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Abstract
Vision-based robotic picking enables automation of commissioning and sortation of disordered parts. To locate parts for
grasping, state-of-the-art approaches rely on convolutional neural networks for instance segmentation in 2D images. However,
this requires sufficiently large training datasets, which are expensive to capture and annotate. Therefore, trainingwith synthetic
data is promising as the data can be generated automatically.Wepresent an approach for the cut-pastemethod to create synthetic
images for industrial use cases. With this approach, an end-user first prepares the image generation with just a smartphone
and about 20minutes of manual effort. Then, a versatile dataset with instance segmentation labels is generated automatically.
In addition, a procedure for grasp pose computation is applied to enable robotic picking based on instance segmentation. For
evaluation, training data is generated for a wide range of rigid parts and deformable linear objects. Testing with real-world
data and practical experiments demonstrates the effectiveness of the proposed cut-paste method for industrial applications.

Keywords Synthetic training data · Data generation · Copy-paste · Bin picking · Deformable linear objects · Cable

1 Introduction

Robotic picking systems enable the automation of non-value-
adding commissioning and sortation. During these tasks,
parts are typically provided in an unordered manner, for
example in small load carriers. Therefore, part localization
is required for precise grasping. State-of-the-art approaches
apply convolutional neural networks (CNNs) for instance
segmentation of parts in 2D images [1]. However, training
CNNs requires large amounts of annotated data. Manually
photographing parts and labeling images is highly time-
consuming and costly. This manual work is not feasible,
especially for industrial applications with frequently chang-
ing variants.

One approach to reduce these efforts is the rendering of
synthetic images from simulationswith tools like blender [2].
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This enables the automatic generation of images and cor-
responding labels. Nevertheless, the so-called domain gap
between synthetic and real-world images [3] is an open chal-
lenge for this approach. In addition, many implementations
require expert knowledge or a geometric model of the part
[4].

In this work, a different approach for the generation of
synthetic training data is investigated: The cut-paste method
follows a simple procedure, where real-world images are
used as a source for the generation of synthetic images with
labels [5]. An advantage of the cut-paste method is that
source images from the target environment can be used,
which helps to reduce the domain gap compared to ren-
dered images [3]. However, the preparation and execution of
the cut-paste method can require considerable manual effort
by the end-user. Hence, we propose boundary conditions
and an approach for the cut-paste method to significantly
reduce the manual effort. Thus, training data can be gener-
ated cost-efficiently for newpart types and variants to quickly
implement CNN-based localization. Experiments demon-
strate the effectiveness of the proposed method for instance
segmentation and robotic picking in cluttered scenes (Fig. 1).
Thereby, various types of rigid parts and deformable linear
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Fig. 1 The proposed cut-paste method generates synthetic training data
for instance segmentation (top left). Consequently, grasp poses (bottom
left) are computed based on instance segmentation of real images to
enable robotic picking (right)

objects (DLOs), such as cables and hoses, are taken into
account.

The following summarizes the contribution of this work:
(1) We propose a pipeline for the generation of synthetic
training data based on the cut-paste method, which is specif-
ically tailored towards industrial applications. (2) Boundary
conditions are introduced to generate synthetic datasets with
few source images, which further reduces the manual effort
for training data generation. (3) We demonstrate the usage
of smartphone-based training data for vision-based picking
with an industrial camera.

2 Related works

The following introduces the basic principle of the cut-paste
method and summarizes precedingworks. For other synthetic
image generation methods, see the review in [6].

The goal of the cut-paste method is to generate new image
datasets from source images using pixel operations [5]. For
this purpose, objects in the source images are cropped from
the background in the cut step (Fig. 2). In the subsequent
paste step, the cropped objects are composed with different
backgrounds to new images. In contrast to classical image
augmentation, new scene compositions can be created by the
variable arrangement of different source images [6]. Crop-
ping the object from the source image also creates an object
mask. Therefore, instance masks of the synthetic images can
be computed automatically. With the repeated application of
the cut-paste method, versatile image datasets can be gener-
ated for training CNN-based image segmentation models.

Recent works show different approaches to reduce the
manual effort and generate better-performing training data.
A summary of related works on source image acquisition
as well as the cut and paste step is provided next. So-called
hybrid methods, in which source images are rendered from
a simulation [8], are not considered below.

2.1 Source image acquisition

In a step preceding the actual cut-paste method, source
images must be captured or collected. While the images can
be taken manually by the user [7], other approaches use open
source datasets as source images [9]. Alternatively, internet

Cropped object

Object mask

Synthetic images

Mask images

Background images

Source image

Cut step: 
Cropping the object 
from the background
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Composing cropped 

objects to new 
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Fig. 2 Basic procedure of the cut-pastemethod: In the cut step, anobject
is cropped from the background of the source image. This generates a
cropped object and an object mask. In the paste step, new synthetic
images are generated by pasting the cropped object variably in new

backgrounds. The corresponding mask images are computed automat-
ically. A number of synthetic images can be generated by repeated
execution of the method. (This figure is inspired by [5, 7].)
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search engines are applied to collect existing images [10].
In [11], a robotic arm positions a camera to capture parts
from multiple viewpoints. Zanella et al. [12] record a video
sequence and extract image frames to collect a large set of
source images.

2.2 Cut step

Once the source images are captured, the objects of interest
must be separated from the image background, which can be
performed manually, similar to labeling [13]. If the source
images are taken in front of a green screen [14], chroma
keying is applicable for background separation with little
manual effort [12]. However, if there are multiple objects
in one image, they cannot be distinguished from each other
[12]. Such a semantic segmentation mask is only partially
useful, since a segmentation on instance level is required
for robotic picking. Dwibedi et al. [5] utilize a pre-trained
neural network to automatically determine the object masks.
Practically, even semi-automatic and automatic approaches
require manual inspection of the generated masks to reject
corrupted object masks.

2.3 Paste step

During the paste step, the cropped objects are fused in new
background images. While in [12], only the background is
exchanged, most approaches compose new image scenes by
variable arrangement of multiple objects [7].

Various blending methods are used to reduce optical arti-
facts that may occur when objects are pasted in the new
backgrounds [5]. In addition, image augmentation is per-
formed to increase the diversity of the synthetic images. On
the one hand, augmentation is applied before insertion to the
cropped objects [5] and backgrounds [12]. On the other hand,
the new images are augmented after insertion. In [5] and
[9], the effects of different blending and augmentation meth-
ods on the object detection performance are investigated.
Thereby, it is found in [5] that the application of multiple
augmentations and additional insertion of distractor objects,
which are labeled as background, can improve the detection
performance. In contrast to the preceding steps, pasting can
be performed fully automatically.

2.4 Summary

The cut-paste method has been tested for various environ-
ments. Examples include household objects in kitchen scenes
[5, 9] as well as outdoor scenes with vehicles and living
beings [15]. Thus, apart from [12], where synthetic images
of cables are generated, hardly any industrial use cases are
considered.

Industrial applications of machine vision strongly dif-
fer from the scenarios considered so far. Unlike in outdoor
scenes, environmental conditions such as backgrounds are
constant and well-defined for stationary industrial appli-
cations, e.g. bin picking [4]. This enables the usage of
domain-specific datasets for industrial use cases [4]. Kitchen
scenes show characteristic objects, making object detection
transferable across households [16]. In contrast, industrial
applications show specific parts requiring individual training
data [16]. Therefore, source images must be captured and
cropped repeatedly for new part types and variants, which
requires hardware setups [11] or manual work [10]. Thereby,
the manual effort scales with the number of source images.

Existing approaches use several hundred [5, 10] to thou-
sands [12] of source images. Thus, themanual effort required
can be an obstacle to the application of the cut-paste method
in industry.

3 Methodology

3.1 Overview

We propose an approach for the cut-paste method, which can
be applied with minimal manual effort and without expert
knowledge. In addition, we apply a procedure for the com-
putation of grasp poses that enables picking parts based on
instance segmentation masks.

The following presents an overview of the methodical
procedure and the structure of the successive sections: The
starting point is the cut-paste method, which is used to cre-
ate synthetic images and corresponding labels (Sect. 3.2).
This data is used to train CNN-based models for instance
segmentation (Sect. 4.3). In Sect. 4.4, the trained models are
evaluated on real-world test images.

Moreover, the trained segmentation models are integrated
into a robotic system. Here, the segmentation results serve as
the basis for the grasp pose computation (Sect. 3.3). Finally,
the picking performance of the robotic system is tested in
Sect. 4.5.

3.2 Cut-paste method

The proposed approach is based on the basic principle of the
cut-paste method (Fig. 2). Below, we introduce additional
boundary conditions, a novel data acquisition procedure, and
adapted cut and paste steps.

Boundary conditions The goal is to define boundary
conditions that create a solution space for the industrial appli-
cation of the cut-paste method where a small number of
source images is required. The following cut-paste approach
is designed for flat and slim parts. This covers parts that have
an aspect ratio of a minimum of 5:1. In addition, only appli-
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cations are considered in which the camera is mounted in the
top view and its distance to the work surface is significantly
larger than the part height.

Source image acquisition It is the objective to per-
form the source image acquisition with resources of high
availability and low system complexity. Thus, the parts are
photographed with smartphones or tablets. First, one part is
positioned in front of a neutral background, which provides
contrast. Then, the camera device is positioned above the
object as it is expected for the segmentation task. In this way,
images are taken while the object poses within the image
plane and the dominant orientations are varied. By this, dif-
ferent configurations of object, light, and camera are imaged.

Cut step Sect. 2 describes advanced methods for sepa-
rating objects and backgrounds in source images. However,
here an approach with high availability and low complexity
is required. For this reason, web applications are used for
automatic cropping of source images. Nevertheless, depend-
ing on the object, its shadow cast, and the camera perspective
cropping may fail for some images. For such cases, the web
applications offer tools to manually post-process the images
in order to fix local error spots. Alternatively, the faulty
images are sorted out.

Paste step This approach uses open-source images for
the background and strongly augments the cropped objects to
compose new images. In the first step, a background image is
randomly selected fromover 400 images of the iSAIDdataset
[17]. Then, with a uniform distribution between two and five
cropped objects are added to the background to compose a
new scene.

Both the cropped objects and the newly generated images
are augmented. For this purpose, the object position and
orientation in the background image are randomized. Addi-
tionally, the objects are scaled and sheared. Further, the
brightness and contrast of the objects are varied. For each
object added to the background, a randomly oriented shadow
and, with a probability of 50%, a distractor are inserted. The
distractors are captured, cropped, and augmented in the same
way as the objects. All objects and distractors are blended
withGaussian blur into the background image. Gaussian blur
andGaussian noise are added to 25%of the resulting images.
Finally, the corresponding mask images are computed auto-
matically.

3.3 Grasp pose computation

Given a 2D image, the grasp pose computation is consid-
ered a three-degree of freedom problem. Therefore, for each
instance in the image, the x- and y-position as well as the
orientation α of the grasp pose Pi are computed in pixel
coordinates.

Algorithm 1 summarizes the grasp pose computation
building up on our previous work [18]. Starting from an

image I , instance segmentation is performed, to obtain the
instance contours C for example as splines. From C the
instance mask image M is derived, whereby thresholds for
the mask size can be applied and the number of instances N
in the image is determined. Consequently, for each instance,
a binary mask image Mb is computed from M .

Due to the wide range of parts considered in the validation
(Sect. 4), slim objects are distinguished during the grasp pose
computation. For slimobjects, the skeleton of the objectmask
is computed Si , while for other object shapes the principal
axis Ai is determined. Based on Si or Ai , the center point
and the angle of inclination in the vicinity are determined
as grasp pose Pi . At last, one prioritized grasp pose Pp is
selected per image from the list of grasp poses P .

Algorithm 1 Grasp pose computation
Input: image I
Output: prioritized grasp pose Pp

1: C ⇐ instance_segmentation(I )
2: M ⇐ mask_generation(C)

3: N ⇐ number_of _instances(M)

4: for i ⇐ 1 to N do
5: Mb ⇐ binary_mask_extraction(M, i)
6: if mask shape is slim then
7: Si ⇐ skeletoni zation(Mb)

8: Pi ⇐ grasp_pose_generation(Si )
9: else[mask shape is not slim]
10: Ai ⇐ line_ f i t ting(Mb)

11: Pi ⇐ grasp_pose_generation(Ai )

12: end if
13: P.append(Pi )
14: end for
15: Pp ⇐ grasp_pose_selection(P)

This procedure ensures that the grasp poses are located on
the object mask despite different part shapes. If the compu-
tation of a skeleton or principal axis fails, no grasp pose is
returned for this instance. The presented procedure is inde-
pendent of the segmentation method.

4 Experimental setup and results

4.1 Use cases

For the subsequent experiments, different use cases are
defined by the combination of parts and attributes such as the
presence of distractors, the camera system, and the geomet-
ric arrangement. Thus, the evaluation covers a wide range of
different challenges. During the evaluation, industrial parts
are provided in small load carriers or in front of neutral
backgrounds. Each scene contains one of the following five
part types: pneumatic cylinder, milled plate, USB flash drive
board, electric cable, or pneumatic hose.
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Table 1 Conditions during training data generation: Device used for
source image acquisition and number of correctly cropped objects dur-
ing the cut step

Part type Device Cropped images

Cylinder Google Pixel 4a 44

Plate Google Pixel 4a 44

USB Google Pixel 4a 50

Cable iPad Pro 43

Hose Samsung S20 27

All instances of the types cylinder, plate, and USB are
identical. In contrast, for hoses and cables multiple variants,
which differ in length, diameter, and color, exist. In addition,
cables can have an individual shape in each scene as a result
of deformation. The dimensions of the parts fulfill the con-
ditions defined in Sect. 3.2. Only the cylinder has an aspect
ratio of 5:2. Due to the limited space in the scenes, distrac-
tors occur only in scenes with the compact rigid parts, but
not in scenes with DLOs. Overlapping between parts or with
distractors is not permitted in the scenes.

4.2 Training data generation

Based on the description in Sect. 3.2, one dataset with 5000
images (720 × 540 pixels) and corresponding mask labels is
generated for each part type. During source image acquisi-
tionmultiple devices are used to photograph the parts in front
of white paper (Table 1). On average, four source images
are captured per minute. Afterward, these source images
are cropped using the web application removebg1, which
takes about five minutes for 40 images. Rejecting incor-
rectly cropped images during a manual inspection can lead
to a varying number of images that are used subsequently
(Table 1). The paste step is implemented usingPython3.6 and
the libraries OpenCV2 and NumPy3. Figure 3 shows exem-
plary synthetic images generated with the proposed cut-paste
method.

4.3 Model training

The synthetic dataset of each part type is used to train
one CNN-based instance segmentation model. Thereby, the
implementation in the mmDetection framework [19] is used
for the SOLOv2 architecture [20] with a ResNet-50 as back-
bone. Themodels, which are pretrained on the COCOdataset
[21], are trained with a batch size of 8, using the Adam opti-
mizer with a learning rate of 1e-5 and a cosine decaying

1 https://www.remove.bg/
2 https://opencv.org/
3 https://numpy.org/

Fig. 3 Exemplary synthetic images generated by the proposed cut-paste
method

learning rate schedule. The training on a NVIDIA RTX 3090
GPU is stopped after 10 epochs, which is sufficient for the
models to converge. Since the datasets are synthetically gen-
erated, only basic data augmentation is applied, including
random horizontal flips and random resize crops.

4.4 Experiment 1: instance segmentation

This first experiment evaluates the performance of the
instance segmentation trainedwith cut-paste images. For this
purpose, themodels fromSect. 4.3 are tested using real-world
images, and theCOCOevaluationmetrics [21] are computed.

One test dataset of about 80 images with diverse scenes
and backgrounds is available for each part type. The test
images of the rigid parts are capturedwith theGooglePixel 4a
smartphone, while cables [22] and hoses are imaged with the
industrial camera rc_visard 65 color from Roboception. The
corresponding labels are preparedmanually usingHasty4 and
labelme5.

For evaluation, the segmentation results from the mod-
els are compared against the ground truth labels. Thus, the
intersection over union (IoU) of the segmentation result and
the corresponding ground truth label is calculated. Based on a
threshold, the results are classified as true or false to compute

4 https://hasty.ai/
5 https://github.com/wkentaro/labelme
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Table 2 Instance segmentation results for real-world test images with
parts in front of various backgrounds

Part type AP0.50 AP0.50:0.95 AR0.50:0.95

Cylinder 0.989 0.952 0.969

Plate 0.988 0.889 0.900

USB 0.977 0.699 0.742

Cable 0.869 0.261 0.368

Hose 0.973 0.499 0.599

precision and recall. The average precision AP0.50 applies an
IoU threshold of 50%. For the computation ofAP0.50:0.95 and
AR0.50:0.95, the results of all APs and ARs between 50% and
95% with an interval of 5% are averaged. Table 2 shows the
quantitative results of this experiment for all five part types
using the widely accepted AP and AR metrics.

Instance segmentation works best for cylinders and plates.
This demonstrates that precise segmentation based on the
proposed cut-paste method is feasible. In comparison, the
results for hoses and especially for cables are lower. This
difference is even stronger for AP0.50:0.95 and AR0.50:0.95.

Figure 4 shows exemplary mask predictions for the
instance segmentation of all types. In the test dataset, all

cylinders and plates are localized and no distractors are seg-
mented despite similar shape or texture. On the other hand, a
few USB drives are not segmented at all. If the cylinders and
plates are placed in front of a metallic background such as
a punched plate or slotted table, few masks protrude beyond
the edges. For cables, false positive instances occur due to the
groove slots in the background, which have similar dimen-
sions. In contrast, there are much less false positive pixels
for hoses. However, similar to cables, several submasks are
predicted for one hose instance. Overall, small segmentation
errors occur in the contour area of all part types. For example,
in plenty cases the predicted mask is scaled by a few pixels
and thus, too large. This results in a number of false positive
pixels along the instance contour.

4.5 Experiment 2: robotic picking

Following the evaluation on test images, the segmentation
models are integrated into a robotic system for practical pick-
ing experiments. This allows to evaluate the performance of
the cut-paste method for industrial picking applications. The
following describes the hardware setup and picking routine,
before the experimental setup and results are shown.

esohcitamuenPrednilyccitamuenP Milled plate USB flash drive Electric cable

Fig. 4 Exemplary instance segmentation results for scenes with pneumatic cylinders, milled plates, USB flash drives, electric cables, and pneumatic
hoses in front of diverse backgrounds
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The hardware setup is defined by the boundary condi-
tions of the presented cut-paste method. In order to image the
scene, the industrial camera rc_visard 65 is mounted above
the region of interest (ROI). Grasping and handling are per-
formed with theUniversal Robots UR10e and the two-finger
gripper Robotiq 2F-85. In addition, a non-commercial vac-
uum gripper with three suction cups is used. Figures1 and 5
show the experimental setup with the two-finger gripper and
the vacuum gripper, respectively. Computation is performed
on an industrial computer (Intel Xeon Core i7 and NVIDIA
Quadro RTX 4000 8GB).

During the picking routine, first, the industrial cam-
era takes a 2D image. Then, the trained model outlined
in Sect. 4.3 performs instance segmentation to output the
instance contoursC of the parts in the image. Given the erro-
neous submasks (Sect. 4.4), instances with a circumference
smaller than 150 pixels are sorted out during mask genera-
tion. By implementation of the Algorithm 1 the grasp poses
Pi are computed. For the DLOs, grasp poses with a larger
distance to the nearest instance are preferably selected to
prevent collision of the gripper. With the help of the prede-
fined z-coordinate, the grasp pose Pp is transformed from 2D
pixel coordinates into 3D real-world coordinates. Finally, the

UR10e

Vacuum gripper

rc_visard 65

x

z

y

Pneumatic cylinder

Fig. 5 Technical setup and hardware components for practical evalua-
tion with the robotic picking experiment

robot is navigated there to pick one part out of the ROI. This
routine is repeated until no parts remain in the ROI.

For the experiment, scenes with four to six parts are set up.
In each new scene, the number and arrangement of parts as
well as the small load carriers and backgrounds are altered.
In addition, the type and number of distractors are varied for
the rigid parts. For DLOs new variants, which are not shown
in the source images, are added to the scenes.

In total 100 picking trials are performed for each part type.
A pick is considered successful if the robot removed the part
from the ROI. All other cases are classified as unsuccessful,
e.g., trials without segmentation results or grasp pose and
grasping failures. For such failed trials, the affected part is
removed manually and consequently, the picking routine is
continued. This permits only one picking trial per instance
in the initial scene. Table 3 summarizes the grippers applied
for picking and which scenes contain distractors. In addition,
the share of successful picks is shown for each part type.

These results show that all cylinders and almost all plates
could be removed from the ROI using the vacuum gripper.
By applying the two-jaw gripper, about 90% of the DLOs
could be picked successfully. Examples of successful pick-
ing sequences with cables and hoses are shown in Fig. 6. It
includes camera images and segmentation masks with cor-
responding grasp poses before each pick. Thereby, the grasp
pose of the next pick is highlighted. Compared to DLOs the
system performs significantly worse for picking USB drives
because in hardly any scene all instances are segmented.
Exemplary Fig. 6 shows one USB drive left of the image cen-
ter that is not detected in any of the frames. Due to the failed
segmentation, no picking of this instance is possible. One
explanation for the high number of undetected USB drives
is that some instances reflect due to the lighting in the bin
picking setup. These reflections hardly occur in the preced-
ing training and test images. The different gripper types show
no significant effect on the picking performance because the
failed attempts are almost entirely caused by absent segmen-
tation masks.

Table 3 Properties and results of the experiment 2:Gripper type applied
for picking trials, presence of distractors in the scenes, and share of
successful picks out of 100 trials

Part type Gripper Distractors Success rate

Cylinder Vacuum Yes 100%

Plate Vacuum Yes 99%

USB Two-finger Yes 65%

Cable Two-finger No 89%

Hose Two-finger No 94%
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Fig. 6 Sequential input images from the industrial camera and output
instance masks with grasp poses during the iterative picking procedure:
The routine starts with five parts in the first image for each use case. For
electric cables and pneumatic hoses, all instances are segmented and

removed from the ROI iteratively. For USB flash drives, one instance is
not detected at all. Consequently, it cannot be picked, causing the last
attempt to fail. The images and masks show the scenes before each pick

4.6 Discussion and limitations

The presented boundary conditions (Sect. 3.2) ensure that
only minor perspective effects arise from the part’s pose in
the image. In addition, the flat and slim parts typically have a
small number of preferred orientations around the x- and y-
axis, so that fewer perspective views of the parts occur during
the application. Thus, the number of source images can be
greatly reduced compared to the state of the art, where many

different views on volume objects are mapped in the source
images [5].

The quantitative results for the instance segmentation indi-
cate that the presented cut-paste method is well suited for
the segmentation of industrial parts fulfilling these bound-
ary conditions. Nevertheless, the results vary strongly among
the five-part types, especially for higher IoU thresholds. It is
evident from the scenes with cables and hoses that the seg-
mentation is less precise for the DLO use cases. Possible
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reasons for these poorer results are the DLO-specific prop-
erties, the diversity of variants, and the change of the camera
systembetween source and test images. The observed subpart
masks are common and a known issue for the segmentation
of slim objects such as DLOs with general models [13].

The false-positive segmentation results along the instance
contour possibly arise from inaccuracies in the manually
labeled ground truth masks and the blending of objects dur-
ing the paste step. When evaluating with IoU-based metrics,
it should be taken into account that the IoU is biased towards
large objects [23]. Thus, for a dilation error with the same
number of pixels, smaller types such as the USB drives are
evaluated worse than the larger cylinders and plates [23].

In the preceding work in [24], synthetic training data is
generated by simulation and rendering with blender. There,
the same electric cable dataset is used for testing as in
Sect. 4.4 and the following results are obtained: 0.979 for
AP0.50, 0.574 for AP0.50:0.95 and 0.637 for AR0.50:0.95. These
instance segmentation results based on [24] are better than the
results based on the cut-paste method, especially for higher
IoU thresholds. A possible reason for this is that the simula-
tion can generate many expressions for the DLO shape and
deformation. In comparison, the shape and deformation of
the electric cables in the synthetic images of the cut-paste
method are limited to the spectrum of the few source images.
However, the cut-paste method has the advantage over the
simulation and rendering in [24] that it is much simpler to
implement and does not require expert knowledge to apply.
In summary, an automatic pipeline for the simulation and
rendering of synthetic training data can be set up with more
effort to achieve better results. On the other hand, the cut-
paste method can be implemented with little effort, but still
requires some minor manual effort and performs slightly
worse. Due to their specific advantages and disadvantages, it
strongly depends on the use case which of the two methods
is more suitable.

The second experiment demonstrates that a robotic system
can be enabled for robust picking even with a small number
of source images and a change of the camera system between
source image acquisition and testing. The results for DLOs
show that variants, which are similar but not identical to the
source images, can still be segmented and picked robustly.
Nevertheless, the characteristic properties of DLOs and the
variety of variants pose additional challenges compared to the
rigid and uniform cylinders and plates. A possible reason for
the poor picking results for UBS drives, besides the already
worse performance on the test images (Table 2), is that the
connector has specular or diffuse reflection depending on
the ambient light. On the one hand, this changes the parts’
appearance compared to the source images. On the other
hand, the automatic exposure is affected by highlights in the
image, which can change the brightness of the entire image.
Thus, strongly reflective parts and significant changes of the

settings between source images and applications limit the
usage of the proposed cut-paste method.

Comparing the two experiments, the first evaluates the
masks of all instances in a single image per scene with an
IoU-based metric. In contrast, during picking only one part
needs to be segmented sufficiently well per picking trial.
Due to this difference, the conclusions from the instance
segmentation results (Sect. 4.4) to the picking performance
(Sect. 4.5) are limited. In addition, a comparison of the part
types performance in both experiments is not significant,
because different attributes apply for the use cases.

5 Conclusion

Generation of training data for CNN-based instance segmen-
tation is a challenge, especially for industrial applications,
because specific datasets are required for specific part types.
The manual effort required for acquiring and inspecting sev-
eral hundred to thousands of source images with existing
cut-paste methods is not feasible for industrial end-users. To
address this challenge, we present boundary conditions for
the cut-paste method. With these constraints, only a small
number of source images is required, so the manual effort
is significantly reduced. Although the introduced boundary
conditions limit the applicability of the proposed method,
they cover a wide range of industrial applications such as bin
picking.

The first experiment indicates that the presented method
is effective in generating training data for various part types.
For DLOs, however, less precise masks are obtained com-
pared to the rigid parts. The second experiment demonstrates
that using instance segmentation, which was trained exclu-
sively with synthetic data, and the procedure for grasp pose
computation, about 90% and more of the instances can be
picked in the first attempt. By filtering unfavorable masks,
the presented approach is also applicable to DLOs.

Not having to use the same camera system for source and
test images, smartphones can be used to capture the former
even for industrial applications. Thus, an end-user can take
source images independently of the application and does not
require special technical setups or expert knowledge. Due
to the reduced number of source images, the manual effort
required to prepare one dataset is only about 20minutes and
is thus significantly lower compared to preliminary work.
Limitations of the presented cut-paste method appear for the
USBdrives,most likely due to their partly specular reflection.

In future work, we will extend the grasp pose computa-
tion to test the presented method for overlapping objects and
more DLO types. In addition, we will investigate whether
the presented method can be combined with the pipeline for
the simulation and rendering [24] to take advantage of both
approaches.
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