge via graphical interfaces, uses
situation calculus and IndiGolog for internal knowledge man-
agement and translates between these formalisms and PDDL
files to integrate automated planning.

Evaluation and contribution

Based on the presentation of related works in the previous
section, we identified three approaches for creating PDDL
planning domains that are possible for the scenario we are
considering. We evaluate these with regard to our work and
with a focus on workload and required expertise:

Al Modeling planning domains in PDDL: As already
stated, manual modeling and adjusting planning
domains in PDDL is time-consuming and requires spe-
cialized expertise about the application case, automated
planning, and PDDL. Huckaby et al. (2013) and Bezru-
cav and Corves (2022) discussed the idea of modeling
a generic planning domain based on general produc-
tion skills and using this in multiple diverse application
cases. However, Huckaby et al. (2013) mention that
connecting planned high-level actions to lower-level
executing skills is challenging. We agree with this: Mod-
eling just one planning domain for an application field
(e.g., kitting or assembly) and using this in different
application cases is not practicable. In reality, the use
cases to be implemented differ from each other (e.g.,
consider diverse objects, skills, or subordinate char-
acteristics) and, consequently, will always necessitate
recurring manual and work-intensive adjustments of the
planning domain. Bezrucav and Corves (2022) address
the manual modification of a generic planning domain
for different application instances. However, their focus
is on modeling the generic scenario and its planning
domain in PDDL. In contrast to this work, we will focus
on the automated adaption of generic planning domains
to individual robotic application cases in this publica-
tion.

A2 Learning action models by demonstration: This
approach, as shown by Ortiz et al. (2013) and Liang
et al. (2019), simplifies creating and modifying a plan-
ning domain in a known operating environment. New
actions can be easily added to the planning domain by
demonstrating these to the learning system. However, if
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the structure and characteristics of the operating envi-
ronment change (e.g., other objects or characteristics of
these should be considered), major efforts arise. First,
types and predicates for representing the new objects
and characteristics must be defined in advance. Sec-
ond, depending on the objects and related characteristics
one wants to capture, different sensors and computation
algorithms (e. g., for image processing) are suitable.
These must conscientiously be selected and designed.
This can be extremely laborious and requires appropri-
ate expertise.

A3 Translating from other knowledge representations: All
works presented under this research direction have in
common that knowledge required for planning is spec-
ified in some format that is not PDDL (e.g., OWL,
XML, UML) and then automatically translated into
a PDDL planning domain. This reduces the required
expertise and effort compared to manual modeling
planning domains directly in PDDL. Users might be
more familiar with the respective knowledge format,
be supported by graphical interfaces, and formalized
knowledge might be used for different purposes. Nev-
ertheless, all necessary information needs to be stated
explicitly. Thus, workloads remain that are not to be
underestimated. In addition, one must be proficient with
the used alternative knowledge representations (e.g.,
OWL, XML, UML) and interfaces.

To conclude, related works have mainly investigated how
to support users in modeling PDDL planning domains. The
widespread and diverse use of industrial robots is predicted
in the future. To establish automated planning for task plan-
ning of robots in manufacturing, we need to consider the
requirements of diverse and evolving application cases in
different variants of the underlying planning domains. For
this, adjustments must be frequently integrated into the plan-
ning domains. However, the support of existing approaches
is not sufficient for this. First, existing approaches require
an expert of the application case itself with additional spe-
cialized knowledge in a minimum of one discipline (e.g.,
automated planning and PDDL in A1, sensors and comput-
ing algorithms in A2 when new objects or characteristics
must be captured, or another knowledge representation in
A3). Persons who set up robotic applications in manufactur-
ing companies often do not have this additional specialized
knowledge. Second, the expected need for continuous evolu-
tion and maintenance of planning domains causes recurring
and accumulating workloads that counteract the efficiency
gains of automated task planning by robots. If the plan-
ning domain is modeled manually (A1) or translated from
another knowledge representation (A3), the related knowl-
edge must be explicitly specified at some point. This results
in workloads that constantly increase with the number of
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adjustments. When action models are learned from demon-
stration (A2), setting up sensors and programming computing
algorithms may cause high workloads.

To overcome these drawbacks, we present a new and alter-
native approach to the discussed problem. Our novel idea is to
share and reuse PDDL planning domains in different robotic
application cases by automatically adapting these to the indi-
vidual requirements of an application case. Previous works
mentioned that specified planning domains can be reused for
different application cases. However, none has focused con-
sidered how to efficiently share planning domains between
diverse application cases. In this context, the automatic adap-
tion represents the novelty of our work. We assume that
therefore required information is already specified during
the general development procedure of robotic applications,
can be extracted from this process, and used for automati-
cally adapting an abstract planning domain for the specific
application case. In this way, we expect that we can provide
an expert in the application case a planning domain with
further decreased work effort. The presented work aimed to
investigate this novel idea in the context of skills-based indus-
trial robotics. For this purpose, we elaborated a concept for
this and conducted a feasibility study. Our resulting scientific
contribution can be summarized as follows:

e Weintroduce a novel methodology for the automated adap-
tion of abstract planning domains for specific application
cases, and

e demonstrate its integration into the development procedure
of skills-based robot applications.

Methodology

We begin the presentation of the novel methodology by
defining its detailed objectives. Then, we introduce our
terminology for this publication, give an overview of the
methodology and describe it in more detail in the succeeding
sections.

Preliminary considerations, objectives,
and industrial example of use

Preliminary considerations

The objectives of our methodology are based on three obser-
vations that we would like to present in advance based on
preliminary considerations:

C1 Application fields of industrial robots: The applica-
tion fields of robots in production can be classified
and specified. Today’s top three application fields for
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industrial robots are handling, welding, and assembly
(International Federation of Robotics, 2022). The tasks
occurring in them are well studied and described in clas-
sic production literature. We see handling and assembly
as promising application fields for the work we present
in this publication.

C2 Regquired skills within an application field: Different
works have studied and described the skills that occur
in diverse application fields, for example, for assembly
(Hammerstingl & Reinhart, 2018) or logistics and assis-
tive robot applications (Bggh et al., 2012). These works
show that the skills required by a robot to work within a
certain application field can be abstracted into a defined
set. However, we think that due to differences in the
implementation, there will be different instances of a
skill in real-world robotic applications (e.g., depending
on an object’s characteristics, a suitable gripping prin-
ciple has to be selected; see also Heuss et al. (2018)).

C3  Sharing of robot skills and related knowledge: A com-
mon idea in skills-based industrial robotics is to reduce
development efforts by sharing skills and related knowl-
edge between different robots via a central market-
place/database (Stenmark & Malec, 2015; Wenger et al.,
2016). Users can select appropriate skills for an applica-
tion case from the central skills database to modularly
combine these within the robot system or use offered
knowledge services.

Objectives

Based on our conclusion from the state of the art, our
overall objective is to reduce manual efforts and required
expertise for specifying planning domains when configur-
ing industrial robots for diverse application cases. Compared
to the approaches in the state of the art, our novel idea is
to improve the sharing of planning domains between dif-
ferent robotic application cases by automatically adapting
abstractly modeled planning domains to the characteristics
of specific individual application cases. For this, we present
anew methodology. We structure our approach based on four
technical sub-objectives:

O1 Modeling of abstract planning knowledge: Based on C1
and C2, we aim to model planning knowledge about typ-
ical application fields of industrial robots in an abstract
way so that we can adapt it to the requirements of spe-
cific application cases later on. This abstract planning
knowledge should be stored in a central database anal-
ogously to C3.

02 Expansion of abstract planning knowledge by rele-
vant information from specific skill instances: Based

on the considered abstract skills, developers can imple-
ment different specific instances of these to address
application-specific requirements (see C2) and share
these via a central skills database (see C3). During this
process, we aim to automatically acquire information
relevant to planning and expand the abstract knowledge
models of O1 by this specific planning knowledge.

03 Automated generation of planning domains for specific
application cases: As described in C3, users download
relevant skills onto a robot to implement an intended
application case. Based on this selection of specific skill
instances and the central knowledge modeling build
based on Ol and O2, we aim to simultaneously and
automatically generate a suitable planning domain for
the specific application case.

04 Enabling industrial robots for autonomous task plan-
ning: By providing users with a specific planning
domain, we aim to support users who are not
experts in automated planning to enable their robot
to autonomously plan its task in individual application
cases.

Industrial example of use based on the FORobotics project

During the presentation of the methodology, we utilize an
example of use to clarify our explanations. In this section,
we introduce the example of use to which we will refer in
the rest of this publication. The research project FORobotics
considered the kitting of parts as a suitable application field
for autonomous mobile robots (Berger et al., 2021). Figure 2a
illustrates the application field kitting in a generalized manner
as we derived it from the FORobotics project and consider it
for the presented work. The mobile robot consists of a mobile
platform, a manipulator equipped with a gripper, and various
sensors for capturing its environment. With the aim of its
mobile platform, the robot can drive between locations. At
these locations, as well as on the robot’s mobile platform, are
areas for storing parts. The robot can pick and place parts
from these areas with its gripper. Thus, it can deliver parts
between different locations and areas.

The FORobotics project involved several industrial part-
ners who have this application case in different forms in
their production. We base our example of use on the applica-
tion case from Mey Maschinenbau Prien GmbH & Co. KG
(Berger et al., 2021). Here, the robot is tasked with deliver-
ing boxes between shelves in a storage site and workplaces.
Based on this, we describe the slightly adapted application
case we assume for this publication. Figure 2b schematically
illustrates the setup. For this application case, the robot is
equipped with a specialized boxgripper. On the shelves and
at the workplaces are defined surfaces to store boxes. On its
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Fig.2 Schematic illustration of the generalized application field of kitting (a) and subordinately derived application cases of box kitting (b) and

motor kitting (¢)

mobile platform, the robot has a set of fixtures for transport-
ing the boxes. In the robot’s navigation software, waypoints
can be defined, which the robot can drive to afterward.

Terminology

In this section, we clarify the terminology we use in this publi-
cation. First, we introduce our general definition of tasks and
skills. Then, we present the terminology used for describing
planning domains in the context of this publication.

Tasks and skills

We use the terminology for tasks and skills which was derived
in a previous work of the authors (Heuss et al., 2022):

e A mission specifies the overall task for the robot in the
form of the desired goal to be achieved. (e.g., a list of parts
with goal areas to which these should be delivered)

e An action plan is a sequence of actions to be performed
to achieve a mission. Each action in the plan is linked to a
robot skill that can execute it.

e A skill is a parameterizable functional capability offered
by the robot system. Skills can be orchestrated over mul-
tiple levels. Primitive skills are the functional building
blocks at the lowest level and directly communicate with
and control the robotic system components (e.g., move
with a manipulator to a specified pose). Composite skills
are higher-level complex process flows that result from the
combination of lower-level skills (e.g., pick an object).

In this publication, we use composite skills to execute the
planned actions of an action plan. Thus, and for an easier
understanding, in the following, we refer to a composite skill
when we use the term skill. Only if the distinction is relevant
do we differ between primitive and composite skills.
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Planning domains for robotic applications

To enable the robot to autonomously determine an action plan
to complete a mission handed over to it, we use automated
planning as introduced in “Introduction” section. For this,
the automated planner needs a planning domain as a basis.
Referring to our considerations and stated objectives in the
previous section, we aim to model a planning domain for
an application field in a generalized manner so that it can
be automatically adapted to specific application cases in the
real world. In that way, we consider robotic applications at
different abstraction levels:

e An application field describes a suitable task range for
a robot in a generalized manner (e.g., kitting, assembly).
At this abstract level, we abstract the specific setup of
a robot platform, the implementation details of skills, or
the characteristics of the objects in the robot’s surround-
ings. Thus, we can model generalized knowledge for an
application field valid for different application cases.

e An application case relates to a real implementation of
a robotic system within an application field (e.g., box
kitting). Atthis specific level, we focus on one actual appli-
cation case within an application field. For this, we take the
previously mentioned details into account as these are rel-
evant for the correct execution of actual application cases.

We transfer these abstraction levels to the modeling of plan-
ning domains and skills. Figure 3 illustrates the related
meta-model on the left side and exemplifies it on the right
side. We start with the terminology for planning domains:

e The abstract planning domain formalizes the required
planning knowledge for a robot to complete typical mis-
sions in a defined application field in a generalized manner.
For example, the kitting domain describes the knowledge
for the application field of kitting in an abstract manner.

e The specific planning domain extends the abstract plan-
ning domain to represent additional knowledge required
by the robot in an actual application case. Related to our
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Fig. 3 Meta-model for describing planning domains and skills (a) and its application in our example of use (b)

example of use, we aim to automatically derive the spe-
cific box kitting domain from the abstract kitting domain
for the application case of kitting boxes.

The robot executes derived action plans by means of its
skills. Thus, each planning domain can be linked to a defined
set of skills to execute the actions modeled in this planning
domain. We have already considered the distinction between
abstract and specific skills in previous work (Heuss et al.,
2018) and are now integrating this into the view of application
fields and lower-level application cases:

e Abstract skills are the functional capabilities generally
required by a robot to operate in a specified application
field. Pick is an exemplary abstract skill the robot needs to
operate in the application field of kitting.

e Specific skills refer to the actual implementations of
abstract skills that a robot needs to complete application
cases in reality. Thus, specific skills take characteristics
such as the setup of a robot system, related kinematics,
or functional principles into account. For example, when
handling boxes, the robot must always hold them the right
way up to prevent the box’s content from falling out. In
comparison, this is not necessary for the handling of solid
objects. Further, the motion sequence and skill parameters
differ when picking up a box from a fixture or a surface.
This is because the fixtures on the robot’s mobile plat-
form are permanently fixed in relation to its manipulator.
Thus, the robot can request the box’s pose from its inter-
nal knowledge base and, based on that, directly pick it up.
In contrast, when the box is located at a surface not on
the robot’s mobile platform, the robot needs to capture the
box’s pose with its camera before it can pick up the box.
Thus, in our example of use, the robot requires the two
individual specific skills pick box from surface and pick
box from fixture.

Methodology overview

The overall objective of the introduced methodology is to
simplify the use of automated planning in skills-based robotic
applications by automatically providing specific planning
domains for individual application cases. In the past, we
presented the first concept for integrating autonomous task
planning based on automated planning into skills-based
robotics (Heuss & Reinhart, 2020). In the present publi-
cation, we work out this approach. For this purpose, we
present the PDDLAutoGen tool, a tool for supporting users
in creating specific PDDL planning domains for their indi-
vidual robotics application cases based on an Automated
Generation of these. Furthermore, we presented a software
framework for developing skills-based robot applications in
previous works (Heuss et al., 2019; 2022). This framework
provides a skills control platform and can be extended by a
task planning system based on automated planning. Building
on this and the life cycle of skills-based robotic applications
therein, we demonstrate the use of the PDDLAutoGen tool.
Figure 4 gives an overview. To introduce our methodology,
we split the life cycle of a skills-based robotic application into
three phases skill development, application case configura-
tion, and robot operation. These three phases are illustrated
at the top of the figure.

Skill development: First and foremost are skill devel-
opers who design and implement specific skills (1). During
this activity, they describe a specific skill and all its parame-
ters based on the template of a superordinate abstract skill. In
addition, they implement the specific skill’s process flow. We
took over this procedure for developing skills from our pre-
vious work (Heuss et al., 2022) and extended it by using the
template of superordinate abstract skills. The PDDLAuto-
Gen tool takes the description of a new specific skill as input
(2). From this, it automatically extracts knowledge relevant
to task planning and integrates it into the planning knowl-
edge base (3). All developed specific skills are uploaded
to the specific skills database by skill developers and so
are provided for the later implementation of various robotic
application cases (4).

@ Springer



Journal of Intelligent Manufacturing

Skill development Application case configuration Robot operation

z skill developer | |

b4 System integrator
A

‘ PDDLAutoGen tool

. | User input
Specific ® worker
skill I Selection of A
o. Description of ific skills f 9 | A
new specific skill p| SPecitic skills for - F
i | application case Mlss}lon State
_ : Specific "
| Qoo | o
Extraction of ; Generation domain :
required planning | : of specific VB Task planner
knowledge ' | planning domain o | 2
: ‘ i Action !
Data 5 | plan St.?te
' Planning I !
' knowledge (o E‘ m
[ - Task Il
| base | Abstract ask contro f
i Skills Objects): Planning | 5
L library library i ~ domains Call State
D e ecooooomtaccooonnona0. Specific :
skills

Specific skills database
L

o
o

Skills Ql

Legend: —» Data/Control flow --» Information flow

Fig.4 Overview of the methodology

Application case configuration: In the second step,
system integrators are engaged to configure a specific appli-
cation case. At this point, we assume that the robot system
has already been physically built and software core compo-
nents (e.g., 3D model of the system setup), as well as our
skills-based software framework (Heuss et al., 2022) have
been set up. Now, the PDDLAutoGen tool supports system
integrators to enable their robot for autonomous task plan-
ning. Based on the intended application field, they select the
specific skills the robot requires to operate in the applica-
tion case (5). Based on this input, the PDDLAutoGen tool
automatically generates a specific planning domain (6). For
this, it uses the information stored in its internal database,
which consists of predefined abstract planning domains for
defined application fields and the planning knowledge base.
The planning knowledge base links the extracted informa-
tion from previously integrated specific skills to the planning
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knowledge modeled in the abstract planning domains. Sys-
tem integrators can then follow the procedure for configuring
an application case based on our skills-based robot soft-
ware framework (Heuss et al., 2022). System integrators can
directly use the output specific planning domain to configure
the robot’s task planner (7). In addition, system integrators
download required specific skills and related software com-
ponents from the specific skills database onto the robot and
configure these for the intended application case (8). In this
context, the skills are also extended by preconditions and
effects as modeled in the specific planning domain. More-
over, initial knowledge of the application case for the robot
can be described in the robot’s internal knowledge base if
required.

Robot operation: Finally, the robot can flexibly complete
various tasks during operation. Our skills-based robot frame-
work (Heuss et al., 2022) offers the functionalities needed
for this and works as generally illustrated in “Applying
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automated planning for task planning of industrial robots”
section. Workers instruct the robot at a high abstraction level
by specifying the goal to be achieved by the robot in a mis-
sion (9). The robot’s task planner takes this as input and
creates a planning problem by combining the current state
stored in its internal knowledge base with the previously
specified goal in the mission (10). Subsequently and with the
aim of the specific planning domain, the task planner derives
an action plan to solve the generated planning problem by
internally calling an automated planning system. The action
plan is forwarded to the task controller that subordinately
controls its execution by calling the robot’s skills (11). In
that way, the robot executes each individual action using the
related specific skill (12).

In this publication, we introduce the PDDLAutoGen tool
as a stand-alone system. This way, we can better describe
its system boundaries and interfaces to other components.
However, it could also be integrated into an overall software
environment for developing specific skills and configuring
application cases coupled with a skills database. In addition,
the three considered user roles, skill developer, system inte-
grator, and worker, can be performed by different persons or
just one person depending on the persons qualifications and
personnel resources in a company. Furthermore, the PDD-
LAutoGen tool could be used with another skills-based robot
architecture that supports automated planning or just a stand-
alone automated planning system. In the following sections,
we describe the structure and functioning of the PDDLAu-
toGen tool in detail. For this, we start with the illustration
of how to use the PDDLAutoGen tool from the perspec-
tive of skill developers and system integrators (user input
layer) in “Using the PDDLAutoGen tool” section. Then, we
describe the internal functionality and database structure of
the PDDLAutoGen tool (logic and data layers) in “Internal
functionality and database structure of the PDDLAutoGen
tool” section.

Using the PDDLAutoGen tool

Based on the methodology overview in the previous section,
we describe in this section how to utilize the PDDLAuto-
Gen tool from users’ perspectives. Thereby, we go through
the phases of skill development and application case config-
uration and describe in more detail how skill developers and
system integrators interact with the PDDLAutoGen tool.

Developing a specific skill and integrating it
into the PDDLAutoGen tool

Figure 5 illustrates the procedure for developing specific
skills. We base it on the procedure we previously intro-
duced in the context of our skills-based software framework
for robotic applications (Heuss et al., 2022) and extend it

so that specific skills are derived from abstract skills. We
have marked the steps and information that also represent
the inputs of the PDDLAutoGen tool (see step 2 in Fig. 4).
In the following, we present the procedure step-by-step:

1. Initialization of the specific skill: To initialize a new spe-
cific skill, skill developers select the abstract skill to
which a specific skill is to be subordinated and name
it uniquely. All abstract skills are predefined within the
planning knowledge base of the PDDLAutoGen tool.
For example, the specific skill pick box from surface is
derived from the abstract skill pick.

2. Description of the specific skill parameters: We describe
skills in an object-centered manner. We assume that skills
are applied to physical objects and, thus, can be parame-
terized related to these. For example, the abstract skill
pick can be used to pick a part from an area with
the robot’s gripper. In this context, each skill param-
eter is defined by an object class (e.g., part) and a
unique parameter name (e.g., ?part). Within the PDD-
LAutoGen tool, we apply the convention to name skill
parameters based on their object class and a prefix. In
addition, within the scope of this publication, we indi-
cate these, similarly to PDDL, by a preceding question
mark. Now, during the description of the skill, skill devel-
opers specify the classes of the specific objects that a
specific skill should be applicable to. Hereby, the spe-
cific object class is always a subclass of an abstract
object class. For example, the skill pick box from sur-
face can be utilized to pick up a box from a surface using
a boxgripper. Based on that, the specific skill parame-
ters become uniquely named analogously to the related
abstract parameters (e.g., 7box). Furthermore, users can
specify individual input and output object parameters
representing additional characteristics relevant to skill
execution. For example, the skill pick box from surface
needs a viewpose of the surface as input. From this pose,
it can overview the surface where the box is located to
visually determine the box’s actual pose with the aim of
a camera.

3. Implementation of the specific skill process flow: Based
on the specified parameters of the specific skill, skill
developers implement its internal process flow. Our
skills-based software framework offers two options for
this purpose. The process flow can either be modeled
using a state machine or scripted using Python. The state
of the art also applies further approaches (e.g., behav-
ior trees (Paxton et al., 2016)). For the scope of this
publication, we decided to use state machines as these
are widely known and used. However, other procedures
can, in principle, also be combined with the presented
methodology. As mentioned in ““Tasks and skills” section,
composite skills combine subordinate, mostly primitive
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Fig.5 Procedure for developing specific skills illustrated based on the exemplary specific skill for picking up a box from a surface

skills to execute a complex behavior. In this context, the
nodes of the state machine describe the actions to be
achieved by subordinate skills, and the transitions define
the action’s order. Additionally, skill developers have to
specify the handling of the subordinate skill’s parame-
ters. In this way, internal process flows of skills can be
easily designed in an intuitive manner. Subordinate skills
for modeling the process flow are also made available via
the skills database. Depending on the system’s compo-
nents used, these can be downloaded and integrated to
build composite skills as needed. Figure 5 illustrates the
process flow of the skill to pick up a box from a surface.
Firstly, the robot moves to the surface viewpose to mea-
sure the box pose and calculate the related grasp pose.
Then, the robot moves into a prepose from which it can
thread into the box handle with two linear movements to
lift it. Since the boxgripper works similarly to a hook, no
explicit closing function is necessary. In Fig. 5, parame-
ters adjacent to the bounding box (e.g., surface viewpose)
relate to the skill parameters described in the previous
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step and are passed to the skill externally when called.
The other parameters are either predefined (e.g., direc-
tion) or determined by one skill at runtime and passed to
a succeeding one (e.g., box pose).

When implementing specific skills, skill developers
should consider two aspects. First, abstract planning domains
and related abstract skills have a defined validity range
(see also “Abstract planning domains” section). This valid-
ity range ensures compatibility between abstract planning
domains/skills with derived specific planning domains/skills.
In this context and based on the related validity range, abstract
skills provide requirements to be fulfilled by the implemen-
tation of subordinate specific skill instances (e.g., to use a
robot with one gripper). These implementation requirements
should be considered and fulfilled by skill developers. Sec-
ond, specific skills should provide self-contained and safe
functional behaviors. This means that skills must check their
executability in advance and control their correct execution
to detect errors when necessary. In this way, skills can be
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Fig. 6 Procedure for generating a specific planning domain for an appli-
cation case illustrated based on the exemplary application case of box
kitting

called independently from a higher level. If a skill fails to
execute a requested action in a plan, it proceeds to a safe
failure state and returns an error message. The higher level
can then initiate error handling or replanning.

Generating a specific planning domain for an application
case

In this section, we detail the procedure for generating a spe-
cific planning domain with the PDDLAutoGen tool during
the application case configuration phase from the perspective
of system integrators (see step 5 in Fig. 4). We superficially
presented the procedure for the holistic implementation of
an application case using our skills-based robot software
framework in “Methodology overview” section. For a more
detailed view on this topic, we refer the interested reader to
Heuss et al. (2022). In the following and based on Fig. 6,
we describe the procedure within the PDDLAutoGen tool
step-by-step:

1. Initialization of the specific skill: To initialize a new spe-
cific skill, skill developers select the abstract skill to
which a specific skill is to be subordinated and name
it uniquely. All abstract skills are predefined within the
planning knowledge base of the PDDLAutoGen tool.
For example, the specific skill pick box from surface is
derived from the abstract skill pick.

2. Selection of the specific skills: The required abstract skills
are defined in the planning knowledge base for each

application field. Subordinate to abstract skills, all pre-
viously integrated specific skills are further described in
the planning knowledge base. Thus, based on the appli-
cation field selected, in the first step, the PDDLAutoGen
tool shows system integrators which abstract skills are
required and offers them all subordinate, available spe-
cific skills. From these, system integrators select all the
specific skills they need to implement the intended appli-
cation case. For our example, the robot requires skills for
driving between different waypoints as well as picking
and placing boxes. Figure 6 shows the user’s subordinate
selection of specific skills.

Based on this input information, the PDDLAutoGen tool
automatically generates a specific planning domain for the
intended application case and outputs it to system integrators.
We present the detailed procedure for this in the next section.
In the further course of implementing the application case,
users can configure any automated planning system with the
specific planning domain that supports the PDDL version and
subordinate requirements of the specific planning domain.

Internal functionality and database structure
of the PDDLAutoGen tool

In this section, we describe the internal functionalities and
structure of the PDDLAutoGen tool. We start with an insight
into the modeling of abstract planning domains. Based on
that, we analyze necessary adaptions between abstract and
specific planning domains. We then explain how necessary
information from the implementation of specific skills is
stored in the internal planning knowledge base. Finally, we
describe the algorithm for generating a specific planning
domain for an application case.

Abstract planning domains

We introduced our definition for abstract planning domains
in “Planning domains for robotic applications” section.
The basic idea is to generalize planning knowledge that
a robot requires to operate in an application field into an
abstract planning domain. Thus, we aim to specify one
abstract planning domain for each intended application field
(e.g., kitting, assembly, machine loading). When modeling
domain-specific application fields, assumptions are usually
made (e.g., a robot with one gripper system is considered).
These assumptions should be specified in the form of a valid-
ity range to be considered when implementing subordinate
specific skills and generating specific planning domains. At
this point, we would like to mention that the adaption of
abstract planning domains to specific application cases is the
novelty of this publication. This requires modeling planning
domains, but this is not the focus. In order to demonstrate
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Fig.7 Types and predicates of the abstract planning domain for the kitting application field (upper part) and the extended specific planning domain
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our methodology’s structure and functionality in the further
course of this publication, we modeled an exemplary abstract
planning domain for the application field of kitting based on
our example of use from “Industrial example of use based on
the FORobotics project” section. We introduce it based on
Fig. 7.

In its upper part, the figure shows the object types and
predicates of the abstract planning domain for the applica-
tion field kitting. The lower part of the figure illustrates the
extended specific planning domain for the application case
box kitting and will be described later on in “Extension of
an abstract planning domain to a specific planning domain”
section. We created four types, location, area, part, and grip-
per, subordinate to the general type object. The object types
in the abstract planning domain represent the previously men-
tioned object classes. By means of predicates, we model the
object type’s relevant characteristics. The robot can be at
a location (robot-at), and a set of areas can be assigned to
each location (area-at-location). All areas assigned to a loca-
tion where the robot is currently located, as well as areas on
the robot’s mobile platform, are reachable for the robot by
means of its manipulator. One part can be placed in each
area (part-in-area). If a part is placed in an area, the area
is occupied. If the robot has picked up a part, it is gripped.
The predicate free indicates weather the robot has a part in
its gripper or not. To deliver parts between different areas
and locations, we modeled in the abstract planning domain
that the robot can execute the three actions, pick, place, and
drive, by means of its corresponding skills. Figure 8a shows
the definition of the abstract action pick as an example. The
action takes the gripper to be used, the part to be picked
up, and the area where the part is currently located as input.
All parameters must be named uniquely within the definition
of the action. As already mentioned earlier, we name these
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based on their abstract type and a prefix if required. This
way, the names of specific skill parameters can be deter-
mined automatically (see also “Developing a specific skill
and integrating it into the PDDLAutoGen tool” section), and
the mapping between abstract and specific skill parameters
can be automatically looked up in the planning knowledge
base later on. All preconditions must be fulfilled for the robot
to perform the action. Thus, to pick up a part, the robot’s grip-
per must be free, the area must be reachable for the robot,
and the part must be in the area. In the same way, the effects
represent the state change after executing the action.

Extension of an abstract planning domain to a specific
planning domain

This section analyzes the necessary adaptions from an
abstract to a specific planning domain. As introduced in
“Planning domains for robotic applications” section, specific
planning domains extend abstract planning domains to rep-
resent individual characteristics of an application case. Thus,
the basic structure of the abstract planning domain remains in
the specific planning domain. Within an application field, we
consider the objects the robot interacts with and the skills it
uses for this purpose at an abstract level. In contrast, within an
application case, the robot is equipped with specific skills tai-
lored for handling objects of defined specific object classes.
Below, we go through the sections of a planning domain and
describe the necessary adaptations. The modifications result
from the specific skills that system integrators have chosen
for their particular application case. Thus, we start with the
actions section.

Actions section: To consider the selected specific skill set
for task planning, each specific skill must be represented by
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a specific action in the specific planning domain. We cre-
ate each specific action based on its superordinate abstract
action. The general structure of the abstract action with its
parameters, preconditions, and effects remains as it is valid
for all subordinated specific actions. Based on the skill’s spe-
cific implementation, two modifications must be conducted
between an abstract action and its derived specific action.
Figure 8b illustrates these modifications for the already con-
sidered specific skill pick box from surface. First, it must be
considered that specific skills can only be applied to objects
of the specific object classes specified in their parameters. To
address this, we replace the abstract types with related spe-
cific types in the definition of the action’s parameters (e.g.,
area by surface) and rename the variables accordingly (e.g.,
?area to ?surface). To keep the action’s definition consistent,
this renaming must further be performed for the variables
of all specific action’s preconditions and effects. Second,
specific skill parameters can be characterized during skill
implementation by additional object parameters required for
the skill’s execution (e.g., the previously considered viewpose
of a surface). Consequently, and in the case of an input object
parameter, the presence of this information is a further pre-
requisite for the executability of a specific skill respectively
action. This can be considered within the specific action’s
definition by adding additional preconditions. Thus, we cre-
ate for each input object parameter a precondition using
a predicate of the form [specific object class]-has-[object
parameter] (e.g., surface-has-viewpose). In the same way,
we create additional effects in the specific action’s definition
for considering output object parameters.

Types section: All specific types we introduced in the
parameter definition of specific actions must also be incor-
porated into the types section of the specific planning domain.
During skill implementation, skill developers derived the
specific object classes from the defined abstract object classes
(e.g., surface from area). In the same way, we now integrate

(b)

the specific object types as subtypes of the related abstract
object types. In this way, specific object types also inherit the
predicates of superordinate abstract types. Figure 7 illustrates
this for our example of use in its lower part.

Predicates section: Finally, to keep the description of the
specific planning domain consistent, we must also add the
newly defined predicates for describing the additional pre-
conditions and effects of specific actions to the predicates
section (see also the lower part of Fig. 7).

To sum up, a specific planning domain extends an abstract
planning domain. The types and predicates sections contain
the abstract elements and additional specific types and pred-
icates. The abstract actions are replaced by specific actions
that the robot can execute using its specific skills.

Storing of planning knowledge from the implementation
of specific skills in the planning knowledge base

To automatically adapt abstract planning domains for indi-
vidual specific application cases, we extract relevant informa-
tion during the implementation of specific skills and store it
in the central planning knowledge base for later access (see
step 3 in Fig. 4). This section describes the general struc-
ture of the planning knowledge base and how information
from the implementation of specific skills is stored in it. The
planning knowledge base is composed of three modules (see
Fig. 4). The planning ontology links considered skills and
object classes in the abstract planning domains to their spe-
cific instances. In addition, the skills and objects libraries
store additional characteristics of the specific skills and object
classes. We start by introducing the planning ontology as the
central component based on Fig. 9.

The planning ontology consists of three base classes
application field, skill, and object. We create a subclass
to the application field base class for each considered appli-
cation field. Analogously, the skill and object base class have
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Fig.9 Base structure of the planning ontology

a subclass for each abstract skill that relates to an action in an
abstract planning domain respectively for each object class
that occurs as an object type in an abstract planning domain.
In Fig. 9, this is again exemplified for the application field
kitting. The correlations between application fields, abstract
skills, and abstract object classes are further specified by three
types of object properties. The properties has [abstract skill
name] skill and has [abstract object class name] object link
an application field to the abstract skills the robot requires
for operating in it respectively the abstract object classes
occurring therein. Further, the property has [abstract skill
parameter name] parameter refers from an abstract skill
to the abstract object classes, which the skill takes as input
parameters. Within all three types of object properties, the
placeholders [...] become replaced by the respective name
of the abstract skill, object class, or skill parameter. As men-
tioned earlier, for example, the abstract skill pick takes the
part to be picked up, its area, and the gripper to be used as
input. Within the use of the PDDLAutoGen tool during skill
implementation, diverse specific skill instances and related
specific object classes are added to the planning ontology as
individuals. Figure 9 exemplifies this for the specific skill
pick box from surface in its lower part. Individuals inherit
the object properties of their parent classes. In this context,
we reuse the object property has [abstract skill parameter
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name] parameter to additionally link the specific skill to the
specific object classes representing its specific parameters
and thus map the relationship between abstract and specific
skill parameters.

The skills and objects libraries supplement the planning
ontology. In the basic setup, we create one category for each
abstract skill as well as object class occurring in the plan-
ning ontology. Later during skill implementation, each newly
created specific skill, including all its parameters, gets sub-
ordinated to its abstract parent element in the skills library.
Similarly, specific objects and for these created subordi-
nate characterizing parameters are integrated into the objects
library.

Automated generation of specific planning domains
during robot configuration

System integrators use the PDDLAutoGen tool to generate a
specific planning domain for their intended application case
during the configuration of the robot application (see “Gen-
erating a specific planning domain for an application case”
section). For this, system integrators specify the intended
application field of their application case, the name of the
specific planning domain to be generated, and the specific
skills their robot requires to operate in the application case.
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Fig. 10 Algorithm for the automated generation of a specific planning domain

Then, the PDDLAutoGen tool uses this information to adapt
the abstract planning domain of the considered application
field for the specific application case (see step 6 in Fig. 4).
We illustrated the necessary adaptions from an abstract to a
specific planning domain in “Extension of an abstract plan-
ning domain to a specific planning domain” section. In this
section, we summarize the algorithm that performs these
adaptions. Figure 10 illustrates its flow. The algorithm’s input
data specified by the system integrators is summarized on the
left side of the figure. In addition, the algorithm utilizes the
internal data of the PDDLAutoGen tool stored in its database
to look up relevant information that was extracted during the
implementation of specific skills. The expected output is the
specific planning domain, as illustrated on the right side of
the figure. In the following, we go through the algorithm’s
steps in the figure’s center. The specific planning domain is

initialized based on the related abstract planning domain and
named accordingly (1). In the next step, the algorithm adds
the specific actions the robot can execute using the selected
specific skills (2). For this, the algorithm performs the same
steps for each action: It initializes the specific action based
on its superordinate abstract action (2a), replaces/renames
the parameters and variables of the specific action accord-
ingly to the related specific skill (2b), and adds preconditions
and effects for considering additional object parameters char-
acterizing the specific skill’s parameters (2c). The abstract
actions are removed after all specific actions have been added
because the robot cannot directly execute these (3). All new
specific types that occur in the definition of a specific action
are added as a subtypes of the related abstract types (4). All
specific predicates newly created in step 2c are added to the
predicates “Discussion” section.
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Reference scenarios

In this section, we present the application of the previously
introduced methodology in three different application cases
spread over two reference scenarios. Then, based on the gen-
erated results, we conduct the evaluation of our methodology.
For the use of the PDDLAutoGen tool in the reference sce-
narios, we implemented it as a software demonstrator. In
the database, we described the abstract planning domain
in PDDL 2.2 (Edelkamp & Hoffmann, 2004), the plan-
ning ontology as OWL ontology, and the skills and objects
libraries using JSON. Based on that, we implemented the
logic within the PDDLAutoGen tool and a user interface
with Python 3. Here, Owlready2 (Lamy, 2017) was used
for manipulating OWL ontologies. We modeled one abstract
planning domain for the application field of kitting, as already
introduced in “Abstract planning domains” section, and
integrated it into the database of the PDDLAutoGen tool.
Afterward, the PDDLAutoGen tool was used to generate
specific planning domains for the application cases of the
reference scenarios.

Reference scenario 1: commissioning of parts
by an autonomous mobile robot

In the first reference scenario, we aimed to evaluate the gen-
eral functionalities of the PDDLAutoGen tool, including its
benefits and limitations. For this, we build on the FORobotics
project that we introduced in the context of the example of
use in “Industrial example of use based on the FORobotics
project” section. To evaluate the PDDLAutoGen tool, we
derived two exemplary application cases in the kitting appli-
cation field from the industrial partners of the FORobotics
project. In the following, we introduce our setup and pro-
cedure within this reference scenario before describing the
application cases in detail and presenting our results.

Setup and procedure

Our setup consisted of the PDDLAutoGen tool and a
stand-alone automated planning system. We used the fast
downward planning system (Fast Downward, 2023) as an
automated planner. The fast downward planning system sup-
ports PDDL 2.2 as well as subordinate requirements, which
we used for modeling the abstract planning domain and is
frequently used in other research works.

Based on this setup, we proceeded for each application
case as follows: First, we identified and designed specific
skills that the robot requires to operate in the respective
application case and integrated these into the PDDLAutoGen
tool following the procedure for implementing skills from
“Developing a specific skill and integrating it into the PDD-
LAutoGen tool” section. If possible, we reused specific skills
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Fig. 11 Exemplary mission in the application case of box kitting. In
the mission, we specify one goal per line. During the evaluation, we
transferred it into a PDDL planning problem

from previous application cases. Within the first reference
scenario, we have not implemented specific skills in soft-
ware. Second, we used the PDDLAutoGen tool to generate a
specific planning domain for the considered application case,
as described in “Generating a specific planning domain for
an application case” section. Third, we configured the auto-
mated planning system with the specific planning domain
generated in the previous step. Fourth, we planned five exem-
plary missions per application case. For this, we specified
related planning problems and called the automated planner
to solve one after the other.

We have refrained from the full implementation of the
application cases in this reference scenario, as the feasibility
of the basic motion sequences to realize the application cases
have already been demonstrated in the FORobotics project
(Berger et al., 2021; Heuss & Reinhart, 2020). Furthermore,
we present an overall implemented skills-based robot appli-
cation in the second reference scenario.

Application case 1: transporting of boxes
between a storage and working site

The first application case relates to our example of use from
“Industrial example of use based on the FORobotics project”
section, which is based on the application case of the indus-
trial FORobotics project partner Mey Maschinenbau Prien
GmbH & Co. KG (Berger et al., 2021). Here, a mobile robot
should transport boxes between a storage site and work-
places. In terms of our work, the robot needs five specific
skills to operate in this application case. The robot must be
able to drive between different waypoints as well as pick up
and place boxes from/on surfaces or fixtures on its mobile
platform.

Based on the automatically generated planning domain,
we specified five planning problems. The initial state of one
exemplary planning problem is illustrated in Fig. 2b. For each
mission, we specified six boxes that should be moved to a
different surface from the storage site to a workplace or the
other way. Figure 11 illustrates one exemplary mission. We
integrated these missions as goals into the planning problems.
The five planning problems differ in the initial areas of the
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boxes, the starting waypoint of the robot, and the missions
to be completed by considering different boxes and delivery
areas.

Application case 2: delivering motors from a storage site
to workplaces

We derived the second application case from the industrial
FORobotics project partner Krones AG (Berger et al., 2021).
Here, the robot is tasked with transporting motors instead
of boxes from shelves in a storage site to different work-
places and assisting a human by assembling the motors. In
terms of the publication, we do not consider the coopera-
tive assembly and assume that the robot only delivers the
motors to the workplaces. In the following, we introduce the
application case as considered within the scope of this work
and as illustrated by way of the example in Fig. 2c. Simi-
lar to the first application case, we assume that the shelves,
as well as workplaces, can be reached by the robot from
predefined waypoints and have defined surfaces for storing
the motors. We use the same mobile platform and manipu-
lator as in the first application case. This time, the robot is
equipped with a specially designed motorgripper, a camera,
and a construction with holders to store the motors during
transport on its mobile platform. We identified five specific
skills the robot requires to act in this application case. For
driving between different waypoints, the robot can reuse the
specific skill from the first application case. In addition, this
time, the robot requires specific skills for picking and placing
motors from/on surfaces and holders. Picking and placing
motors from/into holders relates to a peg-in hole insertion
and, thus, needs a different motion sequence compared to
picking and placing motors from/on surfaces.

To illustrate the structure of the specified planning prob-
lems, Fig. 2c presents the initial state of one planning
problem. In this application case, we change between the five
planning problems in the initial state the number of motors
present in the storage site, the areas occupied by them, and
the starting waypoint of the robot. For each mission, we spec-
ify six motors to be delivered from the storage site to various
surfaces at the workplaces. We integrated these missions as
goals into the planning problems. The five missions differ in
the considered motors and delivery surfaces.

Generated specific planning domains and planning results

In this section, we summarize the results of both applica-
tion cases. We first manually checked the generated specific
planning domains. Both specific planning domains have
been correctly adapted for the application cases from the
abstract planning domain by the PDDLAutoGen tool. We
already used the resulted specific planning domain for the
first box-kitting application case as illustrating example in

“Methodology” section. Figure 7 illustrates all types and
predicates of the specific planning domain. All types and
predicates of the abstract planning domain remain. Spe-
cific object types for specifying specific actions’ parameters
have been added as subtypes of the related abstract types.
Furthermore, all new predicates used to define additional
preconditions and effects in specific actions’ definitions have
been created. The actions section contains the five selected
specific actions for driving to different waypoints, picking
up boxes from surfaces and fixtures, and placing boxes on
surfaces and into fixtures. These have been created based
on the superordinate abstract actions with correct adaptions.
Figure 8b shows by way of example the definition of the
specific action for picking a box from a surface.

Second, we look at the workload we save using the
PDDLAutoGen tool compared to manually adapting the
planning domains. For this, we analyzed the structure of the
generated specific planning domains. In the following, we
describe the procedure used here and the results. Compara-
ble to the code excerpts in this publication (see Fig. 1 and
Fig. 8), each line of the generated specific planning domains
contains a type/predicate definition, an action’s precondi-
tion/effect, etc. We reviewed each specific planning domain
and counted the lines directly adopted from the abstract plan-
ning domain, adopted with modification, and newly added by
our algorithm. We skipped empty lines or lines with only a
parenthesis. Figure 12 presents the results for all application
cases. In the first two application cases, the specific planning
domains were successfully composed of the abstract plan-
ning domain, with 62 modifications in each case (45 lines
modified and 17 lines newly added). The PDDLAutoGen
tool created the specific planning domains for the application
cases automatically based on the chosen application field, the
specified application case names and selected specific skills.
In contrast, without the PDDLAutoGen tool, one must manu-
ally assemble the specific planning domains and incorporate
relevant modifications in an error-prone and test-intensive
procedure. Thus, this analysis demonstrates the high effi-
ciency of the PDDLAutoGen tool compared to manually
adapting the PDDL planning domains. Important to mention
that when the robot’s skills set becomes more extensive, the
size of specific planning domains and necessary adjustments
to be incorporated increase significantly more compared to
the input information of the PDDLAutoGen tool.

Third, we reviewed the action plans generated by the
automated planning system to solve the exemplary missions
within the two application cases. The automated planner
found an action plan for each of the ten planning prob-
lems. We have gone through all action plans and checked
that all parts were delivered to the requested surfaces. In this
way, we verified that by using the specific planning domains
generated by the PDDLAutoGen tool, we could plan action
plans for solving missions in the two different application
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Fig. 12 Analysis of the structure
of the specific planning domains
created by the PDDLAutoGen
tool on the basis of the original
abstract planning domain. On the
left side, we show a cumulative
representation; on the right side,
we illustrate the percentage
distribution of the overall
planning domains
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Fig. 13 Excerpt of the action plan to complete the mission in Fig. 11.
The complete action plan consists of 38 actions

cases. By way of example, Fig. 13 shows an excerpt of the
action plan to complete the mission illustrated in Fig. 11. The
robot drives between the different waypoints, picks up the
requested boxes, stores these during transport in its fixtures,
and places them on the specified surfaces using its available
skills. In doing so, it successfully fulfills the given mission.

Reference scenario 2: composition of customized
parts sets

In the second reference scenario, we demonstrated the use of
the PDDLAutoGen tool in combination with a holistic robot
application. In this way, we furthermore showed the execu-
tion of created plans by a real robot. Within the application
case, the robot is tasked with composing customized parts
sets from a storage. We present this reference scenario with
the same structure as the first one.
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Setup and procedure

The setup for this reference scenario consisted of the PDD-
LAutoGen tool and the robot cell illustrated in Fig. 14a. The
robot cell uses an ABB IRB140 robot controlled by an ABB
IRCS compact control unit and equipped with a 2F-85 two
finger gripper and a FT 300 force torque sensor from Robo-
tiq. The force-torque sensor was not used in this application
case and is, therefore, also not labeled in the figure. All com-
ponents are connected to a central computer that runs Ubuntu
18.04.6 LTS and ROS Melodic. In addition, we installed our
skills-based robotic software framework on the central com-
puter. We used a slightly revised version compared to the one
we presented in Heuss et al. (2022). Similar to the first refer-
ence scenario, we internally used the fast downward planner
(Fast Downward, 2023) as an automated planner within the
task planning system of the skills-based software framework.
In this way, the overall setup correlates to the one illus-
trated in Fig. 4. Using the skills-based software framework,
firstly, the robot’s skills can be freely configured. Secondly,
by providing a planning domain, the robot can be enabled for
autonomous task planning. In that case, based on the speci-
fication of the planning domain, the robot stores and updates
the current state of itself and its surroundings within its inter-
nal knowledge base.

We describe our procedure for this reference scenario
compared to the first one: First, we initialized and described
the required specific skills in the PDDLAutoGen tool
(according to “Developing a specific skill and integrating it
into the PDDLAutoGen tool” section) and also implemented
these in software based on a previous project. Second, we
generated the specific planning domain with the aim of the
PDDLAutoGen tool and as described in “Generating a spe-
cific planning domain for an application case” section. Third,
we configured the robot cell for the application case. This
step differs from the first reference scenario. Based on the
previously described setup of the robot system, we equipped
the robot with the required specific skills and subordinate
software components, configured the task planner with the
specific planning domain generated by the PDDLAutoGen
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tool, and described the initial state known by the robot in
its internal knowledge base. Fourth, the robot completed five
exemplary missions. Whereas we only planned missions in
the first reference scenario, the robot also executed these this
time. For this, we only had to specify the missions, and the
robot itself constructed the planning problem based on its
internal knowledge during the task planning process.

Application case 3: composition of diverse LEGO bricks

In this third application case, the robot in Fig. 14a picks up
diverse parts with the two-finger gripper from a storage (left
green plate; see Fig. 14b) and composes these in defined
ordered sets on a set plate (right blue plate; see Fig. 14c)
for further processing. Our range of parts consists of LEGO
bricks of different sizes and colors. We call areas on the
LEGO plates for stacking bricks plate poses. We predefined
the plate poses for providing bricks in the storage and set-
ting bricks on the set plate. To realize the application case,
we implemented two specific skills for picking and placing
bricks of variable size. In its internal knowledge base, the
robot maintains the state of its two-finger gripper, the consid-
ered bricks, and defined plate poses. The initial state known
by the robot relates to the state shown in Fig. 14. Based on
this setup, we tasked the robot to complete five missions. In
each mission, we specified 2-5 bricks available in the stor-
age to be composed at defined plate poses in one set by the
robot. In this way, the robot built the five sets of parts one
after another.

Generated specific planning domain and planning results

We reviewed the results of this second reference scenario
in a similar manner to the first one. The PDDLAutoGen

tool correctly modified the abstract planning domain for this
third application case. In comparison to the abstract planning
domain, the resulting specific planning domain contains the
additionally specified types two-finger gripper, brick, and
plate pose, the automatically derived predicates for repre-
senting object input and output parameters, and two specific
actions for picking and placing bricks.

The analysis of the specific planning domain that the PDD-
LAutoGen tool generated for this application case is also
shown in Fig. 12. Here, the specific planning domain was
successfully assembled with 31 modifications (19 modified
lines and 12 added lines). In this way, we can confirm the
reduction of the workload using the PDDLAutoGen tool
compared to the manual creation of the specific planning
domain also for this third application case. The number of
modifications is fewer than for the previous two application
cases. The specific planning domains of the first two appli-
cation cases consist of five action definitions, and this third
specific planning domain has only two action definitions.
Due to the resulting smaller specific planning domain, fewer
modifications had to be conducted.

The robot successfully planned and executed five missions
based on the generated specific planning domain. Each mis-
sion contained between 2 and 5 goals. The resulting action
plans consisted of an alternating sequence of actions for pick-
ing and placing bricks. Thus, during the execution of the
plans, the robot picked the requested bricks from the stor-
age plate and composed these into the defined sets on the set
plate.

Additionally, for the second reference scenario, we com-
pare the manual effort for specifying a task as an action
plan versus a mission based on Fig. 15. As introduced in
the beginning, the potential of integrating autonomous task
planning into industrial robotics is to lift the abstraction level
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Fig. 15 Comparison of manual effort for workers to specify a task as an
action plan or as a mission

for specifying tasks from the action plan to the mission level.
To approximate the effort for specifying a task at these two
levels, we added up the number of actions or goals and sub-
ordinate arguments to specify a task. The figure shows the
average values for the five missions created and the action
plans to fulfill them. By way of the example of the third appli-
cation case, the average effort required to specify the task at
the mission level is 63% less than at the action plan level
in terms of the amount of information to be stated. At this
point, we would like to mention that this consideration does
not replace a full effort analysis from setting up the system
to its use in operation. Nevertheless, in this way, we can con-
firm the potential of autonomous task planning by industrial
robots, which the state of the art shows.

Discussion

Based on the presented results in the previous section, we start
discussing our work by evaluating our technical objectives
from "Objectives" section. Afterward, we highlight the inno-
vation of the presented work, point out the resulting benefits,
and discuss promising application fields for our approach.
Finally, we consider the current limitations and challenges
and give recommendations for future research.

Evaluation of technical objectives

For the discussion of our results, we apply a bottom-up
approach and start with the evaluation of our technical sub-
objectives:

El Modeling of abstract planning knowledge: We designed
one abstract planning domain for the application field of
kitting that we could later automatically adapt for three
specific application cases. The modeling of abstract
planning domains in PDDL has to be carried out by
an expert in automated planning. However, this expert
is only required once at the beginning to formalize the
domain knowledge for an application field.

E2 Expansion of abstract planning knowledge by relevant
information from specific skill instances: During the

@ Springer

realization of the three application cases, we designed
eleven specific skills based on the template of the three
abstract skills drive, pick and place. All information
relevant to the later generation of specific planning
domains was extracted during this process. We aligned
the procedure for initializing and describing specific
skills within the PDDLAutoGen tool to our previous
guideline for implementing skills based on our skills-
based robotic software framework (Heuss et al., 2022).
In the resulting procedure, skill developers do not
require specialized knowledge in automated planning
or PDDL, and no extra workload arises for integrating a
specific skill into the PDDLAutoGen tool compared to
describing the skill during implementation.

E3 Automated generation of planning domains for specific
application cases: With the help of the PDDLAutoGen
tool, we generated specific planning domains for three
application cases. We used two different robot systems
with a combination of diverse specific skills. The spe-
cific skill for driving was reused across two application
cases. The specific skill instances of the pre-defined
abstract skills allow the handling of different objects and
require individual input parameters. As input informa-
tion for the PDDLAutoGen tool, we only had to choose
the considered application field, name the specific appli-
cation case and select the specific skills required by the
robot to operate in the intended application case. Thus,
using the PDDLAutoGen tool, system integrators can
use the information to be collected anyway when set-
ting up anew application case and do not require detailed
knowledge in another topic that goes beyond the appli-
cation case. By analyzing the adapted specific planning
domains of the three application cases, we were able to
show that our approach reduces the workload for creat-
ing the specific planning domains enormously compared
to the manual procedure.

E4 Enabling industrial robots for autonomous task plan-
ning: Finally, we planned five exemplary missions per
application case using the specific planning domains
created by the PDDLAutoGen tool in combination with
an automated planning system available in the state of
the art. All exemplary planning problems were solved.
In this way, we demonstrated that we could enable
industrial robots for autonomous task planning using
the previously automatically generated specific planning
domains. In addition, in the third application case, we
build a holistic robot application based on a real robot
cell and our skills-based control framework from previ-
ous works. Based on this application case, we were able
to demonstrate further the executability of the derived
action plans and, thus, the usability of the PDDLAu-
toGen tool within skills-based robotics. In addition,
we have shown the efficiency benefits of robots that
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autonomously plan their tasks. In our example, the man-
ual effort for task instruction based on the information
to be specified was 63% less compared to specifying the
entire sequence of actions.

Innovation, benefits, and promising application
fields in manufacturing

This section highlights the innovation and resulting bene-
fits from our contribution. The innovation of the presented
work is to automatically adapt abstractly modeled planning
domains for specific individual application cases. This has
not been addressed in the state of the art so far (see “Evalu-
ation and contribution” section). As a first contribution, we
investigated this idea on a conceptual basis and transformed
it into a structured methodology. The designed methodology
has two main benefits compared to existing approaches in the
state of the art. After an abstract planning domain has been
initially modeled by an expert in automated planning (see
El), it can be easily and automatically adapted for individ-
ual specific application cases (see E3). Beneficially to related
works, application experts do not require additional exper-
tise to adjust the specific PDDL planning domain for their
individual needs. In addition, through the automatic adaption
of planning domains, the workload decreases drastically. As
a second contribution, we integrated the methodology into
the procedure for developing skills-based industrial robot
applications. In doing so, we could demonstrate the follow-
ing benefits. First, autonomous task planning for industrial
robots can be easily set-up by incorporating the new method-
ology for generating PDDL planning domains for specific
application cases (see E3). The necessary information for the
automated generation of planning domains can be acquired
during the established development procedure of robot skills
(see E2). Second, industrial robots capable of autonomously
planning their tasks during operation can be easily instructed
for manifold tasks with much lower effort compared to classi-
cal programming approaches (see E4). To conclude, based on
the presented work, the deployment possibilities of industrial
robots will increase and gain flexibility. In the long term, inte-
grating easy-to-use and flexible robotic solutions has positive
economic and international implications for manufacturing
companies. By improving production processes, supporting
employees, and counteracting the loss of skilled workers,
intelligent robot applications can increase manufacturers’
productivity and help them maintain national and interna-
tional competitiveness.

In the scope of this publication, we have considered kit-
ting as an exemplary application field and demonstrated the
feasibility of our approach for three application cases with
a stationary and mobile robot. Our approach is especially

suited for application fields that fulfill the following two cri-
teria. First, the application field has high task variability, so it
profits from robots that perform autonomous task planning.
Second, within the application field exist manifold applica-
tion cases with a common basic structure and sequence but
which differ individually, for example, in their environment,
objects considered, or process characteristics. In addition
to kitting and based on our considerations in “Preliminary
considerations” section, we see further application fields in
handling and assembly as promising following extensions.

Limitations, challenges, and recommendations
for future research

Finally, we discuss the limitations of our work and the raised
challenges and provide recommendations for future work.
We start with the discussion of aspects directly related to the
use of automated planning for robot task planning. Firstly,
abstract planning domains are only valid in a defined appli-
cation field. Therefore, the validity range must be specified
and considered when setting up a specific application case.
The focus of the presented work was the automated adaption
of abstract planning domains to specific application cases
and was not modeling the best planning domain. However,
the validity range of an abstract planning domain could be
extended by improving the modeling of the abstract planning
domain. In this way, our approach could also become wider
applicable. Secondly, when analyzing the exemplarily illus-
trated action plan of the first application case in Fig. 13, we
identified some robot behavior to be improved for a more
efficient operation. For example, sometimes the robot exe-
cutes two driving actions in a row, whereas it could directly
drive to the final waypoint (e.g., actions 9 and 10). This could
be addressed by improving the abstract planning domain and
testing further automated planners and settings that take opti-
mization criteria into account. In this context, we recommend
the analysis of different automated planning systems in com-
bination with the previously stated improvement of abstract
planning domains for future work.

In the following recommendations, we now steer our
focus more to the integration of our approach into over-
all skills-based industrial robot applications. Firstly, in the
presented work, we had to make trade-offs between general-
izability and individuality of planning domains and related
robot skills. The introduced approach can potentially sim-
plify the creation of planning domains for a wide range of
comparable skills-based application cases. However, appli-
cation cases with particular characteristics that prevent the
automated generation of a specific planning domain will
always exist. Here, manual modeling of the PDDL plan-
ning domain or another approach from related works may be
more suitable. Second, we introduced the concept of auto-
matically adapting abstract planning domains for specific
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applications and demonstrated its feasibility in skills-based
industrial robotics. A holistic evaluation of the approach with
auser study is promising in the next step. This allows usabil-
ity and acceptance of the approach to be tested and used
for further improvements. Third, we demonstrated the use
of the PDDLAutoGen tool in the application field kitting
in this work. Building on these experiences, we see the use
and testing of the PDDLAutoGen tool in further applica-
tion fields as promising, for instance, assembly or machine
loading. In this context, also the extension from one actor
to scenarios with multiple actors might be interesting (e. g.,
like the cooperative task of the second application case). For
this, abstract planning domains for these further application
fields can be integrated into the database of the PDDLAu-
toGen tool. In this context, abstract object types and actions
should be reused once defined. This way, related subordinate
specific skills will be applicable across different application
fields. Lastly, within our methodology, we aim to combine
skills from different developers in an application case and
generate a specific planning domain for task planning. In
this context, we define a validity range for abstract planning
domains that specific application cases must also meet. In the
future, the integration of procedures for formally validating
and verifying automatically adapted planning domains might
be interesting further to increase the effectiveness and safety
of the approach. Bezrucav and Corves (2022), for instance,
have presented an interesting approach to this that could be
built upon.

Conclusion and outlook

Industrial robots that autonomously plan and execute upcom-
ing production tasks are considered promising for future
transformable factories. By means of automated planning
techniques from the field of artificial intelligence, robots can
be enabled for autonomous task planning. In this context,
we identified the manual modeling of the robot’s work-
ing environment as a planning domain as challenging and
time-consuming. To ease this process, we presented the
PDDLAutoGen tool for automatically adapting abstractly
modeled planning domains for individual application cases.
Building on the potential of skills-based robots, we further
demonstrated the integration and use of the PDDLAutoGen
tool within their life cycle. The basic idea of skills-based
systems is to provide functional system capabilities called
skills as modular building blocks that can be combined as
needed for implementing an individual application case. In
doing so, a common approach in skills-based robotics is to
offer robot skills via a central database. In this way, users can
browse available skills and download the skills they require
for implementing a specific application case with their robot
system. In parallel and based on the set of selected skills, the

@ Springer

PDDLAutoGen tool provides users with a specific planning
domain for their individual application case that they can use
to configure a task planner based on automated planning.
This way, users without expertise in automated planning can
easily enable a robot for autonomous task planning with-
out much extra effort. By enabling the robot for autonomous
task planning, the abstraction level for instructing the robot
for manifold tasks increases, and in turn, the required time
decreases. Finally, we demonstrated the use of the presented
methodology within three application cases.

Based on these results and the derived recommendations
for future research in the previous chapter, we plan to deepen
our work on two aspects. First, we like to evaluate the use
of the PDDLAutoGen tool within further application fields.
Second, we want to investigate how to improve the task
planning capabilities of the robot system by evolving the
modeling of abstract planning domains in combination with
testing different automated planners.
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