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Abstract
In today’s fast-paced market, companies are challenged to meet increasing customer demands and shorter product life cycles.
To successfully respond to these demands, companies must produce a wide variety of different products. This requires the
determination of necessary processes and resources for each product, which can be difficult for process engineers due to
the high manual effort and expertise involved. The current state of research has not yet provided explicit definitions of the
necessary knowledge and has not fully achieved complete process planning automation. To address this challenge, a digital
twin is a valuable tool for automating and understanding process planning. This paper presents a digital twin concept for
process planning. It automatically analyzes the product, determines production processes, and selects appropriate resources
by linking information about products, resources, and processes. The effectiveness of the digital twin concept is demonstrated
through verified and validated use cases, including the production of a compressor element.

Keywords Assembly ·Manufacturing · Simulation · Ontology · Requirement · Skill

Introduction

In today’s fast-paced market, manufacturing companies face
an increasingly dynamic environment, including shorter
product life cycles, growingmarket saturation, and the spread
of new technologies due to Industry 4.0 (Abele & Rein-
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hart, 2011). This leads to increasing individualization, rising
customer requirements, and a high diversity of variants
(Michniewicz, 2019). Recent challenges, such as supply dis-
ruptions due to the Ukraine crisis, add to these fundamental
challenges. For each product variant, process planning must
determine the required production processes and adequate
resources (ElMaraghy & Nassehi, 2019). Numerous chal-
lenges impede process planning: heterogeneous data sources,
implicit expert knowledge, and a lack of integrated and
automated decision support, for example, for planning the
production processes of products (Wagner et al., 2021b). As
a result, process engineers require support in planning pro-
duction and logistics processes.

In this environment, the capabilities of a digital twin (DT)
can address process planning challenges. A DT represents
the physical world in the digital world through granular and
realistic data and knowledge (Negri et al., 2017; Talkhestani
et al., 2019). Through simulation, it predicts the impact of
decision alternatives. Combined with simulation, automated
planning capabilities and a task-oriented architecture, a DT
appears suitable to support decisions in process planning.

Consequently, this paper presents a methodology to
develop a digital twin in process planning (DTPP) supported
by current technology trends. It automatically analyzes the
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product, determines production processes, and selects appro-
priate resources by linking information about products,
resources, and processes. The DTPP represents the first part
of the DT in technical order processing (Wagner et al.,
2021b). The paper introduces the basics of process planning
and DTs as well as the state of research in Sect. “Litera-
ture review”. Sections “Digital twin design procedure” and
“Digital twin concept” explain the DTPP design procedure
and the resulting DTPP concept. Finally, the paper evaluates
the concept and provides a summary and outlook (see Sects.
“Discussion” and “Conclusion and outlook”).

Literature review

The following sections describe the basics of process plan-
ning and digital twins and explain the current state of
research.

Process planning

Process planning is a phase within technical order process-
ing (hereafter referred to as order processing). The latter
consists of all value-adding activities necessary for fulfilling
customer orders. This encompasses various phases, includ-
ing research and development, production management, and
production and logistics, as illustrated in Fig. 1 (Eversheim,
2002). These phases are not purely sequential; for example,
production provides feedback to production management,
which includes all activities necessary to prepare for man-
ufacturing and assembly. Within production management,
work system planning aims to design and arrange resources
(Eversheim, 2002). In contrast, process planning determines
processes and selects resources needed to produce a prod-
uct (ElMaraghy & Nassehi, 2019). Both phases together
are called work planning. Production planning and control
uses the resulting process plans to plan and control produc-
tion operationally, temporally, and quantitatively (Schuh &
Gierth, 2012).All order processing phases are complemented
by information and material flows as indicated by the arrows
in Fig. 1. This paper focuses on process planning and consid-
ers work system planning.

Process planning is performed at different levels of
abstraction: generic planning to select technologies, macro
planning to identify process sequences and alternative re-
sources, detailed planning to assign individual processes
to tools and specific machines or operators, and micro
planning to provide optimal conditions and machine instruc-
tions (ElMaraghy, 1993). Due to numerous challenges (e.g.,
resource allocation, operation sequence determination), this
paper focuses on macro planning (Schuh et al., 2020),
which consists of four major iterative phases (ElMaraghy
& Nassehi, 2019; Eversheim, 2002):

1. Specification and requirement analysis (P1) involves
identifying the product properties that are relevant to the
production of the product.

2. Process identification and sequencing (P2) identifies
processes and their sequence and assign process prop-
erties.

3. Resource selection (P3) chooses appropriate resources
(i.e. equipment) for the identified process steps. First,
the production network with its resources, links and
skills must be specified (Gonnermann et al., 2020). Skills
are then compared to the properties to select all possi-
ble process resource combinations (Michniewicz, 2019;
Gonnermann et al., 2021).

4. Performance parameter determination (P4) identifies
keyperformanceparameters (KPIs) as a basis for selecting
a process plan. Note that the goal of this paper is not
to automatically determine parameters for programming
CNC machines. For that, please refer to computer-aided
manufacturing.

As process planning becomes more complex, computer-
aided technologies are increasingly important to reduce the
planning effort and handle custom products, enabling small
batch sizes (ElMaraghy & Nassehi, 2019):

• Computer-aided design (CAD) has become awidely used
technology to assist product designers by digitizing prod-
uct geometries. CAD tools in mechanical engineering
create spatial three-dimensional (3D) models of parts or
production equipment (Bracht et al., 2011; Dankwort et
al., 2004).

• Computer-aided manufacturing (CAM) tools control
machines such as robots using programmable software
(micro process planning).

• Computer-aided process planning (CAPP) tools link
product design and production at the macro (i.e., process
sequences and resource selection) and micro (i.e., defi-
nition of operating parameters and auxiliary resources)
levels.

• Group Technology (GT) aims to combine CAD, CAM,
and CAPP (Ajmal, 1992). It involves classifying similar
parts into groups based on similarities in design, manu-
facturing processes, and functional characteristics. These
groups allow companies to leverage commonalities and
achieve efficiencies in areas such as tooling, production
planning, and knowledge sharing.

Although computer-aided tools can reduce the need for
manual planning and expert knowledge, knowledge capture
and automation of process planning is still part of today’s
research. A generic and cross-application knowledge rep-
resentation of product, process, and resource information
would integrate existing knowledge and thus improve the
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Fig. 1 Phases of process planning and their integration into order processing (ElMaraghy & Nassehi, 2019; Eversheim, 2002)

quality and speed of process planning (Liu et al., 2019).
Simulation-based and semantic allocation of resources and
processes could support automated process planning.

Digital twin

Many publications characterize a DT as a digital world
that represents the physical world (AboElHassan & Yacout,
2022). Since there is no uniform DT definition, Wagner et al.
(2021b) derived six crucial DT requirements (R):

1. A DT must consider different levels of abstraction (vary-
ing granularity).

2. DTs have to provide a realistic representation of the ref-
erence object.

3. A DT must predict and simulate the behavior of the ref-
erence object.

4. The virtual reference object should follow the physical
object’s life cycle.

5. DTs require a task-oriented architecture that integrates all
elements.

6. Quality requirements include high automation and real-
time.

State of research

To identify relevant publications on decision support sys-
tems in process planning, Scopus was searched using the
keywords digital twin, process planning, assembly design,
and process design. The searchwas filtered tomanufacturing,
engineering, and production. Relevant articles were selected
primarily based on the title and abstract. After a thorough

reading of the articles, they were classified and analyzed or
discarded as irrelevant. The analysis considers two evalua-
tion dimensions in line with the initial goal: the coverage of
the planning steps (ElMaraghy &Nassehi, 2019; Eversheim,
2002) and the DT requirements (Wagner et al., 2021b) (see
Sects. “Digital twin” and “Process Planning”). Harvey balls
were used as a fulfillment indicator. Thus, a criterion is rated
as not, partially, or fully met. Table 1 explains the different
evaluation criteria.

Table 2 evaluates the twelve publications. Several publi-
cations describe DT frameworks and implementations. None
of them provides detailed information on implementation
and validation beyond the conceptual framework. Current
research often ignores varying granularity (R1) and only a
few publications focus on the application area of process
planning (see fulfillment of P1 to P4). Several approaches tar-
get operational production management, such as scheduling
orders. Other publications only describe the existing require-
ments and processes within a structured database without
identifying them. They do not determine product require-
ments (P1) and necessary production processes (P2). Most
of the literature analyzed describes match-making (P3) con-
ceptually without implementing it. Only two publications
implement P2 and P3 without aiming for a DT. The approach
of Buechler et al. (2022) is strongly focused on manufactur-
ing, while Michniewicz (2019) focuses on assembly. Neither
sufficiently incorporates DT requirements. The rare publica-
tions that include process planning and fulfill at least some
DT requirements focus on the evaluation and determination
of various process parameters (P4). For example, Vishnu et
al. (2021) analyze the spindle speed and feed rate in a DT
to optimize the surface roughness of the product (Vishnu

Table 1 Assessment criteria for
evaluating the state of research

Criteria Not met Partially met Fully met

P1-P4 Not covered Concept Detailed implementation

R1 Single abstraction levels Few abstraction levels Varying abstraction levels

R2 No representation Representation of parts Realistic representation

R3 No prediction Conceptual prediction Detailed prediction

R4 No change adoption Product or production Product and production

R5 No modules or interfaces Modules or interfaces Modules and interfaces

R6 Not automated Semi-automated Fully automated

123



Journal of Intelligent Manufacturing

Table 2 Analysis of the state of
research

Publication P1 P2 P3 P4 R1 R2 R3 R4 R5 R6

Liu et al. (2019)

Tao et al. (2018)

Buechler et al. (2022)

Biesinger et al. (2019)

Chen et al. (2020)

Zhang et al. (2017)

Zhang et al. (2018)

Ma et al. (2020)

Shakirov et al. (2021)

Vishnu et al. (2021)

Zhao et al. (2020)

Michniewicz (2019)

et al., 2021). Overall, the current state of research lacks a
DT that fully automates all relevant steps of process plan-
ning. None of the papers fulfills all planning phases and DT
requirements. The paper addresses this research gap.

Three central research questions (RQ) are formulated
below to address the identified research gap in detail. First,
the paper will answer how the DT creates granular (R1)
and realistic (R2) transparency about process planning using
appropriate data and knowledge (RQ1). In addition, the paper
investigates how the DT can automate process planning (P1-
P4) with simulation (R3) support to consider its execution
during production and logistics (RQ2). Finally, it answers
the question of how to create a lifecycle-oriented (R4) and
enterprise-integrated DTPP architecture for decision sup-
port (R5) taking into account qualitative (R6) requirements
(RQ3).

Digital twin design procedure

The development of the DTPP followed the DT design
procedure presented in Wagner et al. (2021a). It uses soft-
ware design phases (see Fig. 2) and concretizes each phase
towards DT design. In addition to the concept model (see
Sect. “Digital twin concept”), this section describes the main
artifacts, including the system context, use cases, and spec-
ified requirements. Section “Discussion” finally verifies the
requirements and validates the concept.

System context

The procedure starts with the separation of the system con-
text from the system to be developed (system boundary) and

the irrelevant environment (context boundary). The DTPP
system context (see Fig. 3) has been developed through
interviews with industry and research partners and literature
analysis.

Within the system boundary, the DTPP targets process
planning by considering its phases (see Fig. 1) and touches on
work system planning by including reconfiguration. Several
authors model process planning on the basis of the threefold
concept of product, process, and resource (PPR) (Mich-
niewicz, 2019; Pfrommer et al., 2013; Schleipen & Drath,
2009). It includes products produced or consumed, resources
available in the production network, and processes performed
by resources to produce products. The DTPP plans man-
ufacturing, assembly, and logistics processes performed by
manufacturing, assembly, supply and transportation systems.
The resulting process plan produces fabricates or assemblies
with different performance parameters, such as cost, time,
and quality. They are the basis for selecting the optimal one
from alternative process plans. To provide full DT function-
ality, the DTPP implements all the requirements described in
Sect. “Digital twin” (Wagner et al., 2021b).

Considering the context boundary, several processes
influence the DTPP with their events and documents.
Research and development transfers three-dimensional prod-
uct designs as input. The production network resulting from
work system planning includes all resources with their skills.
Production planning and control uses the resulting process
plans to generate production plans and control strategies.
Finally, production executes the plans and strategies, sup-
ported by logistics. Although the DTPP focuses on process
planning, it considers the impact of all process planning
decisions on production and logistics through its simulation

Fig. 2 Digital twin design
procedure adapted from Wagner
et al. (2021a)
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Fig. 3 System context of the digital twin in process planning

capability. Thus, only those parts of production and logis-
tics that execute process planning decisions are within the
system boundary. Information systems store the required
DTPP input. Enterprise resource planning (ERP) systems
manage resources, capabilities, and performance parameters.
Product life cycle management (PLM) systems store three-
dimensional products. Finally, decision making systems and
stakeholder interests impact the system: Designers, process
engineers, production planners, and operators have different
goals and use cases (see Sect. “Use cases”).

Use cases

Process engineers, the phases of the process planning, and
the system context helped define the DTPP use cases and
users. Figure 4 illustrates both in a use case diagram mod-
eled using the unifiedmodeling language (UML). In addition
to process engineers as primary DTPP users, upstream prod-
uct and work system designers and downstream production
planners and operators use the DTPP. However, they do not
have the rights and responsibilities of process engineers. For
process engineers, the core DTPP use case is to manage pro-
cess planning (ElMaraghy, 1993). This includes executing
process planning for all planning steps (see Sect. “Process
planning”). In addition, process engineers must modify pro-
cess planning as new knowledge arises, keeping decision
making with the responsible person. Last, to analyze process
planning captures the planning results. Product and work
system designers do not require full execution or modifica-
tion rights. They only analyze the resulting process plans and
execute product requirement specification and resource allo-

cation to improve their designs. The resulting process plans
are the input to production planners, who generate appropri-
ate production plans and control schedules. Finally, operators
in charge of production need access to the process plans for
which they are responsible. To ensure privacy across opera-
tors, the use case analyze anonymously extends the analysis
of process planning.

Requirements

The use cases and systemcontext form the basis for determin-
ing DTPP requirements. Although preliminary requirements
are developed as notes during determination, this section
presents all requirements formulated within the specifica-
tion. The six DT requirements of Sect. “Digital twin” guide
the DTTP development (Wagner et al., 2021b). The follow-
ing paragraphs explain all the so-called building and detailed
requirements derived from these base requirements.

Existing abstraction level definitions help to specify vary-
ing granularity (R1) of all process planning inputs and
outputs. Building requirements include varying granularity
of the product (R1.1), resources (R1.2), resulting processes
(R1.3), parameters (R1.4), and process plans (R1.5). As an
example of a detailed requirement, the production network
is specified at multiple levels, including network, site, area,
and system.

Realistically mapping (R2) the reference object results in
the consideration of the process planning phases with their
inputs and outputs. As inputs (R2.1), the DTPP must real-
istically map the production network and the product. The
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Fig. 4 Use case diagram for the digital twin in process planning

processes, the determined parameters, and the resulting pro-
cess plan are part of the output (R2.2) to be represented.

The DTPP must simulate and forecast (R3) to generate
process plans, validate their feasibility, and select the best
performing ones. This includes analyzing product specifica-
tions and requirements (R3.1), identifying processes (R3.2)
and resources (R3.3), and predicting performance parame-
ters (R3.4).WithinR3.2, theDTPPmust predict all assembly,
manufacturing, and logistics processes to produce a product.
It must also forecast appropriate process resource assign-
ments and simulate material flow between resources. Finally,
the DTPP must predict the essential parameters of each pro-
cess resource combination. The main objective of simulation
is to consider the effects of process planning on production
and logistics in the decision phase.

As more DTs focus on defined life phases, the life cycle
(R4) view within the phase becomes important because
it accounts for change. In the context of process plan-
ning, inputs must be considered throughout their life cycle.
These are both production (R4.1) and the product itself
(R4.2). Both refer to technical changes, which are defined
as modifications of products or production (Koch et al.,
2016). Product changes include changes in product mate-
rial (R4.2.1), form (R4.2.2), or other requirement changes
(R4.2.3), while reconfiguration and process changes must be
considered as production changes.

A task-oriented architecture (R5) unifies all DTPP com-
ponents. This requirement is concretized by the main goal
of DT: data-based decision support. Numerous publications
explain the data information knowledge pyramid to support
efficient and effective decisions (Rowley, 2007; Cleveland,

1982). This pyramid describes how signs can be transformed
into data, information, knowledge, and thus decisions. For
the DTPP, a database (R5.1) must store and regularly update
relevant process planning data. The DTPP must include
algorithms to generate process plan information (R5.2). In
addition, the DT must provide transparency to the complex
process planning by adding semantics and logic to the data
and information in the form of up-to-date domain knowledge
(R5.3). Finally, the DTPP has to support decision making
within the company (R5.4) through appropriate interfaces to
its systems.

To ensure high quality requirements (R6), the DTPP must
avoid redundancies, be automated and understandable, and
have high data quality (Tao et al., 2018). The DTPP must be
universally applicable, ensured by changeability, scalability,
modularity, and economy (Wagner et al., 2021b).

Digital twin concept

The concept of the DTPP (considered as DT for production
networks by Lu et al. (2020)) is to support the process plan-
ning of existing companies with their processes and systems,
as shown in Fig. 5. As described in the context boundary,
producing companies already store process planning data in
information systems. Until now, decision making systems,
such as process engineers, have made unsupported manual
decisions by accessing the opaque data in information sys-
tems. The DTPP must be economically integrated into this
environment to support decisions by using the data from
information systems and by supporting decision making sys-
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Fig. 5 Concept of the digital twin in process planning concept

tems. We used all the requirements and the system boundary
to derive the DTPP concept.

As part of the DT in order processing, the essential DTPP
components are a knowledge representation (1), a central
database (2), a simulation-based process planning unit (3),
and interfaces to the company’s systems for integrated deci-
sion support (4), see Fig. 5 (Wagner et al., 2021b). The
graph-based knowledge representation (1) captures process
planning knowledge in a semantic form so that it can be
read and understood by both humans and machines. A com-
plementary additional data storage (2) captures data, such as
CADfiles or time series data, that is not suitable for storage in
graph-based knowledge representations. This allows existing
data storages to be incorporated into the concept. The result-
ing data and knowledge transparency supports the generation
of process plans within the process planning unit (3). This
unit executes the phases of process planning and considers the
execution of the resulting process plans through simulating
production and logistics. Finally, appropriate interfaces (4) to
information and decision making systems ensure integrated
decision support and management of process planning. The
following sections describe the four building blocks.

The DTPP has already solved several use cases to test its
feasibility. It identified the assembly plans for a brick-based
product assembled a robotic cell demonstrator at the Institute

for Machine Tools and Industrial Management (iwb) at the
Technical University of Munich (TUM) and for an inverter
within the production line of an automobile manufacturer. In
addition, the process plan for a compressor element of the
company Atlas Copco, which is to be produced on a demon-
strator, was created. The strategic research center Flanders
Make developed this demonstrator, called Infraflex. Infraflex
is a flexible assembly line consisting of reconfigurable hexag-
onal cells (Uzunosmanoglu et al., 2021). The assembly area
consists of a human and a robot assembly (simplified exam-
ple). A compressor element consists of a housing, two rotors,
and a lid screwed on top (see Fig. 6). The assembly process
includes pick, place, and screw operations. This use case is
explained to illustrate the functionality of each component
in this paper. At the end of each component description, a
paragraph illustrates the component implementation and the
software used.

Knowledge

Due to the lack of transparency and implicit expert knowl-
edge in process planning, the DTPP represents knowledge in
the formof ontologies (seeR5.3).Anontology systematically
specifies concepts and vocabularies that describe a domain
or part of the real world through classes and the relation-
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Fig. 6 Compressor element for
the Infraflex assembly use case

ships between these classes (Poli et al., 2010). Due to its high
semantic expressiveness, the ontology exchanges knowledge
in a digitized and formal format between application pro-
grams and humans (Zedlitz, 2013). Compared to databases
and their data models, ontologies store semantics/meaning
instead of just data through their schema understandable by
humans and machines. Ontologies are typically built modu-
larly on different hierarchical levels. The DTPP knowledge
representation includes a mid-level ontology, which gen-
erally describes process planning, and a domain ontology,
which concretizes the previously defined domain. Mid-level
ontologies represent commonconcepts and simplify themap-
ping between underlying domain ontologies, but are more
precise than the generic top-level ontologies (Obrst, 2010).

The DTPP mid-level ontology is based on the triple PPR
concept. Existing domain ontologies of the three elements
are used to achieve a validatedmodeling of process planning.
Figure 7visualizes all resulting classes as represented by rect-
angles. Object properties (represented by arrows) connect
two classes. An unfilled arrow represents a subclass relation-
ship, and filled arrows represent process planning specific
object properties. The ontology follows the phases of pro-
cess planning: it maps all inputs, intermediate results, and
outputs of process planning. The classes and relations are
color-coded according to their affiliation with the inputs or
intermediate results of the phases, as shown in Fig. 1. All
classes and relationships are explained in the following para-
graphs according to the phases of process planning. Different
fonts are used to highlight classes and relationships. The
compressor element and the resources of Infraflex (second
use case) further illustrate the use of the mid-level ontology.
Figure 8 visualizes the instances of this process planning
example and highlights the classes in the same color as in
Fig. 7.

Specification and requirements analysis (P1) examines
the most important process planning input: the Product
to be produced. The Product concept represents all
the products produced or consumed during production.
A Product considers different parts and final products
that consistOf of several subproducts. They haveProperties,
called ProductProperties, such as a specific mass or
geometry. In the second use case (see Fig. 8), the Product
to be preassembled denotes RotorHousing (core mod-

ule of a compressor element), which consistsOf the inputs
Housing, MaleRotor, and FemaleRotor.

The Process concept includes several subclasses that
define operations that Resources perform to produce
Products. The class Process distinguishes
ProcessTypes and ProcessNodes as subclasses. Pro-
cess identification and sequencing (P2) creates instances
of both classes. A ProcessType consumes one or more
input Products to create usually one output Product.
Depending on the part connections in the CAD file, these
ProcessTypes haveProperties, such as a screwing or
joining, force modeled as ProcessProperties. All
possible ProcessTypes sequences are then modeled
by ProcessNodes according to the principle of prece-
dence graphs. Each ProcessNode isTypeOf a specific
ProcessType.ProcessNodes are related to each other.
Using the relation requires, each ProcessNode points
to its previous ProcessNode(s). In our example, two
ProcessTypeswere identified from theRotorHousing
CAD file: First, the operators combine Housing and
MaleRotor into the MaleHousingwithin the Process
Type PlaceMaleRotor. Second, you can assemble
the MaleHousing and FemaleRotor into the final
Product RotorHousing. There is only one sequence
because theProcessTypePlaceFemaleRotor requires
a MaleHousing as input. The two ProcessNodes
P1 and P2 areTypeOf the two ProcessTypes and P2
requires the previous execution of P1.

Based on the resulting ProcessNodes, resource selec-
tion (P3) assigns the Resources capable of performing
the ProcessNodes. The Resource concept describes
all the resources in the production. A Resource isConnect-
edTo another one,whichmeans that they transfer Products
from one to the other. In addition, one Resource can
beIn another, such as a production line within an area. Fur-
thermore, a Resource has a certain ResourceSkill
set, such as a certain load capacity or screwdriving skills,
linked by the relationship hasSkill. The DTPP selects a
resource by matching the ResourceSkills with the
ProductProperties andProcessPropertiesusing
the matches relationship. A ProcessResourceNode
represents a possible combination of a ProcessNode that
performs a process and the Resources that the process
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Fig. 7 Mid-level knowledge model of process planning

isPerformedBy. The Infraflex production consists of two
assemblies as Resources, where the HumanAssembly
isIn the AssemblyArea and isConnectedTo the Robot
Assembly (and vice versa) within the same area. Due to the
property skill comparison (not visualized), P1 and P2 can
only bePerformedBy theHumanAssembly due to missing
joining capabilities of the RobotAssembly.

The phase performance parameter determination (P4)
assigns PerformanceParameters such as cost, time,
and quality (e.g., tolerances) to all ProcessResource
Nodes through the hasParameter relationship. Based on the
parameters, the fourth phase selects appropriate Process
ResourceNodes, resulting in anoptimalProcessPlan.
ProcessPlans are the result of process planning. A
ProcessPlan contains a set of ProcessResource
Nodes. For the compressor assembly, each ProcessPlan
to produce a compressor element contains the same two
ProcessResourceNodes to assemble the
RotorHousing (independent of determining process
parameters not shown): P1onHumanAssembly and then
P2onHumanAssembly.

In the following, the modeling of the Product with
components and ProductProperties is called a prod-
uct graph. Using this information, process identification and
sequencing generates a process graph including
ProcessNodes with associated ProcessTypes. The
linked Resources with their capabilities represent the
so-called resource graph. The ProcessResourceNodes
with PerformanceParameters further extend the pro-
cess graph and are part of different ProcessPlans. They
are all stored within the production graph.

The detailed domain ontology of process planning extends
all concepts and their relations and details, in particu-
lar the scope of process planning, by concretizing the

mid-level ontology of Fig. 7. For example, libraries of
ProcessTypes and ProcessNode consider logistics,
assembly, and manufacturing and detail them granularly
using standards such as ISO and DIN (see R1.3). This results
in subclasses such as Assembly(Node),
Joining(Node), and Screwing(Node). The domain
ontology further specifies different types of Products,
such as parts and finished products, at a granular level (R1.1).
It also includes a hierarchy of Resources as subclasses
(R1.2): ProductionNetwork, Factory, Area, and
ProductionLine, as well as several types of
ProductionLines: AssemblyLine, Manufactu
ringLine, andLogisticElement. In addition todetail-
ing the three main concepts, the representation prede-
fines possible ResourceSkills, ProductProperties, and Pro-
cessProperties, as well as their match. With granularly
defined parameters (R1.4) and the previously described
levels of abstraction, process plans of varying granular-
ity result (R1.5). Finally, the ontology provides additional
functionality through logic rules that, for example, automati-
cally generate corresponding logisticsProcessNodes and
ProcessTypes before and after each Manufacturing
or AssemblyProcessNode for transport and supply.

TheDTPP consists of a graph database that stores themid-
level ontology and the domain ontology with its instances.
The instances are managed by methods for mapping data
to ontology instances. The mappings automatically create
and update all instances. This includes four output mappings
that allow the database and the ontology to store the defined
graphs: product, process, resource, and production mapping
to generate all ontology classes and relationships in each
graph.When the process planning unit generates new graphs,
the database stores the output and, through the mappings,
the instances within the domain ontology. In this way, the
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Fig. 8 Mid-level knowledge model for a compressor element

classes and relationships can be created using the data in
the database (automatic ontology instantiation). For exam-
ple, when the database records a new resource, the resource
mapping automatically creates a new Resource instance.

Due to its wide distribution and intractability, both ontolo-
gies were initially developed using the Web Ontology Lan-
guage in Protegé. The DTPP stores the instantiated ontology
in one of the most popular graph DBMS systems: GraphDB
from Ontotext. This tool stores the triples and provides tools
to synchronize the knowledge model. Using OntoRefine,
multiple JSON files map the data in the database to the ontol-
ogy to support the creation of the knowledge representation.
Using the mappings, new data from the database automat-
ically instantiates and updates the ontology when inserted
in the predefined format. The JSON mappings are executed
using a Python script that retrieves the data from the database,
executes the JSON mappings, and stores the new triples as
ttl files in GraphDB.

Data

Because some data types, such as CADfiles, cannot be stored
in a graph database, and because large amounts of data can
be accessed more efficiently, the DTPP includes a central
database (see R5.1). The database must contain any data not
covered by the ontology, with the ontology pointing to the
missing data through virtualization. For example, the domain
ontology for theProducts to be produced contains the rela-
tionship storedAt, which records the location of the CAD file
in the database. If desired, a company can also develop a
central database storing all process planning data. This can
be useful when the overview of all process planning data

becomes fragmented due to the presence of heterogeneous
data repositories. Then, the database stores all the data and
the ontology captures the correspondingmeaning. The ontol-
ogy serves as an explanatory knowledge storage tool that
materializes a lot of data through mapping and virtualizes
the missing data. In this case, the benefits of both storage
concepts can be leveraged, although additional resources are
required for redundant information in both the ontology and
the database. In both cases, companies need to provide input
data for process planning, either within the ontology and the
database or solely in the database, where most of it is subse-
quently mapped to the ontology

Figure 9 illustrates all DTPP input and output data within
a simplified data model, indicating optional (redundant) and
required data within the database. It ensures that the database
provides the data necessary for the operation of the DTPP
(R6.2). The inputs follow the PPR model (R2.1): As prod-
uct data, the CAD file (mandatory in the database) and the
product properties are particularly relevant. The figure shows
an example of the CAD file of the compressor element and
the mass of its rotors. For some processes, additional process
properties are required to identify the process. This includes,
for example, the joining force required to join rotors and
housings. In addition, the database stores large amounts of
historical data (historical process resource combinations),
which is used later by the process planningmodules to predict
performance parameters (mandatory in the database formore
efficient access). The connected resources and all resource
skills form the final required input from the resource perspec-
tive. For the Infraflex demonstrator, the production network
data includes how the different resources, such as the robot
and human assembly, are connected. As an example of a

123



Journal of Intelligent Manufacturing

Fig. 9 Simplified data model of the digital twin in process planning

resource skill, robot assembly has a maximum load. The
process planning (intermediate) outputs (R2.2) consider the
resulting product, resource, process and production graph
(see Sect. “Knowledge”). For the centralized data storage,
the outputs can also be stored in the database and mapped to
the knowledge representation.

A database must manage all the data defined in the sim-
plified data model. The data type is critical in selecting an
appropriate database type and its database management sys-
tem. In Fig. 9, different symbols visualize the three different
data types. A CAD file usually represents the 3D prod-
uct. Historical data includes textual information that can be
stored as tabulated data with a consistent syntax or alter-
natively in a semi-structured data format such as JSON or
XML that defines a class structure (i.e., does not require a
schema). Since process planning links data to information,
semi-structured data formats such as JSONare an appropriate
way to store all four graphs (see Fig. 7) in the database within
a predefined class structure and data formats for each graph.
Because of the different data types, a non-relational database
manages the DTPP data. For the DTPP, a document-oriented
database can store all the required data types.

For high performance and support, the document ori-
ented database MongoDB is used to store the DTPP data.
The implementation imports the CAD model as a STEP
file and the historical data as CSV files. All DTPP output
graphs are first stored in JSON files. Python scripts then map
their schema to the knowledge model as described in Sect.
“Knowledge”.

Simulation-based process planning

This section describes how the DTPP generates multiple pro-
cess plans (see R5.2) based on the process planning phases
described (P1 - P4). A process planning module has been

developed for each phase based on the requirements defined
in Sect. “Requirements”. Figure 10 illustrates all four process
planningmodules, their functionality (3) and their interaction
with the knowledge representation (1), the database (2), and
the system user as part of the system context (4) (numbering
analogous to Fig. 5). The figure also illustrates the technolo-
gies used to implement the DTPP components. The modules
receive input from the database or ontology and output the
resulting graphs to the graph database. When the database
stores all the data, the required input information for the
modules is first mapped to the ontology and then used by the
modules (not visualized in Fig. 10). In addition, the database
then stores the results (all four graphs) as semi-structured
data before mapping them to the ontology (represented by
a paper clip in the figure). The following sections describe
each process planning module, its functionality, inputs and
outputs, user interaction, and implementation technologies.

Specification and requirement analysis

The first process planning module starts with the analysis
of the product to be produced (see R3.1). This includes
the identification of the individual product characteristics
that are relevant to production. The properties are identified
through an analysis of the CAD model (e.g., 2kg weight of
the MaleRotor) and additional ProductProperties
provided by the product designer (e.g., gripping points, screw
torque). The CAD model and the ProductProperties
are input data as described in Fig. 9. All (sub)product prop-
erties add value to process planning by providing more
information for the final derivation of process require-
ments. This procedure lets the DTPP handle changes in the
product. It does this by making a new product properties
using the new CAD file or product details. This new graph
becomes the starting point for all the next planning steps
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Fig. 10 Pipeline for generating process plans

(see R4.2). The product graph in the knowledge model stores
the resultingProducts and their ProductProperties
(intermediate outputs of the first module) for later pro-
cess planning steps shown in Fig. 8. In the Infraflex
use case, the product CompressorElement consistsOf
the subproducts Housing, MaleRotor, FemaleRotor,
and Lid. For each product, product properties are iden-
tified with additional information about gripping points,
weight, etc. For example, the MaleRotor hasProperty
Massof2kg. These properties are the basis for generat-
ing process properties within P2. The analysis of the CAD
model to generate the product graph and the assignment of
the ProductProperties to the graph is implemented
in the Unity game engine, which uses the C# program-
ming language. The product is imported as an object file
and automatically analyzed for its parts and properties. The
information is stored in a JSON format and later transferred
to the product graph ontology implemented in GraphDB.

Process identification and sequencing

The second module identifies and sequences processes (see
R3.2) based on the product graph. The procedures for assem-

bly, manufacturing, and logistics processes are different.
Considering assembly processes, a final product consists of
several input products to be assembled. An assembly-by-
disassembly approach can determine the assembly sequence
of an assembled product, similar to Costa et al. (2018) and
Michniewicz (2019). A collision clearance simulation dis-
assembles the CAD model in a predefined direction, such
as the main disassembly direction (see Fig. 11). Either the
user or the product knowledge representation (i.e., prod-
uct properties) identifies a base part on which the other
components are being assembled. This base part remains
fixed throughout the disassembly simulation process. The
assembly-by-disassembly aims to detect collisions between
components during virtual disassembly in the main disas-
sembly direction (if manually defined by the user) and then
in the other directions. If collisions occur during disassembly,
the approach has detected an invalid sequence of parts to be
disassembled. The approach iteratively checks the different
disassembly sequences and disassembly directions for colli-
sion freedom. Assembly sequences are obtained by inverting
the valid disassembly sequences, resulting in assembly
ProcessTypes and ProcessNodes. The requires rela-
tion connects the ProcessNodes representing the arrows
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Fig. 11 Assembly-by-disassembly approach

of a precedence graph. Additional ProductProperties
relevant to the assembly processes (e.g. screws, screw param-
eters, gripping positions) are analyzed from the first planning
step (P1). They allow further specification of the assembly
processes (e.g., joining and screwing). If the CAD file does
not contain this information, the parameters can be added
using predefined ProcessProperties via the ontology.
In addition, processes such as welding or gluing that can-
not be automatically detected by assembly-by-disassembly
can bemanually inserted. TheDTPP thus semi-automatically
detects multiple assembly sequences and processes (proper-
ties) within a process graph.

As shown in Fig. 8 the ProcessType PlaceMale
Rotor is determined to be a valid process to create
the RotorHousing after the base part Housing is
defined. Then the process PlaceFemaleRotor is deter-
mined to be a valid ProcessType. To keep track of
the order of the two ProcessTypes, they are assigned
to two ProcessNodes: P1 and P2 (P2 requires P1).
For PlaceMaleRotor, the ProductProperty of the
MaleRotor is transferred to a ProcessProperty: Joining
Massof2kg. In addition, a ProcessProperty has been
manually added to the ontology: AssemblyForceOf5kg.
The approach was implemented in the Unity game engine
using the C# programming language. It allows the dynamic
loading of CAD models as object files and other product
information into the environment. The DTPP then executes
and simulates the assembly-by-disassembly approach and
defines individual process requirements. The resulting pro-
cess graph can be stored in the database as JSON files and
mapped to the ontology described in Sect. “Knowledge”.

Manufacturing processes must be determined for each
separate (input) part. Similar to the assembly processes,
the ProductProperties serve as the main input to
determine the manufacturing processes. Different manufac-

turing processes can produce the part depending on the
product’s material, size, and other ProductProperties,
such as heat resistance. In addition, the geometry of the
part affects the manufacturing process alternatives. These
ProductProperties are either extracted from the CAD
file or entered manually as described in Section 4.3.1.
According to Büchler et al. (2022), a neural network trained
with labeled historical or benchmark 2D images of the
component and the ProductProperties identifies the
possible ProcessTypes, ProcessNodes and resulting
ProcessProperties, such as the type of manufacturing
process or forces (Buechler et al., 2022). The seven images
include the six central views of a CADfile (two images along
each of the three axes) and the ISO view as input to the neural
network. The images are automatically generated from the
underlyingCADfile and ensure low computation time for the
neural network compared to using a 3DCADfile. In addition,
the seven images must be labeled with existing and any other
feasible alternative technologies. Labeling with alternative
processes avoids bias towards conventional processes within
the company-specific data. To generate this input database,
benchmarks or company-specific CAD files and their corre-
sponding processes can be used. The neural network must
then be selected, trained, validated, and compared. Different
neural networks are suitable for the classification of manu-
facturing processes. Based on an exemplary application in
car body design, a multi-view convolutional neural network
(CNN) with a single CNN1 analyzing each of the seven
perspectives and a view pool layer combined with CNN2
bundles all views to generate the output (see Buechler et al.
(2022)). The output classifies the finished part according to
various possible manufacturing technologies (for example,
the geometric characteristics of the rotors are 50% in favor
of casting, 20% for extrusion, and 30% for deep drawing).
Finally, fuzzy rules decide on the manufacturing technol-
ogy alternatives based on the information generated from
the geometric analysis and the product characteristics. They
eliminate geometrically possible processes that do not match
the product characteristics.

Contrary to Büchler et al. (2022), KPIs such as costs
and the current production network are not considered
here, as the subsequent process planning phases consider
them in more detail than the fuzzy rules. The process
identification and sequencing finally results in a combined
process graph for each product by connecting its final
ManufacturingNode to the AssemblyNode that uses
the manufactured part as input via the requires relationship.
All of the manufacturing process identification was imple-
mented using Python with data mining and machine learning
libraries such as scikit-learn, pandas, and fuzzylogic.

Finally, the DTPP takes into account logistic processes
by adding LogisticNodes that refer to Logistic
Processes before the ProductionNodes through the
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relationship requires. This includes FeedingNodes for all
consumed rawmaterials or supplies andTransportNodes
for consumed products with previous production stages.
Logic rules within the domain ontology automatically gen-
erate all LogisticProcesses and -Nodes.

Resource selection

To select resources (see R3.3), the DTPP first analyzes the
production network using the company’s input (e.g., pro-
duction system and resource information) and generates a
skill model that defines each resource’s functionalities (e.g.,
screwing and joining possibilities). This phase also identi-
fies the material flow available in the production network
(e.g. unidirectional or bidirectional production). It stores
this information via Resources and ResourceSkills
in the knowledge graph within the resource graph, see
Sect. “Knowledge”. If resources or skills change during
work system planning, the DTPP captures these changes
through changes in the ontology (or the central database).
The resource graph is then automatically updated when the
resource selection module is executed (see R4.1). As shown
in Fig. 8, the ontology can describe the AssemblyArea
consisting of HumanAssembly or RobotAssembly, and
each resource inherits different skills (e.g., Joiningwith a
maximum LoadOf8kg for the HumanAssembly).

The resources are then allocated through a three-step
match-making. The identified processes of P2 place require-
ments on the production resources through Process
Properties. These requirements can be described in machine-
readable semantic terms and with the help of parameters. In
addition, the DTPP has to describe the ResourceSkills
in the same taxonomy to automatically generate allo-
cations/matches. In production planning, the concept of
capabilities or skills has been introduced (Hammerstingl
& Reinhart, 2018; Gonnermann et al., 2020). DIN stan-
dards and VDI guidelines describe processes and skills.
In addition, input and output parameters specify process
requirements and resource skills. The first match-making
step consists of a semantic match-making between the
process requirements identified by P2 and the resource
skills described in this phase. The DTPP automatically
detects several possible allocations, such as robot load
(i.e., skill) with assembly force and joining mass (i.e., pro-
cess requirements). The second step consists of parameter
match-making which evaluates each allocation for com-
patibility by determining for each ProcessProperty
matching ResourceSkills (e.g., HumanLoadOf8kg
is greater than and therefore matches with the sum of
JoiningMassof2kg and RotorAssemblyForce
Of5kg). After validating all the requirement skill combi-
nations, the DTPP detects multiple processes with assigned
resources within ProcessResourceNodes. This allows

automatic identification of appropriate Resources for the
ProcessTypes and ProcessNodes to generate valid
ProcessResourceNodes for assembly, manufacturing
and logistics. If there is aProcessNode that noResource
can execute, theDTPPstores allProcessRequirements
that do not have a match. This allows work system plan-
ning and research and development to see which Product
Properties are causing problems and which Resource
Skills are missing, allowing reconfiguration. Figure 8
shows the final result of the Infraflex match-making (i.e.,
the HumanAssembly can perform P1 due to its skills (see
P1onHumanAssembly). TheRobotAssembly only has
Screwing skills and therefore does not meet the Joining
requirement of P1 and P2. Based on the resource and skill
inputs, the DTPP can automatically specify the material
flow within the production network. Not only value-adding
(primary) but also non-value-adding LogisticProcess
Types (secondary) processes such as transportation and
feeding are matched. The requirement-skill comparison is
implemented in a C# environment to identify suitable pro-
cess resource combinations. A JSON interface provides input
to the system, including process requirements and resource
skills of a specific production network (i.e., layout). ALeven-
shtein distance and parameter comparison approach matches
the requirements to the skills semantically and parameter-
based (C# package). The result can then be exported again
as a JSON file and transferred to the ontology via resource
mapping (see Fig. 10 and Sect. “Knowledge”).

A material flow simulation validates the material flow
between ProcessResourceNodes. It links each
ProcessNode to its Resource and passes the product to
the next Resource. For valid material flow links between
two ProcessResourceNodes, the DTPP adds the rela-
tionship requires at the level of the ProcessResource
Nodes, e.g.,P1onHumanAssembly requiresP2onHuman
Assembly. Using this simulation, the DTPP can validate
supply and transportation processes, or delete them if the
resource allocation does not require a transportation process.
PlantSimulation and Python proved to be suitable software
for the implementation.

Performance parameter determination

As a result of the resource selection step (P3), several possi-
ble process resource assignments have been identified. These
serve as input to the performance parameter determination
step (P4). The variety of the resulting different process plans
can be significant due to the large solution space induced
by the number of different process sequences and resource
allocations. Therefore, the goal of this step is to predict the
corresponding KPIs of the process resource allocations in
order to evaluate the quality of the match and to use this
evaluation to select optimal process plans (see R3.4). In the
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following, a predictive module predicts the KPIs while the
prescriptive model selects the optimal process plan.

Within the predictive module, the most important KPI to
determine is the processing time, which is used in subsequent
planning steps such as line balancing and scheduling. Qual-
ity and cost KPIs extend the time in the decision making
regarding optimal process plans. The DTPP predicts these
KPIs for each process resource combination. In the domain
ontology, the PerformanceParameters KPI_Time,
KPI_Costs, and KPI_Quality are added to each indi-
vidual ProcessResourceNode through the relationship
hasParameter. Three approaches are used forKPI prediction,
depending on the historical process planning data available,
such as the KPI_Time of 5 s for the HumanAssembly
performing a similar task, such as P1. A supervised machine
learning approach predicts KPIs most accurately when his-
torical data is available in the database. For a small amount
of data, a simulation-based approach is appropriate. If no
historical data is available, the DTPP can only predict KPIs
based on a fuzzy logic approach.

The well-known CRISP-DM (Chapman et al., 2000)
guided the development of the supervised machine learning
approach. In thefirst step, the business problem tobe solved is
defined before the underlying data is observed and evaluated.
Then, the predictive module preprocesses the available data.
Next, machine learning models are built and their perfor-
mance is evaluated. Finally, developers select the best model
and deploy it across the system. Regression models play an
important role in process planning because they can predict
continuous variables.

Amulti-body simulationmodel calculates theKPIs of pro-
cesses performed on specific resources in terms of their cost,
quality, and time in the simulation-based approach.Historical
data parameterizes the simulation model, including per-
formance parameters for each ProcessResourceNode,
to ensure data-driven decision making and avoid invalid
assumptions. For example, the time simulation of a pick and
place process can be simulated by defining the
ProcessParameter Max_Speed in the ontology and
knowing the resource trajectory. Note that for this approach,
a multi-body simulation of the corresponding resources must
first be modeled, resulting in significant manual effort.

The fuzzy logic approach developed is based on the
Mamdani fuzzy system (Mamdani, 1974). It consists of
three main steps and quantifies expert knowledge to pre-
dict KPIs. First, the approach fuzzifies numerical features
describing the combination of process resources and trans-
lates them, for example, from ’Automation_Degree =
85/100’ to ’Automation_Degree = high’. Expert inter-
views are used to derive so-called fuzzy sets. In the second
step, another interview analysis defines a fuzzy rule base. It
consists of several if-then statements and uses the fuzzified
input values from the first step. An example rule might be

“IF Automation_Degree = high AND Part_Weight
= low THEN KPI_Time = low”. Based on these rules, the
approach infers new patterns, and thus parameters for new
process resource allocations, resulting in fuzzy output val-
ues. The final step translates the fuzzy output values back
into numerical output values, called defuzzification. So the
whole process ends up translating the fuzzyKPI_Time back
into a numerical number, such as 26s. Note that depending
on the numerical input variables, different rules from the rule
base will be active, resulting in different rule weights and the
defuzzified numerical output value.

The supervised machine learning and fuzzy logic appro-
aches are implemented in Python. Both approaches con-
sume feature sets of process resource assignments as raw
data from the database. The underlying models in both
cases predict the KPIs and push them into the ontology for
each ProcessResourceNode. Further research needs to
investigate the implementation of multi-body simulation. As
a result, this step generates KPIs for different combinations
based on historical data, a multi-body simulation or expert
knowledge.

The prescriptive module aims to select the final pro-
cess plan based on the identified parameters to meet the
users’ objectives. Once the relevant KPIs of the Process
ResourceNodes have been predicted, the decisionmakers
need assistance in selecting a process plan that meets their
needs. In the prescriptive module, the underlying decision
problem to be solved is a problem of allocating processes
to resources. Depending on the size of the problem, differ-
ent possibilities can be distinguished. A trivial approach can
be used to select the most appropriate process plan for rel-
atively small solution spaces. In such a case, the predictive
module calculates KPIs for all possible combinations of pro-
cess resources and selects the most appropriate combination.
Amathematical optimization problem solver selects themost
appropriate process plan for a relatively large solution space.
The DTPP adapts the problem’s objective function, which
is a weighted sum of the predicted KPIs, to the decision
maker’s needs. The prescriptive model also defines several
constraints to find valid process plans while maximizing the
objective. Operations research solvers can find heuristic or
optimal solutions to mathematical optimization problems,
such as Hashemi-Petroodi et al. (2022). Another approach to
address large solution spaces is to use novelmachine learning
techniques, such as reinforcement learning. In reinforcement
learning approaches, an intelligent agent interacts with the
DTPP and is rewarded for executing appropriate process
plans. The predicted KPIs define the value of the process
plan. A prerequisite for the use of reinforcement learning is
the definition of process plan selection as a sequential deci-
sion process.

The final module of the DTPP selects process resource
combinations that best meet the desired KPIs of the deci-
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sion makers. The union of all required process resource
combinations results in the overall process plan. To imple-
ment the module, the KPIs of each process resource com-
bination must be queried and loaded from the ontology
into the optimization procedure, either a mathematical
model or a reinforcement learning approach. The pro-
cedure selects the most suitable process plan or several
suitable process plan alternatives. It pushes them back
to the ontology into an instance of a ProcessPlan
consisting of multiple ProcessResourceNodes. For
the CompressorElement, the ProcessPlan Plan
Element1 was run with the best ProcessParameters
including, for example, P1onHumanAssembly with a
KPI_Time of 5 s. Future research includes further imple-
mentation of the module. Detailed models and implemen-
tations from the literature can form the basis for several
approaches, e.g., Gonnermann et al. (2022).

Interfaces for integrated decision support

In order for the DTPP to be used for automated decision
support in process planning (see R5.4), it must be inte-
grated into the company by integrating the systems and
phases described in Fig. 3. Data transfer between the sepa-
rate systems is difficult due to different data formats, varying
information systems, custom software, and limitations posed
by commercial software (Kunath &Winkler, 2018). The fol-
lowing sections first describes the connections to all relevant
systems, as shown in Fig. 5. This includes how the DT auto-
matically receives its input data from enterprise information
systems (see Sect. “Interface to information systems”) and
how the DTPP automatically provides its outputs to systems
for decision making (see Sect. “Interface to decision making
systems”) to fulfill R6.1 and R6.3. In addition, Sect. 4.4.3
explains the connection to the phases of order processing
shown in Fig. 1 that affect process planning and vice versa.

Interface to information systems

The DTPP needs appropriate interfaces to information sys-
tems in order to access all necessary data (as described in 4.2).
The essential product, process, and resource data are usually
stored in different systems and databases, such as ERP or
PLM systems. These multiple heterogeneous sources store
the data relevant for process planning in different formats,
such as CAD, JSON, CSV, etc. Both DTPP ontologies cre-
ate a common understanding of the data. On the one hand,
data can be virtualized, including a reference to its storage
location. On the other hand, it can be integrated directly. Vir-
tualization is particularly useful for large amounts of data,
such as historical and time-series data, or data in unsuit-
able formats, such as CAD files. Specifically, for the CAD
file, the format can be transformed if the source format does

not conform to the DTPP format. Model-based definition
CAD formats, such as STEP, QIF, or JT, include product and
process requirements and product geometry. Transformation
processes insert these product and process properties in the
DTPP database. At the same time, the non-virtualized data
must be integrated into the DTPP ontology (materialization).
This requires two steps. First, software interfaces must be
defined to retrieve the data from the different systems. Sec-
ond, mappings from the retrieved data to the ontologies must
be set up so that the heterogeneous data can be included in
the knowledge graph.

However, the latter task is not easy to implement if the
user has limited knowledge about ontologies and semantic
technologies. Therefore, it is helpful to create a pipeline
that allows the user to integrate the required data into the
knowledge graphwithout much knowledge of semantic tech-
nologies or ontologies. Extract transform load (ETL) proce-
dures allow data to be transferred from a source database
to a target database. Typically, these underlying informa-
tion systems provide interfaces that can be used in the ETL
processes. The idea is to create unified formats that fit the
ontological schema. For the DTPP, the database and its data
model define the unified formats for process planning. The
DTPP ontology supports the generation of the transformation
programs by capturing knowledge about the target database
(DTPP database) and the source data model, e.g. through
defined synonyms in the ontology. In the ETL pipeline, the
first phase requires the user to specify the data sources and
create transformations for the data into the unified formats.
The preprocessed data can then be automatically mapped to
the ontology (and cached in the central DTPP database if
required) as described in “Knowledge”. The mappings are
created in advance and can be used repeatedly for different
data sources. For the implementation of the ETL procedure,
general programming languages such as Python provide
modules for creating the ETL pipelines. This includes the
implementation of connectors to data sources such as ERP
systems. For better usability, it also makes sense to use flow-
based low-coding editors.

Interface to decision making systems

Due to the variety of products and different stakeholders of
the DTPP, the decision making systems need support to use
the DTPP effectively and efficiently. For the central decision
making system, the user, an interface that considers the capa-
bilities and permissions of the different users of the DTPP
is needed to support all DTPP use cases (see Sect. “Use
cases”). As functional requirements derived from the use
cases, the interface must allow the execution, modification,
and analysis of the data used and generated by the system.
In addition, the interface must consider user-specific access
rights. The interface considers different roleswith their activ-
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ities and permissions, as well as collaboration between users.
Quality requirements such as correctness or usability are
also considered as non-functional requirements. Based on
these requirements, the user interface conceptwas developed.
After user login, the interface adapts views and access rights
according to the user. On the start page, the user can execute
and modify the four planning phases and analyze specific
planning documents. In addition, various menu bar elements
help users to work efficiently and collaboratively. When exe-
cuting process planning, the input data is selected first. The
interface then displays the output data. Subsequently, all data
can be modified if necessary. In addition to visualization, the
user interface offers speech-based interaction with the sys-
tem by integrating a chatbot. It can understand written text
through natural language processing and, using the ontology
of the DTPP, output it as a written response through natu-
ral language generation. For other decision making systems,
such as visualization systems, inference engines, or AImeth-
ods, to access the results of process planning, the data and
knowledge are available in standardized formats, and pro-
totypical interfaces exist to facilitate exchange. JavaScript,
HyperText Markup Language (HTML), and Cascading Style
Sheets (CSS) were used to implement the front-end. For data
and information analysis, the user interface includes an inter-
face to MongoDB and GraphDB via various Python scripts.
This allows to display the four different graphs as well as
numerous input data. A local instance of WebProtegé visu-
alizes the ontologies. Interfaces to the individual planning
modules are also supported: AWebGL framework and Open
CasCade (OCC) transform a three-dimensional product file
and visualize it on the web (P1). Both an embedded Unity
instance (assembly) and an interface to a Python-based man-
ufacturing process planning system allow the identification
and sequencing of the production processes (P2). Finally, a
Python-based script creates a local PlantSimulation model
that predicts the parameters and selects resources (P3 and
P4). The user interface visualizes the output data. The chat-
bot uses existing natural language understanding, generation
and dialog control features of the Rasa chatbot framework.
The chatbot accesses the ontology in the ttl file via defined
actions and the Python module owlready2. Other decision
making systems can access the data using PythonMongoDB
and GraphDB connectors.

Connection to the phases of order processing

Since several phases are interrelated within order process-
ing, this section explains the relationship of the DTPP to
each upstream and downstream phase. Research and devel-
opment influence process planning with their product CAD
files. When a company introduces a new product, it loads the
new CAD file into the DTPP database, and DTPP provides a
new process plan for that product. In addition, research and

development receives feedback from DTPP for the product
being created. If a product cannot be produced with cur-
rent resources, the DTPP provides the product characteristics
that are in conflict. They can use the DTPP to evaluate their
product proposals. Work system planning influences process
planning by providing the layout of the production network.
TheDTPPpartially covers this phase (see Fig. 3). To consider
reconfiguration, the DTPP provides suggestions for arrang-
ing resources to perform different processes, e.g., faster or
at lower cost. In addition, the DTPP describes the skills that
are missing from the production network if the current pro-
duction network cannot produce a product. Therefore, work
system planning must evaluate the reconfiguration propos-
als across all products and decide how to procure resources
with the appropriate skills. Production planning and control
uses the resulting process plans to generate a production
plan/schedule and apply logic to control production when
malfunctions or illnesses occur. To take into account the
capacity and availability of resources within this phase, the
DTPP provides several appropriate process plans. Within
production and logistics, different process plans are executed
according to the defined schedule and control strategies.
Except for production planning and control decisions, the
DTPP considers production and logistics through its simula-
tion and prediction capability. For example, the performance
parameters (time, cost, quality) resulting from the execution
of the process plan at each process step are the primary input
for performance parameter determination to consider real
parameters. Some publications already support aspects of
the mentioned phases (see Kousi et al. (2021) or Wang and
Wu (2020)). Defined information flows betweenDTs of these
phases with the DTPP (DT network) would allow a holistic
support of order processing.

Discussion

Finally, the fulfillment of all DTPP requirements (see Section
5.1) evaluates the DTPP concept. Based on the DTPP imple-
mentation and its application in the two use cases, Section
5.2 discusses its strengths and limitations.

Requirements evaluation

The DTPP concept is first evaluated against all of its require-
ments (see Sect. “Requirements”). Table 3 summarizes the
fulfillment of each DTPP requirement and which main com-
ponent ensures this requirement (often many components
are responsible). By averaging each building requirement,
a DTPP base requirement is evaluated. The database and
ontologies provide varying granularity (R1) and realis-
tic representation (R2). The process planning unit simu-
lates/predicts (R3) product requirements, processes, resource
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Table 3 Evaluation of DTPP
building requirements

Requirement Fulfillment Component (Reference)

R1.1 Product Domain Ontology (4.1)

R1.2 Resources Domain Ontology (4.1)

R1.3 Processes Domain Ontology (4.1)

R1.4 Parameters Domain Ontology (4.1)

R1.5 Process Plans Domain Ontology (4.1)

R2.1 Inputs Database (4.2)

R2.2 Outputs Database (4.2)

R3.1 Analyze Product Planning Module 1 (4.3)

R3.2 Identify Processes Planning Module 2 (4.3)

R3.3 Select Resources Planning Module 3 (4.3)

R3.4 Determine Parameters Planning Module 4 (4.3)

R4.1 Production Changes Planning Module 1 (4.3)

R4.2 Product Changes Planning Module 2+3 (4.3)

R5.1 Database Database (4.2)

R5.2 Generate Process Plans Planning Modules (4.3)

R5.3 Domain Knowledge Domain Ontology (4.1)

R5.4 Decision Support Interfaces (4.4)

R6.1 Automation Interfaces (4.4)

R6.2 Correctness Database (4.2)

R6.3 Universal applicability Interfaces (4.4)

allocations, and performance parameters to generate process
plans. In addition, it considers life cycle orientation (R4).
Finally, the interfaces of the DTPP ensure an architecture
adapted to the process planning (R5) and several qualita-
tive requirements (R6). Further software development can
improve qualitative requirements such as correctness and
universal applicability with suitable interfaces that can be
used in many companies.

Given the research questions, the domain ontology and the
database create transparency about process planning (RQ1).
The planningmodules automate process planning (RQ2) and
together with all interfaces form the required DTPP architec-
ture (RQ3).

Application evaluation

The DTPP implementation and the three use cases (com-
pressor element, inverter, and brick-based product) identified
the limitations and capabilities of the concept. All use cases
are simplified examples with a limited number of resources,
products, and process alternatives. The DTPP concept is able
to plan processes for more complex products or production
networks, considering performance limitations and manual
adjustments, because the implementation is only a prototype.
For example, inserting the second rotor of the compressor
element proved to be problematic because it can only be
assembledwithout collision in a rotatingmotion, but it is also
not a pure screw operation. This complex assembly process

had to be added manually. However, the DTPP has proven
to be very robust, generating numerous process plans for
different products produced on different systems. In addi-
tion, the framework is very flexible because it presents the
components of DTPP in a tool-independent way and many
commercial or open-source systems are suitable for imple-
mentation. In the described implementation, changes such
as other data formats than STEP are particularly challeng-
ing. Changes in the production system (resources or layout)
have to be considered manually in the CAD file. The devel-
oped user interface supports the manual effort and allows
the selection of product, production system, KPIs and the
resulting process plan to be used in production.

As part of the underlying research project, the participants
evaluated the knowledge base as mature and valuable in the
application of both use cases. The database as a complement
achieved high access performance.When generating process
plans, many product properties are automatically identified if
they are detailed in the CAD file (P1). The DTPP conceptu-
ally considers manufacturing and assembly (P2). However,
the implementation of the DTPP focuses on assembly by
screwing or joining processes. The generation of assembly
plans with these processes (e.g. joining and screwing) has
been tested and validated in research projects at iwb. The
integration ofmanufacturing processes into theDTPP has yet
to be tested and validated. The allocation of resources (P3) to
previously identified process requirements, based on seman-
tic descriptions and preset parameters, depends on a unified
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and sorted description of processes and resource capabilities.
The process resource matches allow multiple alternatives of
process plans by considering the material flow of the pro-
duction system layout. The capacity of individual resources
and more or less suitable process plans are not yet consid-
ered due to the focus on small batch sizes. The determination
of process parameters (P4) is conceptually developed based
on artificial data (supervised learning based approach) and
a simplified expert interview (fuzzy logic based approach),
since only rare real data points were available. The validation
with real production data, the simulation-based approach,
and the entire prescriptive module need to be performed
in future research. The automated process planning of the
DTPP considers the execution of the process plan in pro-
duction and logistics at all stages through simulations. The
implementation showed that the DTPP interfaces need to be
specifically adapted to the information systems or decision
making systems. As a result, it was not possible to develop
universal interfaces because they are highly dependent on
the software used (e.g., SAP and Oracle as possible ERP
systems, and PowerBI or Splunk for decision support). A
suitable interface could only be developed for humans. In
addition, company-specific tools or process planning proce-
dures often already exist. Due to the modular structure of
the DTPP (database, ontology and four planning modules),
semi-automatic process planning using individual planning
modules for dedicated phases or pure knowledge storage
through the ontology are also possible.

Conclusion and outlook

Given the shortcomings of CAPP systems in industry
and research, this paper presents the concept and imple-
mentation of a digital twin in process planning (DTPP).
The DTPP framework consists of four central pillars. A
database stores and concatenates all necessary data sets
for decision making in process planning. A knowledge
graph describes the database and adds semantics to the
raw data. Simulation-based process planning approaches and
assembly-by-disassembly algorithms generate the process
plans. Finally, the last element includes interfaces to infor-
mation systems and decision makers.

All building blocks of theDTPPhave been implemented in
an industrial use case and demonstrate superior performance,
especially in terms of time to completemultiple valid process
plan tasks. Despite the high level of functionality, several
research questions remain:

• First, the technical integration of a DTPP into an exist-
ing company infrastructure remains partly vague, since
interfaces to existing software are highly individual in
most industrial use cases. There are different data require-

ments, data formats and security measures. Detailed
product data is often not available, and product design-
ers do not automatically generate or store information
about the product properties that served as the basis for
this DTPP approach. Therefore, future research needs to
address a change inmindset and product design processes
as well as standardized interfaces between software. In
addition, the role of the human as the final decisionmaker
in an automated decision support system needs to be fur-
ther explored. Transparent solutions and user interfaces
can play an important role here.

• As a future research goal, the challenging steps of pro-
duction planning and control also require the support of a
digital twin. Planning and controlling production in terms
of time, quantity, and capacity is equally challenging for
production planners due to the large number of product
variants and the wide range of resources with varying
capabilities and availabilities.

• Finally, all of the resulting digital twins require prede-
fined information flows in order to be connected via
appropriate interfaces to form an intelligent digital twin
network that supports the entire order processing.
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