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Abstract
Purpose Surgical procedures take place in highly complex operating rooms (OR), involving medical staff, patients, devices
and their interactions. Until now, only medical professionals are capable of comprehending these intricate links and interac-
tions. This work advances the field toward automated, comprehensive and semantic understanding and modeling of the OR
domain by introducing semantic scene graphs (SSG) as a novel approach to describing and summarizing surgical environments
in a structured and semantically rich manner.
Methods We create the first open-source 4D SSG dataset. 4D-OR includes simulated total knee replacement surgeries
captured by RGB-D sensors in a realistic OR simulation center. It includes annotations for SSGs, human and object pose,
clinical roles and surgical phase labels. We introduce a neural network-based SSG generation pipeline for semantic reasoning
in the OR and apply our approach to two downstream tasks: clinical role prediction and surgical phase recognition.
Results We show that our pipeline can successfully reason within the OR domain. The capabilities of our scene graphs are
further highlighted by their successful application to clinical role prediction and surgical phase recognition tasks.
Conclusion This work paves the way for multimodal holistic operating room modeling, with the potential to significantly
enhance the state of the art in surgical data analysis, such as enabling more efficient and precise decision-making during
surgical procedures, and ultimately improving patient safety and surgical outcomes. We release our code and dataset at
github.com/egeozsoy/4D-OR.

Keywords Semantic scene graph · Surgical scene understanding · 3D · 4D-OR

Introduction

Holistic and automated understanding of the OR is a cru-
cial step toward the next generation of computer-assisted
interventions [1–4]. The nature of the ORs, which are highly
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complex and variable, with numerous medical staff, patient
and medical equipment, and their diverse interactions make
semantic reasoning in the OR and about surgical procedures
fundamentally challenging.

So far, the surgical data science (SDS) community has pri-
marily focused on analyzing specific tasks, such as surgical
phase recognition, instrument recognition, human pose esti-
mation, hand tracking and situational awareness estimation
[5–12]. For a more complete understanding of the proce-
dures, it is essential to establish models that can accurately
untangle the numerous participants, objects and their interac-
tions, considering the OR as one interwoven entity instead of
several separate activities. This would allow digital systems,
like medical robots, imaging equipment or user interfaces,
to act autonomously according to the needs of the surgery,
resulting in an optimized workspace and improving patient
outcomes.

Scene graphs are used to abstract image information by
representing objects or individuals as nodes, and relation-
ships between nodes as edges [13]. This powerful symbolic
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Fig. 1 An overview of our scene graph generation pipeline. We predict
3D human poses from images and object bounding boxes from point
clouds and assign an instance label to every point. The scene graph

generation then uses the fused point cloud, instance labels and images
to predict the relations between the nodes, resulting in a semantically
rich graphical representation

representation have shown benefits in a wide range of appli-
cations, such as image generation [14], scene manipulation
[15], action recognition [16] and 3D camera relocalization
[17]. While there have been many successful applications of
scene understanding methods in computer vision on bench-
mark datasets for everyday tasks [18–22], the content and
complexity of these datasets are generally simpler compared
to a modern dynamic OR. Despite the potential for diverse
applications, scene graphs have not yet been employed to
model the unique 3D dynamics and complex semantic inter-
actions that occur among various entities within an OR
setting.

To facilitate the training and evaluation of an OR-specific
scene graph generation model, a 4D external view OR
dataset, with SSG annotations and downstream task anno-
tations, is needed. Sharghi et al. [23] capture different
robot-assisted interventions, focusing on phase recognition
lackingmore semantic annotations. Srivastav et al. [10] intro-
duced the only publicly available external view OR dataset,
with synchronized multiview frames and human pose anno-
tations. This dataset significantly contributes to advancing
human pose recognition, but does not contain the semantic
labels that would facilitate a more comprehensive modeling
of the surgical scene. Additionally, the dataset is limited to
single time points, omitting any 4D temporal information.

To this end,we introduce a new4Doperating roomdataset,
4D-OR, which consists of 10 simulated knee surgeries anno-
tated with human and object poses, semantic scene graphs,
clinical roles and surgical phases. In conjunction with this
dataset, we propose a novel, end-to-end, neural network-
based method to generate SSGs for semantic reasoning in

the OR. Given a scene, our network predicts a semantic
scene graph that is structured, generalizable and lightweight,
summarizing the entire scene with humans, objects and their
complex interactions. Finally, we highlight the power of our
semantic scene graph representation on clinical role predic-
tion and surgical phase recognition tasks. In this extended
work, building upon our previous work presented at MIC-
CAI 2022 [24], we introduce an additional downstream task:
surgical phase recognition. Furthermore, we refine our train-
ing approach to improve scene graph generation performance
and offer a more comprehensive explanation of our dataset,
its annotations and the underlying methodology (Fig. 1).

Methods

In this section, we delineate the methods employed in our
study, focusing on the construction of semantic scene graphs,
the development of our 4D-OR dataset, the implementation
of our scene graph generation pipeline and the downstream
tasks of clinical role prediction and surgical phase recogni-
tion.

Semantic scene graphs

Semantic scene graphs (SSG) provide a structured represen-
tation of objects and their semantic relationships within an
environment. They are defined by a set of tuples G = (N , E),
withN = {n1, . . . , nn} a set of nodes and E ⊆ N ×R×N
a set of directed edges with relationships R = {r1, . . . , rM }
[13]. Within a 3D scene, the corresponding SSG captures the
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Fig. 2 Region and scene with corresponding triplet and scene graph representation

entire environment including the location of each node. In
the specific case of an OR, nodes in the graph encompass
medical staff and equipment, such as the anesthesia machine
or operating table. The edges represent the semantic interac-
tions between nodes, such as a human drilling (into the bone
of) the patient, as visualized in Fig. 2.

4D-OR dataset

To facilitate the modeling of intricate interactions in an OR
using SSGs, we introduce the novel 4D-OR dataset. 4D-OR
consists of ten simulated total knee replacement surgeries,
which were conducted at a medical simulation center with
input from orthopedic surgeons, ensuring a reasonable simu-
lation of the surgical workflow. The actors, comprising three
males and two females, were biomedical engineers doing
their PhD and were informed by surgeons on the surgical
procedure theywere simulating.We chose total knee replace-
ment as our intervention type,which is a representative ortho-
pedic surgery, as it encompasses various steps and diverse
interactions. 4D-OR contains a total of 6734 scenes, captured
by six calibrated RGB-D Kinect sensors1 located at the OR
ceiling. We empirically fixed the number of cameras to six
to ensure a good trade-off between obtaining comprehensive
ORcoverage and ensuringpracticality in hardware setup.The
recording is done in one frame per second and is hardware
synchronized across cameras. The average recording dura-
tion is 11min, and the workflow can be seen as a simplified
version of the real surgery. The roles of actors were switched
regularly to create variety in the dataset. Some examples
of activities present in the dataset can be seen in Fig. 3.
Notably, 4D-OR is the only semantically annotated OR
dataset. In addition to the images and fused 3D point cloud
sequences, our dataset contains automatically annotated 6D
human poses and 3D bounding boxes formedical equipment.
Additionally, we annotate SSG for every time point, accom-
panied by the clinical roles of all humans present in the scene

1 https://azure.microsoft.com/en-us/services/kinect-dk/.

and surgical phases. For every frame, the authors created one
annotation, in collaboration with medical experts.

Scene graph generation

In the task of scene graph generation, the goal is to deter-
mine the objects and their semantic connections provided
a visual input such as an image or point clouds. To this
end, we present a novel end-to-end scene graph generation
(SGG)pipeline,which is illustrated inFig. 1. In our approach,
we first identify humans and objects in the OR and extract
their visual features. Then, we construct a semantic scene
graph by predicting their pairwise relationships. We utilize
state-of-the-art human and object pose estimation methods,
VoxelPose [25] and Group-Free [26], to estimate the human
and object poses, respectively. We design an instance label
computation method that uses the predicted poses to assign
each point in the point cloud an instance label. Furthermore,
to ensure the detection of small and transparent medical
instruments, which can be hard to localize in the point cloud,
yet that are still represented in our scene graph, we introduce
a virtual node termed instrument to represent interactions
between humans andmedical instruments. For predicting the
pairwise relationships, we build upon 3DSSG [17].

3DSSG employs a neural network-based strategy to pre-
dict node relationships. It takes a point cloud and correspond-
ing instance labels as input. Two PointNet [27]-based neural
networks are utilized to calculate latent features. ObjPoint-
Net processes the point clouds extracted at the object level.
RelPointNet, on the other hand, processes object pairs, where
for each object pair, it takes the union of the point clouds of
the two objects as input. A graph convolutional network is
then applied to contextualize the features of nodes and edges.
Lastly,multilayer perceptrons are used to process the updated
representations and predict object and relation classes. We
train our scene graph generation network end-to-end, using
the cross-entropy loss. For our SGG method, we design the
following OR-specific modifications to 3DSSG:
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Fig. 3 We visualize five
exemplary relations, as well the
number of occurrences of all
relations, entities and surgical
phases in the 4D-OR dataset

Multimodality by incorporating images: The OR com-
prises numerous objects of varying sizes. Small, reflective or
transparent instruments, such as scissors or lancets, are not
always adequately captured by point clouds, even though
their correct identification is crucial for many relationships.
The vanilla 3DSSG often struggles with those relation-
ships. Instead, we incorporate images alongside point clouds
into our pipeline by extracting global image features using
EfficientNet-B5 [28] and aggregating them with the Point-
Net features, enabling the usage of multimodal input for the
scene graph generation.

Data augmentation: To simulate variations in the real world
such as different clothing shades, lighting or object sizes, we
augment the point clouds during training by applying ran-
dom scale, position, orientation, brightness and hue changes.
For point clouds associated with relationships, we augment
the points of both objects separately, simulating them being
in varying sizes or positions relative to each other. Finally,
we employ a crop-to-hand augmentation, where we ran-
domly crop the point cloud to the vicinity of the hands. This
approach implicitly trains the network to concentrate onmed-
ical instruments when learning the relations such as cutting,
drilling or sawing.

Downstream tasks

Wedemonstrate the capabilities of our semantic scene graphs
in two different downstream tasks: clinical role prediction

and surgical phase recognition. The first aims to predict the
role of medical staff in the OR, while the latter aims to deter-
mine the current phase of the surgery. Both tasks only utilize
the SSG and no additional visual input. They benefit from
the rich structural information provided by the SSG.

Clinical role prediction: To identify each individual’s role
in the surgical setting, we first calculate a track T for each
person using a Hungarian matching algorithm that leverages
detected poses at each time stamp. Each track T , with a dura-
tion of K , consists of a selection of generated scene graphs
GTi where i = 1, . . . , K and a related human node nT i for
the track. The process of assigning clinical roles involves
two primary steps: computing role likelihoods and assigning
unique roles. For each track T , we compute a probability
score indicating the likelihood of a specific role. We employ
Graphormer [29], to process all the scene graphs within the
track GT . By designating nodes nT i as target in the respec-
tive graph GTi , the network discerns which node embedding
corresponds to the role. We compute the mean target node
embedding over all the scene graphs in GT and predict clini-
cal role scores using a linear layer trained with cross-entropy
loss. Additionally, we introduce a heuristic-based method as
a non-learning alternative for comparison, which uses the
frequency of relations associated with each human node. For
instance, the score for the head surgeon role increases with
each sawing relation, while the score for the patient role
increases with each lying on relation. Once clinical role like-
lihoods are computed, we deduce the clinical role of a human
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node by solving amatching problem. By retrieving role prob-
abilities for each track, we match roles to nodes bijectively
based on their probabilities, ensuring that each human node
in the scene receives a distinct role, with the following algo-
rithm:

1. For each human node, retrieve the associated role proba-
bilities.

2. Identify the nodewith the highest probability for a specific
role.

3. Assign that role to the node with the highest probability.
4. Remove the assigned role from the role probabilities of

all other nodes.
5. Renormalize the role probabilities for the remaining

nodes.
6. Repeat steps 2–5 until each node has a unique role assign-

ment.

Surgical phase recognition:Todetect the different phases of
the surgical procedure, we first divide the surgery into eight
distinct phases as enlisted in Table 3. For defining the phases,
we follow the definitions of Sharghi et al. [23]. The phases
with a “Surgery:” prefix imply main surgical operations, i.e.,
when the patient would be under anesthesia. Given the pre-
dicted scene graphs G from a surgery, we first enhance them
by predicting the clinical roles of the medical staff. Then, we
determine the correct phase corresponding to each scene by
querying the scene graphs for specific triplets, such as “head
surgeon sawing patient,” which we map to certain surgical
phases. As our surgical phase recognition algorithm itself
does not rely on a learning-based approach, it is transpar-
ent and does not need any additional annotations. As our
semantic scene graphs already summarize the surgery at a
high level, the detection of phases can be achieved with the
following heuristics:

1. OR Preparation: SG does not include patient and surgery
did not start

2. Patient Roll-In: SG includes patient and operating
operating table

3. Patient Preparation: SG includes head surgeon
preparing patient and assistant surgeon preparing
patient

4. Implant PlacementPreparation: SG includeshead surgeon
cutting patient

5. Implant Placement: SG includes head surgeon
hammering patient

6. Conclusion: SG includes head surgeon cementing
patient

7. Patient Roll-Out: SG includes patient and operating
operating table and surgery is finished

8. OR Cleanup: SG does not include patient and surgery is
finished

Experimental setup

In this section, we present our experimental setup to evaluate
our SSGpipeline and its application to clinical role prediction
and surgical phase recognition.

Implementation details: The 4D-OR dataset is partitioned
into training, validation and testing subsets, containing six,
two and two takes, respectively. We adapt VoxelPose [25]
to recognize 14 joints and train it for 20 epochs using a
patient-pose weighted loss. Group-Free [26] is trained for
180 epochs. For SGG,we employPointNet++ [30] as our fea-
ture extraction method, with a class balancing loss to address
the challenge of rare relations. The learning rate is 3e−5, and
the network is trained on 4000 and 8000 points for predicting
objects and relations, respectively. In this extended journal
submission, we train our scene graph generation network for
twice as many epochs as before, leading to improved results.
Our pipeline, implemented in PyTorch and executed on a
single GPU, attains an inference runtime of 2.2 FPS.

Evaluation metrics: To assess the performance of our pro-
posed method, we use a set of comprehensive evaluation
metrics. For human pose estimation, we utilize the Percent-
age of Correct Parts (PCP3D) metric. Object pose estimation
is evaluated using average precision (AP) at a specified
intersection over union (IoU) threshold. Scene graph rela-
tions, clinical role predictions and surgical phase recognition
are assessed using precision, recall and F1-score, with a
macroaverage computed over all relations, roles and phases,
respectively. The macroaverage is sample size-agnostic,
ensuring equal importance for all classes, which is essen-
tial in our setting since rare relation types such as cutting or
drilling are crucial for accurate scene understanding. In all
metrics, higher scores signify better performance.

Results

In this section, we present our results for human and object
pose prediction, scene graph generation, clinical role predic-
tion and surgical phase recognition.

Human and object pose prediction: We evaluate our
method on the task of human pose recognition and achieve a
PCP3D of 71.23 in the test split. For object pose recognition,
our approach attains a high AP value of 0.9893 for IoU@25
and 0.9345 for IoU@50. The reliability of ourmethods is fur-
ther corroborated by qualitative results visualized in Fig. 5,
demonstrating accurate detection of human and object poses.

Scene graph generation: Our scene graph generation
results, presented in Table 1, illustrate the effectiveness of
relation prediction from a point cloud. We consider a rela-
tion “correct” if both entities are present in the scene and
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Fig. 4 SGG results on two
sample scenes. Only one input
view is visualized for clarity

Fig. 5 A sample 4D-OR scene
with multiview RGB-D frames
and fused 3D point cloud with
detected 3D object bounding
boxes, human poses and clinical
roles

Table 1 Precision, recall and F1-scores for scene graph generation on test split, transposed

Relation Assist Cement Clean Close Cut Drill Hammer Hold Lying Operate Prepare Saw Suture Touch None Average

Prec 0.64 0.86 0.49 0.97 0.36 0.97 0.86 0.78 1.00 0.85 0.72 0.86 1.00 0.61 0.98 0.80

Rec 0.88 0.93 0.78 0.91 0.72 0.97 0.95 0.90 0.98 0.79 0.90 0.82 0.58 0.74 0.99 0.86

F1 0.74 0.89 0.60 0.94 0.48 0.97 0.90 0.84 0.99 0.82 0.80 0.84 0.73 0.67 0.98 0.81

“Average” stands for macroaverage, which is the unweighted average over all classes. We use images, augmentations, linear loss weighting and
PointNet++

the relation between them is predicted accurately. Notably,
our longer-trained method achieves the best result with a
0.81 macro-F1 using images and point clouds and the pro-
posed augmentation strategies, which is 6% better than in
our MICCAI paper. Figure4 presents two qualitative scene
graph generation examples, highlighting that our approach
can successfully generate accurate scene graphs. However,
our model occasionally fails in predicting the correct relation
when instruments are occluded in scenes with high visual
similarities but different tools (e.g., drilling, sawing).

Clinical role prediction:Table 2 presents our results for clin-
ical role prediction. Near-perfect performance is achieved for
patient and head surgeon roles, with good performance for
assistant surgeon and circulating nurse roles. The anesthetist
role, often partially occluded, proves challenging to predict
accurately.

Table 2 Precision, recall and F1-scores for clinical role predic-
tion, comparing a heuristic-based method and a neural network-based
Graphormer for track scoring

Role Heuristic-based Graphormer

Prec Rec F1 Prec Rec F1

Patient 0.99 0.98 0.99 0.99 0.92 0.96

Head surgeon 0.93 1.00 0.96 0.96 1.00 0.98

Assistant surgeon 0.74 0.74 0.74 0.87 0.96 0.91

Circulating nurse 0.65 0.60 0.62 0.91 0.86 0.88

Anesthetist 0.61 0.45 0.52 0.72 0.52 0.60

Macroaverage 0.78 0.75 0.77 0.89 0.85 0.87

Bold indicates the best result between heuristic based and graphormer
based

One potential remedy would be the incorporation of
an additional camera to adequately cover the anesthetist’s
workspace. Although the heuristic-based score assignment
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Table 3 Precision, recall and F1-scores for surgical phase recognition

Task Prec Rec F1

OR preparation 0.88 1.00 0.94

Patient roll-in 0.99 0.94 0.97

Patient preparation 0.96 0.96 0.96

Surgery 1: implant placement preparation 0.95 0.95 0.95

Surgery 2: implant placement 0.98 1.00 0.99

Surgery 3: conclusion 1.00 0.98 0.99

Patient roll-out 0.96 0.98 0.97

OR cleanup 0.98 0.96 0.97

Macroaverage 0.96 0.97 0.97

method yields lower scores, it retains the advantage of trans-
parency, and not needing task-specific labels. Conversely,
if such labels are available, a Graphormer-based approach
might be easier to adapt to new roles or surgeries, as it does
not require tweaking heuristics and leads to better results.

Surgical phase recognition: Table 3 shows our results on
surgical phase recognition. Our exceptional results show that
our semantic scene graphs encode the information necessary
to extract surgical phases. Furthermore, we achieve these
results without relying on any surgical phase annotations,
demonstrating the capability of scene graphs. The remainder
of the errors is mainly caused by the ambiguity in phase tran-
sitions, where it is not always clear when one phase ends and
the next one begins. While the findings from our simulated
4D-OR dataset suggest promising surgical phase recognition
capabilities, it is imperative to validate these results in a real
OR setting.

Ablation studies: We conduct ablation studies Table 4 to
assess the impact of our contributions, including the use of
images and augmentations. We also investigate the effects of
employing ground truth human and object pose annotations
instead of predictions. Our results demonstrate that using
images (c-d) and augmentations (a-c) significantly improves
F1 results, performing optimallywhen both are applied (a-d),
thus validating the benefits of our method. Moreover, using
ground truth instead of predictions (d-e) results in minimal
change, indicating that our method can effectively utilize off-
the-shelf pose prediction techniques. We further notice that
our final model can be trained longer, which leads to even
higher results (d-f).

Discussion and conclusion

In summary, our work contributes substantially to the field
of holistic OR modeling by introducing the innovative con-
cept of semantic scene graphs.We developed 4D-OR dataset,
the first open-source dataset in the 4D-OR domain. Through

Table 4 SSG generation using 3D point clouds with different configu-
rations

Exp # Image Augment GT Longer training F1

(a) × × × × 0.65

(b) � × × × 0.66

(c) × � × × 0.70

(d) � � × × 0.76

(e) � � � × 0.78

(f) � � × � 0.81

our multimodal neural network-based pipeline, we gener-
ate semantic scene graphs, which offer valuable insights and
decision-making support during surgical procedures. Our
pipeline’s utility is demonstrated in critical tasks such as clin-
ical role prediction and surgical phase recognition, signifying
a meaningful stride toward the advancement of computer-
assisted interventions.While this paper establishes a pathway
for comprehensive modeling of surgical procedures, sev-
eral challenges must be addressed before these methods
can be fully implemented in clinical practice. Significant
hurdles include data privacy concerns and the complexi-
ties associated with acquiring, storing and utilizing hospital
data. Nevertheless, the potential benefits of our proposed
approach, along with the broader advantages of Surgical
Data Science solutions, will drive the research community
to develop effective strategies to overcome these limitations.

Looking ahead, we envision expanding our solution to
incorporate a broader range of modalities. This expansion
could encompass integrating laparoscopic camera feeds,
medical images, data from tools and digital equipment, audio
signals and patient-specific electronic health records. By
incorporating these additional inputs, we can create a more
comprehensive multimodal semantic scene graph, leading to
a more detailed and robust representation of the OR [31].
While our initial study does not yet confirm the clinical use
of SSG in real surgeries, the holistic understanding of the
simulated cases in the 4D-OR dataset validates the concept
and shows the potential for applications in the clinical set-
ting. Our modeling holds immense potential to benefit the
research community, facilitating the conceptualization and
realization of the future digital OR. For instance, it can enable
the prediction of the impact of new technologies on overall
workflow and facilitate the adaptation of digital equipment
functions to the dynamic OR environment and their interac-
tion with each other, ultimately resulting in enhanced patient
outcomes. This promising direction not only underscores the
significance of our current work but also paves the way for
future advancements in this exciting field.
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