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Abstract

Since real-world training datasets cannot properly sample the long tail of the underlying data distribution, corner cases and
rare out-of-domain samples can severely hinder the performance of state-of-the-art models. This problem becomes even
more severe for dense tasks, such as 3D semantic segmentation, where points of non-standard objects can be confidently
associated to the wrong class. In this work, we focus on improving the generalization to out-of-domain data. We achieve
this by augmenting the training set with adversarial examples. First, we learn a set of vectors that deform the objects in an
adversarial fashion. To prevent the adversarial examples from being too far from the existing data distribution, we preserve their
plausibility through a series of constraints, ensuring sensor-awareness and shapes smoothness. Then, we perform adversarial
augmentation by applying the learned sample-independent vectors to the available objects when training a model. We conduct
extensive experiments across a variety of scenarios on data from KITTI, Waymo, and CrashD for 3D object detection, and
on data from SemanticKITTI, Waymo, and nuScenes for 3D semantic segmentation. Despite training on a standard single
dataset, our approach substantially improves the robustness and generalization of both 3D object detection and 3D semantic
segmentation methods to out-of-domain data.
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1 Introduction real-world problems raises a set of issues which go beyond

solving the task on a public dataset.

Reliable understanding of the surroundings in general set-
tings is crucial for high automation (Kilic et al., 2021; Lehner
et al., 2022; Mirza et al., 2022). However, current methods
lack the necessary robustness and generalization capabilities
to properly tackle unexpected events in safety-critical appli-
cations, such as autonomous driving and robotics (Baier et
al., 2019). Deploying state-of-the-art approaches directly to
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In these setups, characteristics such as robustness and
strong generalization become of utmost importance to cir-
cumvent dangerous consequences (Gasperini et al., 2023a).
As challenging scenes can drastically hinder performance
(Zhao et al., 2022), particularly crucial is a model’s ability to
robustly generalize to unseen scenarios, e.g., out-of-domain
and long tail samples, as well as to adverse illumination
and weather conditions (Gasperini et al., 2023b), e.g., at
night and with rain. Various categories of works are aimed
at mitigating these issues, including domain adaptation (Yi
et al., 2021), domain generalization (Wang et al., 2021),
simulations (Beery et al., 2020), estimating the uncertainty
(Gasperini et al., 2021a), and generating adversarial exam-
ples (Tu et al., 2020).

Due to the difficulty of capturing corner cases and
challenging situations from the long tail of the data distribu-
tion, training datasets cannot contain all possible scenarios
(Lehner et al., 2022) and typically include mostly average
cases. This forces to design robust methods that work effec-
tively not only on the available training data distribution,
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Fig. 1 3D semantic segmentation predictions of Cylinder3D (Zhu et
al., 2021a) trained on SemanticKITTI (Behley et al., 2019) with and
without our adversarial augmentations. This figure shows a challeng-
ing out-of-domain sample from Sun et al. (2020), including three large
cars, of which a pickup truck being towed and a large SUV with an
open door. Due to the domain gap, the standard Cylinder3D could not

but also on rare unseen and unknown samples (Gasperini et
al., 2023a; Jung et al., 2021b). Since rare samples are typi-
cally unavailable at training time and might not be part of the
same distribution, as shown in Figs. 1 and 2, state-of-the-art
approaches tend to fail with out-of-domain samples, thereby
proving the need for more robust solutions (Gasperini et al.,
2023a; Mirza et al., 2022).

Although many works addressed part of these concerns
on 2D image data (Qiao et al., 2020; Beery et al., 2020;
Gasperini et al., 2023a; Hendrycks et al., 2021a; Mirza et al.,
2022; Postels et al., 2019), these issues remain mostly open
for 3D point clouds (Lehner et al., 2022). Compared to using
2D data alone, 3D sensors (e.g., LIDAR and ToF cameras)
offer an extra layer of redundancy and robustness, which is
highly valuable in safety-critical settings.

In 3D semantic segmentation, methods assign a known
class to each input point. Since 3D approaches heavily
rely on the geometric relationship between 3D points, non-
standard and out-of-domain objects, such as those in Fig. 1,
can be easily assigned to the wrong class, thereby posing a
safety threat if not properly taken into account. Moreover,
since softmax highly promotes the most probable class, cur-
rent approaches tend to be extremely confident even with
out-of-distribution samples, or when delivering wrong pre-
dictions (Gawlikowski et al., 2021), worsening the problem.
As challenging scenarios can naturally occur in the real world
(Hendrycks et al., 2021b), robustness against them is a fun-
damental characteristic to ensure the safe deployment of a
model.

To avoid the difficult and expensive collection of long tail
samples for training, challenging scenarios can be designed
artificially via adversarial attacks applied to readily available
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Cylinder3D with our adversarial augmentations

correctly segment any of the three vehicles in the scene. Instead, by
plausibly expanding the available training data, our domain general-
ization method allowed the model to improve the segmentation of the
out-of-domain cars. The road and other classes were ignored in the
transfer to Waymo due to misaligned definitions across the datasets

Poifi;i;illars

PointPillars with our
adversarial augmentations

out-of-domain samples

Fig.2 3D object detection predictions of PointPillars (Lang et al., 2019)
trained on KITTI (Geiger et al., 2012), without and with our adversar-
ial augmentations, on out-of-domain cars from the proposed CrashD
dataset. The models were transferred without any fine-tuning. Due to
the unusual shapes of the vehicles compared to those in KITTI, the
standard PointPillars could not detect them. By expanding the training
distribution, our adversarial augmentations allowed the model to detect
both the old car and the damaged one. Images used with courtesy of
BeamNG GmbH

data (Goodfellow et al., 2015). These adversarial examples
expose the vulnerabilities of a model and can be incorporated
in the training data to improve its robustness via adversarial
augmentation (Lehner et al., 2022; Li et al., 2022a). While
existing methods have generated adversarial examples to
improve robustness against out-of-domain data for 3D object
detection (Tu et al., 2020; Lehner et al., 2022), this remains
still unexplored for 3D semantic segmentation.

In this work, we extend the capabilities of a model to out-
of-domain data. We achieve this by enriching the training
data with adversarial examples, which we make plausible
via constraints for sensor-awareness and smooth deforma-
tions. First, we learn a small set of vectors, applicable to



International Journal of Computer Vision

the entire dataset, to generate challenging samples. Then,
we retrain the model while deforming available objects with
our adversarial vectors, and integrate these adversarial exam-
ples as data augmentation. Thanks to difficult and plausible
deformations, we substantially improve the generalization
to challenging out-of-domain data, without using any extra
information. The main contributions of this work can be sum-
marized as follows:

e Weraise awareness on natural adversarial examples, such
as damaged and rare cars.

e We propose a sensor-aware and sample-independent
adversarial augmentation method for domain generaliza-
tion on 3D point clouds.

e We specialize our domain generalization approach for
both 3D object detection and 3D semantic segmentation,
making it the first effectively working on both tasks.

e We strengthen the model’s decision boundaries via tar-
geted and untargeted adversarial augmentation.

e We explain the impact of our method by analyzing the
vectors learned for the two tasks.

e We publicly release CrashD: a dataset containing rare
out-of-domain and long tail cars.

Differently from the conference version of this work (Lehner
et al., 2022), here we: (1) extend our method to 3D seman-
tic segmentation, which requires a different architecture and
adversarial loss compared to 3D object detection (Sect.3.1);
(2) generate our adversarial vectors both to resemble spe-
cific classes of choice (i.e., targeted attack) and also in
an untargeted fashion; (3) assess the impact of the LIDAR
intensity signal on the performance degradation of a model
when transferring to different sensors (Sect.5.4); (4) gen-
erate adversarial intensity signals within our augmentations
to mitigate the domain gap (Sect.3.1.2); (5) generate adver-
sarial augmentations of multiple object classes (Sect.3.2.1);
(6) eliminate the need for 3D bounding boxes exploiting
point-level annotations; (7) analyze how our adversarial
augmentations alter the decision boundaries of the model
(Sect.5.1); (8) assess the impact of our augmentations on the
robustness against transformations of the input (Sect. 5.6); (9)
analyze the differences between adversarial vectors learned
for different tasks as well as their impact on the models
(Sect.5.7); (10) train our vectors against a different archi-
tecture (Cylinder3D by Zhu et al., 2021a); and (11) evaluate
our method on three additional public datasets.

2 Related Work

Our work focuses on adversarial augmentation for both
3D semantic segmentation and 3D object detection. In
this section, first, we provide an overview of 3D seman-

tic segmentation methods (Sect.2.1), then we go through
approaches addressing generalization across both tasks
(Sect.2.2). Finally, we explore adversarial methods, focusing
on 3D point clouds and semantic segmentation (Sect.2.3).

2.1 3D Semantic Segmentation

Depending on the input representation, semantic segmen-
tation methods for LiDAR point clouds can be grouped in
projection-based and point-based. The former project 3D
point clouds to a regular grid, which allows to use stan-
dard convolutions. Regular grids can be voxels to use 3D
convolutions (Zhou & Tuzel, 2018), or pixels via spherical
projections to use common and fast 2D convolutions well-
known from the image domain (Milioto et al., 2019; Wang
et al., 2018). Voxels could be cubic (Zhou & Tuzel, 2018),
vertical square columns as in PointPillars (Lang et al., 2019),
or cylinder partitions as in Cylinder3D (Zhu et al., 2021a).
Specifically, when partitioning the point cloud, Cylinder3D
takes into account the increasing sparsity at higher distances,
by means of distance-dependent voxel sizes. Instead, point-
based methods operate directly on the 3D point clouds, by
extracting features exploiting the geometrical relationship
between neighboring points. PointNet was the first in this
category (Qi et al., 2017), using multilayer perceptrons and
aggregating the extracted features through a global max-
pooling. Other works, such as KPConv (Thomas et al., 2019),
focused on creating new operations dedicated to points. More
recently, a variety of hybrid approaches tried to exploit the
benefits of both projection and point-based categories (Tang
et al., 2020; Xu et al., 2021).

Other recent works explored the use of various aids,
such as 2D data, attention mechanisms, sequential data and
contrastive learning. 2DPASS (Yan et al., 2022) exploits
2D information to improve the representation learning on
LiDAR point clouds. (AF)2-S3Net (Cheng et al., 2021) uses
attention to capture fine details in LiDAR semantic seg-
mentation. Chen et al. (2021) exploited sequential data to
segment moving objects in LiDAR point clouds. SegCon-
trast (Nunes et al., 2022) improves representation learning in
a self-supervised fashion via a contrastive loss, to drive sim-
ilar structures of LiDAR point clouds towards each other in
the embedding space. LESS (Liu et al., 2022) aims at reduc-
ing human annotation for semantic segmentation of LiDAR
point clouds, by leveraging geometrical patterns towards an
heuristic pre-segmentation. While 3D semantic segmentation
assigns a semantic class to each point in input, 3D panoptic
segmentation takes an extra step by additionally segmenting
the points belonging to individual instances (Gasperini et al.,
2021c; Marcuzzi et al., 2022; Razani et al., 2021).

In this work, we focus on 3D semantic segmentation and
base our experiments on Cylinder3D (Zhu et al., 2021a),
which we retrain with the only modification of including our

@ Springer



International Journal of Computer Vision

generated adversarial examples at training time, to improve
its generalization to out-of-domain data.

2.2 Improving Generalization

Generalizing to unseen data is highly desirable for any
learning-based model (Wang et al., 2021), particularly in
unconstrained real-world settings, such as autonomous driv-
ing. Unseen data comprises any sample that is not part of the
training set, including data both in-domain (e.g., validation
set) and out-of-domain (e.g., unseen categories). Depend-
ing on the task and domain, a wide variety of techniques
can be used to improve generalization and robustness, such
as domain-robust sensor signals (Gasperini et al., 2021b),
multi-modal fusion concepts (Jung et al., 2021a), and robust
3D descriptors (Tombari et al., 2010). Domain generaliza-
tion aims at improving the performance on a target domain
(e.g., data captured by a different sensor), without using any
information about it Wang et al. (2021). Instead, domain
adaptation exploits knowledge about the target data (Wang et
al., 2020b; Yi et al., 2021). Domain generalization methods
can be categorized in two groups: those acting on the model
itself, and those operating on the input data.

Among the former category, regularizing the model is
commonly done to reduce overfitting (Srivastava et al.,
2014) or address domain generalization (Balaji et al., 2018).
Gasperini et al. (2021a) found uncertainty estimation ben-
eficial to reduce the domain gap between different data
distributions. Since estimating the uncertainty provides infor-
mation about the knowledge boundaries of a model, it is
helpful to segment unknown objects belonging to unseen cat-
egories as well (Gasperini et al., 2023a). Furthermore, search
algorithms were used to find new architectures that improve
robustness (Mok et al., 2021).

Generalization can be improved also by manipulating
the input data. Albuquerque et al. (2020) explored pretrain-
ing and multi-task learning to improve results on out-of-
distribution data. Moreover, adding synthetic samples can
strengthen the performance on rare classes (Beery et al.,
2020). Data augmentation (Summers & Dinneen, 2019;
Zhang et al., 2021b; Hendrycks et al., 2021a; Nekrasov et al.,
2021) is part of this category as well. Among these, adver-
sarial approaches extend the training data with altered inputs
learned in an adversarial fashion as a way to improve gener-
alization (Volpi et al., 2018; Tu et al., 2020; Qiao et al., 2020;
Lehner et al., 2022).

The method we propose in this work addresses domain
generalization (i.e., does not use any target information) and
belongs to the data category, specifically to the adversarial
approaches, detailed in Sect.2.3.
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2.2.1 Generalization in 3D Object Detection

In the context of generalization, some works addressed the
task of 3D object detection. In the image domain, Simonelli
et al. (2020) created virtual views normalizing the objects
with respect to their distance. By doing so, they were able
to generalize better to samples at different depths. Tu et
al. (2020) improved the generalization towards cars with
roof-mounted objects, by using adversarial examples on
LiDAR point clouds. With LISA, Kilic et al. (2021) targeted
adverse weather conditions with a physics-based simulator
for LiDAR point clouds. They generated data and included
it during training to improve the model robustness in chal-
lenging conditions. Wang et al. (2020b) explored domain
adaptation to bridge the gap between LiDAR point clouds
containing cars with different sizes, due to the distributions
of vehicles in different countries (e.g., Germany and USA).

Generalization is also the focus of our work, where we
explore adversarial augmentation for 3D object detectors on
point clouds.

2.2.2 Generalization in 3D Semantic Segmentation

With the increasing interest of expanding the applicabil-
ity of learning-based systems, several researchers aimed to
improve generalization and robustness of 3D semantic seg-
mentation approaches. PCT (Xiao et al., 2022) mitigates
the reality gap from synthetic LiDAR data for semantic
segmentation. Yi et al. (2021) explored domain adaptation
for semantic segmentation of LiDAR point clouds. They
used a network to recover the underlying point cloud sur-
face, from which they transferred labels across different
LiDAR sensors. They also executed an experiment without
using target knowledge, thus performing domain generaliza-
tion. Mix3D (Nekrasov et al., 2021) is a data augmentation
technique for semantic segmentation aimed at generalizing
beyond contextual priors of the training set. It works by
combining two augmented scenes, thereby generating novel
out-of-context environments. Li et al. (2022b) improved
robustness by means of a test time augmentation strategy
within a knowledge distillation framework, incorporating a
Transformer-based voxel feature extractor. The recent 3DLa-
belProp (Sanchez et al., 2022) was the first method released
for domain generalization in 3D semantic segmentation.
Specifically, they assessed the generalization ability of state-
of-the-art approaches and proposed a method exploiting both
spatial and temporal information. By relying on the previous
frames from a sequence, as well as the current input, they
were able to increase the robustness of the output.
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In this work, we improve the model robustness and gener-
alization through adversarial augmentation. Unlike domain
adaptation approaches which use knowledge about the tar-
get domain (Yi et al., 2021), similarly to 3DLabelProp we
perform domain generalization, thus use solely information
about the source domain. Moreover, our method operates
on individual frames, instead of sequences as 3DLabelProp
(Sanchez et al., 2022). Therefore, our method differs from all
existing approaches. Ours is also the first general approach
shown to work effectively on both 3D object detection and
3D semantic segmentation.

2.3 Adversarial Examples

Adversarial examples are input modifications purposely
designed to lead a model to wrong predictions (Szegedy
et al., 2014; Goodfellow et al., 2015). They are generated
against a trained model (e.g., to reduce its accuracy) and
are typically transferable to other models as well (Lehner et
al., 2022). A multitude of works already explored adversar-
ial examples in the image domain (Carlini & Wagner, 2017,
Moosavi-Dezfooli et al., 2016; Papernot et al., 2016; Yuan
et al., 2019; Xiao et al., 2018), where small pixel pertur-
bations fool target models. Alaifari et al. (2019) deformed
images via sample-specific adversarial vector fields (i.e., sets
of vectors anchored to a set of points in a given space). Wang
et al. (2020a) proposed adversarial morphing fields to alter
image pixels spatially. However, adversarial examples are
still mostly unexplored on point clouds, especially those cap-
tured by 3D sensors (e.g., LIDAR and ToF camera).

2.3.1 Adversarial Methods for Point Clouds

Adversarial methods for 3D point clouds can be divided into
three categories: generation if they add points, removal if they
remove points, and perturbation if they only move points.

Generation and Removal Xiang et al. (2019) were the
first to work on adversarial point clouds and proposed a series
of methods, some of which added points. Cao et al. (2019b)
added adversarial objects to LIDAR point clouds. Similarly,
Tu et al. (2020) added adversarial meshes on the roof of
cars. A different set of works investigated sensor attacks,
adding points with a spoofing device (Cao et al., 2019a).
Instead, removal methods learn to discard critical points in
an adversarial fashion (Yang et al., 2019).

Perturbation Xiang et al. (2019) proposed the first two
perturbation methods. For the iterative gradient L2 attack,
they adapted PGD from the image domain (Madry et al.,
2018), optimizing for a minimal deformation constrained by
the L2 norm. They also proposed the Chamfer attack, using
the Chamfer distance between the original and the deformed
object to reduce the perceptibilty of the attack (Liu et al.,
2020). Our method is similar to the iterative gradient L2
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Fig. 3 Adversarial perturbations introduced by previous works, com-
pared to ours. While others add points, remove them, or shift them with
minor constraints, our approach is sensor-aware and only slides points
along the sensor view ray, thereby preserving occlusions. Additionally,
our method produces adversarial examples with smooth surfaces, by
considering the movement of the neighboring points when computing
the shift for each point

attack, but we do not learn a dedicated vector for every point
of each sample. Instead, we learn one sample-independent
vector field (i.e., operating on the whole dataset) and intro-
duce further constraints to improve the plausibility of our
perturbations. Liu et al. (2020) explored more noticeable
perturbations than the ones of Xiang et al. (2019). They
produced continuous shapes by altering neighboring points
accordingly. Cao et al. (2021) generated adversarial objects
and then 3D printed them to fool multi-modal (LiDAR and
camera) object detectors.

Generalization Most works on adversarial point clouds
were proposed targeting the ModelNet dataset (Xiang et al.,
2019; Liu et al., 2020; Hamdi et al., 2020), which features a
set of synthetic 3D point clouds with various object shapes.
As the samples of ModelNet were not captured by a 3D sen-
sor, these pioneering works often produce unrealistic outputs
(Xiangetal.,2019; Liu et al., 2020). In fact, these approaches
were not intended to improve the generalization of the mod-
els, but rather set the basis for adversarial attacks on point
clouds (Xiang et al., 2019). Additionally, they are all sample-
specific, making their applicability limited in practice, as they
would require to be optimized independently for each object
they are applied on Xiang et al. (2019), Liu et al. (2020) and
Hamdi et al. (2020). Instead, Tu et al. (2020) assessed the
impact on 3D object detection of meshed objects (e.g., canoes
and couches) synthesized on top of a car roof within a LiDAR
scene. Moreover, they attacked these meshes and used them
to defend the detector. By doing so, they improve robustness
and generalization to unseen cars with roof-mounted objects.

Our work is significantly different from all sample-
specific methods (Alaifari et al., 2019; Xiang et al., 2019;
Liu et al., 2020; Yang et al., 2019). In fact, we construct a
single set of vectors. Similarly to Tu et al. (2020), we aim
to improve the generalization to out-of-domain data. How-
ever, unlike them, as can be seen in Fig.3, we do not add
any points, making ours a perturbation method. Addition-
ally, by not making any assumptions on the object nor the
kind of sensor, our method has a wider applicability than
that of Tu et al. (2020). Moreover, we preserve the plausi-
bility of our adversarial examples by considering occlusion
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Fig. 4 Overview of the proposed method. In the first stage (top), we
learn a vector field by iteratively deforming objects to minimize the
adversarial loss £,4, against a frozen model. The applied deformations
are plausible thanks to a series of constraints (e.g., moving points only
along their sensor view ray), and they can either target a specific differ-
ent class (e.g., person as in the figure), or remain untargeted to any other
class. In the second stage (bottom), the vector field learned in the first

constraints, which were ignored so far, and making our per-
turbations sensor-aware. We achieve this by shifting points
only along the sensor ray. Furthermore, our method differs
from previous works as it generates adversarial examples via
transferable learned vector fields.

In the conference version of this work (Lehner et al.,
2022) we first deformed objects to fool a 3D object detector,
then incorporated these adversarial examples when training
a new detector (adversarial augmentation). By doing so, we
substantially improved its robustness and generalization to
out-of-domain samples. In this work, we aim at extending this
to 3D semantic segmentation. Moreover, we bring a series of
improvements towards out-of-domain generalization, such
as targeted adversarial augmentation, as well as new insights
on our method and domain generalization via thorough anal-
ysis.

2.3.2 Adversarial Methods for Semantic Segmentation

The majority of work exploiting adversarial examples (e.g.,
as adversarial attacks or for data augmentation) has focused
either on the imaging domain (Luo et al., 2021; Abdollahi
et al., 2021; Arnab et al., 2018) or on different tasks, such
as classification (Li et al., 2022a) or object detection (Tu et
al., 2020; Lehner et al., 2022). Instead, only few methods
were proposed for semantic segmentation of point clouds.
Among these, AttAN (Zhang et al., 2021a) explores adver-
sarial learning to improve the predictions by correcting noisy
ones, while (Zhu et al., 2021b) proposed an adversarial attack
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stage is deployed throughout the scenes for adversarial augmentation.
The augmented scenes are used during the training of a new robust seg-
mentation model, thereby improving generalization to unseen objects.
While the diagram exemplifies the process for 3D semantic segmenta-
tion, the same method can be similarly applied to other tasks, such as
3D object detection

in which they carefully added real objects in a LiDAR scene,
to fool state-of-the-art segmentation methods.

Our work generates adversarial examples and performs
adversarial augmentation for 3D semantic segmentation, sub-
stantially improving the generalization to out-of-domain data
by expanding the available training set with hard and plausi-
ble examples.

3 Method

Our method is based on deforming point clouds to improve
generalization and robustness against natural object varia-
tions and out-of-domain data. We achieve this via adversarial
augmentation. We apply our approach both on 3D object
detection and 3D semantic segmentation. As shown in Fig. 4,
our method is based on a vector field learned in an adversar-
ial fashion. After training the vectors against a frozen target
model (Sect.3.1), we freeze the vector field and apply it to
objects in the available training data. The same vector field
can be applied to any seen or unseen object. To do so, we
first scale the vector field to match the target object dimen-
sions. Then, we constrain the points movement to preserve
the object shape and occlusions, while making the defor-
mations sensor-aware (Sect. 3.2). Our vector fields are class
specific and we use them to deform all objects of their class.
Such deformed objects are adversarial examples, which we
integrate during training as data augmentation (Sect. 3.3).
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3.1 Adversarial Vector Field

Since the goal is fooling the detector/classifier by perturbing
a point cloud without adding nor removing points, vectors
are convenient in this setting, because they represent shifts
in the point cloud directly. Additionally, using vectors allows
for both compactness and transferability, as the same learned
vector field can be applied to any target object.

Construction To create a lattice of uniformly spaced 3D
vectors within a 3D bounding box, we discretize the space of
a default bounding box B, with a step size ¢. This generates
root coordinates f in 3D space, each of which is assigned an
empty vector v = (x, y, z). The default bounding box B, is
defined by its width w, height A, length /, orientation angle
o, and its center ¢ = (x, y, 2).

3.1.1 Adversarial Losses

For 3D Object Detection To suppress irrelevant bounding
box proposals and focus on the ones that are most likely to
be accurate, we use a binary cross entropy loss following the
method described by Tu et al. (2020). Let Q be the set of
relevant proposals, where each proposal ¢ has a confidence
score s. A proposal is considered relevant if its prediction
confidence score s > (0.1. We minimize s by weighting it
according to the 3D IoU with the ground truth ¢*. The objec-
tive is defined as:

Ladvod = Y, —loU(g*, ) log(l —s). ()
q,s € Q

During training, minimizing Lg4y.04 Optimizes the vector
fields to reduce the confidence score of the prediction of the
detector. As the optimization converges, this causes the detec-
tor to either miss the object or predict a misaligned bounding
box.

For 3D Semantic Segmentation Specifying our method
to the task of 3D semantic segmentation, we explore two
alternative configurations, namely untargeted and targeted
adversarial augmentations. As for 3D object detection, we
first learn a set of vector fields, via a loss function which
depends on the configuration, as described below. While
augmenting with untargeted adversarial examples aims at
strengthening the weakest decision boundaries of a model,
using targeted ones gives the option of reinforcing a specific
class boundary of interest.

Untargeted Loss for 3D Semantic Segmentation The
untargeted attack aims to change the model’s prediction p
of each point to any wrong class. This attack is trained by
maximising the cross-entropy loss which would be normally
minimized when training the segmentation model. Let C be
the number of classes, y; . be the binary indicator (0 or 1)
if class label c is the correct classification for its points p

and pp . the predicted probability of all points p belonging
to class c. The objective function to be minimized for the
untargeted vectors is defined as the opposite of the standard
cross-entropy loss as:

C
Ladv.ssu = Z VYp.c log(pp,c)- 2)

c=1

So the goal is to fool the model into wrongly classifying
as many points as possible. The easiest way to minimize
Ladv.ssu 18 attacking the weakest decision boundary for each
point. This loss formulation aims at globally degrading the
performance of the model, also beyond the points being
perturbed directly (i.e., belonging to the class of interest).
Therefore, it can shift points to change the predictions of
other points of which it does not change the location.

Targeted Loss for 3D Semantic Segmentation The tar-
geted attack aims at changing the model’s predictions to a
specific class. So instead of maximizing the loss of the correct
class as in the untargeted setting, here we minimize the loss
for a different specific class of choice ¢. Let p.« be the points
of the class ¢* whose points are perturbed (i.e., adversarial
class), and pp o+ the model’s predictions for these points.
Given y; as the binary indicator for the chosen target class
¢, the objective function to be minimized for our targeted
vectors is defined as:

Ladv.sst = —(yelog(pex)). 3)

This formulation forces the adversarial vectors to cross the
decision boundary between the correct class ¢* and the target
class ¢. Unlike the untargeted loss Lgy.55; Which aimed at
reducing the IoU across all classes, by acting upon the points
of the adversarial class, the targeted loss L4y 5s; ignores the
predictions on all points other than those of the adversarial
class c*.

Training Procedure To train the vector field, we apply the
same vectors to all target objects in every scene in the train-
ing set, and minimize the adversarial loss across the entire
dataset. This process iteratively updates the vectors, resulting
in different deformations of the target objects and ultimately
leading to different predictions. As the chosen adversarial
loss L4, smoothly converges, the performance of the model,
against which the vector field is optimized, decreases. Once
the vectors have been trained, they can be used for data aug-
mentation to improve the performance of a new model.

3.1.2 LiDAR Intensity
For models using the LiDAR intensity (also called reflectiv-

ity, or reflectance), such as Cylinder3D (Zhu et al., 2021a),
we perturb not only the 3D location of the LIDAR points, but
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also their intensity signal 7. In these cases, we add an addi-
tional dimension to our adversarial vectors, making them
4-dimensional, i.e., 3 spatial coordinates plus intensity, as
v = (x, Yy, z, 7). By doing so, the adversarial loss affects not
only the 3D location of the points, but also their intensity val-
ues. Therefore, the same loss functions L4, can be applied
to learn these 4D vectors.

3.2 Point Cloud Perturbation

To apply a vector field, we first scale it to fit the target object’s
size. We then manipulate the points using these vectors and
constrain their movement as described in the following sec-
tions.

3.2.1 Anchor Points

By being sample-independent, our vectors must maintain a
relative spacing between them. Therefore, each vector needs
to be anchored to a certain point, which can be either part
of the point cloud, or not. This is crucial both when learning
and when applying the vectors, otherwise it would be unclear
how to move which points. In the conference version of this
work, where we focused only on 3D object detecion (Lehner
etal., 2022), we anchored the vectors to a grid formed withina
reference bounding box B, . Specifically, we relied on ground
truth 3D bounding boxes to learn and apply our vector fields
as augmentation. However, for 3D semantic segmentation,
3D bounding boxes may not be available. A naive approach
without utilizing 3D boxes could employ a large vector field
that covers the entire scene, which could be active only on the
points belonging to a certain adversarial class (e.g., car). This
has severe drawbacks: it would require a very high amount
of vectors, and the vectors could overfit due to the limited
samples available at certain locations within the scene (e.g., at
far distances), reducing their efficacy. Instead, we address the
lack of ground truth 3D bounding boxes with two alternative
solutions: an off-the-shelf 3D object detector to predict 3D
bounding boxes, and axis-aligned bounding boxes around the
points belonging to each instance, which are even simpler to
obtain.

Predicted Bounding Boxes Using 3D bounding boxes
when applying our method on either 3D object detection
or 3D semantic segmentation has the benefit of following
a similar pipeline for both tasks. While ground truth bound-
ing boxes are readily available on datasets designed for 3D
objectdetection (e.g., KITTI Geigeretal.,2012), they may be
unavailable for semantic data (e.g., SemanticKITTI Behley
et al., 2019). In the latter case, they can be obtained with an
off-the-shelf detector (e.g., Deng et al., 2021). However, the
effectiveness of our method would then depend on the perfor-
mance of the 3D object detector. To mitigate this dependency,
we discard false positives by ensuring that all boxes contain
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points annotated with the correct class. When learning to
deform, false negatives can be problematic because if too
few samples are detected, the vectors may overfit. When per-
forming adversarial augmentation, too many false negatives
render the augmentation useless as it would be applied only
on a limited number of samples, which would not allow for
improved generalization to out-of-domain data. We use pre-
dicted boxes for the popular car class. Instead, for smaller
classes, such as person, the performance of 3D object detec-
tors is not as reliable (also due to the KITTI dataset (Geiger et
al., 2012) missing annotations for person and cyclist), requir-
ing different solutions.

Axis-Aligned Boxes Using axis-aligned boxes instead of
predicted boxes implies having access to point-level instance
annotations. We construct an axis-aligned box around the
points belonging to each instance. Compared to predicted
boxes, using ground truth instance annotations guarantees
the correct coverage of all objects. The drawback lies in hav-
ing larger grids (e.g., when the object is rotated by 45° with
respect to the ground axes), which causes a sparser distri-
bution of vectors on the points to be perturbed. However,
this strategy has the advantage that when applying the vec-
tor fields all objects can be deformed, assuming that their
points are annotated. Since existing 3D object detectors for
LiDAR data mainly focus on the car class, which is the one
having the most accurate annotations in KITTI (Geiger et
al., 2012), their performance on other classes is sub-optimal.
Therefore, for classes other than car (e.g., person) we opt
for axis-aligned boxes. Since these boxes have no direction
indication, we extract a pseudo orientation, by considering
the shorter side min = (w, [). Such ambiguity prevents the
vector fields to specialize to certain orientations. Neverthe-
less, we deal with the direction ambiguities as described in
Sect.3.2.3.

3.2.2 Plausibility Constraints

Optical Ray Consistency To improve the generalization
ability of our models and to ensure that the deformations
take into account the physical constraints of the sensor, we
use a sensor model that allows 3D points to be moved only
along the optical ray. To do this, we first compute the ray
u; between the sensor and each point p;, which determines
the direction in which each point can be moved. Then, we
calculate the deformation vectors r; for each point p; by pro-
jecting its nearest vector v; onto the ray u;. This means that
each point can only be moved by the vector r;.
Regularizing the Deformations To limit the amount by
which the points can be perturbed, we restrict the vectors v;
to have a maximum magnitude of € according to the standard
PGD L attack (Madry et al., 2018). We also ensure that the
resulting deformed shape has smooth surfaces by sampling
multiple neighboring vectors and using them to move a given
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Fig. 5 Representation of the relative rotations between the 3D sensor
and the objects. The triangle inside each box points towards the direc-
tion of the object (e.g., a car driving away from the sensor at position
12, left). We use G = 12 vector fields, one for each of the 12 posi-
tions in the scheme (left). The red sensor rays are positioned at the
B, angles, such as 0, 30, and 60°. As we consider relative rotations,
objects pointing in other directions are treated as axis-aligned objects
at different positions (left) depending on their incidence angles from
the sensor rays. For example (right), the object at position 1 pointing

3D point. For each j-th vector among the k nearest neigh-
bors, we calculate the Euclidean distance d;; between the
point p; and its nearest vector v;; from the vector field. The
final position of each point is determined by weighing the
deformation vectors r;; with their corresponding distances
d;j and summing them together:

Tl

m; = Z]k] d,_/l J (4)
2j=13;

This allows for a smoother transition in depth between neigh-
boring points, as vectors with opposite directions would
cancel each other out and result in little or no movement
of the affected point. All together, this helps to preserve the
smoothness of the deformed shape and reduce the amount of
irregular deformations.

Regularizing the Intensity Shift When using the inten-
sity as extra input signal, the forth dimension of each vector
is used to increase or decrease its value t. Since the intensity
is a scalar, it is independent from the optical ray direction.
However, we constrain the adversarial shift A on the inten-
sity values t for each point p; by a maximum of . To
ensure smooth intensity changes on neighboring points we

reference positions of the G vector
fields with respect to the 3D sensor

object position

20" . EI
incidence an_gle 60° \
sensor-object

treated as @w
1

treated as

|§|10(

3D sensor
60°

reference position |§|

for the vector field

examples of relative rotations between
2 objects and their reference vector fields

left is hit by the sensor ray with an incidence angle of 60° (blue), so
it will be treated by the 4-th vector field, which will keep its incidence
angle unchanged whilst rotating the object by 90° clockwise such that
it points forward. Moreover, objects at angles that do not match the G
reference positions are considered at intermediate positions according
to their rotation angles. So the object at position 10 rotated clockwise
by 20° is treated by the 9-th vector field at an angle that is 10° clock-
wise from the reference position 9, thereby keeping the incidence angle
unchanged at 100° (pink) (Color figure online)

also weight the final intensity perturbation similarly to Eq. 4.
The resulting intensity value is then clipped within the range
[0, 1].

The effect of our attack is illustrated in Fig. 10, where it
can be seen how compared to the sample-specific Chamfer
attack (Liu et al., 2020), ours preserves the overall object
shape, moving the points only slightly.

3.2.3 Relative Rotation

While it is possible to use a single vector field for all objects
of a certain class in the entire dataset, this would lead to rather
small and generic deformations. By fitting the same vector
field to all objects, its vectors need to point in all directions to
be able to shift points across the highly diverse object poses
with respect to the capturing sensor. This wide variability
of directions reduces its efficacy, resulting in small defor-
mations. We circumvent this problem and allow for a larger
degree of alignment between neighboring vectors, by learn-
ing G different vector fields according to the relative rotation
of the object to the sensor along yaw. Specifically, as shown
in Fig.5 from a top-down view, we divide the surrounding
360° angle around the vertical axis centered at the 3D sensor
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in G = 12 slices of 30° each, starting from 15°. By doing
so, each vector field g focuses on perturbing only objects
visible from + 15° around B,, which is the reference angle
for the vector field g (shown in Fig. 5 by the red sensor rays).
In particular, as illustrated in the figure, for every object we
consider its incidence angle to the sensor, as well as its orien-
tation angle in the coordinate system of reference. As shown
in the right of the figure, we rotate each object to make it
axis-aligned and orient it towards the front of the sensor (i.e.,
forward with respect to the ego vehicle), then we position
it around the sensor such that its incidence angle remains
unchanged. Depending on which g of the G positions the
rotated axis-aligned and forward-facing object is located, we
select the corresponding vector field g to perturb it. This is
described in Fig.5 via two examples.

When using ground truth or predicted 3D bounding boxes
(Sect.3.2.1), the object orientation is available. This allows
the 12 vector fields to specialize on different instances, such
that each can be specific to objects having points located in
certain regions of the default bounding box By. This means
applying each vector field g only to the objects appearing
in its corresponding slice around S, as shown in the figure.
However, without oriented 3D bounding boxes, but using
axis-aligned boxes determined by the point-level annotations
(Sect.3.2.1), it is not possible to establish the orientation of
the objects. Therefore, with G = 12, opposite pairs of vector
fields would overlap, e.g., 1 and 7 in Fig. 5. To avoid this issue,
with axis-aligned boxes we consider only G = 6 vector fields
(1-6), and use them at both their nominal positions and the
corresponding opposite ones.

3.3 Adversarial Data Augmentation

After learning to deform objects in the first stage (Fig.4),
we use the vector field as adversarial augmentation. In this
phase, we train a model for a downstream task (e.g., 3D
object detection or 3D semantic segmentation) and use the
adversarial vectors to perturb the scenes in input as data aug-
mentation. This increases the robustness of the model and
also its generalization capability, as we expand the training
datain a plausible way thanks to our combination of adversar-
ial examples and constraints (e.g., sliding points only along
their sensor view ray). Since the learned perturbations are
structurally-consistent, they are better suited than standard
augmentations (e.g., scaling, flip, rotation) to resemble rare
out-of-domain object shapes, such as cars from a different
country (Wang et al., 2020b).

Instead of applying the same set of vectors over the entire
dataset, we increase the diversity of the training data by
using N different vector fields for each of the G rotations
(Sect.3.2). These N x G vector fields are learned indepen-
dently from one another and they are randomly initialized.
During training of the model for the downstream task, we
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randomly select one object in the scene and we deform it
with a randomly chosen vector field out of the N available
ones for its relative rotation.

We do not augment all instances in the scene to let the
model learn unperturbed objects as well as deformed ones.
Moreover, thanks to the N different sets of vectors, the same
object can be deformed differently at different epochs as dif-
ferent vectors are chosen. Furthermore, the same vector field
does not deform all objects the same way, as it gets scaled
and rotated to match the object it is applied on. Then, since
the 3D points do not lie on the same grid as the vectors, their
shift depends on how close they are from which vector. By
considering neighboring vectors and the relative distances of
each point to the closest vectors, even slightly different 3D
locations of the points result in different deformations.

Overall, we introduce a wide variability and randomness
in the training process which aid generalization and prevent
overfitting to specific deformations, as demonstrated in the
next section through extensive experiments.

4 Experimental Setup
4.1 Datasets

We conducted our experiments on seven different datasets.
Six of them are autonomous driving datasets with avail-
able LiDAR data: KITTI (Geiger et al., 2012), the Waymo
Open Dataset both for semantic segmentation and object
detection (Sun et al., 2020), our proposed synthetic CrashD,
SemanticKITTI (Behley et al., 2019), and nuScenes (Caesar
et al., 2020). Additionally, in our previous conference publi-
cation we applied our method also on the indoor SUN RGB-D
dataset (Song et al., 2015), to demonstrate the wide applica-
bility of our approach, also to time-of-flight (ToF) cameras.
All datasets used in this work are openly available, provided
by the respective authors cited in the reference section.

4.1.1 3D Object Detection Datasets

We report on four different datasets for 3D object detection.
KITTI (Geiger et al., 2012) is a popular 3D object detec-
tion benchmark recorded in Germany. We adopted a standard
split (Lang et al., 2019), which comprises 3712 training and
3769 validation LiDAR point clouds, where we used the car
class, reporting on the standard easy, moderate and hard.
We evaluated models trained on KITTI for 3D object detec-
tion on Waymo and our CrashD (without any fine-tuning)
to assess the generalization capability of the models to out-
of-domain data, particularly critical for autonomous driving.
The Waymo Open Dataset (Sun et al., 2020) is a challenging
large-scale collection of real scenes recorded in various loca-
tions of the USA. It is highly diverse with different weather
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and illumination conditions, such as rain and night. Specifi-
cally, we evaluated on the official validation set. For LIDAR
3D object detection, we trained solely on KITTI, transferred
the models to Waymo and CrashD, and considered only the
car class.

Proposed CrashD Dataset To estimate the general-
izability of a model on rare out-of-domain data, in our
previous conference publication we openly released a syn-
thetic dataset, which we called CrashD (Lehner et al., 2022).
This dataset was designed as out-of-domain test benchmark
for 3D object detectors trained on KITTI (Geiger et al., 2012),
Waymo (Sun et al., 2020) or similar datasets. The proposed
CrashD includes various types of rare cars with different
shapes, such as old, sports, and damaged. While if included
at all these categories are normally only long tail samples
in standard datasets, in CrashD half of the cars are dam-
aged, and half have an unusual shape (e.g., classic cars). The
other half of each category is undamaged, or normal, serving
as control group to assess the performance gap of a model
between standard cars and rare out-of-domain ones. Specifi-
cally, the crashes were individually generated with a realistic
physics simulator (Maul et al., 2021). We generated various
types of crashes and we distinguished them depending on
the intensity, namely light, moderate, hard, as well as the
kind of damage: clean (i.e., undamaged), linear (i.e., frontal
or rear), and t-bone (i.e., lateral). We randomly and auto-
matically generated 15,340 scenes and captured them with a
64-beam LiDAR, which we configured to mimic the one in
KITTI. Each scene features between 1 and 5 cars, with visi-
ble damages (crash set). Then we collected the clean set after
repairing the vehicles and placing them at the same locations.
Overall, CrashD contains 46,936 cars. CrashD is available
for download through the dataset website https://crashd-cars.
github.io/. Further details can be found in our conference
publication and its supplementary material (Lehner et al.,
2022).

4.1.2 3D Semantic Segmentation Datasets

We report results for 3D semantic segmentation on three
different autonomous driving datasets. SemanticKITTI
(Behley et al., 2019) is a popular 3D semantic segmenta-
tion benchmark recorded in Germany. Behley et al. annotated
with semantic classes the LiDAR point clouds from the
KITTI odometry task. SemanticKITTI includes point-level
annotations for 23,201 full 360° scans for training (including
validation) and 20,351 for testing. We followed the conven-
tion, using sequence 08 as validation set (i.e., 4071 samples),
and the remaining annotated sequences for training (i.e.,
19,130 samples). We evaluated the models across the stan-
dard 19 classes, 8 of which are objects. As for 3D object
detection, we are interested in assessing the generalization
and robustness of the models, so we include two additional

datasets as transfers (without any fine-tuning). The Waymo
Open Dataset (Sun et al., 2020) was recently extended with
point-level annotations for a subset of the 3D object detec-
tion scans. The 3D semantic segmentation dataset includes
labels for 23 different classes. nuScenes (Caesar et al., 2020)
is another large scale autonomous driving dataset. It con-
tains around 15h of driving data collected in Boston and
Singapore, with diverse traffic scenarios (e.g., both left and
right hand drive). Similarly to Waymo, it includes more chal-
lenging weather and lighting conditions (e.g., rain and night)
compared to SemanticKITTI, making it a difficult out-of-
domain test for our models. For Waymo and nuScenes, we
evaluated on their validation sets.

4.1.3 Domain Generalization

As we did not train our models on Waymo, nuScenes or
CrashD, but only used these as generalization tests after
training solely on KITTI (detection) SemanticKITTI (seg-
mentation), various challenges arised when transferring.
KITTI and SemanticKITTI were captured with the same sen-
sors and we designed CrashD to mimic the LiDAR from
KITTI. However, the sensors used in the other transfer
datasets are rather different, thereby providing highly dif-
ferent 3D point clouds. Scans from Waymo are 50% denser
than those of KITTI, and the field of view is narrower on
Waymo. Instead, nuScenes was captured with a 32-beam
LiDAR, delivering significantly sparser point clouds than
those captured with the 64-beam sensor of SemanticKITTI.
For object detection, we report on the proposed CrashD to
show the model performance at the long tail of the data
distribution, featuring rare out-of-domain samples, such as
damaged and rare cars. Instead, Waymo is used to demon-
strate the capabilities on challenging real-world data from
a different country captured by a different 3D sensor. For
the same reasons, for semantic segmentation, we conducted
experiments on Waymo and nuScenes. However, we used
both in order to assess the models performance with denser
and sparser point clouds compared to those used for training.
Overall, the difficult set of transfers included in this work
demonstrates the ability of the models to generalize beyond
their training specifications.

Semantic Classes for Transfers Since the annotation
specifications adopted for each dataset are different, we had
to map the classes accordingly. This was not an issue for
object detection (Lehner et al., 2022) as we focused on the
car class, which is available on all datasets used. Instead, for
semantic segmentation, similarly to previous works (Yi et al.,
2021), we could not evaluate on all classes. In fact, segments
such as road were annotated differently and had to be ignored
for the transfer: Waymo (Sun et al., 2020) included also the
driveways connecting parking lots with the road over sections
of sidewalks, while SemantiKITTI did not. Nevertheless, on
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SemanticKITTT all our models (including Cylinder3D) were
trained on the 19 classes available. When transferring we
considered only the compatible classes: 12 for Waymo and
8 for nuScenes. Instead, to compare with Yi et al. (2021), we
used their class mapping: 2 classes for Waymo and 10 for
nuScenes. The details of the mappings can be found in our
Supplementary Material.

4.1.4 Annotation Requirements

As described in Sect. 3.2.1, it is crucial to associate the adver-
sarial vectors to a region of the point cloud. We did this via
bounding boxes. Therefore, for object detection training our
method does not require any extra annotations, other than
the 3D bounding boxes which are readily available for train-
ing a detector. Instead, a semantic segmentation dataset does
not necessarily include bounding box annotations. We cir-
cumvent this in 2 alternative ways: via an off-the-shelf 3D
object detector, or via axis-aligned bounding boxes. The for-
mer strategy implies that the detector has been trained with
3D bounding box annotations on a different dataset. The lat-
ter requires point-level annotations of instances, which may
not be available. Exploring both strategies ensures the appli-
cability of our method. Conversely, at inference time our
adversarially augmented models do not have any require-
ments in terms of annotations, making them as applicable as
standard models.

4.2 Evaluation Metrics

We evaluated the 3D object detection performance on the
standard AP, with a 3D IoU threshold of 0.7 for KITTI and
CrashD, 0.5 for Waymo. To measure the quality of the adver-
sarial perturbations for object detection we followed Tu et al.
(2020) using the attack success rate (ASR) metric. It mea-
sures the percentage of objects that become false negatives
after undergoing an adversarial alteration. For the ASR, we
considered an object detected if its 3D IoU was larger than
0.7. Instead, for 3D semantic segmentation, we evaluated on
the common mloU as the mean over the classes IoUs. For the
adversarial attacks, we computed the IoU on the adversarial
examples generated from the validation set.

4.3 Network Architectures

For 3D semantic segmentation we used Cylinder3D (Zhu et
al., 2021a), which divides the point cloud into voxels with
distance-dependent sizes. For 3D object detection, we used
three different detectors. PointPillars (Lang et al., 2019) vox-
elizes the scene in vertical columns (i.e., pillars) from the
bird’s eye view, using PointNet (Qi et al., 2017) for fea-
ture extraction. Part-A2 Net (Shi et al., 2020) is an extension
of PointRCNN that predicts intra-object part locations for
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improved accuracy. VoteNet (Qi et al., 2019) is based on
PointNet++ and Hough voting. While PointPillars and Part-
A? Net are mostly used for autonomous driving settings,
VoteNet is used indoor.

4.4 Implementation Details

For the car class we constructed each vector field within B,
with w = 1.8 m, h = 1.6 m, [ = 4.6 m and a step size
of + = 20 cm resulting in 1656 vectors per vector field. If
not stated otherwise, we grouped objects by relative rotations
with G = 12 groups, and set N = 6. For the person class we
used axis-aligned boxes with the dimensions w = 0.54 m,
h =1.7m,l = 0.66 m and a step size of r = 5 cm resulting
in 5036 vectors per vector field. Due to the ambiguous direc-
tion of the axis-aligned boxes, we only use G = 6 vector
fields, each at its position and the opposite one with respect
to the sensor. During the perturbation stage, we moved points
according to their k = 2 nearest vectors and deformed only
along the sensor ray. For the PGD optimization, we used
Adam with a learning rate of 0.05 for object detection and
0.01 for semantic segmentation. The distance threshold was
setto € = 30 cm and ¥ = 0.3 for the intensity. Each vector
was randomly initialized form a uniform distribution with
values between —1 and 1 cm.

For the second stage (i.e., adversarial augmentation,
training of the 3D object detection or the 3D semantic seg-
mentation model), we used all the same hyperparameters
and configurations provided by the authors of each model,
apart from adding our adversarial examples at training time
(Sect.3.2). We trained all models using PyTorch. For 3D
object detection we used the MMDetection3D framework
(Contributors, 2020), while for 3D semantic segmentation
we used the code provided by Zhu et al. (2021a). All models
were trained on a single NVIDIA Tesla V100 32GB GPU.

While for object detection we did not use the LiDAR
intensity signal, all segmentation models took it in input,
unless otherwise noted (e.g., Table 5). Specifically, the inten-
sity values of SemanticKITTI are provided by the authors
in the range [0, 1]. Conversely, Waymo intensity values are
unbounded, and those of nuScenes are in the range [0, 255].
Since we trained all semantic models on SemanticKITTI, we
scaled the intensities of the other datasets to match the same
range. For Waymo, we followed Zhu et al. (2021a) adjusting
them with fanh. For nuScenes, we normalized them to [0, 1].

4.5 Prior Works and Baselines

We compared our work with other adversarial methods,
which we used to generate adversarial examples for aug-
menting the training data. For 3D object detection, all models
were applied on PointPillars (Lang et al., 2019), unless other-
wise noted. Instead, for 3D semantic segmentation, all were
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based on the Cylinder3D framework (Zhu et al., 2021a).
We selected Cylinder3D thanks to its strong performance
on the popular LiDAR semantic segmentation benchmarks
(i.e., SemanticKITTI and nuScenes).

To represent point perturbation methods, we used the iter-
ative gradient L2 (Xiang et al., 2019) and the Chamfer attack
(Liu et al., 2020). For adversarial generation, we used (Xiang
et al., 2019) adding 10%, while for removal we used (Yang
et al., 2019) removing 10% of the object points. We applied
these adversarial approaches for both 3D object detection and
3D semantic segmentation.

For a fair comparison, all models were trained on the same
dataset split: for object detection we used the KITTI splitused
by Lang et al. (2019); for semantic segmentation we used
the standard split of SemanticKITTI (Behley et al., 2019).
Moreover, for all approaches we used € = 30 cm, ¢ = 0.3
and we altered the point clouds as data augmentation with
the same settings as for our approach (i.e., random selection
of one object per scene to augment).

For 3D semantic segmentation, we compared ours with
the domain adaptation method of Yi et al. (2021), which was
designed to address the disparities between different LIDAR
sensors. Furthermore, for 3D object detection we combined
our approach with the domain adaptation statistical normal-
ization (SN) strategy of Wang et al. (2020b). Following them,
after computing the average box dimensions in the target
datasets (i.e., Waymo and CrashD), we scaled the source (i.e.,
KITTI) point clouds within the ground truth boxes accord-
ingly and fine-tuned the trained 3D object detector with this
altered target-aware source data.

5 Quantitative Results

In this section, first, we discuss the performance of adversar-
ial methods towards out-of-domain generalization (Sect. 5.1),
then adversarial methods as attacks (Sect.5.2) and the trade-
off between attack strength and generalization (Sect.5.3).
Furthermore, we explore the benefits of the LiDAR inten-
sity signal (Sect. 5.4), explaining its impact by comparing its
distribution across classes and datasets (Sect.5.5). Then, we
assess the robustness of our approach against varying inten-
sity inputs (Sect.5.6). Moreover, we compare the vectors
learned for different tasks and their impact on adversar-
ial augmentation across tasks (Sect.5.7), we compare our
approach with domain adaptation (Sect.5.8) and combine
with it too (Sect.5.9), as well as with standard data augmenta-
tions (Sect. 5.12). Additionally, we discuss the impact of our
vectors across different architectures (Sect. 5.10), their ben-
efits in terms of robustness at further distances (Sect.5.11),
and also the effect of different data annotations (Sect.5.13).
Finally, we discuss the impact of our constraints in an abla-
tion study (Sect.5.14). Additional results can be found in the

supplementary material of this work, as well as in our con-
ference publication and its supplementary material (Lehner
et al., 2022).

Throughout the results section, we use consistent IDs
denoting trained models and vectors, to help associating dif-
ferent experiments and evaluations. Within each line of a
table, all results across different datasets are obtained by
the same model trained only on KITTI or SemanticKITTI
(depending on the task), and identified by the ID, except for
the attack performance, which is always computed on the
baseline (i.e., PointPillars or Part-AZ for object detection,
and Cylinder3D for semantic segmentation).

5.1 Adversarial Methods and Generalization
5.1.1 Semantic Segmentation

Generalization Data As described by previous works (Wang
et al., 2020b; Gasperini et al., 2021b), nuScenes and Waymo
feature rather different scenarios compared to those of KITTI
or SemanticKITTI. Both transfers are particularly challeng-
ing due to the different countries in which the data was
captured, leading to different vehicles and street layouts.
An additional major challenge is due the different LIDAR
sensors used to capture the point clouds. Compared to
SemanticKITTI, Waymo has a 50% higher point density and
a narrower field of view (Sun et al., 2020), while nuScenes is
significantly sparser, especially at further distances. There-
fore, evaluating the transfer from SemanticKITTI to Waymo
and nuScenes (without fine-tuning) assesses the benefits of
the adversarial deformations towards the segmentation of
previously unseen and out-of-domain real objects and scenes.
In these settings, preserving the plausibility of the pertur-
bations is crucial to improve the generalization of a model
by expanding its training data distribution without introduc-
ing samples that are too far from it. Our method addresses
this via plausibility constraints (e.g., sensor-awareness) and
adversarial examples.

Compared Methods Table 1 shows the comparison
between our approach and related adversarial methods
towards out-of-domain generalization for 3D semantic seg-
mentation. All models are applied on Cylinder3D (Zhu et
al., 2021a). In particular, we report other adversarial pertur-
bation methods used as adversarial augmentations, namely
the iterative gradient L2 (Xiang et al., 2019) and the Chamfer
attack (Liu et al., 2020), adversarial generation (Xiang et al.,
2019), as well as adversarial removal (Yang et al., 2019).

Results Although none of the adversarial augmentations
improved the in-domain mlIoU (i.e., on SemanticKITTI), our
approach was the only one to improve upon the baseline
on the transfers to both Waymo and nuScenes. Our method
applied on the car class in an untargeted fashion (u.c) reached
the highest mIoU and IoU for car, in both Waymo and
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Table 1 Comparison of 3D semantic segmentation models trained on SemanticKITTI (Behley et al., 2019) towards out-of-domain data (without
any fine-tuning), namely Waymo (Sun et al., 2020) and nuScenes (Caesar et al., 2020) validation sets

ID  Attack Method SemanticKITTI — Waymo — nuScenes
mloU car pers.  bicyc. mloU car pers.  bicyc. mloU car pers.  bicyc.

co - Cylinder3D 64.39 96.02 7384 47.15 2943 72,10 6.69  5.68 2997 66.04 0.00 0.89
sl al* iterative gradient L2* 56.30 7722 7245 4739 2486 2448 893 1.07 26.15 1793 0.12 0.25
s.c ac* Chamfer attack™ 5836 83.72 6494 4785 2721 3548 20.61 455 2240 1233 0.00 0.20
s.g ag¥ adversarial generation* 62.94 95.51 75.87 47.86 26770 64.19 5.10 8.31 28.05 66.15 0.02 0.67
sr o ar*® adversarial removal* 6343 95.86 7427 4856 2429 70.73 444 545 2948 6422 005 0.73
u.c Nxau.c [ours] untargeted car 63.85 96.03 77.11 3341 37.74 8238 17.13 5.04 3155 7192 0.06 0.53
to Nxato [ours] targeted oth.v. 64.15 96.66 72.88 49.21 3039 75.70 9.88  3.66 29.57 66.65 0.00 0.00
tb  Nxatb [ours] targeted bicycle 6275 95.58 7449 54.27 3343 76.14 2312 7.11 30.06 66.64 0.00 1.87
tm Nxatm [ours] targeted motorc. 60.80 96.41 72.68 41.63 30.28 76.03 20.31 3.28 29.82 6840 0.00 1.40
u.p Nxaup [ours] untargeted pers. 63.12 9635 75.82 50.11 33.85 7447 2222 424 2944 60.59 0.17 0.58

Bold values indicate the best-performing results
Each method applies a data augmentation, and apart from the baselines (first two lines) all others are adversarial augmentation approaches. All
models are based on Cylinder3D (Zhu et al., 2021a). Underlined values represent the classes that are directly affected by the adversarial attacks.

—: transfer from SemanticKITTIL. *: sample-specific. pers.: person; bicyc.: bicycle; oth.v.: other-vehicle; motorc.: motorcycle

Table2 Comparison of 3D object detection methods trained on KITTI (Geiger et al., 2012) towards out-of-domain data (without any fine-tuning),

namely Waymo validation set (Sun et al., 2020) and our CrashD datasets

1D Architecture Method KITTI — Waymo — CrashD

AP AP normal AP rare

easy mod. hard ASR AP clean crash clean crash
p-n PointPillars no augm. 70.00 61.88 56.23 - 30.68 1.79 0.93 3.92 233
p-s no obj. sampl. 83.83 74.14 68.30 - 37.85 50.36 36.44 28.70 20.02
p-p PointPillars 88.24 77.11 74.55 - 40.86 65.20 43.67 34.14 22.48
p.l iter. grad. L2 * 86.24 76.92 73.84 *95.9 39.86 58.65 41.86 35.92 23.69
p-c Chamfer att.* 87.15 77.05 74.07 *99.8 40.54 56.84 39.56 36.29 24.73
p.g advers. gener.* 86.12 76.39 73.18 *91.6 40.55 57.75 38.03 35.73 24.18
p.r advers. remov.* 86.51 76.85 74.04 *86.1 40.32 66.52 48.88 41.42 28.10
p-o [ours] 87.05 77.13 75.55 63.4 44.61 67.95 52.87 43.40 30.37
da SN dom. adapt. - - - - 49.27 79.42 72.59 60.53 48.23
d.a.o [ours] + SN - - - - 51.32 92.14 87.28 86.26 76.42
p.a Part-A? Part-A? 89.60  79.16 7852 - 49.76 83.05 6325 7403  52.33
p.a.o [ours] 89.65 79.26 78.62 50.5 56.08 88.80 73.80 81.10 61.34

Bold values indicate the best-performing results

Each method applies a different data augmentation (for adversarial ones ASR is measured on their adversarial examples), or performs domain
adaptation (only SN (Wang et al., 2020b)), resulting in the reported APs. Only the car class is considered. — : transfer from KITTI. *: sample-
specific, so adversarial examples are tailored to the samples being evaluated (i.e., validation set)

nuScenes. Specifically, on Waymo, the IoU of our untargeted
approach was higher than that of the standard Cylinder3D
(c.0) by over 10 (+14%) for car and over 8 (+28%) on aver-
age on all classes (mloU). On the sparser point clouds of
nuScenes, it was higher by 6 (+9%) on car and 1.6 (+5.3%) on
average. This shows the effectiveness of our adversarial aug-
mentations to significantly improve the robustness against
challenging out-of-domain data.

The IoU scores obtained by the standard Cylinder3D on
nuScenes (Caesar et al., 2020) were particularly low. For
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person, the standard Cylinder3D scored 0.00. This can be
attributed to the highly sparse point clouds of nuScenes,
which did not have enough points on smaller classes (e.g.,
person and bicyle) to be accurately processed by Cylinder3D
trained on the denser SemanticKITTI. An additional reason is
the different LiDAR intensity distributions (Sect.5.5). Since
the architecture on which every method in the table is based
upon (i.e., Cylinder3D) performed so poorly on nuScenes,
the performance gains on this dataset were not as significant
as on Waymo. Nevertheless, our untargeted car configura-
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tion (u.c) outperformed the standard Cylinder3D and all other
adversarial approaches for both mloU and the reference class
car.

Sample-specific perturbation approaches (Chamfer and
the iterative gradient L2 attacks), by introducing severely
altered samples, which are too far from the existing training
data, worsened the generalization performance when used
for adversarial augmentation. Instead, adversarial generation
and removal are less disruptive, by acting upon fewer points
(i.e., 10%). Nevertheless, unlike our method, they also wors-
ened the IoU on the reference class car.

Targeted Adversarial Augmentations While our untar-
geted augmentations (u.c) performed better overall, espe-
cially in the transfers to Waymo and nuScenes, targeted ones
can be deployed to strengthen a specific class boundary.
Depending on the specific use cases, errors may be valued
differently for different classes. For an autonomous vehicle,
confusing vegetation with trunk may not be as severe as con-
fusing car with road, or car with bicycle. This is linked with
the impact that such errors have on downstream tasks (e.g.,
trajectory prediction and path planning). Therefore, it may be
of interest to strengthen specific class boundaries of a model
to avoid severe confusions (e.g., car-bicycle), even at the cost
of weakening a different boundary (e.g., car-other-vehicle).
As shown in Table 1 our targeted adversarial augmentations
offer this valuable option. In the table we report various aug-
mentations based on targeted adversarial attacks on the points
of the car class towards the corresponding targeted class
(e.g., bicycle). Among our models, augmenting car points
while targeting bicycle led to the highest IoUs for the bicy-
cle class, both in- and out-of-domain, showing the impact
of our targeted techniques to alter specific decision bound-
aries of the model. The other targeted augmentations acted
on different decision boundaries, depending on their target
class. For example, targeting other-vehicle improved the in-
domain IoU for other-vehicle by 9.3 points over the standard
Cylinder3D, reaching 63.8.

Class Person Table 1 reports also our untargeted adver-
sarial augmentations for the class person. Given that this
class has significantly less points than car (477K compared
to 30.8M on the validation set of SemanticKITTI), both
our adversarial vectors and our augmentations operate on
a substantially smaller set, which can hinder the effective-
ness, compared to car. Nevertheless, despite the reduced
data available, our adversarial augmentations improved the
generalization both in-domain and out-of-domain (Waymo),
compared to the standard Cylinder3D. Especially for the per-
son class, the IoU improved by 2 points on SemanticKITTI,
and increased by a substantial 3.3x on Waymo. These results
show the effectiveness of our approach on a class different
than car, while operating without 3D bounding boxes.

5.1.2 Object Detection

Generalization Data Similarly to Table 1 for 3D seman-
tic segmentation, Table 2 compares our method with other
adversarial approaches for 3D object detection. Here, we
apply ours and baseline approaches on PointPillars (Lang
et al., 2019). As for 3D semantic segmentation, none of
the adversarial approaches improved the in-domain AP on
KITTI compared to the standard PointPillars. However, our
adversarial augmentations significantly improved the perfor-
mance on out-of-domain data. As previously shown by Wang
et al. (2020b), the transfer from KITTI to Waymo is partic-
ularly difficult due to the different shapes and sizes of the
vehicles, which depend on the country where the data was
collected (i.e., Germany and USA, respectively), as well as
the different street layouts and urban landscapes. Moreover,
the Waymo point clouds are 50% higher in density and its
LiDAR sensor has a narrower field of view (Sun et al., 2020).
Depending on the global markets, the distribution of vehicle
types varies significantly. This is due to certain manufactur-
ers selling different models in different markets, as well as
their market penetration, and the preferences and needs of the
local population. Therefore, this challenging transfer evalu-
ates the quality of the adversarial perturbations compared to
the real vehicles found in different countries.

Results On Waymo, while all other adversarial approaches
underperformed the standard PointPillars, our method out-
performed it by over 9%. Moreover, our adversarial augmen-
tations brought a 13% improvement on Part-A? (Shi et al.,
2020). This shows the effectiveness of our approach towards
challenging out-of-domain data also for 3D object detection,
thanks to the combination of hard examples with plausible
deformations. The right columns of Table 2 are dedicated to
the results on the proposed CrashD dataset. Despite transfer-
ring the models from KITTI, the AP on clean normal cars
remained relatively high. This can be attributed to the sim-
plicity of such samples. However, the detection performance
dropped significantly when the exact same cars at the same
locations were damaged (crash).

This perfomance gap shows how far damaged cars are
from the training distribution of KITTI, making them natural
adversarial examples. The gap increased even further with
rare cars (i.e., old and sports cars), highlighting again the gap
from the source domain (i.e., KITTI) and normal vehicles.
For these reasons, the most difficult samples of CrashD were
those combining both out-of-domain aspects (i.e., rarity and
damage) into the rare crash group. The AP of PointPillars
on this group reduced relatively from normal clean by 66%.

Despite the challenges, our approach significantly outper-
formed on all transfers and categories the standard object
detectors (i.e., PointPillars and Part-Az), as well as all
other adversarial methods. Removing points (Yang et al.,
2019) was the only adversarial method among the baselines
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Table 3 Efficacy of adversarial methods as attacks on 3D semantic segmentation

D Ad.CL Tar.CI. Adversarial Attack mloU car pers. bicyc. oth.v. motorec. truck
(c.0) - - (Cylinder3D) 64.39 96.02 73.84 47.15 54.42 69.11 88.96
al* car any iterative grad. L2 * 41.16 11.18 70.30 18.88 38.10 47.10 3.30

a.c* any Chamfer attack * 50.92 17.13 73.10 46.56 50.70 52.94 25.88
a.g* any advers. generation * 64.06 95.73 73.81 46.96 53.94 67.97 88.23
a.r* any advers. removal * 64.38 95.71 73.86 47.13 54.56 69.02 89.11
a.u.c car any [ours] untargeted 53.52 62.59 68.98 36.80 16.79 46.47 49.22
a.u.- any [ours] untarg.-10% 54.65 66.01 68.06 37.86 18.09 52.02 55.25
a.u.a any [ours] untar.ax-alg. 61.29 89.02 71.43 46.16 38.58 65.19 80.38
a.tb bicyc. [ours] tar. bicyc. 53.89 68.74 67.11 33.11 20.20 45.08 52.07
a.t.o oth.v. [ours] tar. oth.v. 54.61 6591 68.96 38.10 16.43 52.04 53.88
a.tm motorc. [ours] tar. motorc. 55.62 75.79 68.40 42.07 25.25 27.46 61.20
at.t truck [ours] tar. truck 55.01 76.19 71.19 39.70 22.89 49.62 40.39
a.u.p pers. any [ours] untargeted 60.68 96.01 30.92 46.07 54.50 68.55 89.00

Bold values indicate the best-performing results

All IoUs are computed on the predictions of Cylinder3D (c.0) given deformed point clouds of the validation set of SemanticKITTI by means of
each adversarial method. Therefore, a lower IoU translates in a more effective adversarial attack. All methods attack both the 3D location of the
points and their intensity values. The adversarial class (Ad.Cl.) indicates the class of which points were altered (e.g., car). The target class (Tar.Cl.)
shows the class that the adversarial methods aimed to switch the predictions of the adversarial class to. Any as Tar.Cl. from car (Ad.Cl.) means
altering car points in an untargeted fashion, while having fruck as target means perturbing the point clouds such that the model predicts truck for
car points. *: by being sample-specific, the attack had to be tuned on the same samples on which the method is evaluated (i.e., validation set).

Underlined numbers highlight the targeted classes, or the untargeted ones

which improved the generalization on CrashD. This could
be attributed to its preservation of the overall point clouds,
which is an aspect in common with our approach. Never-
theless, removing points adversarially did not improve the
generalization to Waymo, which contains denser point clouds
and more challenging real scenes. It also did not improve for
3D semantic segmentation.

Similarly to 3D semantic segmentation, the improved
generalization can be attributed to the effectiveness of our
adversarial augmentations to expand the training data dis-
tribution with difficult and plausible examples. Thanks to
the added diversity, our method managed to mitigate the
domain gap, as shown by the results in the tables. Overall, the
results across Tables 1 and 2 demonstrate the effectiveness of
our adversarial augmentations on two highly different tasks,
namely 3D semantic segmentation and 3D object detection.

5.2 Adversarial Methods as Attacks
In Table 3 we compare the effectiveness of the methods as
adversarial attacks for 3D semantic segmentation, in terms

of the change in IoU when using their adversarial examples
as input for Cylinder3D compared to the untouched inputs.

5.2.1 Semantic Segmentation, Untargeted Attacks
Applied on cars, the iterative gradient L2 (Xiang et al., 2019)

and the Chamfer attack (Liu et al., 2020) were able to majorly
reduce the IoU on car (Table 3). Being sample-specific,
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their deformations had to be learned directly on the data
on which they are applied, and in this case also evaluated
(i.e., validation set of SemanticKITTI). The same holds true
for adversarial generation (Xiang et al., 2019) and removal
(Yangetal., 2019), except that they were not effective attacks
as they could not reduce the car IoU. This is due to seman-
tic segmentation being a dense task, requiring a prediction
for each point. Therefore, removing or adding a few criti-
cal points is not enough to lower the IoU as all points count
equally towards the metric. In comparison, considering 3D
object detection, few points can have a larger impact as they
can shift the predicted bounding box (Table 2), thereby reduc-
ing the IoU with the ground truth box until it is below the
threshold for the AP (e.g., 0.7). Being sample-independent
and learned on the training set, the proposed method is not an
attack as effective as the iterative gradient L2 or the Chamfer
attacks at reducing the car IoU. Nevertheless, our untargeted
attack (a.u.c) lowered the car IoU by over 33 points. In fact,
the proposed method is not meant to render the objects unrec-
ognizable. Instead, we aim to perturb them while preserving
their overall shape. As shown in our conference publication
(Lehner et al., 2022), strong attacks do not lead to improved
generalization, which is the aim of this work. Furthermore,
in Table 3 we also report the results of our untargeted attack
on the person class (a.u.p). This effectively lowered the IoU
on person by 43 points and did not change the car IoU with
respect to Cylinder3D (c.0). Comparing the person attack
with the untargeted attack on car (a.u.c) shows the effective-
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ness of our approach, also without using 3D bounding boxes
(Sect.3.2.1).

5.2.2 Semantic Segmentation, Targeted Attacks

In this work, we explored also targeted adversarial attacks
and augmentations. The purpose of the targeted attacks in
this context is to test a specific class boundary, rather than
limiting the attack to the weakest boundary (i.e., untargeted).
We then strengthen this boundary with our targeted adversar-
ial augmentations. With reference to Table 3, all our targeted
attacks not only correctly reduced the car IoU, but also that of
their respective targeted class (e.g., motorcycle). Specifically,
each targeted attack reached the lowest IoU in its class (under-
lined) among all our attacks, showing their effectiveness. Our
untargeted attack often aimed at confusing car with other-
vehicle and motorcycle, both decreasing significantly, while
not as much with person. Therefore, the IoU gap between
targeting other-vehicle (a.t.o) and not targeting any spe-
cific class (untargeted) is rather small for other-vehicle. This
can be attributed to the car-other-vehicle decision boundary
being weaker than others for the Cylinder3D model exam-
ined. However, comparing the performance of Cylinder3D on
the standard data (c.o), the perturbed point clouds untargeted
(a.u.c) and the targeted ones on bicycle, motorcycle, or truck
shows a clear difference on the targeted classes, especially
for motorcycle.

5.2.3 Object Detection, Untargeted Attacks

As seen for semantic segmentation, also for object detection
our approach is not an attack as strong as the sample-specific
ones. This is shown in terms of ASR in Table 2, where
we compared our sample-independent vector fields to their
sample-specific point-to-point deformations. As for seman-
tic segmentation, their perturbations were trained directly on
the validation set of KITTI, on which the ASR was eval-
uated. Nevertheless, a very high score on ASR means that
the objects became unrecognizable. This goes against aiding
generalization, which is the goal of our method.

5.2.4 Considerations on Attack Efficacy Versus
Generalization

Unlike adversarial approaches designed as attacks, we do not
aim to have the model fully miss our adversarial examples
(high ASR). Instead, we want to deform them to increase
the robustness on out-of-domain data. Therefore, the adver-
sarial examples need to be altered enough to expand the
training data distribution, but not too far from it to pre-
vent confusion for the model. We balance these aspects
via sample-independent adversarial perturbations and con-
straining the deformations. The adversarial attack generates

hard examples, while the sample-independence and the con-
straints (e.g., sensor-awareness) mitigate their strength and
preserve their plausibility. As demonstrated throughout this
work, this combination is effective to improve generalization
and robustness.

5.2.5 Impact of Data Annotations

In Table 3, we explore the impact of the availability of data
annotations on our adversarial attack. We explore two differ-
ent strategies: an off-the-shelf 3D object detector deployed
on the training data, and point-level instance annotations. In
the latter case, we create axis-aligned bounding boxes around
the 3D points constituting an instance. The axis-aligned one
prevents the vector fields to specialize on certain object
orientations, since such orientation is unavailable, causing
sub-optimal performance (a.u.a) compared to using an off-
the-shelf detector (a.u.c). In the table, we also assess the effect
of the quality of the detector’s predictions on our attack. We
do so by randomly ignoring 10% of its bounding boxes. As
this impacts directly the performance on the car class, the
attack is not as effective (a.u.-), whilst managing to signif-
icantly reduce the IoU on car by 30 IoU. In Table 10, we
show the impact of this on generalization.

5.3 Specificity-Generalization Trade-Off

As seen in Sects.5.1 and 5.2, strong adversarial examples
do not necessarily translate into successful adversarial aug-
mentations. This is because if the attack is too strong (e.g.,
Chamfer), the generated samples are too far from the exist-
ing data distribution, which causes the model to learn objects
that are not useful towards the task at hand, thereby degrad-
ing the performance. Such extreme transformation can be
seen in Fig. 10. Therefore, there is a trade-off between an
attack strength and its benefits to improve generalization via
adversarial augmentation. While this trade-off is evident for
sample-specific approaches (Sects. 5.1, 5.2), it is less trivial
how it can arise in sample-independent settings, such as ours,
where the attack strength is inherently mitigated by not being
sample-specific. Towards this end, in this section we explore
this trade-off in the context of our method, as we purposely
make our attack overfit on fewer samples.

Object Detection Table 4 shows that by varying the
amount of considered relative rotations G, a trade-off
arises between generalization, attack specificity (i.e., attack
strength on individual samples by overfitting to the training
data), and storage (i.e., amount of vectors). G = 12 offers a
good balance. Instead, taking G to the extreme and having
one vector field for each instance of the dataset, ours would
become sample-specific, inheriting the weaker generaliza-
tion capabilities of prior works (Liu et al., 2020; Yang et al.,
2019), as shown already at G = 360. However, while the
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Table 4 Our adversarial augmentation method for 3D object detection applied on PointPillars (Lang et al., 2019) trained on KITTI with varying
amounts of relative rotations G

1D #G KITTI — Waymo # vectors
ASR 1 mod. AP

p.u 1 55.08 77.32 40.43 10K

p.o 12 63.37 77.13 44.61 120K

p.f 360 44.84 77.06 40.30 3.6M

Bold values indicate the best-performing results
—: transfer without fine-tuning

Table 5 Impact of the LiDAR intensity signals on 3D semantic segmentation models trained on SemanticKITTI, both in-domain and when
transferring (without fine-tuning) on out-of-domain data

ID Method SemK attack SemanticKITTI — Waymo — nuScenes

mloU car mloU car pers. bike  mloU car pers.  bike mloU car pers.  bike
c.n Cylinder3D w/o intensity — - 59.23  96.23 68.67 32.61 3739 63.74 3795 4.05 3211 56.17 0.04 035
u.n [ours] w/o intensity 56.63 86.03 59.40 9573 7035 2653 4036 70.70 52.73 7.57 3430 63.13 1.02 2.52
c.o Cylinder3D w/ intensity — — - 64.39 96.02 73.84 47.15 2943 72.10 6.69 5.68 29.97 66.04 0.00 0.89
u.c [ours] w/ intensity 53.25 62.61 6385 96.03 77.11 3341 37.74 8238 17.13 504 3155 7192 0.06 0.53

Bold values indicate the best-performing results
All models are based on Cylinder3D (Zhu et al., 2021a)

sample-specific methods needed to be trained on the valida-
tion set, allowing for high ASRs (Table 2), our vectors were
learned on the training set. So with high G, ours overfitted
on the training data, which emerges by evaluating on the val-
idation set. Our augmentation strategy learns only 1656 3D
vectors to perturb objects. However, by training with G = 12
and N = 6 (p.o, our standard configuration), the amount of
vectors increased to 120K. Conversely, the sample-specific
iterative gradient L2 (Xiang et al., 2019) and the Chamfer
(Liu et al., 2020) attacks required 10.9M and 12.6M vectors
for training and validation sets respectively. This shows the
easy applicability of our approach.

5.4 Impact of LiDAR Intensity
5.4.1 Effect In-Domain

In Table 5 we assess the impact of using the LiDAR inten-
sity (also called reflectivity) as extra input for each 3D point.
Removing the intensity significantly reduced the mloU and
the ToU on certain classes, such as person and bicycle, but
not on car. On Waymo, models not using intensity outper-
formed the ones relying on intensity by up to 8 mloU points
for the baseline Cylinder3D (Zhu et al., 2021a). This gap
can be attributed to the different sensors used to captured
SemanticKITTI and Waymo, which implies different reflec-
tivity measurements. Therefore, for this transfer, not taking
the intensity as extra input is advantageous. Nevertheless, our
adversarial augmentation significantly improved the predic-
tions both with or without intensity, especially on car and
person.
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5.4.2 Effect on Generalization and Robustness

A trade-off exists between in- and out-of-domain which
depends on the use of the LiDAR intensity values (Table 5).
Since the intensity is a valuable input signal, the in-domain
mloU is higher when integrating it. However, it is better to
avoid using it when transferring to different sensors. Most
3D semantic segmentation experiments in this work used the
intensity, because using it maximizes the outcome on the data
distribution which is available at the time of development
(i.e., in-domain, SemanticKITTI). Instead, we consider the
transfer datasets (i.e., out-of-domain, Waymo, nuScenes) as
real-world test scenarios, which include data that is not avail-
able during the development and training of the method. In
realistic scenarios it is not always known on which exact data
a model will be applied on.

While different intensity values would arise only by
deploying the model on data captured by a different LIDAR
sensor, it is possible for example that a trained model gets
deployed on data from the fleet of vehicles of a newer
generation which includes a different sensor configuration.
Therefore, robustness against varying intensity values would
mitigate the domain gap introduced by the different sensor
and potentially avoid to collect the data again with the newer
sensor, simplifying the process.

By generating adversarial examples which alter not only
the 3D points (Lehner et al., 2022; Xiang et al., 2019; Liu
et al., 2020; Tu et al., 2020), but also the LiDAR intensity
values, our adversarial augmentation approach increases the
robustness of the model and makes it less reliant on it. As
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Fig. 6 Plot of the mean LiDAR intensity values for each semantic
class (x-axis) across the validation sets of the three semantic datasets
used, namely SemanticKITTI (Behley et al., 2019), Waymo (Sun et
al., 2020), and nuScenes (Caesar et al., 2020). Each error bar repre-
sents the standard deviation within that class and dataset. The classes

shown in Table 5, adding the intensity does not degrade the
IoUs of ours as much as for the standard Cylinder3D, thereby
effectively mitigating the sensor change.

5.4.3 Effect on the Attacks

Comparing the attack performances with and without the
intensity (SemK attack in Table 5), confirms that the LIDAR
intensity plays a major role for Cylinder3D. On the reference
car class, the purely geometrical attack without intensity
generated adversarial examples which were not particu-
larly challenging for the model, as shown by the relatively
high IoU on car after the attack (SemK attack). Neverthe-
less, using the geometrical 3D vectors that generated these
examples for augmentations significantly improved the per-
formance on out-of-domain data. On Waymo, our approach
increased the car IoU by 11% without intensity (3D vec-
tors), and 14% with intensity (4D vectors). On nuScenes, by
12% without, and 8% with intensity. In fact, as described
in Sect. 5.1, weaker attacks (e.g., without intensity) can still
lead to valuable augmentations.

5.5 LiDAR Intensity Distributions

Comparing the distributions of the intensity values for each
class across the three datasets shows a significant difference.
We report this in Fig. 6.

naming and definition are aligned with those of SemanticKITTI (i.e.,
19 classes). Not all classes are represented for the other datasets, due
to the non-overlapping definitions with SemanticKITTI (e.g., building
has no dedicated class in nuScenes). Therefore, the naming follows the
convention of SemanticKITTI

5.5.1 Benefits

First, by looking at the intensity values of SemanticKITTI
(Fig. 6), it is evident how useful the intensity signal can be to
identify the semantic classes. For SemanticKITTI, the distri-
bution of the class car is significantly different from that of
building, making it easier to separate the two classes. Never-
theless, it should be noted that the LiDAR intensity changes
significantly depending on the distance. For SemanticKITTI,
between 50 and 60 ms, the mean intensity of building is the
same as the overall mean of car.

5.5.2 Different Sensors

While for the most part in SemanticKITTI increasing the
distance causes a reduction of the LiDAR intensity values
(Fig. 6), this is not the case for Waymo and nuScenes, where
the reflectivity is larger at higher distances. This, together
with the misaligned distributions shown in Fig. 6, makes it
even more challenging to transfer from SemanticKITTI to
the other datasets when taking the intensity as input.

5.5.3 Different Ways to Treat the Values
Only Waymo provides the raw intensity signals, while

SemanticKITTI and nuScenes provide them already scaled,
within [0,1] and [0,255] respectively. It is unclear how
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the scaled values were obtained for SemanticKITTI and
nuScenes. To mitigate the impact of the pre-processing of
each dataset, we further scale the nuScenes intensity values
to [0,1], and apply tanh to those of Waymo to constrain them
within [0,1] as well. The resulting distributions are shown in
Fig.6.

5.5.4 Effect on Our Attacks

Our adversarial augmentations perturb also the intensity sig-
nals. As we limited the maximum shift of intensity to 0.3,
in theory this allowed to transition from the mean car value
(lowest for SemanticKITTI), to the mean traffic-sign value
(highest). However, 0.3 prevented from fully representing
the the intensity distribution of traffic-sign starting from car.
Therefore, while an untargeted attack on car could focus
on weaker boundaries (both semantically and in terms of
intensity values), such as truck and other-vehicle, not all
targeted attacks can be very effective due to the intensity
shift. For example, car and traffic-sign are rather far (both
semantically and in terms of intensity values), rendering such
targeted attack more difficult to achieve. For these reasons,
we focused our targeted attacks on traffic participants other
than car, such as other-vehicle and bicycle.

5.6 Robustness to Changing LiDAR Intensity Values

In Table 6 we assess the increase of robustness by our adver-
sarial augmentations when changing the LiDAR intensity
values, while leaving the 3D points unchanged. We do so
by comparing our method with Cylinder3D and applying
various transformations to the intensity values in input. We
report such results both in-domain (i.e., SemanticKITTI) and
out-of-domain (i.e., Waymo). The models evaluated in the
table were trained only on SemanticKITTI, and our adver-
sarial augmentations were applied only on car points in an
untargeted fashion, leaving all the other points unchanged
compared to the baseline, which also applied standard aug-
mentations (e.g., rotation).

5.6.1 Impact of Using the LiDAR Intensity

As discussed, the intensity is a powerful input signal, which
can help distinguishing the semantic classes. This is why
models trained with it are particularly sensitive to changes of
its values, which caused the transfer on Waymo to be more
effective when training without intensity (Table 6). The table
shows how much Cylinder3D relies on the reflectivity value,
when trained both with and without our adversarial augmen-
tations. Our method outperforms the standard Cylinder3D
across all changes applied, proving the added robustness of
our augmentations. The gap is most extreme in the uniform
random case ranging from O to 1 (all possible intensity val-
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ues): on SemanticKITTI our method achieved a 6.2x higher
IoU on car (70.0 compared to 11.3) and 2.5x higher mloU
(21.6-8.7); on Waymo ours reached a 76x higher IoU on car
(68.8-0.9) and 4x higher mloU (23.1-5.8). However, it is
the complete lack of intensity values (all 0) that shows how
much each model relies on the intensity signal after training
with it. In this case, for the reference class car, the IoU of our
approach dropped only by 13 for SemanticKITTI and 7 for
Waymo, compared to the IoU of Cylinder3D dropping by 73
and 19 respectively.

5.6.2 Benefits of Our Method

Similarly to the improved robustness on different vehicle
shapes thanks to geometrical perturbations (e.g., rare and
damaged, with CrashD and Waymo for 3D object detection),
the reason for the significant improvements shown in Table 6
is that, when augmenting, our method alters also the intensity
values in an adversarial fashion. Our augmented model learns
to be less reliant on the reflectivity input, allowing it to gen-
eralize better to different values (e.g., uniform random). On
the reference class car, despite the extreme intensity changes
applied in input, our model always reached in- or out-of-
domain a remarkable IoU of at least 68.82 (lowest reached
with uniform random [0,1], on Waymo). Conversely, Cylin-
der3D trained without our adversarial augmentations was
unable to deliver satisfactory predictions, with the car ToU
dropping as low as 0.91 (lowest reached with uniform ran-
dom [0,1], on Waymo).

The benefits of our approach are evident also considering
the in-domain performance alone (Table 6). On the standard
SemanticKITTI (none), the baseline achieved a higher mIoU
than our method. However, any transformation applied to the
intensity values introduced major changes, with ours always
outperforming Cylinder3D by significant margins.

5.6.3 Side-Effect on Other Classes

Despite our adversarial modifications were only applied on
car points in an untargeted way, as shown in Table 6 they
had a major effect on other classes as well, such as for
person and bicycle. For person, our method improved the
IoU by up to 40x on Waymo (reached with uniform random
[0,1]) and by up to 11x on SemanticKITTI (reached with all
0). Analogously, for bicycle, despite performing worse than
Cylinder3D both in- and out-of-domain without modifying
the intensity values in input (none), our approach improved
the IoU by up to 7x on SemanticKITTI (reached with Gaus-
sian) and 3.3x on Waymo (reached with uniform random
[0,1]) when altering the intensity values.
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Table 6 Detailed impact of the LiDAR intensity as extra input on 3D semantic segmentation

LiDAR Intensity Transformation Dataset 1D Method mloU car pers. bike
none SemanticKITTI c.0 Cylinder3D 64.39 96.02 73.84 47.15
u.c [ours] 63.85 96.03 77.11 33.41

— Waymo c.0 Cylinder3D 29.43 72.10 6.69 5.68

u.c [ours] 37.74 82.38 17.13 5.04

all 0 SemanticKITTI c.0 Cylinder3D 12.27 23.15 0.61 0.01

u.c [ours] 31.09 83.13 6.77 0.25

— Waymo c.0 Cylinder3D 22.75 53.19 0.05 0.15

u.c [ours] 3243 75.43 1.49 0.01

Gaussian noise (std: 0.3) SemanticKITTI c.0 Cylinder3D 15.59 6191 26.84 1.61
u.c [ours] 32.51 77.98 35.06 11.50

— Waymo c.0 Cylinder3D 21.64 62.18 13.66 6.16

u.c [ours] 34.22 70.01 35.77 6.77

uniform random [0, 1] SemanticKITTI c.0 Cylinder3D 8.73 11.33 20.53 2.24

u.c [ours] 21.61 69.98 8.89 7.91

— Waymo c.0 Cylinder3D 5.76 0.91 0.31 0.59

u.c [ours] 23.10 68.82 12.50 1.95
uniform random noise +[0, +0.3] SemanticKITTI c.0 Cylinder3D 28.21 89.40 35.98 24.30
u.c [ours] 44.88 94.76 49.16 23.52
— Waymo c.0 Cylinder3D 35.36 65.39 37.75 12.29
u.c [ours] 42.31 80.64 48.48 12.36
uniform random noise +[—0.3, +0.3] SemanticKITTI c.0 Cylinder3D 41.94 92.89 35.30 10.21
u.c [ours] 54.21 95.09 68.93 27.63

— Waymo c.0 Cylinder3D 32.11 70.45 19.85 8.13

u.c [ours] 41.02 81.09 36.06 8.36

random shift £0.3 SemanticKITTI c.0 Cylinder3D 17.54 71.99 27.36 1.62
u.c [ours] 35.93 81.06 40.58 10.95

— Waymo c.0 Cylinder3D 27.05 61.96 33.64 8.12

u.c [ours] 38.71 76.21 46.83 6.92

Bold values indicate the best-performing results for each transformation and Dataset

Various transformations are applied to the intensity values (first column), leading to the reported IoUs. All models are trained on SemanticKITTI
and based on the Cylinder3D architecture (Zhu et al., 2021a), with [ours] trained with our untargeted adversarial augmentations only on car points,
also for the intensity values (restricted to a maximum perturbation of 0.3). Across the various datasets and input configurations, a total of only two
models is evaluated in this table: one for the standard Cylinder3D (c.0), and one trained with our adversarial augmentation method (u.c)

5.6.4 In-Domain and Out-of-Domain

Furthermore, while the mloU gap between in- and out-of-
domain is relatively large without modifying the intensity
values, this gap shrinks and even inverts when applying many
of the modifications shown in Table 6. With Gaussian noise,
both Cylinder3D and our approach achieved a higher mloU
on Waymo than SemanticKITTI, albeit on a different num-
ber of classes. Apart from the constrained uniform random
noises, all other modifications made our method achieve a
higher mIoU on Waymo than SemanticKITTI. This can be
attributed to the denser point cloud in Waymo compared to
SemanticKITTI, which allows to extract better geometrical

features when LiDAR intensity values become unreliable due
to the changes.

5.6.5 Reducing the Domain Gap

Interestingly, in Table 6 there are random modifications
that significantly improved the transfers to Waymo in terms
of mloU (up to +6, compared to the unmodified inten-
sity inputs). This was the case of the constrained uniform
random noise settings (+[0, +0.3] and +[—0.3, 4-0.3]),
for both Cylinder3D and our model. This improvement
can be attributed to the transformation bringing the inten-
sity distribution of Waymo closer to that of the stan-
dard SemanticKITTI. Therefore, the random transformation
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Fig. 7 Comparison of adversarial vector fields learned for 3D object
detection (left) and 3D semantic segmentation (right). For each task,
G = 12 vector fields are displayed according to their relative rotation
from the sensor. All are trained to reduce the performance on the car
class. The color in each area indicates the prevalent direction of defor-
mation: green means that the majority of vectors points towards the
sensor, while red means away from it. This is emphasized by the black
arrows, which are aligned to the sensor rays and have a magnitude pro-
portionate to the number inside the corresponding colored areas. This
number indicates how many more vectors point in that direction com-

reduces the intensity gap shown in Fig.6 between the two
datasets, as Waymo typically displayed a lower intensity
compared to SemanticKITTI. For the same reasons, ours ben-
efitted also from the random shift £0.3 in terms of mloU.

5.7 Cross-Task Vectors Comparison
Figure 7 shows an analysis of the vector fields learned for

each of the two tasks. In this section we discuss the effects
of the tasks on the vector fields.

5.7.1 Object Detection
For 3D object detection, the adversarial loss aims at reduc-
ing the confidence and the IoU of the predicted box with

respect to the ground truth box. The vectors can achieve
this by simply making the detector believe that the object is
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pared to those facing the opposite one, after being projected along the
sensor view ray (those with magnitudes lower than their random initial-
ization are ignored). Object detection vectors often aim at rotating the
predicted bounding box, which is represented in grey as an estimation,
thereby reducing the AP. They achieve this by pushing one corner of
the car and pulling the opposite one. Instead, segmentation vectors do
not exhibit this behavior, because rotating the objects does not reduce
the semantic IoU. In comparison, they need to alter more points, which
makes them significantly more active, as shown by the number in the
middle of each vector field

rotated. Specifically, as shown in Fig.7, the vectors learned
to pull a corner of the car towards the sensor (green) and
push the opposite one away (red). This changes the orienta-
tion of the surface on which the detector bases its regression
of the rotation. Therefore, the detector predicts a rotated box,
which significantly reduces the IoU. This affects the AP as
the amount of boxes exceeding the IoU threshold decreases.
This behavior is visible across most of the G = 12 relative
positions, particularly evident at 6 and 12. All other positions
also exhibit the same actions, apart from 4. At 4, all corners
push the points away. Nevertheless, this also reduces the box
IoU as it shifts all points in the same direction.

5.7.2 Semantic Segmentation

Interestingly, this rotatory pattern is mostly absent on the
vector fields learned for 3D semantic segmentation, which
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Table 7 Comparison on 3D semantic segmentation of adversarial vectors learned for 3D object detection and 3D semantic segmentation

ID  Method SemK attack SemanticKITTI — Waymo — nuScenes

mloU  car mloU  car pers.  bike mloU  car pers.  bike mloU car pers.  bike
cn  Cylinder3D - - 59.23  96.23 68.67 32.61 3739 63.74 3795 4.05 32.11 56.17 0.04 0.35
ud [ours] for obj.det. 5854 94.47 5843 9573 7090 17.19 36.28 70.76 30.71 599 3227 6249 0.09 1.83
un [ours] for sem.seg. 56.63 86.03 5940 9573 7035 2653 4036 70.70 52,73 7.57 3430 63.13 1.02 252

Bold values indicate the best-performing results

All models are based on Cylinder3D (Zhu et al., 2021a) and do not use the LiDAR intensity

Table8 Comparisonon3D object detection of adversarial vectors learned for 3D object detection (Lehner et al., 2022) and 3D semantic segmentation

ID Method KITTI — Waymo — CrashD

AP AP normal AP rare

easy mod. hard ASR AP clean crash clean crash
p-p PointPillars 88.24 77.11 74.55 - 40.86 65.20 43.67 34.14 22.48
p-e [ours] for sem.seg. 86.88 75.98 68.73 17.2 40.70 59.20 42.82 39.23 28.15
p.o [ours] for obj.det. 87.05 77.13 75.55 63.4 44.61 67.95 52.87 43.40 30.37

Bold values indicate the best-performing results
All models are based on PointPillars (Lang et al., 2019)

exhibit a rather different behavior (Fig.7). This can be
explained by considering the two different tasks, adversarial
losses and metrics involved. For object detection, the met-
ric is based on the IoU between the predicted box and the
corresponding ground truth. AP is relatively discrete, as it
is computed by counting positive and negative predictions.
Moreover, an object is considered missed if the IoU is lower
than a certain threshold (e.g., 0.7).

5.7.3 AP Versus loU

While pretending to rotate the object can be detrimental
for the AP and lead to a successful adversarial attack for
object detection, it is not as useful for semantic segmenta-
tion. Semantic segmentation is a dense task, demanding a
prediction for each point. Every prediction and every point
count towards the IoU, which makes it rather smooth com-
pared to the AP. Therefore, to change the predicted class of
a 3D point, the vectors here cannot simply rotate the object,
but need to make it look as if it belonged to a different class.
This makes it significantly harder for semantic segmentation
compared to object detection.

5.7.4 Number of Activated Vectors

Semantic segmentation activated more vectors than object
detection, because it required to move more points to fool the
model and reduce the IoU. This is shown in Fig. 7 through the
values in the middle of each position. For semantic segmen-
tation, a maximum of only 6 vectors within a vector field
remained inactive (reached at position 4: 690 out of 696),

for a total of 7079 active vectors out of 7104. Conversely, for
object detection up to 118 vectors remained inactive (reached
at position 7: 578 out of 696), for a total of 6179 active out of
7104. Therefore, semantic segmentation activated 900 more
vectors, equivalent to 11% for the 12 positions, or a rela-
tive 15% increase over object detection. For this analysis, as
highlighted in the figure by the colors, we considered visible
vectors from the sensor, and we regarded as inactive those
having a magnitude lower than that of their random initial-
ization.

5.7.5 Impact of G on the Vectors

Figure 7 visually explains also the reasons why with G = 1,
i.e., using 1 vector field for the entire dataset, the vectors can
reach only sub-optimal results (Table 4). Although with G =
1 the vectors can still learn to give the illusion of a rotated
object (i.e., having all corners alternating between pulling
and pushing the points), they cannot achieve the diversity and
specificity shown in the figure with G = 12, and they cannot
be as directed as those with G = 12. By being effective in all
positions and distances, the vector field with G = 1 needs
to contain vectors pointing in all directions. This limits their
efficacy as their magnitude decreases when projected to the
sensor view rays. Therefore, the shifts and rotations applied
with G = 1 cannot be as strong as those with G = 12 at all
positions.

5.7.6 Transferring the Attack to a Different Task

The difference between the vector fields learned for the two
tasks is shown also in Tables 7 and 8. Interestingly, aug-
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menting with the vectors learned for object detection (Lehner
et al., 2022) when training a semantic segmentation model
delivered strong predictions for the reference class car, per-
forming on par or even better than the semantic vectors, also
when transferring to Waymo (Table 7). Although the detec-
tion vectors lowered the mloU, this shows the flexibility of
our approach even across tasks. Augmenting PointPillars
with the vectors learned for segmentation underperformed
the baseline on car, while they significantly improved the
AP on the challenging rare samples of CrashD (Table 8).

This difference between the vectors learned for the two
tasks could be attributed to the application of the detection
vectors resulting in pseudo rotated cars, instead of the seman-
tic vectors trying to resemble a different class. Augmenting
with the detection vectors, thanks to the pseudo rotatory
behavior shown in Fig. 7, is likely to improve the regression of
the bounding box rotation. Since estimating the rotation cor-
rectly is crucial to exceed the IoU threshold with the ground
truth box, improving the regression of the rotation translates
in better box IoU on challenging cases (e.g., AP on Waymo
in Table 8). Instead, by not exhibiting that rotatory behavior,
the semantic vectors are likely to not improve the rotation
regression (Table 8). On the proposed CrashD, the seman-
tic vectors underperformed the detection baseline on normal
cars, but significantly outperformed it on difficult rare ones,
resembling long tail samples, both damaged and undamaged.

Detection Vectors for Segmentation As described in
Sect. 5.3, for our adversarial augmentation method the ability
to generalize is related to the performance of the adversarial
attacks on which the augmentation is based upon. The detec-
tion vectors on the semantic model delivered poor attack
performance (SemK attack), with only a slight decrease
in IoU (Table 7). This means that the examples generated
by perturbing car points with the detection vectors were
not challenging for the semantic model (i.e., Cylinder3D).
Although this would hint towards the futility of these vectors
in semantic settings, using them as augmentation delivers
significant improvements on car segments on both Waymo
and nuScenes. Therefore, despite being weak as attacks,
the detection vectors successfully regularized the training of
Cylinder3D by augmenting the training data beyond standard
augmentations.

Segmentation Vectors for Detection The semantic vec-
tors delivered a stronger cross-task attack, with an ASR of
17.2 against PointPillars (Table 8). This can be attributed to
the semantic ones trying to shift the points to resemble a
different class, instead of rotating the object. As the object
detector has no explicit semantic understanding beyond its
reference class car, augmenting with the semantic vectors
probably expanded the training data in a direction which
is not beneficial for the detector, causing confusion. Nev-
ertheless, optimizing the adversarial vectors for each task
independently leads to more significant deformations tar-
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geted around the weaknesses of the respective model and
task combination, allowing for more meaningful adversar-
ial augmentations, which lead to better overall performance
(mloU and AP).

5.7.7 Considerations on Adversarial Augmentation

The essence of data augmentation is enriching the training
data. Whether adversarial (e.g., semantic vectors in Table 7),
or not (e.g., detection vectors, which were learned for a
different task and model, so they lost their adversarial proper-
ties), data augmentation is crucial for domain generalization,
to tackle challenging out-of-domain samples. In particular,
we believe that data augmentation is most effective when it
manages to push the boundaries of the training distribution
towards corner cases which are not present in the original
training set.

While this expansion could be easily achieved via extreme
transformations of the input, it is not necessarily beneficial
for the model and may even harm its performance, as seen
for the sample-specific adversarial approaches (Sect. 1). The
difficulty is preserving the usefulness of the augmented sam-
ples towards the task at hand and real-world data. This is
where our plausibility constraints (Sect.3.2.2) play a funda-
mental role. Together with our generated examples, which
represent hard cases by being adversarial, the constraints
determine a good balance between expanding the training
data and preserving plausibility of the new samples. When
using the vectors across different tasks, the plausibility is
still preserved as all constraints are applied, but the generated
examples do not represent hard cases as the vectors were opti-
mized for a different task. This ultimately reduces the degree
of expansion of the training distribution given by the aug-
mentations, compared to using purposed vectors optimized
for the same task.

5.8 Comparison with Domain Adaptation

Our approach does not use any information about the target
data (e.g., Waymo and nuScenes), making it a domain gener-
alization method. Conversely, domain adaptation bridges the
domain gap by exploiting knowledge about the target data,
such as the average object size (Wang et al., 2020b).
Semantic Segmentation In Table 9 we show a compari-
son with the domain adaptation work for LiDAR point clouds
of Yietal. (2021), who exploited the different sensors used to
captured the data. Compared to all other experiments, where
we reported on all matching classes, in these experiments
we use the setup of Yi et al. (2021), who used 2 classes for
Waymo, namely person and the super-class vehicle, and 10
for nuScenes. However, while we trained our models on all
19 classes of SemanticKITTI, Yi et al. (2021) trained only
on the 10 classes they considered for nuScenes, making it



International Journal of Computer Vision

Table 9 Comparison with domain adaptation (DA) for 3D semantic segmentation

ID Method DA — Waymo (2 cl.) — nuScenes (10 cl.)

mloU rel.change mloU rel.change
clb Complete&Label baseline no 46.3 - 27.9 -
cl Complete&Label yes 52.0 +12.3% 31.6 +13.3%
c.n Cylinder3D no 51.8 - 25.8 -
u.n [ours] no 634 +22.4% 28.0 +8.5%

Bold values indicate the best-performing results

Models transferred to Waymo and nuScenes after training without LiDAR intensity on SemanticKITTI with 10 classes (Complete&Label (Yi et
al., 2021)) and 19 classes (ours). The evaluation follows the class setup of Yi et al. (2021). Due to the major differences between Complete&Label
and our approach, also in terms of baselines, we report the relative improvements (rel.change)

easier for them to transfer their models. Due to the perfor-
mance discrepancy of their baseline compared to ours (i.e.,
Cylinder3D), we consider the relative improvements of each
approach.

Despite not using any target information, our adversarial
augmentation approach outperformed the domain adaptation
method of Yi et al. (2021) by a significant margin on Waymo.
Ours improved by 22% over our baseline (i.e., Cylinder3D),
while theirs improved by 12% over their baseline. Both base-
lines were trained on SemanticKITTI and transferred without
any fine-tuning nor domain adaptations. However, their mod-
els were trained only on the 10 classes being evaluated,
compared to ours trained on the full set of 19 classes, which
made it more challenging for ours. Transferring to nuScenes,
due to the sparsity of its point clouds compared to the source
data (i.e., SemanticKITTI), Cylinder3D was unable to deliver
satisfactory results, underperforming the baseline of Yi et al.
(2021). Over the baselines, ours improved by 8.5%, com-
pared to their 13.3% increase. Therefore, using knowledge
about the target domain (i.e., nuScenes) was helpful here.

Moreover, our method does not alter the entire point
clouds, but only a single object per scene, always belong-
ing to the same class (i.e., car in this case). Instead, domain
adaptation approaches, such as that of Yi et al. (2021) act
upon the whole 3D point clouds. This allows them to improve
over all classes, while ours mainly focuses on a single class
(e.g., car). This could be an extra reason why ours outper-
formed on the 2 class setting (i.e., Waymo), but not with 10
classes (i.e., nuScenes). Nevertheless, on Waymo, without
using any knowledge about the target data nor sensor, ours
outperformed a recent domain adaptation technique designed
to be robust across different LIDAR sensors (Yi et al., 2021).
This confirms the benefits of our approach towards robust-
ness and out-of-domain data.

5.9 Combination with Domain Adaptation
By addressing domain generalization, our approach does not

use any target information. Therefore, ours is not alternative
to domain adaptation methods (Wang et al., 2020b; Yi et al.,

2021), which make use of target data. However, similarly
to other data augmentation strategies, our approach can be
combined with domain adaptation techniques.

Object Detection As shown in Table 2, such combination
further boosts the performance on challenging out-of-domain
data. By altering the objects size via the statistical normal-
ization (SN) of Wang et al. (2020b), the AP on Waymo
increased. Constrained by the high amount of false posi-
tives and negatives, when combined with SN, ours retained a
margin of over 2% compared to PointPillars with SN. More-
over, the AP on CrashD improved significantly across all
categories, especially for the hardest rare crash group. The
results show how, despite a substantial increase in AP from
PointPillars (Lang et al., 2019), SN alone did not reach the
full potential of the detector. Only when combined with ours,
the AP doubled (normal crash) and more than tripled (rare
crash) over PointPillars, without using any extra information
about the target. This shows the benefit of this combination,
and reiterates the added value of incorporating adversarially
deformed objects via data augmentation to improve general-
ization to out-of-domain samples.

5.10 Different 3D Object Detectors

In Table 2, we also compare the performance of our aug-
mentations when paired with different 3D object detectors,
namely PointPillars (Lang et al., 2019) and Part-A2 (Shi et
al., 2020). Remarkably, using the proposed adversarial aug-
mentation improved the AP of Part-A% on Waymo by a large
margin. The superiority of Part-A? over the other detector can
be attributed to its part-awareness (Shi et al., 2020), which
might have set its focus on the most relevant object parts
(e.g., wheels) and their relationships to identify cars also in
out-of-domain settings. Adding our adversarial deformations
significantly improved the generalization of both detectors to
out-of-domain data, despite training our vector fields solely
against PointPillars, and transferring them to Part-A%. This
shows the wide applicability and transferrability of our tech-
niques.
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Fig. 8 Evaluation by distance on the validation set of SemanticKITTI
(Behley et al., 2019). Predictions of Cylinder3D (Zhu et al., 2021a)
trained without (left, with ID c.0) and with (right, with ID u.c) our
adversarial augmentations. Both models use the intensity signal. Our
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approach augments only car points in an untargeted fashion. The plot
shows stacked bars (i.e., cumulative IoU) and the colors represent dif-
ferent distance bins, as indicated in the legend above
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Fig. 9 Evaluation by distance on the transfer to the validation set of
Waymo (Sun et al., 2020). Predictions of Cylinder3D (Zhu et al., 2021a)
trained on SemanticKITTI without (left, with ID c.0) and with (right,
with ID u.c) our adversarial augmentations. Both models use the inten-

5.11 Robustness at Further Distances

Semantic Segmentation In Figs.8 and 9 we compare the
IoUs obtained by Cylinder3D with those from our method at
varying distances from the LiDAR sensor. Figure 8 reports
the results on SemanticKITTI, while Fig. 9 those of the trans-
fer to Waymo. Towards this end, we first computed the
distance in 3D of each point to the LIDAR sensor, we clus-
tered them in 8 bins ranging 10 ms each, and finally computed
the IoUs separately for each bin.

@ Springer

sity signal. Our approach augments only car points in an untargeted
fashion. The plot shows stacked bars (i.e., cumulative IoU) and the col-
ors represent different distance bins, as indicated in the legend above

Figure 8 shows that our method performed similarly to the
baseline (i.e., Cylinder3D) on SemanticKITTI across various
distances, with only minor differences. This is reflected by
the similar mIoUs in Table 1. However, Fig.9 shows a dif-
ferent outcome for the challenging out-of-domain Waymo.
Despite reaching similar IoUs at closer distances, our adver-
sarial augmentations delivered better predictions, especially
further from the sensor, i.e., more challenging sparser areas,
where the LiDAR intensity follows an opposite trend to that
of SemanticKITTI (Sect.5.5). This superiority is shown by
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Table 10 Comparison of 3D semantic segmentation models trained on SemanticKITTI (Behley et al., 2019) and transferred to Waymo (Sun et al.,
2020) and nuScenes (Caesar et al., 2020) validation sets (without fine-tuning)

ID  Attack Method SemanticKITTI — Waymo — nuScenes

mloU  car pers.  bicyc. mloU car pers.  bicyc. mloU car pers.  bicyc.
co - Cylinder3D 64.39 96.02 7384 47.15 2943 72.10 6.69 5.68 2997 66.04 0.00 0.89
u.a Nxaua [ours]untarax.alg.car 61.82 9630 7521 50.67 2838 74.18 1221 6.49 27775 64.88 0.04 0.58
u.- Nxau.- [ours]untar.-10% car 6392 96.16 74.02 42.04 36.65 8125 13.15 6.17 3042 70.01 0.06 0.39
uc Nxauc [ours] untargeted car 63.85 96.03 77.11 3341 37.74 8238 17.13 5.04 31.55 7192 0.06 0.53

Bold values indicate the best-performing results

This evaluation assesses the impact of the available data annotation on our method. With u.- we randomly removed 10% of the bounding boxes
predicted by the off-the-shelf 3D detector, so our attack was learned on 10% less objects, and our model was learned augmenting 10% less objects.
Instead, with u.a we explore the impact of using axis-aligned bounding boxes instead of predicted 3D bounding boxes. The u.c model used throughout

this work used all the boxes predicted by the off-the-shelf detector

the amount of blue and purple in the plot, which correspond to
the furthest bins, between 60 and 70 ms, and between 70 and
80, respectively. Especially for car, building, and vegetation,
our method managed to deliver good quality predictions, even
beyond 70 ms. Instead, the standard Cylinder3D between 70
and 80 ms could only recognize a few car points, with an loU
of 6.7, compared to 32.9 of our approach. This confirms the
robustness of our method, also at high distances.

5.12 Combination with Data Augmentations

Being an adversarial data augmentation, our approach is
not alternative to other augmentation techniques, but can be
applied in combinations with others, e.g., Mix3D (Nekrasov
etal., 2021).

Object Detection As shown in Table 2, on KITTI remov-
ing all augmentations had a major impact on the AP. For
PointPillars (Lang et al., 2019), not using augmentations (no
augm.) drastically reduced the APs, especially on CrashD at
IoU 0.7. Instead, at IoU 0.5, the AP on normal clean was
65.59, with the standard PointPillars reaching 98.91. Adding
common augmentations (no obj. sampl., e.g., flip and rota-
tion) increased the APs, but introducing the popular object
sampling (Lang et al., 2019) (PointPillars) improved them
even further. Nevertheless, applying our adversarial augmen-
tations on car points on top of the standard augmentations
significantly improved the IoUs on out-of-domain data. This
shows the compatibility of our adversarial approach with
other data augmentation techniques.

5.13 Impact of Data Annotations

In Table 10, we explore the impact of the availability of data
annotation on our method. As described in Sect.3.2.1, our
method requires references on which to apply the vector
field. Specifically, we used 3D bounding boxes to match the
objects with the vector fields. While bounding box annota-
tions are often available, this may not always be the case

(e.g., SemanticKITTI). To circumvent this, we explore two
different strategies: using an off-the-shelf 3D object detector
deployed on the training data, or using point-level instance
annotations and wrapping each instance in an axis-aligned
bounding box.

In the table, we report the effect of both strategies. While
the axis-aligned is inherently sub-optimal due to the lack
of orientation information, preventing the vector fields from
specializing to the object viewing angles, it still brings
improvements on the car class over the baseline both in-
domain and on Waymo. Instead, using the off-the-shelf 3D
detector delivers superior performance, especially out-of-
domain. In the table, we also explore the impact of the quality
of the predictions of the off-the-shelf detector. We do so
by considering 10% less of its bounding box predictions,
selected randomly. Remarkably, the performance degrades
only slightly for the car class, showing the robustness of
our method with respect to its assumptions in terms of data
annotations.

5.14 Ablation Study on Deformation Constraints

Semantic Segmentation As we introduced sensor-awareness
and surface smoothness constraints to our deformations, we
investigate their impact in terms of generalization to out-of-
domain data. In Table 11, we report this comparison on 3D
semantic segmentation when limiting the deformations to
€ = 30 cm. It can be seen that not learning the perturbations
(i.e., not adversarial), but applying all our constraints (all
constr. no learn) is already an effective augmentation tech-
nique, as it improved on the reference car class, also when
transferring to Waymo. Instead, removing all constraints, but
learning the vector fields (unleash) led to the strongest adver-
sarial attack (i.e., lowest IoUs after the attack). However,
the lack of constraints did not allow for robust generaliza-
tion, reducing the mloU in-domain, and the car class on
Waymo. When deforming with sensor-awareness (ray con-
straint), the attack lost effectiveness, but in-domain mloU

@ Springer
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Table 11 Ablation on the deformation constraints imposed by our method on 3D semantic segmentation, compared to Cylinder3D (Zhu et al.,
2021a)

ID  Method SemK attack SemanticKITTI — Waymo — nuScenes

mloU  car mloU  car pers.  bike mloU  car pers.  bike mloU car pers.  bike
c.o Cylinder3D - - 64.39 96.02 7384 47.15 2943 7210 6.69 5.68 2997 66.04 0.00 0.89
ul allconstr. nolearn 63.92 9577  62.07 9621 75.11 4885 28.87 7876 1254 4.12 27.85 63.81 0.02 0.35
uu  unleash 44.79 2799 61.64 96.07 7256 4658 30.16 6922 1332 597 3052 6328 0.00 0.04
ur ray constraint 52777 61.78 6237 9576 71.48 49.26 28.61 6935 1246 430 2741 6659 013 0.23
uc full 5325 62.61 63.85 96.03 77.11 3341 37.74 8238 17.13 504 3155 7192 0.06 0.53

Bold values indicate the best-performing results
All models are based on Cylinder3D, use LiDAR intensity as input, and our adversarial augmentations are untargeted on the car class. SemK attack

represents the IoUs obtained by Cylinder3D after perturbing the input point clouds with the various configurations

input
color by distance

predictions
[Cylinder3D]

original point cloud Chamfer attack

Fig. 10 Perturbations and predictions for 3D semantic segmentation.
The first row shows crops of the input point clouds from SemanticKITTI
(Behley et al., 2019), with a car whose points are colored according to
their distance from the LiDAR sensor. Along the row, each point cloud
is perturbed by a different adversarial method optimized on car, namely
the sample-specific Chamfer attack (Liu et al., 2020), and our approach
in three different configurations: optimized for 3D object detection,
untargeted, and targeted towards bicycle (turquoise in the predictions).

increased. With full, we added the constrain on the surface
smoothing (Sect. 3.2.2), which allowed for superior transfer
capabilities, thanks to the improved plausibility of the defor-
mations.

6 Qualitative Results

6.1 3D Semantic Segmentation, Adversarial
Examples

Figure 10 shows the impact of the perturbations applied by
our method compared to sample-specific adversarial attacks,
represented by the Chamfer attack (Liu et al., 2020). As
discussed in Sects.5.1 and 5.2, by being sample-specific
(i.e., instance-specific in our setup), prior works deliver very
strong attacks thanks to their highly noticeable perturbations.
These substantial perturbations bring their adversarial exam-
ples too far from the training distribution (second column of
the figure), making the samples unrecognizable. In fact, the
attacked car is predicted as vegetation (green). However, for

@ Springer

[ours] optimized for detection

[ours] untargeted [ours] targeted bicycle

The second row shows the predictions of Cylinder3D (Zhu et al., 2021a)
on the perturbed point clouds of the first row. All adversarial methods
included the intensity signal, except for our vectors optimized for object
detection, which did not include it. Therefore, the evaluated model eval-
uated in the second row takes in input also the intensity values (ID: c.0),
except for the one predicting on the point cloud perturbed by the detec-
tion vectors (ID: c.n)

the same reasons, augmenting with the point clouds produced
by the Chamfer attack (or other sample-specific methods)
carries no benefits in terms of generalization, as the data will
likely not contain objects of the same category resembling the
perturbed objects. Therefore, augmenting with such samples
confuses the model.

6.1.1 Plausibility

As we focus on improving generalization and robustness
to out-of-domain data, our adversarial examples need to
be plausible, yet difficult enough for the model to expand
the training data distribution. This plausibility can be seen
in Fig.10 via the significantly less noticeable perturba-
tions applied by our method (from the third to the last
columns), compared to the Chamfer attack. Our constraints
(e.g., sensor-awareness) mitigated the deformations leading
to adversarial examples which still resemble an object of the
same class (i.e., car). As our plausible adversarial examples
are different from the existing training data, they could be
similar to real-world out-of-distribution objects (e.g., a dam-
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aged car). Therefore, using them as augmentation positively
enriches the training data and improves the model general-
ization and robustness.

6.1.2 Targeted/Untargeted and Cross-Task

In Fig. 10, we compare the effect on the point clouds of three
variants of our adversarial method on semantic segmenta-
tion, namely the untargeted vectors for the car class (a.u.c),
the targeted vectors from car to bicycle (a.t.b), and the vec-
tors optimized for object detection and applied on semantic
segmentation. Although the vectors optimized against the
3D detector PointPillars altered the points visually similar
to the ones trained for semantic segmentation (targeted and
untargeted), their perturbations did not affect Cylinder3D,
which managed to accurately segment the deformed car.
Conversely, by being optimized for the same task, both our
untargeted and targeted vectors perturbed the point cloud in a
way that made Cylinder3D wrongly segment the car. On the
untargeted adversarial example Cylinder3D predicted a mix
of vegetation (green), fence (orange), and car (blue). Instead,
on the targeted example Cylinder3D predicted a mix of bicy-
cle (turquoise) and vegetation (green), as if it recognized a
bicycle leaning against a bush, which is rather common in
SemanticKITTI (Behley et al., 2019). By augmenting with
an untargeted sample as the one shown in the figure, the

- e amsnttess.

Cylinder3D

out-of-domain samples - ground truth

Fig. 11 3D semantic segmentation predictions on challenging out-of-
domain samples from Waymo (Sun et al., 2020). Both models are based
on Cylinder3D (Zhu et al., 2021a), trained only on SemanticKITTI, and
transferred to Waymo without fine-tuning. Two Cylinder3D models are

model learns to better distinguish the car class from the oth-
ers. Instead, with a targeted sample, the network improves its
decision boundary between the two specific classes, i.e., car
and bicycle as shown. The figure shows both the effective-
ness of our adversarial examples, as well as the difference
between our targeted and untargeted approach.

6.1.3 Limitations

As we aimed at preserving the comparability between our
detection and semantic vectors for cross-task comparisons,
we did not selectively perturb only the points in the 3D
bounding box corresponding to the class of interest (i.e., car).
Instead, we perturb all the points inside the box. This is vis-
ible in Fig. 10 on a portion of the road next to the car, which
was shifted by the vectors. Furthermore, by relying on pre-
dicted bounding boxes for cars, we could not perturb points
outside the boxes, despite being part of the same instance. In
the example shown in Fig. 10, the off-the-shelf detector used
(Deng et al., 2021) did not fully detect the car, and left a few
points outside the box. This is visible on the roof line and
along other lines of points on the side of the car. Therefore,
these points were left unperturbed by all methods, including
the Chamfer attack (which was applied on the same objects).
Nevertheless, in the adversarial examples those points were
anyways wrongly segmented by Cylinder3D.
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Cylinder3D with our adversarial augmentations

compared: without (c.0) and with (u.c) our adversarial augmentations.
Black arrows highlight some of the objects segmented wrongly by the
baseline. The road and other classes were ignored in the transfer to
Waymo due to misaligned definitions across the datasets
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KITTI = Waymo — CrashD

PointPillars

Fig. 12 3D object detection predictions on challenging out-of-domain
samples from the proposed CrashD dataset (top) and Waymo (Sun et
al., 2020) (bottom). Both models are based on PointPillars (Lang et al.,
2019), trained only on KITTI, and transferred to CrashD and Waymo

6.2 3D Semantic Segmentation, Robustness and
Generalization

Figure 11 shows the semantic predictions of Cylinder3D
trained with and without our adversarial augmentations. Both
models are trained on SemanticKITTI, and transferred to the
point clouds of Waymo shown in the figure. As the adversar-
ial examples used to train our model were only on cars, we
focus on the car class. Due to the large domain gap between
the two datasets, neither of the models was able to properly
segment all cars in the scenes. However, while ours missed
only the cars with few points, the standard Cylinder3D could
not segment several visible ones, confusing them with truck,
building, vegetation, and other classes. The superior perfor-
mance of our model across the various scenes confirms the
added robustness and generalization of our method towards
challenging out-of-domain data.

6.3 3D Object Detection

In Fig. 12 we compare the transfer from KITTI to CrashD and
Waymo (Sun et al., 2020) in terms of 3D bounding boxes
predicted by PointPillars (Lang et al., 2019) trained with
and without our adversarial augmentations. For the proposed
CrashD, our approach correctly identified both damaged cars,
without false positives. The figure testifies also the inten-
sity of the hard damages of CrashD, and how challenging
these vehicles are for a 3D detector compared to standard
cars (e.g., KITTI), resembling natural adversarial examples.
For the transfer from KITTI to Waymo, both the baseline
and our augmented model had difficulty detecting all cars in
the scene, especially those with fewer points in the parking
lot on the left of the crops. However, the standard PointPil-
lars ignored also 3 recognizable cars featuring lots of points.

@ Springer

PointPillars with our
adversarial augmentations

without fine-tuning. Two PointPillars models are compared: without
(p-p) and with (p.o) our adversarial augmentations. Black arrows high-
light some of the objects segmented wrongly by the baseline

Instead, albeit leaving room for improvement, ours could
recognize them.

We refer to the Supplementary Material for more results
on indoor settings, the IoUs on the complete set of classes,
as well as details on the class mappings for the transfers to
Waymo and nuScenes.

7 Conclusion

In this work we presented a flexible adversarial augmenta-
tion approach, which improves generalization and robustness
across multiple 3D tasks. By expanding the available training
data with plausible adversarial examples, our augmentations
increase safety by addressing challenging long tail and out-
of-domain samples without the burden of capturing them
in the real-world. As extensive experiments across multi-
ple tasks and datasets showed its benefits and flexibility, we
believe our method constitutes a valuable step towards safe
and robust perception for high automation systems.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-023-01914-
7.
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