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Abstract
The design of building elements is usually done conservatively by considering safety factors. However, more efficient designs 
are gaining interest for economic and sustainability reasons. Hence, an adequate prediction tool can improve the design of 
building elements. Probabilistic modeling, for example, Monte Carlo simulations, represents a remedy to this by examin-
ing uncertainties in a structure through uncertain input parameters. In this work, a Monte Carlo simulation is performed 
to quantify the uncertainty in the modal properties of a hybrid steel–timber building element. The material properties of 
the timber material and the stiffness of the structural joints are considered uncertain inputs. The probabilistic properties 
of the timber material are evaluated utilizing Bayesian inference instead of the usually applied empirical methods. Using 
these inferred timber material properties leads to a good match of simulated and measured natural frequencies of the timber 
components. These parameters are utilized together with the joints’ uncertain inputs in the Monte Carlo simulation of the 
hybrid steel–timber building element. The results show a significant span for the identified eigenfrequencies, which proves 
the relevance of probabilistic analyses for the vibration characteristics of building elements.

Keywords  Hybrid steel–timber elements · Monte Carlo simulation · Vibrations · Bayesian inference

1  Introduction

Hybrid wood structures combined with steel or concrete are 
moving into the focus of wood construction research, espe-
cially in the topic of vibrations [1]. Human activities, e.g., 
walking or jogging, can significantly influence the design 
of hybrid steel–timber floor elements in terms of vibrations 
[2]. In the design process of floor structures related to vibra-
tions, calculations or certified measurements are required 
[3]. However, analytical calculations become challenging 
for complex cross-sections, emphasizing the need to develop 
reliable, advanced prediction tools for vibrations of com-
pounded structures, such as hybrid steel–timber building 
elements. These predictive models prove to be relevant, 
especially for material-efficient designs in the context of 

economic efficiency and sustainability, since without pre-
dictive tools, various prototypes have to be tested experi-
mentally [4].

The vibroacoustic behavior of hybrid steel–timber floors 
has already been studied experimentally and numerically 
[2, 5, 6]. A steel–timber beam made of a Cross-Laminated-
Timber (CLT) panel and an H-shaped steel profile has been 
investigated concerning natural frequencies, mode shapes, 
modal damping ratios, and acceleration response. A finite 
element (FE) model has been updated to match the results 
from experimental analyses [6]. The same structure has been 
analyzed concerning vibration serviceability in [2]. A differ-
ent structure has been studied in [5]. Here, the authors have 
investigated the vibrational behavior of a structure made of 
top and bottom laminated veneer lumber (LVL) panels and 
a trapezoidal steel web.

In practice, the response prediction of a vibroacoustic 
system is generally performed through mechanical mode-
ling, which introduces data and model uncertainties. Model 
uncertainties relate to the applicability of a model to the 
specific problem at hand and represent a type of epistemic 
error. On the other hand, data uncertainties constitute a 
type of aleatoric error and are related to the parameters of a 
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system, e.g., geometrical parameters, boundary conditions, 
or material properties. Data uncertainties can be considered 
by using random quantities, e.g., random variables or sto-
chastic fields, for the parameters in the prediction tool [7, 
8]. However, in engineering practice, those uncertainties 
are often accounted for through safety factors [9] leading to 
conservative designs.

To develop more efficient designs, research on reliable 
predictions for building elements focuses increasingly on 
considering data uncertainties instead of safety factors. 
Recent studies on the stochastic analyses of wooden floors, 
i.e., a CLT slab [10] and a floor made of wood beams and 
particle boards [11], use the Monte Carlo (MC) method to 
include the randomness of the components’ material prop-
erties and to determine the vibroacoustic response of the 
floor in confidence intervals. The random material parameter 
inputs are found by calibrating FE models to match eigen-
frequencies from an experimental modal analysis. In [11], 
this has been done by determining the mean and standard 
deviation for the material parameters from 62 measurements 
on wooden beams. In [10], using a random elasticity tensor 
built from initial values from the literature, the best combi-
nation of material parameters in the FE model is sought to 
calibrate the model with results from an experimental modal 
analysis. Furthermore, non-Gaussian uncertain parameters 
of ash wood are identified using generalized polynomial 
chaos expansions and experimental modal data by solving a 
stochastic inverse problem in [12, 13].

Another approach to identifying unknown, uncertain 
parameters based on experiments and modeling is Bayesian 
inference. Former research has exploited Bayesian infer-
ence for laminated, orthotropic materials such as engineered 
wood products, i.e., for general thin orthotropic laminates 
[14], thick orthotropic laminated plates [15], laminated tim-
ber beams [16], and CLT [17]. The studies either use static 
deflection tests [16], simulated and experimentally deter-
mined natural frequencies [14, 15] or frequency response 
data of a linear dynamic model and measurements [17] to 
determine the material properties.

Prior investigations into the uncertainty quantification of 
building elements have predominantly relied on determin-
istic methods for identifying material properties through 
model calibration using experimental data [10, 11]. Alter-
natively, some studies have considered Bayesian inference 
to incorporate prior information on elastic constants, as 
exemplified by [15]. Notably, these Bayesian inference stud-
ies on engineered wood materials focus solely on inferring 
material properties without integrating them into subsequent 
analyses. Consequently, a critical gap emerges in connecting 
these approaches. In this study, this gap is filled by apply-
ing a novel combination of both methodologies to address 
the vibrational behavior of a hybrid steel-timber building 

element. This research concentrates on the quantification 
of uncertainty in the vibroacoustic behavior of this hybrid 
structure, focusing on the variability of modal properties. 
The approach adopted encompasses two main phases, 
detailed in Sect. 2 and Sect. 3. First, Bayesian inference is 
applied to establish probabilistic representations of timber 
material properties, incorporating the inherent variability 
found in real-world scenarios. These probabilistic represen-
tations serve as the foundation for the subsequent phase, 
where a probabilistic model is developed to predict the 
vibroacoustic response of the hybrid structure, as discussed 
in Sect. 3. The outcomes of these interconnected phases 
undergo thorough analysis and discussion in Sect. 4.

In summary, this article introduces a novel combination 
of two distinct methodologies applied for the first time to the 
examination of a hybrid steel–timber building element. This 
research contributes to the field of uncertainty quantifica-
tion in vibrational behavior, yielding valuable insights into 
the dynamic variations of modal properties while leveraging 
more efficient structural designs.

2 � Materials and methods

This study aims to quantify uncertainty for the vibroacoustic 
behavior of a hybrid steel–timber building element, which 
has been previously studied in terms of vibroacoustics in 
[5]. The variability of the natural frequencies of the element 
due to uncertain inputs is analyzed. The overall workflow is 
visualized in Fig. 1. In Sect. 2.1, the vibrational behavior of 
the hybrid steel–timber building element is evaluated experi-
mentally and numerically. The stiffness of the joints and the 
material properties of the timber are assigned to be uncer-
tain inputs. For the latter, the approach of Bayesian infer-
ence is applied to characterize the uncertainty in Sect. 2.2. 
For the former, the parameters are identified by maximum 
a posteriori (MAP) estimation, and their variation is based 
on literature references (Sect. 2.3). Finally, the numerical 
model and these uncertain inputs are used in a probabilistic 
analysis in Sect. 2.4.

2.1 � Experimental and numerical investigations 
on the hybrid steel–timber element

The investigated hybrid structure utilizes LVL panels as top 
and bottom planking and a trapezoidal steel web. Fasten-
ers connect the individual components. An overview of the 
concept is given in Fig. 1. The dimensions of the samples 
are depicted in Fig. 1 and listed in Table 1.

An FE model is created for the probabilistic analysis as 
described in Sect. 2.1.2 and is validated by vibration meas-
urements (Sect. 2.1.1).



Archives of Civil and Mechanical Engineering (2024) 24:22	

1 3

Page 3 of 15  22

2.1.1 � Measurements on the hybrid element

The following paragraph briefly describes the measurement 
setup and procedure. More details are available in [5]. Meas-
urements of vibration on the hybrid steel–timber element 
are carried out (Fig. 2). A B &K1 modal exciter type 4284 
applies a pseudo-random excitation on the structure by a 
stinger. Heavy-duty slings support the specimen. Hanging 
supports are chosen in the measurements to exclude influ-
ences from uncertain boundary conditions, since uncon-
strained supports are less challenging to realize adequately 
[18]. Furthermore, a B &K force transducer Deltatron Type 
8230 measures the applied force. The vibrations of the speci-
mens’ surface are identified by a scanning Laser Doppler 
Vibrometer PSV-500 (LDV)2 at an evenly distributed grid 

Fig. 1   Overview of methodological approach

Table 1   Geometric properties of the hybrid steel–timber test sample (refer to Fig. 1 for the parameter definition)

l [m] b [m] ht [m] ds [m] hs [m] bs1 [m] bs2 [m] bs3 [m]

3.5 0.900 0.039 0.75 ⋅ 10−3 0.155 0.110 0.170 0.04

Fig. 2   Measurement setup for the hybrid element

1  Hottinger Brüel & Kjær GmbH, D-64293 Darmstadt, Germany.
2  Polytec GmbH, D-76337 Waldbronn, Germany.
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of locations on the structure. For each scan point, a Fourier 
transform is utilized to transform the determined time data. 
Subsequently, the frequency response functions are calcu-
lated by means of the measured force and velocity signals. 
The Polytec system software applies a rectangular window 
to the signals.

The first five eigenfrequencies of the hybrid structure 
fexp,hyb are identified by an experimental modal analysis [18].

2.1.2 � Finite element model

The commercial software ANSYS [19] is used to simulate 
the vibrational behavior of the hybrid structure. The FE 
representation of the steel–timber structure is visualized in 
Fig. 3. The lower and upper wooden panels are modeled 
by orthotropic and hexahedral elements (SOLID186) with 
quadratic shape functions. The steel web is meshed by iso-
tropic, quadratic shell elements (SHELL281). The fasten-
ers are simulated by parallel spring and damper elements 
(COMBIN14) applied for all translational degrees of free-
dom (DOFs) of nodes related to fasteners (as in, e.g., [20]). 
The adjacent nodes of a fastener are rigidly coupled in terms 
of translational DOFs (Fig. 3). In longitudinal direction, 
the screws are placed with ss = 0.12m and the nails with 
sn = 0.09m . The transversal fastener distances are given as 
sF1 = 0.010m , sF2 = 0.103m and sF3 = 0.055m . The used 
mesh size is approximately lele = 0.03m for the timber com-
ponents and lele = 0.02m for the steel parts. Those element 
sizes are chosen as a good compromise between geometrical 
constraints and the rule of thumb to use six to eight quadratic 
elements per wavelength [21]. The boundary conditions in 
the simulations are modeled as free supports to adopt the 
measurement setup.

The influence of input parameter uncertainties on the 
natural frequencies of the building element is of interest. 
Therefore, modal analysis is conducted in ANSYS. The five 
structural mode shapes fFE,hyb matching the experimentally 
determined ones are computed.

The FE model uses material properties for the steel and 
timber components, as well as joint and geometric param-
eters as inputs. The geometrical inputs for the hybrid speci-
men are given in Table 1. Uncertainties from geometrical 
parameters are assumed to be negligible. Ballast [22] states 
manufacturing tolerances of approximately 0.1% , which is 
below the uncertainties for, e.g., joints in structures, as stated 
in Sect. 2.3.

For the steel profile, the elasticity modulus Es , the shear 
modulus Gs , the Poisson ratio �s , and the density �s as pro-
vided by [23] are utilized (Table 2). Since LVL is an ortho-
tropic material, the elasticity moduli, Ex,0 , Ey,0 , and Ez,0 , the 
shear moduli, Gxy,0 , Gxz,0 , and Gyz,0 , the Poisson ratios, �xy,0 , 
�xz,0 , and �yz,0 , and the density �0 as given by the manufac-
turer [24] are used (Table 3).

Since wood is a naturally grown material, variations in 
the material occur. In [25], the authors state a coefficient of 
variation (CoV) of 0.13 for the bending modulus of elastic-
ity for timber, which is high compared to CoV = 0.03 of the 
elasticity modulus of structural steel given in [25]. Hence, 
the LVL but not the steel material properties are assigned to 
be uncertain inputs. Details on how the probabilities of the 
LVL material properties are obtained are given in Sect. 2.2.

Fig. 3   Finite element model of the hybrid steel–timber element: structural model is depicted on the left and the fastener model on the right

Table 2   Steel material properties [23]

Es [ N∕m2] Gs [ N∕m2] �s [-] �s [ kg∕m3]

2.1 ⋅ 1011 8.1 ⋅ 1011 0.3 7850
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2.2 � Inverse characterization of LVL material 
properties by Bayesian inference

The characterization of uncertain timber material properties 
is done using Bayesian inference, since the method provides 
a good framework for such an identification. This approach 
is described in more detail in the following section.

The probabilities for the uncertain LVL material input 
parameters of the simulation model for the hybrid steel–tim-
ber structure are identified by Bayesian inference. In this 
method, prior information on the probability of the model 
parameters, i.e., the material properties of the LVL, is 
updated by incorporating experimentally measured data to 
strengthen the degree of belief in the probability of the mate-
rial parameters.

The probability model of the uncertain material param-
eters, i.e., the posterior probabilities p(�|fexp) , is fitted 
employing Bayes’ rule [26]

with the uncertain parameters � , the measured data fexp , the 
prior probabilities of uncertain parameters p(�) , and the 
likelihood p(fexp|�) . The denominator in Bayes’ formula 
only normalizes the probabilities, which is why it is omitted 
here [26]. The measured data fexp are represented by seven 
natural frequencies determined from vibrational experiments 
on timber panels made of LVL fexp,t via experimental modal 
analysis. The uncertain material parameters � constitute the 
inputs to the used forward model ft(�) , which is based on a 
Rayleigh–Ritz approach (Sect. 2.2.3). The forward model is 
utilized together with the measurement data to evaluate the 
likelihood (Sect. 2.2.1).

2.2.1 � Likelihood

The likelihood p(fexp,t|�) is combined with the prior prob-
abilities p(�) to explore the posterior densities given the 
measurement data fexp,t . Hence, it evaluates the probabil-
ity that a certain measurement is obtained given a specific 
material parameterization � . The mean of the distribution 
represents the de facto measured natural frequencies fexp,t , 
and the standard deviation relates to the measurement noise. 
The likelihood function is computed by maximizing the 
entropy and considering it for discrete variables by means 
of a residual error �i = fexp,t,i − ft,i(�) [27]

(1)p(�|fexp) ∝ p(fexp|�)p(�),

where fexp,i represents one of the 1 ≤ i ≤ Nf  measured data-
sets. The used forward model ft(�) should be able to repro-
duce the experimental data well.

The probability regarding each data point equals the prob-
ability of the residual error at each data point. Hence, the over-
all likelihood function is computed as the joint probability of 
all data points [27]

Since the noise is the same for each measurement in most 
experiments, it is assumed that �lik = �lik,i for all 1 ≤ i ≤ Nf  . 
Nf = 7 represents the number of measured frequencies. Fur-
thermore, as justified by the principle of maximum entropy, 
the individual measurements are logically independent, 
which leads to the joint probability as [27]

Additionally, to consider the repeatability of the measure-
ments, 12 specimens Nr = 12 are investigated. Consequently, 
the scalar values in the residual error �i = fexp,t,i − ft,i(�) 
become vectors with the length Nr.

Since the hyperparameter �lik is not of particular interest in 
this study, marginalization is used on the joint probability to 
compute a likelihood probability without the standard devia-
tion �lik [27]

Using the principle of maximum entropy, the Jeffreys’ prior 
is assigned for the marginal distribution p(�lik|�, ft(�)) [27]

(2)

p(�i��, ft(�), �lik,i,�lik = 0) =
1

√
2��lik,i

exp

�
−

�2
i

2�2
lik,i

�
,

(3)
p(fexp,t|�, ft(�), �lik,1, �lik,2, ..., �lik,Nf

)

= p(�1, �2, ..., �Nf
|�, ft(�), �lik,1, �lik,2, ..., �lik,Nf

).

(4)p(fexp,t��, ft(�), �lik) =
Nf�

i

1
√
2��lik

exp

�
−

�2
i

2�2
lik

�
.

(5)
p(fexp,t|�, ft(�)) = ∫ p(fexp,t, �lik|�, ft(�))d�lik

= ∫ p(fexp,t|�, ft(�), �lik)p(�lik|�, ft(�))d�lik.

(6)p(�lik|�, ft(�)) =
1

�lik
.

Table 3   LVL material properties �0 [24]

Ex,0 [ N∕m2] Ey,0 [ N∕m2] Ez,0 [ N∕m2] Gxy,0 [ N∕m2] Gxz,0 [ N∕m2] Gyz,0 [ N∕m2] �xy,0 [-] �xz,0[-] �yz,0 [-] �0 [ kg∕m3]

1.06 ⋅ 1010 2.50 ⋅ 109 3.00 ⋅ 108 6.00 ⋅ 108 1.50 ⋅ 108 1.50 ⋅ 108 0.59 0.59 0.36 530



	 Archives of Civil and Mechanical Engineering (2024) 24:22

1 3

22  Page 6 of 15

Subsequently, the integral from Eq. (5) is performed using 
the limits �lik ∈ [0,∞) resulting in a marginalized likelihood 
in the form of a student’s t-distribution

(7)p(fexp,t|�, ft(�)) =
Γ(Nf∕2)

2

(
�

Nf∑

i=1

�
2
i

)−Nf ∕2

,

with the standard gamma function Γ(...) . The individual 
specimens’ experiments are taken into account by summing 
the error also w.r.t. those data points

where �ji = fexp,t,ji − ft,ji(�).

2.2.2 � Vibration measurements on timber panels

The experimental data are acquired by performing vibra-
tion measurements on the individual components, i.e., 12 
LVL panels ( Nr = 12 ). The components’ measurements are 
established similarly to the experiments on the hybrid ele-
ment (Sect. 2.1.1). A white-noise excitation is applied to 
the structure by the stinger. Furthermore, the sample is sup-
ported by rubber slings. The respective test setup is visual-
ized in Fig. 4.

The first seven eigenfrequencies fexp,t of the 12 LVL 
plates are identified by an experimental modal analysis [18] 
and are visualized below the abscissa in Fig. 5. The dimen-
sions of the samples, i.e., length lt , width bt , and thickness ht , 
are given in Table 4. Four samples of three different geom-
etries are used in the experiments, i.e., H45i with a thickness 
of ht = 45mm , H55i with a thickness of ht = 55mm , and 
H65i with a thickness of ht = 65mm . The fiber direction of 
the LVL is aligned with the shorter side length lt.

2.2.3 � Forward model: Rayleigh–Ritz approach

A forward model is necessary to evaluate the likelihood. 
Here, many evaluations are required, which is why, instead 
of an FE approach, a computationally faster model is used. 
Due to its anatomy, wood is often modeled as an orthotropic 
material. Hence, a Rayleigh–Ritz method for orthotropic 
Mindlin plates with free supports is implemented [28]. In 
the Rayleigh–Ritz method, energy functionals for the strain 
and kinetic energy of the plate are calculated by considering 
the constitutive equations of an orthotropic Mindlin plate 
(details are given in the appendix). To satisfy the boundary 
conditions, the following trigonometric basis functions:

are utilized to describe the displacements w and rotations 
�i of the plates

(8)p(fexp,t|�, ft(�)) =
Γ(Nf∕2)

2

(
�

Nf∑

i=1

Nr∑

j=1

�2
ji

)−Nf ∕2

,

(9)𝜙m(x) =

{
cos(𝜆mx) m ≥ 0

sin(𝜆mx) m < 0
𝜆m = m𝜋∕lt

(10)𝜙n(y) =

{
cos(𝜆ny) n ≥ 0

sin(𝜆ny) n < 0
𝜆n = n𝜋∕bt

Fig. 4   Measurement setup for the components

Table 4   Dimensions of LVL samples

Label Thickness ht [m] Width bt [m] Length lt 
[m]

H451-H454 0.045 0.825 0.6
H551-H554 0.055 0.840 0.6
H651-H654 0.065 0.750 0.6

Fig. 5   Sensitivities Si for an LVL plate with thickness h = 4.5 cm for 
the seven lowest eigenfrequencies
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while satisfying the freely supported boundary conditions 
[28]. The potential and kinetic energy use the respective 
displacement and rotation functions depending on the coeffi-
cients Amn , Bmn , and Cmn to build the Lagrangian expression. 
This formulation is minimized by derivation with respect to 
the coefficients. It is summed up in matrix form as

with the stiffness matrix K , the mass matrix M , the natural 
frequencies f = �∕(2�) , and the coefficient matrix E

with truncation order M = 8 and N = 8.
From Eq. (14), natural frequencies and eigenvectors can 

be computed by solving the eigenproblem.
The supports of the model are chosen as ‘free’, similar to 

the freely suspended specimens in the experiments. As input 
parameters to the model, the dimensions of the LVL plates 
(Table 4) and the timber material properties 𝜃̂ , i.e., elasticity 
moduli in longitudinal Ex and transverse direction Ey , shear 
moduli Gxy , Gxz , and Gyz , density � and Poisson’s ratio �xy are 
required. Using the model (Eq. (14)), natural frequencies 
f
�
= ft(�) are determined numerically and incorporated in 

the Bayesian inference.
However, first, a one-at-a-time sensitivity analysis [29, 

30] is conducted to reduce the parameter space by identify-
ing the most relevant input LVL material parameters for the 
Bayesian inference approach. Hence, it is evaluated which 
material properties mostly influence the seven lowest natu-
ral frequencies, which lie in the range of f

�
i
∈ [0, 800]Hz . 

The Rayleigh–Ritz model uses seven material input param-
eters, i.e., the material properties. Each material property 
is varied in the range of 𝜃̂i ∈ [0.9 ⋅ 𝜃i,0, 1.1 ⋅ 𝜃i,0] . Here, 
�̂0 = [Ex,0,Ey,0,Gxy,0,Gxz,0,Gyz, 𝜈xy,0, 𝜌0]

T denotes the initial 
parameter values of the timber material properties as given 
in Table 3.

The variation range is chosen as ±10% , since the CoV for 
wooden materials is approximately given as CoV ≈ 0.1 in 

(11)�x(x, y) =

∞∑

m=−2

∞∑

n=−2

Amn�m(x)�n(y),

(12)�y(x, y) =

∞∑

m=−2

∞∑

n=−2

Bmn�m(x)�n(y),

(13)w(x, y) =

∞∑

m=−2

∞∑

n=−2

Cmn�m(x)�n(y),

(14)(K − �2
M)E = 0

(15)E =

⎧
⎪
⎨
⎪
⎩

A−2,−2 A−2,−1 ... AM,N

B−2,−2 B−2,−1 ... BM,N

C−2,−2 C−2,−1 ... CM,N

⎫
⎪
⎬
⎪
⎭

T

,

[25], which covers the parameter range within one standard 
deviation. The varied material properties are introduced in 
the forward model. Eigenfrequencies f�i are subsequently 
computed and compared to the initial results f�0 obtained 
through the initial values �0 . The respective modes are 
denoted by the number of nodal lines in the x (fiber direc-
tion) and y (transverse to the fiber) directions, e.g., (1,1), 
as depicted in Fig. 5. Then, the sensitivity is calculated as

This yields high sensitivities ( Si ≥ 0.05 ) of the natural fre-
quencies to all input material parameters �̂ except for the 
Poisson’s ratio �xy and the shear modulus Gxz (Fig. 5). Con-
sequently, the most relevant material input parameters are 
identified as � = [Ex,Ey,Gxy,Gyz, �]

T and are subsequently 
used for the inference of the timber material properties.

2.2.4 � Prior probabilities

The initial probabilities—the priors—represent the beliefs 
about the uncertain parameters before measurement data are 
considered [26]. Based on the information given in [25], 
lognormal distributions �i ∼ LN(�i, �

2
i
) are assigned for the 

elasticity moduli, Ex and Ey , and for the shear moduli, Gxy 
and Gyz , and a normal distribution � ∼ N(�� �

2
�
) is assigned 

for the density � . �i denotes the location parameter in the 
lognormal distributions and the mean value for the normal 
distribution. �i represents the standard deviation in both 
cases. In [25], information on the CoV is also given as 
CoV� = 0.1 and CoVmoduli = 0.13 leading to standard devia-
tions of �� = 0.1 ⋅ �0 and �i = 0.13 . By means of the prior 
probabilities, prior predictive checks are performed [31]. 
Samples for the material values are drawn from the prior 
probabilities for a specific set of �i and �i , inserted into the 
forward model, and the seven lowest natural frequencies f� 

are determined. Then, the measured natural frequencies fexp,t 
are plotted together with the calculated natural frequencies 
f� . If the measured ones lie within the range spanned by the 
calculated values, the parameters of the prior probabilities 
indicate physically meaningful results for the natural fre-
quencies. Nevertheless, for this set of standard deviations of 
the priors, the prior predictive checks showed measured fre-
quencies lying outside the range of calculated values. Hence, 
a larger CoVmoduli = 0.25 than proposed for the moduli in 
[25] is chosen. The chosen value stems from the CoV given 
in [25] for the bending strength, since the moduli are related 
to bending strength. For this selected configuration

(16)Si = �f∕Δ𝜃̂ = (f𝜃̂i − f𝜃̂0
)∕(�̂i − �̂0).

(17)Ex ∼ LN(ln (Ex,0), 0.25
2),
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the prior predictive check results are shown in Fig. 6.
All measured eigenfrequencies fexp,t lie within the range 

of the numerically evaluated eigenfrequencies f� . Hence, the 
above priors are assigned.

(18)Ey ∼ LN(ln (Ey,0), 0.25
2),

(19)Gxy ∼ LN(ln (Gxy,0), 0.25
2),

(20)Gyz ∼ LN(ln (Gyz,0), 0.25
2),

(21)� ∼ N(�0, (0.10 ⋅ �0)
2),

2.2.5 � Posterior distribution

Finally, methods are needed that explore the posterior prob-
abilities. In this context, Markov Chain Monte Carlo Sam-
pling methods are often used, since an analytical solution 
only exists in rare cases, e.g., if conjugacy is present. The 
sampling utilizes the forward model (Sect. 2.2.3), which 
must be computed for each likelihood evaluation during 
sampling [26].

This study uses the so-called Sequential Monte Carlo 
sampler within the Python package PyMC [32] to infer 
the posterior probabilities of the uncertain material 
parameters � . This algorithm is advantageous for mul-
timodal posterior probabilities. Unlike usual Markov 

Fig. 6   Prior predictive checks: the numerically ffem,t and experimentally fexp,t determined natural frequencies are plotted using contrasting colors 
for the sake of comparison
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Chains, the sampler is less susceptible to getting stuck in 
local minima, which is overcome by applying the idea of 
tempering [33].

The identified probability densities are subsequently 
available as inputs for the probabilistic analysis of the 
hybrid building element together with the uncertain joint 
stiffness values.

2.3 � Uncertain joint inputs

For the modal analysis of the hybrid structure, stiffness 
properties for the fastener model (Fig. 3 on the right) are 
required. The linear spring element is applied to connect 
DOFs in the x- and y-direction with the stiffness khor and in 
the z-direction with the stiffness kver . Since different fastener 
types, i.e., nails3 and screws,4 are used for the upper and 
lower joint due to manufacturing reasons, different stiffness 
values are applied for the upper, kver,u and khor,u , and lower, 
kver,l and khor,l , joints.

Ibrahim and Pettit [34] provide an extensive overview of 
uncertainties in bolted joints and other fasteners. The authors 
point out that deterministic response evaluations could lead 
to unnecessarily conservative system designs, emphasizing 
the need to consider parameter uncertainties in jointed struc-
tures. Consequently, the joints’ stiffness values are assigned 
to be uncertain inputs in this study.

Various studies state coefficients of variation CoV for 
the stiffness in joints. The identified CoV in the literature 
ranges from 5% [35] to 25% [36]. Subsequently, CoV = 25% 
is chosen for the normally distributed probabilities of the 
joints’ stiffness. However, the joints’ stiffness values are 
not known in advance. Hence, an MAP estimation [26, 37] 
approximates the mean value of the joints’ stiffness. The 
MAP estimation is used instead of a full Bayesian infer-
ence, since the necessary large number of evaluations of the 
hybrid structure’s FE model would require too high com-
putational effort. MAP estimation is performed using the 
equations of Sect. 2.2 while replacing the forward model of 
the LVL plates with the FE simulation of the hybrid struc-
ture. Furthermore, the measurement data of the LVL plates 
are substituted by the results from the experiments on the 
hybrid specimen described in Sect. 2.1.1. Finally, the MAP 
estimation leads to the stiffness values in Table 5.

The identified values lie within a reasonable range with 
values given by [38], i.e., axial and shear stiffness proper-
ties of approximately 50MPa for a beam structure jointed 
by M10 bolts and nuts.

2.4 � Probabilistic analysis of the hybrid steel–timber 
building element

Utilizing the identified uncertain inputs, numerical prob-
abilistic analysis for the modal properties of the hybrid 
steel–timber structure is performed to assess the influence of 
input uncertainties of the prediction tool. Parameter uncer-
tainties are considered by assuming probability distributions 
for the inputs [26] and performing an MC simulation [39]. 
Here, random samples are drawn to compute the natural fre-
quencies of the hybrid element numerically (see, e.g., [39]). 
Utilizing the MC method, target statistics, i.e., mean values, 
standard deviations, and percentiles of natural frequencies 
of the hybrid structure, are estimated by a set of generated 
realizations computed based on the samples. Latin hyper-
cube sampling (LHS) reduces the realizations necessary for 
reasonable results by evenly spreading the samples over the 
entire sampling space [40]. In [11], LHS for MC simulations 
is investigated for a wooden floor model. The authors con-
cluded that LHS using nLHS = 40 sampling steps led to con-
verged results for four sampled parameters. This indicates 
that if the number of samples nLHS is chosen equal to ten 
times the dimension d of the parameters nLHS = 10 ⋅ d , sat-
isfying results can be achieved. The probabilistic prediction 
tool used in this study is based on the model of Sect. 2.1.2 
to determine the influence of model parameter uncertain-
ties on the modal properties of the building element. Thus 
input uncertainties, i.e., for the LVL material properties 
(Sect. 2.2), Ex , Ey , Gxy , Gyz and � , and for the joint stiffness 

values, kver,u , kver,l , khor,u , and khorl (Sect. 2.1.2), are propa-
gated through the simulation model to the resulting natural 
frequencies fFE of the hybrid steel–timber test sample.

3 � Results

As uncertain LVL material properties are required for the 
probabilistic analysis of the hybrid steel–timber element, 
results concerning the Bayesian inference of the LVL’s mate-
rial parameters are presented first. Second, the outcomes of 
the probabilistic analysis of the hybrid steel–timber element 
are displayed.

3.1 � Stochastic estimates of the material properties 
of the LVL

The posterior probabilities of the LVL’s material proper-
ties result from the Bayesian approach (Sect. 2.2) using 
a Sequential Monte Carlo Sampler with seven chains, 
including 500 samples each. The outcome is described 
by the mean values 𝜇̂𝜃i

 and the standard deviations 𝜎̂𝜃i . 
The mean values are compared to the material parameters 

3  Unpublished prototype.
4  Thin sheet metal screws 6.0x90 by Reisser-Schraubentechnik 
GmbH, D-74653 Ingelfingen-Criesbach, Germany.
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provided by the manufacturer (Table 3) through the devi-
ation of the resulting mean and the provided property 
a = 1 − 𝜇̂𝜃i

∕𝜃i,0 . These results as well as the ̂CoV = 𝜎̂𝜃i∕𝜇̂𝜃i
 

are listed in Table 6. Deviations above ±10% are marked 
in bold letters.

The difference between inferred and provided material 
properties lies above 5% for all parameters, often even above 
10% , which represents a significant difference emphasiz-
ing the relevance of the Bayesian inference. Moreover, the 
identified posterior probabilities become slightly narrower 
than the priors for Ex , Ey , Gxy , and � , which is shown by the 
smaller ̂CoV (Table 6) of these material parameters com-
pared to the priors’ CoV for the density CoV� = 0.10 and 
for all other material parameters CoV�i

= 0.25 . The prior 
and posterior probabilities of all material parameters are 
plotted together in Fig. 7 to check the identified properties. 
Here, the narrower posterior probabilities are also visible. 
Furthermore, for all properties, the prior and posterior prob-
abilities overlap.

Moreover, model validation is performed concerning 
LVL plate natural frequencies using the forward model 
(Sect. 2.2.3) and experimentally determined natural fre-
quencies fexp,t of the LVL components. For this purpose, 
natural frequencies of the LVL panels, i.e., H45i, H55i, and 
H65i, are calculated numerically using an MC simulation 
(Sect. 2.4), LHS, and 6000 samples for the material proper-
ties drawn from the posterior distribution. The computed 
values fi are presented in Fig. 8 as box plots together with 
the experimentally identified values fexp,t,i.

All measured eigenfrequencies lie within the whiskers 
spanned by the sampled eigenfrequencies or even within the 
first-to-third quartile values. Hence, the inferred material 
properties, together with the forward model, represent the 
LVL material properly.

3.2 � Probabilistic modal analysis of hybrid steel–
timber structure

The material properties in terms of mean and standard 
deviation identified before (Table 6) are used in this sec-
tion, together with the parameters for the joint stiffness 
(Table 5), in a stochastic analysis of the hybrid steel–tim-
ber building element. Nine parameters are assigned to be 
uncertain and are consequently sampled from their distri-
bution by LHS: Ex , Ey , Gxy , Gyz , � , khor,l , khor,u , kver,l , and 
kver,u . Using ten times the dimension of the parameters, 
the number of samples yields as nLHS = 90 . However, to 
verify the convergence of the results, additional samples 
are computed, and the results of nLHS = 110 and nLHS = 90 
are compared. The comparison is made for the first struc-
tural eigenfrequency of the FE model at approximately 
fFE,hyb = 59.4Hz . The following differences between the 
two cases are calculated:

•	 Deviation for mean value: (1 − f�,110∕f�,90) ⋅ 100 = −0.1%.
•	 Deviation for standard deviation: (1 − f�,110∕f�,90) ⋅ 100

= −2.8%.
•	 Deviation for 5th percentile: (1 − f5%,110∕f5%,90) ⋅ 100

= −0.0%.
•	 Deviation for 95th percentile: (1 − f95%,110∕f95%,90) ⋅ 100

= −0.2%.

Hence, the deviations lie below 1% for all evaluated sto-
chastic parameters except for the standard deviation, which 
lies below 3%. This is assumed to be suitable as it is done 
similarly in [11, 41].

Table 7 shows the mean values f� , standard deviations f� , 
5th fP=(0.05) , and 95th percentile fP=(0.95) of the MC simulated 
results fLHS,hyb sampled by LHS with nLHS = 90 together 
with the measured fexp,hyb and simulated eigenfrequencies 
fhyb,�0 using the initial material properties �0 (Table 3) and 
the joint stiffness values from Table 5. The mean values 
of fLHS,hyb differ from fhyb,�0 due to the deviating material 
properties identified by Bayesian inference. The identified 
modes, (1,1), (2,0), (2,1), (3,0), and (0,2), are named simi-
larly to the LVL plates in Fig. 5. For a visual illustration, 
the plots of Fig. 5 can be considered, since the mode shapes 
are just scaled to a larger geometry for the hybrid structure. 

Table 5   Mean values of stiffness of upper (u) and lower (l) joints in 
vertical (ver) and horizontal (hor) directions

khor,l [N/m] khor,u [N/m] kver,l [N/m] kver,u [N/m]

8.96 ⋅ 106 8.41 ⋅ 106 9.60 ⋅ 106 8.86 ⋅ 106

Table 6   Mean values 𝜇̂𝜃i
 , the 

̂CoV , the manufacturer’s data 
�i,0 , and the deviation a are 
listed. Deviations above ±10% 
are marked in bold letters

𝜇̂𝜃i
̂CoV a �0

Ex∕10
10 N∕m2 1.49 0.19 − 0.41 1.06

Ey∕10
9 N∕m2 2.27 0.18 0.09 2.50

Gxy∕10
8 N∕m2 6.86 0.21 − 0.14 6.00

� kg∕m3 496 0.08 0.06 530
Gyz∕10

8 N∕m2 1.28 0.26 0.15 1.50
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Fig. 7   Probability densities of the inferred material properties—priors (blue) and posteriors averaged for all chains (rose)

However, it has to be noted that the fiber direction of the 
LVL panels is oriented along its shorter edge, whereas for 
the hybrid panels, the fiber direction follows the long side 
of the panel. Hence, for the hybrid structure, the first bend-
ing mode occurs along this long side, whereas for the LVL 
plates, it occurs along the transversal direction. In the case 
of the first mode, (1,1), the mean value of f�,LHS,hyb,(1,1) is 
close to the measured eigenfrequency fexp,hyb,(1,1) = 57.1Hz . 
Hence, the calculated difference equals

Moreover, the identified CoV for the MC simulations’ mean 
and standard deviation range between 0.4% and 2.86%.

If the 5th and 95th percentiles are examined, which is state 
of the art in the building sector [42], the difference between 
the respective percentile values

ranges from 1.2Hz for mode (3,0) to 7.0Hz for mode (2,0) 
(Table 7).

In Fig. 9, the probability density function estimated from 
the samples of the first natural frequency for mode (1,1) is 
visualized together with the measured frequencies, and the 
5th and 95th percentile values. Although the measured natu-
ral frequency does not perfectly match the point of maxi-
mum probability of the probability density function, it is 
still covered by the percentile values, showing an adequate 
prediction of the FE model concerning the lowest natural 
frequency of the hybrid element. However, the remaining 

(22)Δ�,LHS,(1,1)−exp,(1,1) = 2.3Hz.

(23)Δ5th−95th = fLHS,P=(0.95) − fLHS,P=(0.05)

measured natural frequencies fexp,hyb (Table 7) do not lie 
within the percentile values computed by the MC simula-
tion. One possible reason for the deviations in the modes 
(2,0), (3,0), and (2,1) is the assumption of an ideal geometry 
of the steel core in the FE model. In the ideal configuration, 
stiffness is gained via the trapezoidal slopes of the steel core. 
However, since these are most likely not ideally positioned 
in the test specimen, a stiffer structure is obtained in the 
simulation than in the measurement. This is reflected in the 
higher natural frequencies. In the case of mode (0,2), pre-
deformations and residual stresses of the steel core could 
stiffen the test specimen as a result of the manufacturing 
process. Since no pre-deformations and residual stresses are 
considered in the model, the model behaves less stiffly than 
in the measurement.

4 � Discussion

The statistical estimates of the LVL material properties are 
used in the forward model to compute the natural frequen-
cies of LVL plates. The computed values comply well with 
the measured eigenfrequencies for equivalent LVL plates, 
which indicates physically meaningful inferred material 
properties. Furthermore, the inferred posterior distributions 
are narrower than the priors, which implies less uncertainty 
of the material parameters once the measurement data are 
taken into account.
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The MC simulation of the hybrid steel–timber building 
element leads to converged results for 90 Latin Hypercube 
samples. The resulting statistical estimates of the natural 
frequencies show deviations of 5–7 Hz for some of the 5th 
and 95th percentiles, which represents a significant differ-
ence and, hence, should be addressed for a proper design of 
a structure. Moreover, the deviation of the sampled mean 
values for the natural frequencies differs from the computed 
frequencies using the initial material properties provided by 
the manufacturer, which emphasizes the need for material 
parameter identification.

The first measured eigenfrequency for mode (1,1) lies 
within the range spanned by the simulated eigenfrequencies, 
which is essential since the first eigenfrequency of a floor 
is relevant for a design in terms of serviceability related 
to vibration, e.g., in the European timber design stand-
ard [43]. Still, the MC simulation results do not cover the 
other experimentally identified natural frequencies. Further 

investigations might lead to deeper insight, e.g., consider-
ing frequency-dependent material and joint parameters or 
residual stresses in the hybrid element. Furthermore, an 
approach using Bayesian inference not only for the wooden 
material properties but also for the joint parameters might 
lead to better results. However, a faster model is required 
for this. Possible approaches could be surrogate models or 
model order reduction.

Moreover, it should be noted that, currently, no strength-
related characteristics are included in the investigations. 
Static test series and further studies concerning, e.g., load-
carrying capacity could be analyzed in future studies but are 
out of the scope of the current work.

Fig. 8   Box plots of simulated eigenfrequencies of LVL plates using inferred material properties compared to experimentally determined eigen-
frequencies (green markers)
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5 � Conclusions

In summary, this research article leverages Bayesian infer-
ence and Monte Carlo simulation to address uncertainty in 
the modal properties of a hybrid steel–timber building ele-
ment. The primary goal of the research is to facilitate more 
efficient building designs by shifting from traditional con-
servative safety factors to an approach that accounts for data 
uncertainty. The hybrid building element under investigation 
features a structure comprising a trapezoidal steel web and 
laminated veneer lumber flanges. Given the inherent vari-
ability in timber materials, Bayesian inference is employed 
to derive probability distributions representing the timber’s 
material properties, thereby providing a realistic representa-
tion of uncertainty. The key findings are itemized as follows:

•	 The posterior probabilities obtained through Bayesian 
inference reveal narrower probability distributions than 

the prior knowledge, denoting a reduction in uncertainty 
regarding the timber’s material properties.

•	 The research uncovers an unexpected and substantial 
deviation of inferred mean values from manufacturer-
provided data, emphasizing the importance of accounting 
for real-world variability in structural design.

The inferred material properties, together with uncertain 
joint parameters, are utilized in a Monte Carlo simulation. 
Mean values of joint properties are estimated using maxi-
mum a posteriori estimation, and the coefficient of variation 
is assigned based on literature data. Employing Latin hyper-
cube sampling and a finite element model, a probabilistic 
analysis of the hybrid building element is performed. Here, 
the following outcomes are observed:

•	 The 5th and 95th percentiles of the structure’s natural 
frequencies resulting from the Monte Carlo simulation 
span a range of up to 7 Hz for the natural frequency at 
83.6 Hz. This range emphasizes the significant variabil-
ity inherent in the structural response and underlines the 
critical necessity of considering uncertainty in the design 
of building elements.

•	 The first measured natural frequency for mode (1,1) falls 
within the range spanned by the simulated eigenfrequen-
cies, which is crucial for designing a floor with consid-
eration for vibration-related serviceability. However, it 
is observed that the other measured eigenfrequencies do 
not align with the range of eigenfrequencies calculated 
by the Monte Carlo simulation, suggesting the need for 
further investigations.

These findings collectively contribute to advancing the field 
of structural engineering, emphasizing the significance of 
probabilistic modeling and uncertainty quantification in 
optimizing building designs for enhanced efficiency. Future 
research avenues could involve extending Bayesian infer-
ence to incorporate joint parameters and exploring alterna-
tive fastener models to refine our understanding of hybrid 
element behavior.

Table 7   Mean values � , 
standard deviation � , 5th 
percentile fP=(0.05) , and 
95th percentile fP=(0.95) of 
eigenfrequencies fLHS,hyb , 
ranges between 5th and 95th 
percentile values Δ5th−95th , 
measured fexp,hyb and initially 
simulated eigenfrequencies 
fhyb,�0 are listed

fi [Hz] fLHS,hyb [Hz] Δ5th−95th [Hz] fhyb,�0 [Hz] fexp,hyb [Hz]

for mode � � P = (0.05) P = (0.95)

(1,1) 59.4 1.7 56.8 62.5 5.7 52.1 57.1
(2,0) 83.6 2.3 80.1 87.1 7.0 77.2 70.9
(2,1) 105.3 0.8 103.3 106.2 3.0 95.4 76.4
(3,0) 108.4 1.4 105.6 110.1 4.5 99.7 88.3
(0,2) 99.5 0.4 98.9 100.1 1.2 102.3 113.9

Fig. 9   Probability density function estimated by fLHS,hyb,(1,1) , 
measured frequencies fexp,hyb,(1,1) , and percentiles P = (0.05) and 
P = (0.95)
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Appendix

The Lagrangian for the orthotropic Mindlin plates is com-
puted as [28]

with the strain energy U and the kinetic energy T. The strain 
energy is calculated as

with the flexural rigidities of the plate

Moreover, the total kinetic energy is given as
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