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Abstract
In this paper, we present a novel learning-based shared control framework. This framework deploys first-order Dynamical
Systems (DS) as motion generators providing the desired reference motion, and a Variable Stiffness Dynamical Systems
(VSDS) (Chen et al. 2021) for haptic guidance. We show how to shape several features of our controller in order to achieve
authority allocation, local motion refinement, in addition to the inherent ability of the controller to automatically synchronize
with the human state during joint task execution. We validate our approach in a teleoperated task scenario, where we also
showcase the ability of our framework to deal with situations that require updating task knowledge due to possible changes in
the task scenario, or changes in the environment. Finally, we conduct a user study to compare the performance of our VSDS
controller for guidance generation to two state-of-the-art controllers in a target reaching task. The result shows that our VSDS
controller has the highest successful rate of task execution among all conditions. Besides, our VSDS controller helps reduce
the execution time and task load significantly, and was selected as the most favorable controller by participants.

Keywords Shared control · Dynamical systems · Teleoperation · Learning from demonstration · Motion planning

1 Introduction

Despite the recent advancements in robot motion plan-
ning and control, teleoperation is still a viable solution in
domains such as surgical procedures that consist of delicate
or dynamic environments, and therefore can benefit from the
human cognitive and problem solving abilities. Nevertheless,
teleoperating a robot can still be amental burden that requires
a lot of time and practice.
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To that end, the notion of shared control was introduced
and proved to be useful in many applications such as sur-
gical robotics, autonomous driving and nuclear sites. The
basic idea in shared control is that a human interacts with
an autonomous agent that encodes some form of task knowl-
edge, thereby reducing the operator workload and facilitating
task execution. For instance, the control space can be parti-
tioned such that the autonomy controls a subset of the degrees
of freedom, while the human is in charge of the rest [2, 3].
Another possibility is to fuse human inputs with the out-
puts of the autonomous agent depending on some authority
allocation metric [4, 5]. Alternatively, virtual fixtures can be
devised to provide haptic guidance rendered on the master
interface, which can guide the operator along a desired path
[6], avoid certain areas of the environment (forbidden region
virtual fixtures) [7], reach optimal grasping poses [8] and to
enforce task-related geometrical constraints [9].

Recently, with the increasing popularity of machine learn-
ing, Learning from Demonstrations (LfD) has been intro-
duced for the design of shared control techniques, where task
knowledge is obtained through demonstrations provided by
an expert, which are then encoded by a regression model that
can be adequately deployed to guide a novice user achieve
the desired task. This can be the case for example in sur-
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gical procedures to help train a novice surgeon perform
certain surgical maneuvers [10]. For instance, in [11], two
shared control architectures relying on LfD in the form
of Gaussian Mixtures Models (GMM) were compared for
a teleoperated protection cover replacement task. GMM
were also deployed in [12] and [13] to design virtual fix-
tures that guide the user to one of possible goal locations,
depending on the probability of each. Along the same lines,
in [14], probabilistic movement primitives were combined
with the flow controller from [15] for guidance generation.
In [16], the authors suggest Locally Weighted Regres-
sion (LWR) to encode human demonstrations in order to
provide a time-indexed trajectory for an impedance con-
troller that provides a guiding force, with a spring stiffness
inversely proportional to the variance in demonstrations.
They also propose incremental learning for refining the desired
motions. While these works mostly rely on haptic guidance
generation, the work in [3] exploits Dynamic movement
primitives (DMPs) to predict the evolution of one transna-
tional DOF, depending on the human state which controls
the other DOF. Incremental learning is also used to refine
task knowledge due to a change in the environment.

The aforementioned techniques mainly employ LfD to
infer a desired motion plan, which can be subsequently used
for haptic guidance. To the best of our knowledge, first order
dynamical systems (DS) [17–21] have not been considered
before in shared control for motion generation. Therefore,
it was not possible to benefit from their nice asymptotic
stability properties in terms of convergence to the desired
equilibrium, regardless of the initial position, or possible per-
turbations along the robot motion. Such features cannot be
guaranteed for instance in GMM or in LWR techniques. Fur-
thermore, DSmotion generators do not rely on a clock signal,
as in DMPs for example, which makes them well suited to
handle temporal perturbations.

In this regard, the DS formulation, being essentially a
velocity field, lends itself nicely to closed-loop configuration
control formulations, where motion generation and control
are combined in one loop, eliminating the notion of "track-
ing" a time-indexed trajectory. Thiswas shown in [22], where
a flow controller was developed to follow the integral curves
of a first-order DS. In [1, 23], the so-called symmetric attrac-
tion behavior is also enforced in the DS, which refers to
the robot ability to attract back to a desired path once per-
turbed. In addition to the inherent robustness and safety, such
a closed-loop formulation can be highly beneficial for design-
ing the haptic guidance in shared control frameworks, due to
the fact that the controller is always aware of the current
human state1. Therefore, there is no need for the human to

1 The human state is assumed to be the same as the state of the robotic
interface the human is interacting with

actively think about matching the speed of an open-loop time
trajectory as in [3], or to attempt the synchronization of the
DMP clock variable to that of the human [3]. Instead, the
synchronization is automatically ensured by the controller
configuration.

In this work, we present a new shared control architecture
that builds on the use of first-order DS as motion genera-
tors, and control in closed-loop to generate haptic guidance.
In particular, we exploit the use of our recently developed
VariableStiffnessDynamical Systems (VSDS) controller [1],
which takes as input any desired first-order DS representing a
motion plan, a desired (constant or possibly varying) stiffness
profile, and generates a force field that allows to follow the
desired path, while symmetrically attracting locally to it with
an interactive behavior dictated by the desired stiffness, in a
spring-like manner. VSDS is constructed as the non-linear
weighted sum of linear springs systems, centered around a
set of equidistant attractors sampled from a first-order DS,
and where the weights are determined via guassian kernels.
While in [1] we demonstrated the benefits of our controller
for autonomous task execution, in this work, we show how
to exploit and adapt our controller features to develop a new
shared control approach. For instance, it can be usedwith any
DS, which offers the flexibility to benefit from existing learn-
ing/regression techniques available for DS in the literature.
The controller is in closed-loop, and therefore synchronizes
automatically with the human state. In addition to that, the
ability to encode variable stiffness profiles can be used to
adjust the strength of the guidance depending on the human
confidence or the model knowledge. Moreover, the symmet-
ric attraction behavior means the user is always pulled to a
desired path, which can be crucial to successful task exe-
cution, in addition to convergence to the global attractor.
Finally, this attraction only holds locally, which means that
the width of the attraction region can be adjusted to be con-
sistent with the stiffness, and therefore can be designed such
that the human can escape the guidance, when needed. To
summarize, we show how first-order DS and VSDS can be
effectively employed in a shared control architecture, for the
purposes of motion and guidance generation, authority allo-
cation and incremental motion refinement. To the best of our
knowledge, this was not explored before. We further verify
our approach in experiments in multiple scenarios, and in a
user study.

The rest of this work is divided as follows: Section 2
explains the different components of our proposed shared
control framework. In Section 3, we evaluate our approach
in several scenarios and also conduct a user study to compare
with other state-of-the-art controllers. In Section 4, we dis-
cuss the results of the user study and the proposed approach.
Finally, Section 5 concludes and provides future work
directions.

123



Journal of Intelligent & Robotic Systems (2023) 109:85  Page 3 of 13 85

2 Proposed Framework

In this work, we consider a teleoperation scenario where a
human physically interacts with a master robot to control
the motion of a remote manipulator, to complete a desired
task. The results however can be straightforwardly extended
to the case where the human directly interacts with a robot
e.g. in a cooperative manipulation scenario. In the following,
we present the fundamental building blocks of our shared
control architecture, illustrated in Fig. 1. For a complete
shared control solution, such a framework would consist of
a motion generator that outputs a desired motion plan, and
naturally a controller that provides haptic guidance depend-
ing on the desired motion. Furthermore, the strength of this
guidance should be adjusted given some criteria in such a
way the authority is arbitrated between the human and the
autonomous agent. Finally, the framework should provide
an option to the human to locally adapt generated motions
depending on changes in the environment or task scenario.

2.1 Motion Generation

The first part of the proposed framework is the motion gen-
erator, which outputs the desired path for a specific task. In
this work, this is provided by a first-order time invariant DS.
While in principle any state-of-the-art DS approach can be
used, in this work, we chose a DS based on the formulation
proposed in [20], since it can be seamlessly extended with
incremental learning. We deploy LfD to learn an inital DS
model from demonstrations provided by the user. We assume
that the demonstrations are given by position-velocity pairs,
and describe point-to-point motions that converge to the same
final goal location. Furthermore, we assume that the demon-
strations do not feature intersections or self-loop, due to the
inability of a first-order DS representation to learn such fea-
tures. In such case, representations based on 2nd-order DS
can be sought [17], which is however outisde the scope of

this work. To learn an initial DS model, we deploy LfD. Let
the original DS be

ẋd,o = f o(xr ) (1)

where xr ∈ R
n is the robot state variable, chosen here as the

cartesian end-effector position (n = 2 in this paper), f o rep-
resents a linear globally asymptotically stable DS, and ẋd,o

is the desired velocity. Obviously, the velocity of demonstra-
tions will be different from the velocity field described by f o.
Through rotating and scaling by Eq. 2, it is possible to reshape
f o to match the demonstrated velocity field. Therefore, LfD
becomes the task of learning to reshape the original DS based
on demonstrations. The rotation and scaling parameters can
be combined together to form a modulation field T (xr )

T (xr ) = (1 + κ(xr ))R(xr ) (2)

where κ(xr ) is the scaling factor, and R(xr ) is the rotation
matrix. The rotation matrix has the following form in two-
dimensional space

R(xr ) =
[

cos(φ(xr )) −sin(φ(xr ))

sin(φ(xr )) cos(φ(xr ))

]
(3)

where φ(xr ) represents the state-dependent rotation angle.
The reshaped DS is then expressed as

ẋd = f r (xr ) = T (xr ) f o(xr ), (4)

and does not lead to any spurious attractors or cause divergent
behaviors [20]. Learning the reshaped DS from demonstra-
tions is equivalent to learning the state dependent parameters
φ(xr ) and κ(xr ), termed modulation parameters. The raw
collected demonstration data consisting of position and
velocity data can be converted to position and modulation
parameters, where position data are inputs and modulation

Fig. 1 The overall architecture
of the proposed shared control
approach. f r is the motion
generator first-order DS that
provides reference motions to
VSDS. σ 2 is the predictive
variance calculated by Gaussian
Process Regression, K des
defines the desired stiffness
profile for VSDS. uc represents
the control input generated by
VSDS controller, while uh are
the external forces from the
human operator. xm is the
position of master device in
cartesian space, and xr is the
position of remote robot

����
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Fig. 2 Left: Streamlines of the
locally reshaped DS f r around
demonstration data points
shown in blue. Right:
Streamlines of VSDS that
symmetrically attract around the
reference path simulated from
f r shown in blue. The red
points lying on the reference
path are local attractors of
VSDS, sampled also from f r .
The rhombus in both plots is the
global attractor x∗

parameters are outputs. The detailed conversion process is
explained in [20]. Same as in [20], we choose Gaussian
Process (GP) to fit the training data, because it enables incre-
mental learning by simply enlarging the training dataset. The
squared exponential covariance function between two posi-
tions x and x

′

k(x, x
′
) = γ f exp(− (x − x

′
)T (x − x

′
)

2l
) (5)

is chosen to construct the covariancematrix, where γ f , l > 0
are hyperparameters. Additionally a random Gaussian noise
is added in the covariance matrix. In this work, we set the
hyperparameters to pre-fixed values.

After fitting the training dataset into the GP model, we
use Gaussian Process Regression (GPR) to compute the
predicted modulation parameters φ(xr ) and κ(xr ), given a
certain position xr . GPR outputs a predictive mean value
µ(xr ) and a predictive variance σ 2(xr ), which is computed
by following the standard expression in GPR [20]. The vari-
ance indicates the certainty of the GPR about the prediction
i.e a low variance means the model is confident about its pre-
diction, while high variance means the model is less certain.
Finally, we obtain the reshaped DS as (4), which outputs a
motion plan to the global attractor given any starting position.
An example of this DS is shown in Fig. 2, left.

2.2 Haptic Guidance

Once the DS is learnt, a controller is needed to provide
haptic guidance along the desired motion. This is rendered
on the master device, as done with virtual fixtures in the
shared control literature. The DSmodel, however, represents
a motion on the remote manipulator side, where the task goal
is expressed. To solve this problem, given a desired cartesian
position xk,r or velocity ẋk,r on the remote robot side, we
map it the master side via2

xk,m = β(xk,r − x0,r ) + x0,m , ẋk,m = β ẋk,r (6)

2 We only consider the translational degree-of-freedoms.

where xk,m , ẋk,m are the corresponding positions/velocities
on themaster side, x0,m and x0,r are the initial positions of the
master and remote robots at the start of the teleoperation, and
β is a scaling factor due to possible differences in workspace.
This is needed for example in our case, where the motion
range of the master is much smaller than the motion range
of the remote robot, and therefore master motions need to be
scaled up before commanding it to the remote robot.

The considered cartesian-space gravitycompensated dynam-
ics of the master robot can be expressed as
M(xm)ẍm + C(xm, ẋm)ẋm = uc + uh (7)

whereM(xm) is the Inertiamatrix,C(xm, ẋm) is theCoriolis
matrix, uc are the controller forces providing haptic guidance
while uh are the external forces applied by the human. The
remote robot is assumed to perfectly track the motion of the
master xm , after mapping it according to Eq. 6.

To compute uc, our VSDS controller [1] is used. The
controller provides symmetric attraction towards a path gen-
erated from one of the integral curves of f r dictated by
the initial robot position, as shown in Fig. 2, right. This is
achieved by a nonlinear weighted sum of linear DS, with
dynamics f i (xm) = Ai (xm − xi ) centered around a local
attractor xi . These attractors act as the rest positions for
the springs, and are crucial to realize the spring-like attrac-
tion behavior shown in Fig.2 right. These attractors can be
computed regardless of the form of f r , and are obtained by
simulating f r to obtain a temporary sequence of via points.
Then, we re-sample the preliminary via-points into an N
number of via-points chosen to be equidistant to ensure a
smooth velocity profile, and such that x0 is the initial posi-
tion, while xN = x∗ is the global attractor. The attractors are
initially obtained on the remote robot side (illustrated as red
dots in Fig. 2 right), and mapped to the master according to
Eq. 6. The stiffness of the i-th local, system Ai , is computed as

Ai = −Qi K des,i QT
i (8)

where K des,i is a diagonal positive definite matrix, sampled
from a desired stiffness profile K des(xm). The eigen values
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of K des,i are interpreted as stiffness values along and per-
pendicular to the motion direction, computed as f r (xi )‖ f r (xi )‖ . In
order to realize that, Qi projects K des,i to these directions.

To combine the linearDS,wedefine theGaussian kernel of

the i-th linear DS asωi (xm) = exp(− (xm−xcen,i )
T (xm−xcen,i )

2(εi )2
)

where xcen,i = 1
2 (xi+xi−1) and εi is a smoothing parameter

proportional to the distance between sampled points. The
actual weight of how each linear DS affects the dynamics at
the current position is then defined as

ω̃i (xm) = ωi (xm)∑N
j=1 ω j (xm)

(9)

Finally, the control force sent to themaster robot is computed
according to

uc = α(xm)

N∑
i=1

ω̃i (xm) f i (xm) − Dẋm (10)

where α(xm) is a position dependent scale function to avoid
large robot accelerations in the beginning of the motion,
while D is the damping matrix.

2.3 Authority Allocation

Another important aspect in shared control is authority allo-
cation. In this work, this is realized by adjusting the strength
of the guidance forces. While several metrics can be used,
here we show how the commonly used idea, where author-
ity allocation is variance-based (e.g. [16]), can be integrated
in our framework. Since the GPR outputs the prediction
with a mean and a variance σ 2(xr ), we use this variance
information to set the stiffness of our VSDS. We set a high
stiffness in regions having low variances, since a low vari-
ance output by GPR indicates closeness to demonstrations.
This limits the freedom of the human in deviating from the
desired motion. Conversely, we set a low stiffness in regions

that have high variances which are far from demonstrated
motions. This makes it easier for the human to overrule the
guidance forces. Therefore, authority allocation is implicitly
achieved by adjusting the stiffness.

Taking the i-th local attractor of VSDS as an example, the
desired stiffness profile for a planar motion is expressed as

K des,i =
(
ki,1 0
0 ki,2

)
(11)

where ki,1 is the stiffness along the direction of motion, and
hence the strength with which the user is pulled along the tra-
jectory, while ki,2 is the stiffness perpendicular to the motion
direction and penalizes deviations from the path. We chose to
set ki,1 to a fixed value, while ki,2 is computed according to

ki,2 =

⎧⎪⎪⎨
⎪⎪⎩

a1 + a2 σ 2
i < σ 2

l

a1 − a2 sin(
π(σ 2

i − σ 2
l )

σ 2
u − σ 2

l

− π

2
) σ 2

l ≤ σ 2
i ≤ σ 2

u

a1 − a2 σ 2
i > σ 2

u

(12)

where a1, a2, σ 2
l , σ 2

u are pre-defined thresholds and σ 2
i (xi )

is the predictive variance fromGPR at the i-th local attractor.
Thesecondconditionof (12) ensuresasmooth transitionbetween
the low and high variance states as shown in Fig. 3, left.

We illustrate our stiffness setting based on variances in
Fig. 3, right. The green path is the demonstrated motion,
and naturally the variances along this trajectory are very low,
resulting in high stiffness values at all the local attractors of
VSDS. On the other hand, for the red and blue paths, we
can see that the stiffness is low at local attractors far away
from the demonstrated trajectory, and increases when the
position of the local attractor is closer to or coincides with
the demonstrations.

2.4 Incremental Learning

We complement our shared control architecture with online
incremental learning in order to refine learnt motions, or

Fig. 3 Left: An example plot to
show how stiffness changes
according to variance. Right: the
stiffness along the path shown as
ellipses, where wide ellipse
means a high stiffness. The paths
generated by the reshaped DS
are shown in Fig. 2, where the
green path is the demonstrated
one, while the blue and red
paths are obtained starting from
two different positions
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to update task knowledge in regions of the state space not
demonstrated before. This implies that the humanmight need
to temporarily escape the guidance, in order to provide new
demonstrations. Therefore, we exploit the fact that ourVSDS
controller can provide local symmetric attraction in a tunnel
region around the reference path. When the human operator
moves out of the tunnel, no further guidance is applied, and
the master interface goes into gravity compensation mode
where the human is completely free to manipulate the robot.
The new demonstrated path is then used for incremental
learning.

The tunnel of VSDS is determined by properly setting
a threshold value ω̃th . For each position xm , we check the
weights of all local attractors, computed by Eq. 9. VSDS
controller only takes effect when the largest weight ω̃max =
max(ω̃i ) ∀i = 1 . . . N , is smaller than ω̃th . In this work,
we set the threshold value proportionally to the variance of
the reference path. First, we sum over the predictive vari-
ance from GPR of all attractors along the reference path and
compute the average of the variance σ 2 = 1

N (
∑N

i=1 σ 2
i (xr ))

where N represents the number of local attractors of VSDS.
Then the threshold value is set as

ω̃th =

⎧⎪⎪⎨
⎪⎪⎩

b1 − b2 σ 2 < σ 2
l

b1 + b2 sin(
π(σ 2 − σ 2

l )

σ 2
u − σ 2

l

− π

2
) σ 2

l ≤ σ 2 ≤ σ 2
u

b1 + b2 σ 2 > σ 2
u

(13)

where b1, b2, σ 2
l , σ 2

u are set to constant values. The second
condition again ensures smooth transitions between lower
and upper limits of ω̃th . As shown in Fig. 4 left, a path close
to demonstrations (i.e. low variance) has a comparatively
wider tunnel region compared to Fig. 4 right that represents
an area not demonstrated before.

The incremental learning is enabled when the trajectory
gets out of the tunnel of VSDS, which means ω̃max < ω̃th .
The incremental learning under GP framework is simply
expanding the training dataset for GPR. However, a matrix
inverse computation is done in GPR every time when a new
data point is added, which can be computationally inefficient.
To deal with this issue, we adapt the trajectory-based spar-
sity criteria [20] to our context. In particular, we check 1) if

new data points should be added in the GP dataset, and 2) if
some old data points need to be discarded. This comes from
the intuition that each data point in GP is responsible for a
certain region around it, named as knowledge region in this
paper. This region can be imagined as a circle centered at
that point in two-dimensional case. If the new data point is
within the knowledge region of the old data point, it implies
the old knowledge needs to be updated. The details of the
incremental learning are shown in Algorithm 1.

Algorithm 1: Incremental learning in 2D space
input : New demonstrations dataset:

Dn = {
(xd,1, ẋd,1), ..., (xd,N , ẋd,N )

}
, Existing GP

dataset: Dgp = {
(xg,1, ẋg,1), ..., (xg,M , ẋg,M )

}
,

Thresholds: rth,�1,�2
output: updated GP dataset Dgp

1 for i ← 1 to N do
2 for j ← 1 to M do
3 if ‖xd,i − xg, j‖ ≤ rth then
4 Remove data point (xg, j , ẋg, j ) from Dgp ;
5 M = Length (Dgp) ;
6 end
7 end
8 end
9 for i ← 1 to N do

10 Prediction from GPR:
11 ẋ∗

d,i = GPR (xd,i ) ;
12 if |‖ẋd,i‖ − ‖ẋ∗

d,i‖| ≥ �1 or

13 arccos (
ẋd,i ẋ∗

d,i
‖ẋd,i ‖‖ẋ∗

d,i ‖ ) ≥ �2 then

14 Add data point (xd,i , ẋd,i )

15 into Dgp ;
16 end
17 end

3 Evaluation

We evaluate our shared control approach in a teleopera-
tion scenario, where we use an Omega.3 haptic device from
Force Dimension c© as a master interface to control a 7-DOF
KUKA robot in Gazebo, that serves as our remote manipula-

Fig. 4 Tunnel region effect of
VSDS, where the highlighted
area is the region where the
symmetric attraction effect is
activated, while the purple is the
rest of the state space where
streamlines follow f r . The left
figure shows a relatively wide
region with ω̃th = 0.1, while the
region in the right figure is
narrower with ω̃th = 0.8
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Fig. 5 Experiment settings.
Left: The 3 DOF omega.3 haptic
device used as master interface.
Right: The task scenario in
Gazebo, with the KUKA LWR
as the remote robot and the top
surface of the pink object inside
the box is the target to reach

tor (Fig. 5). Given that our algorithm is implemented entirely
on themaster interface, and considering that the remote robot
is programmed with a stiff-position control mode to sim-
ply follow the motion commands from the master, utilizing
a simulated remote robot seems to be a reasonable choice
in our case. A similar setting was adopted in other shared
control works e.g [24]. The task is that the human teleoper-
ates the KUKA to reach a target object inside the box. First,
we show normal task execution, then we demonstrate sev-
eral scenarios where task knowledge needs to be updated or
refined through incremental learning. Finally, we conduct a
user study to compare the performance of our VSDS to other
haptic guidance controllers used in previous works, namely
an impedance controller tracking a time-indexed trajectory
and a flow controller. For simplicity, we constrain the robot
motion in x-direction and all the considered motions are in
y − z plane.

3.1 Normal Execution

In this section, we test the ability of our VSDS controller to
generate haptic guidance. A human is asked to reach the tar-
get object with the robot end-effector via teloperation, while
being guided through the force cues. To provide the motion
plan, we use the linear DS ẋd,o = −0.4(xr − x∗), and then
locallymodulate itwith an initial demonstration,withσ f = 1
and l = 0.001 for the kernel function expressed in (5), and
σ 2
n = 0.01 for the Gaussian noise. The streamlines of the

used f r are shown in Fig. 2, left. As for VSDS construction
(Fig. 2, right), the local attractors are sampled equidistantly
from the reference path generated by f r , and where we set
the length between two attractors to �l = 0.04m. The stiff-
ness setting is chosen to ensure stablemotions on the omega.3
haptic device, where we set ki,1 = 250N/m, a1 = 1100N/m,
a2 = 700N/m, σ 2

l = 0, σ 2
u = 0.85. As Fig. 6 right shows,

the human operator is guided to follow the reference path,
completing the task without hitting the wall of the box. Fig-
ure 6 left shows another scenario where the starting position
is different from the demonstration, however, in this partic-

2 The conducted experiments are shown in our attached video

ular case the motion plan output of f r is feasible, and is
followed by the human towards the goal location inside the
box.

3.2 Incremental Learning

In this section, we test the ability of our framework to
deal with situations where it is desired to update the task
knowledge, or to adapt it due to possible changes in the
environment. In the first scenario, the human attempts the
reaching task from an initial position far away from demon-
strations, and therefore, the governing dynamics are those of
the linear DS. This is problematic since while the dynamics
converge to the attractor, the path generated leads to collisions
with the walls of the box (Fig. 7(a)). As soon as the task exe-
cution starts, the human quickly realizes that the guidance
is leading him/her in a wrong manner, and therefore exerts
a force to escape from the tunnel region of local attraction,
where he/she can then freely manipulate the master device to
demonstrate the successful task execution. After the refine-
ment, when the human starts from the same initial position,
he/she is guided correctly to achieve the task (Fig. 7(b)).

We showcase the second scenario in a situation where an
obstacle is introduced in a region demonstrated before, and
therefore model knowledge should be adapted. As can be
seen from Fig. 7(c), the streamlines lead to collision with the
placed obstacle. The human realizes that he is being guided in
the wrong manner, escapes the tunnel region of the guidance
(Fig. 7(e)) and adds a new demonstration to how the collision
with the obstacle should be avoided. After the refinement, the
human is properly guided along apath that avoids the obstacle
(Fig. 7(d)).

It should be noted that due to the variable stiffness and the
tunnel settings, the required force to escape from the VSDS
tunnel differs depending on the region of the state space. In
the first case, the human attempts to update task knowledge
in a region far away from demonstrations. Therefore, the
stiffness is lower and the tunnel region is narrower, and in
consequence the force needed to escape the guidance ismuch
lower, compared to the second case, where the obstacle is
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Fig. 6 The robot motion for the
target-reaching task starting
from different initial positions.
The blue line is the real robot
motion. The red dotted line is
the reference motion generated
by f r . The pink dotted lines
show the border of VSDS
tunnel. Left: Starting from a
position far away from the
demonstration. Right: Starting
from a position near the
demonstration

placed in an area demonstrated before, resulting in a much
higher force necessary to escape the guidance (Fig. 7(f)).

Finally, it is worth noting also that we can handle motion
refinement in both cases, because of our specific choice of
the incremental learningmethod as described in Section II.D.
More specifically,we assign a knowledge region for each data
point, and discard old data points if their knowledge region
is shared with new demonstration points. This implies that

existing task knowledge is obsolete and should be refined,
which is the case for the obstacle scenario (Case 2 in Fig. 7).

3.3 User Study

In this section,we conduct a user study to compare the perfor-
mance of several controllers for haptic guidance generation,
in a target-reaching task.

Fig. 7 Results of motion refinement in two different scenarios, where
in one the starting point is far away from the demonstrations (Case 1,
Fig. 7(a) to Fig. 7(b)), while in the other the environment is changed
by adding an obstacle (Case 2, Fig. 7(c) to Fig. 7(d)). For Fig. 7(a) to
Fig. 7(d), the blue path shows the robot motion, the red path is the refer-
ence path generated by f r while the pink dotted lines show the borders
of the VSDS tunnel. Fig. 7(e) shows the escaping trajectory of case 2,

where the red dotted lines represent the reference path, the blue and
the green lines are the real trajectory in y and z direction. They deviate
from the reference, then escape from the VSDS tunnel and stop at the
escaping point. Case 1 has the same pattern as case 2, and therefore is
not shown in the plot. Fig. 7(f) shows the corresponding escaping force,
where the red plot corresponds to Case 1, while the blue is for Case 2

123



Journal of Intelligent & Robotic Systems (2023) 109:85  Page 9 of 13 85

3.3.1 Methods

The DS shown in Fig. 2 left is used to provide the motion
plan, where the user starts from an initial position close to
the start of the demonstrations to make the remote robot end-
effector reach a desired goal location. To provide force cues,
we compare the following controllers:

• Our VSDS controller, with streamlines shown in Fig. 2,
right.

• The Flow controller presented in [22] where uc =
D f (vd − ẋm), with streamlines according to Fig. 2 left,
and where D f is a feedback gain while vd is the mapping
of f r (xr ) on the master side. Note that the controller
formulation is also similar to the commonly used flow
controllers in the exoskeleton literature (e.g. [15]).

• An impedance controller tracking a trajectory xd(t) inte-
grated in open-loop from f r (xr ) and mapped to the
master, starting from the initial robot position, such that
uc = K o(xd(t) − xm) − Do ẋm , with K o and Do as
stiffness and damping.

• Free mode: Teleoperation without guidance.

For the first and third conditions, we use the same constant
stiffnessmatrix. Also, for theVSDS controller, we deactivate
the tunnel region effect, since incremental learning is not
needed during the user study. This results that the symmetric
attraction is active in the entire state space. For the second
condition, we noticed that high gains cause unstable vibra-
tions, and therefore limited the eigenvalues of D f to 45 and
20. Still, we attempted to tune the gains for all the controllers
to provide a suitable compromise between the strength of the
guidance and the accuracy in following the referencemotion.

We tested 12 participants in total, aged from 20 to 30, with
no previous experience in teleoperation. We asked them to
interactwith themaster device to teleoperate the remote robot
end-effector to guide it to the pink object inside the box as
shown in Fig. 5. Subjects could visually observe the motion
of the KUKA LWR in Gazebo during teleoperation in real-
time. Subjects are instructed to focus primarily on attempting
task execution without any collisions, and if possible to be
quick, while roughly following a continuous curve towards
the goal. Before starting the experiment,we showeach partic-
ipant how to do the task, and give them a familiarisation trial
under each condition.During the experiment, participants are
asked to conduct three trials for each condition, the sequence
of which is randomly shuffled across subjects. After each
condition, subjects are requested to fill in NASA TLX and a
questionnaire on Guidance Quality (GQ questionnaire from

hereon). After finishing all the trials, we asked participants
which condition they preferred the most.

The GQ questionnaire is based on [11] and aims to reflect
how participants judge the guidance. We ask the following
questions:

• Q1: Do you feel the guidance useful?
• Q2: Do you have to fight the guidance?
• Q3: Do you feel in control while being assisted?

The participants have five options for each question, namely,
absolutely no, no, neutral, yes, absolutely yes. We then map
the answers into 5 discrete values3 in the range [0, 5] for anal-
ysis, where 0 represents "absolutely no" and 5 represents
"absolutely yes". To further evaluate the performance, we
additionally compute the metrics: successful rate of execu-
tion, execution time, the task load computed by using NASA
TLX scores, and the jerk of the remote robot movement. We
define a trial as successful if the robot reaches the target with-
out hitting the box or the ground, otherwise it is defined as
failure.

3.3.2 Data Analysis

With respect to the successful rate, we count the total num-
ber of successful trials as a percentage of the total number
of trials for each controller. For the remaining metrics, we
computed the mean across trials for further statistical anal-
ysis [25]. We first tested the data for normality using the
Shapiro-Wilk test. Then, we computed repeated measures
ANOVAs for normally distributed data, and Friedman test
otherwise. We also used Friedman test to analyze the results
of the GQ questionnaire since the data is not continuous.
This was followed by Bonferroni corrected post-hoc pair-
wise comparisons to compare the individual conditions. A
Greenhouse-Geisser correction was used when the assump-
tion of sphercity was violated, where we used the Mauchly
test for sphercity. For the GQ questionnaire, although we
recorded the subject response for all conditions, we thought
it would be meaningful to analyze the results for the condi-
tions where the guidance is activated, therefore excluding the
Free mode.We set the Alpha level to 0.05, where p < 0.05 is
considered statistically significant, while p < 0.1 indicates
a statistical tendency.

3 We used scores of 0, 1.25, 2.5, 3.75, 5
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3.3.3 Results

The results of the user study are shown in Fig. 8 as bar
plots showing the mean across conditions and the standard
deviation, as well as the statistically significant different con-
ditions. Friedman test revealed that all the three guidance
conditions reduced the jerk compared to the freemode (χ2 =
13.8, p = 0.003) with no significant different across condi-
tions (Fig. 8(d)). Friedman test for the execution time also
showed significant effects (χ2 = 15.7, p = 0.0013064),
where the VS condition was found to reduce the execution
time compared to the FR condition (p = 0.003), the OL
(p = 0.04) and the FL (p = 0.003) (Fig. 8(b)). For the
TLX load, Repeated Measures Anova also showed signifi-
cant effects (F(3, 44) = 5.8323, p = 0.0019111), which
mainly were due to the VS condition reducing the task load
compared to the other conditions (Fig. 8(c)). The evaluation
of GQ questionnaire is shown in (Fig. 8(e)). The response
from the first question (χ2 = 4.7692, p = 0.092) regarding
guidance usefulness indicates VS condition has no signifi-
cant difference in comparison with others, with p = 0.13
compared to OL, and and p = 0.11 compared to FL. For
Q2, we had (χ2 = 7.0556, p = 0.02937) mainly caused by
a tendency for the OL to have higher scores compared to the
VS(p = 0.075) and the FL (p = 0.0553) conditions. On the
other hand, no significant differences for Q3 regarding the
degree to which subjects felt in control among conditions
was found. Finally, the answers of the participants regarding

their guidance preference were as follows: VSDS controller
(75%), flow controller (17%), and free mode (8%).

4 Discussion

The results of the user study came in linewith previous shared
control literature that haptic guidance improves the teleoper-
ation performance [3, 11], revealed mainly by higher success
rates and lower jerk. TheVSDScontroller showsthehighest rate
in comparison with the other two controllers. The relatively
higher failure rate for the open-loop impedance controller
could be due to the fact that this controller lacks the timing
freedom, and therefore, if the user does not attempt to syn-
chronize with the guidance or passively follow it, the results
might be unpredictable.On the other hand, the flowcontroller
does not attempt to pull the user to a specific path that suc-
cessfully achieves the task, but rather follows the streamlines
of f r to reach the target, and therefore following a streamline
that collides with the outside of the box is more likely.

We also think that these are the reasons why the open-loop
and flow controllers had higher NASATLX load scores com-
pared to VSDS. The lack of timing freedom in the open-loop
impedance controllers meant that the subject had to spend
additional effort to actively synchronize or even fight against
the guidance at times. This is also reflected by noting that
the open-loop controller resulted in the highest score in the
answer to Q2 (Fig. 8(e)), related to fighting the guidance. On

Fig. 8 Results of user study. FR: Free Mode (no guidance), OL: Open-
Loop Impedance controller, FL: FLow controller, VS: VSDS controller.
Q1,Q2andQ3 refer to the three questions of theGQquestionnaire. Error
bars indicate the standard deviation. To indicate significance between
conditions, ’**’ represents p < 0.01, ’*’ represents p < 0.05, ’+’
represents p < 0.1. In Fig. (a), the y-axis indicates the normalized

percentage of the successful rate of execution. In Fig. (c), The y-axis
indicates the weighted scores of the NASA-TLX from 0 to 100 where
lower scores indicate better performance. Finally, Fig. (e) highlights the
scores of the GQ questionnaire, where the answers to the questions of
the questionnaire are mapped on a scale from 0-5
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the other hand, the higher score for NASA TLX recorded for
the flow controller could be due to the fact that subjects did
not feel enough restriction to move along a particular path,
thereby needed to focus more on moving the end-effector
along a collision-free path. TheNASATLX results seem also
to be in correlation with the results of Q1 on the usefulness
of guidance, with a tendency noticed for the VS condition
to have higher scores. Related to that, it seems the more nat-
ural guidance provided by VSDS resulted in a lower score
for Q2, as subject did not feel the need to fight the guid-
ance, as compared to FL and OL, due to the aforementioned
shortages of these approaches. Please note that, we attempted
to tune the gains in the controllers such that in all condi-
tions, a similar trade-off between accuracy and compliance
is obtained. Therefore, we believe the differences in perfor-
mance between the controllers are qualitative and due to the
working principles of each controller, rather than the set of
parameters chosen.

While the VSDS controller generally seemed to have a
better performance, in our view, the choice of one haptic
guidance approach or another should depend on the given
scenario. The OL and VSDS controllers rely essentially on
a spring action to provide guidance storing potential energy
for large errors from the reference path, thereby makes it
more restrictive for the subjects. This would be suitable
for example for novice surgeons during training who might
lack experience in teleoperation. The flow controller is more
forgiving in this regard since the guidance rather provides
assistance to move forward along the direction of the flow,
but requires more mental demand from the operator to focus
on following a collision free path, and in consequence could
be useful for more experienced subjects.

In this work, we mainly focused in our user study eval-
uation on controllers dedicated for DS, but that share some
similarities with other controllers in the literature. For exam-
ple, the flow controller has the same of working principle
as the velocity field controller of [14] essentially closing the
loop around the velocity error. The open-loop impedance
controller on the other hand is a classical approach, and was
used as well in the shared control context [16]. Future work
will also focus testing in comparison to control approaches
not necessarily focused on DS, for example the path control
paradigm [26].

Finally, regarding the passivity of our closed loop system,
it should be noted since we consider unilateral teleoperation,
the only source of potential activity in the system could be
due to the haptic guidance controller, and therefore, ensuring
the passivity of the controller would be sufficient to guar-
antee an overall stable operation. Current work in progress
[27] explores the use of energy tanks, adapted from [28] to
ensure the passivity and the asymptotic stability of VSDS

controllers, which would guarantee the convergence to the
global attractor.

5 Conclusion

In this work, we presented a new shared control approach
based on first-order time invariant DS. We use LfD to learn
a globally stable DS as a motion generator, and deploy
our previously proposed VSDS controller to generate hap-
tic guidance. The variance-based stiffness setting of VSDS
controller realizes the authority allocation implicitly. Addi-
tionally our proposed approach enables incremental learning
to adapt motions when necessary, by properly setting the
region of local attraction provided by VSDS. We validated
our shared control approach in a teleoperation task, where the
human controls the haptic device, interacting with the VSDS
controller together to execute the target reaching task. The
results show that our approach works well in normal exe-
cution and is also suitable for refining old task knowledge.
Moreover, we conducted a user study, comparing the per-
formance of VSDS controller to state-of-the-art controllers
used for haptic guidance generation. The results showed that
using VSDS controller yielded the highest success rate, and
was themost preferred shared controlmethod by the subjects.

In the future, in addition to the aforementioned directions
in the previous section, we will aim to extend of our shared
control approach to also include orientations for higher flexi-
bility.Wewill also consider other shared control settingsmore
extensively, such as in collaborative tasks.
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