Humanities & Social Sciences

Communications

ARTICLE B creck o vesatn
https://doi.org/10.1057/541599-022-01206-4 OPEN

Empowered and embedded: ethics and agile
processes

Niina Zuber', Jan Gogoll'™, Severin Kacianka?, Alexander Pretschner? & Julian Nida-Riimelin3

This article focuses on the structural aspects of the development of ethical software, and
argues that ethical considerations need to be embedded into the (agile) software develop-
ment process. In fact, it is claimed that agile processes of software development lend
themselves specifically well for this endeavor. First, it is contended that ethical evaluations
need to go beyond the use of software products and include an evaluation of the software
itself. This implies that software engineers influence peoples’ lives through the features of
their designed products. Embedded values should thus also be approached by software
engineers themselves. Therefore, the emphasis is put on the possibility to implement ethical
deliberations in already existing and well-established agile software development processes.
The proposed approach relies on software engineers making their own judgments throughout
the entire development process to ensure that technical features and ethical evaluation can
be addressed adequately to transport and foster desirable values and norms. It is argued that
agile software development processes may help the implementation of ethical deliberation
for five reasons: (1) agile methods are widely spread, (2) their emphasis on flat hierarchies
promotes independent thinking and autonomy, (3) their reliance on existing team structures
serve as an incubator for deliberation, (4) agile development enhances object-focused
techno-ethical realism, and, finally, (5) agile structures provide a salient endpoint to
deliberation.

TBavarian Institute for Digital Transformation, Munich, Germany. 2 Technical University of Munich, Munich, Germany. 3 Ludwig Maximilian University of
Munich, Munich, Germany. ®email: jan.gogoll@bidt.digital

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | (2022)9:191 https://doi.org/10.1057/541599-022-01206-4 1

http://crossmark.crossref.org/dialog/?doi=10.1057/s41599-022-01206-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1057/s41599-022-01206-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1057/s41599-022-01206-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1057/s41599-022-01206-4&domain=pdf
mailto:jan.gogoll@bidt.digital

ARTICLE

oftware artifacts play an ever more important role in our

lives. The constant presence of social media, decision-

supporting technologies and information flows has blurred
the boundary between digital products and the analog world. This
development, in turn, prompts companies, users and regulatory
authorities to focus increasingly on newly emerging ethical issues
within said development. Software can influence user behavior
through intentionally or unintentionally designed features of the
operating function (Ozdemir, 2020; Marthur et al., 2019, 2021).
Any underlying features and their mechanics that are opaque or
elude immediate perception exacerbate the paternalism debate
(King and McCrudden, 2017). This issue is mainly discussed in
connection with persuasive technology, ambient intelligence or
ubiquitous computing (Reitberger et al., 2009; Ijsselsteijn et al.,
2006; Ramos et al., 2008). The main points of this debate, how-
ever, must not be confused with acceptance or user-friendliness,
which are already included in the usability approach. Ethical
deliberation always goes beyond user-experience in that it always
asks about the good life in general. These ethical questions can be
captured by a structural analysis, namely highlighting established
cooperative practices, for example cooperation between doctors
and patients, businessmen and buyers, statesmen and citizens.
These practices and their analysis foster an understanding of
mutual expectations that are constitutive to a good life. In this
way, then, can digital products be understood more compre-
hensively as socio-technical systems while their purely techno-
logical dimension is still adequately taken into account.

Rather, the technology itself must also be considered, meaning
that any comprehensive analysis must identify the technological
values (techno-generic values) embedded in a software and sub-
ject those to a normative analysis. In data analysis, for example,
this includes questions regarding the handling of the data, the
quality of the data set and its interpretation. Inaccuracies in these
areas raise concerns of discrimination and privacy issues. Hence,
software developers need to consider ethically relevant implica-
tions of their product design which, in turn, depend on the values
often implicitly embedded into the software. It is important,
however, to distinguish between implicitly established value
attitudes and negative externalities that affect the use of tech-
nology in our lifeworld. This distinction supports software
developers to classify the areas where they have to make decisions
and assume responsibilities more easily.

Explicating and evaluating the values and attitudes that guide,
and should guide, software developers in their work requires
ethical deliberation. This is, essentially, a normative endeavor.
Ethical deliberations comprise different ways of thinking such as
descriptive approaches to identify values, evaluative modes to
figure out qualities for individual cases and decisions to stop
further enquiries. The need to integrate normative considera-
tions in software development is also emphasized in the value
sensitive design approach: The assumption that digital artifacts
transport normative claims (Friedman and Hendry, 2019).
However, it is not entirely clear how, when and who is in charge
of these ethical reflections and ethically relevant design decisions
within the overall process of software development. Conse-
quently, ethical deliberations within this process need to be
systematized and coordinated (Zuber et al., 2020), and engineers
and companies must be supported and enabled to implement
ethical engineering practices.

It is worthwhile to note that ethical engineering or ethical
design is not meant to include machines that act autonomously:
Machines are no moral agents (Nida-Riimelin and Weidenfeld,
2018). Machines conserve and perpetuate values or even trans-
form and establish real life normative expectations. Thus, nor-
mative deliberation includes a disclosive moment (Brey, 2000a),
an evaluative moment and a concluding moment. Normative

2

deliberations comprise not only a juxtaposition of values, but also
reveal normative constituents that compose everyday mutual
expectations, i.e., how to adequately respond to certain requests
made by others (Nida-Riimelin, 2019). Practice theory may help
to better understand and include normative constituents while
designing and developing a digital artifact: Our commonly shared
lifestyles will be affected by the deployment of information
technology. It is therefore worthwhile to ponder upon which of
the normative stakes will be eroded, transformed, or substituted.
This structuralistic aspiration is put into a system-theoretic point
of view by Umbrello and Gambelin (2022): On the level of system
requirements, the developer, in terms of their work attitude, and
the user thus come together.

Identifying and understanding these normative facets require
merging different modes of thinking each of which is oriented
towards a different quality criterion: from technical functionality,
economic cost-benefit considerations, to esthetic values and, of
course, moral requirements. All these lines of reasoning and their
respective focus must, if we want to prove them to be reasonable,
meet logical requirements, such as freedom from contradictions
and coherence which means to consider the relational con-
ditionality of reasoning (Nida-Riimelin, 2020). Ultimately, these
questions and requirements form what can be called a metatheory
of software development: What kind of work-world conditions
must be in place if we want to acknowledge the fact that digital
artifacts have broader effects on our lives than achieving certain
purposes in a technically or economically rational manner? In
this paper, we argue that the comprehensive ethical deliberations,
that are part of the required work-world conditions, need to be
integrated into management processes if they are to become
habitual development culture. Moreover, we will argue that agile
processes are particularly suitable due to their work organiza-
tional structure and functional teams.

The aim of this paper is to show that agile processes have
certain features and assumptions that may help to foster the
efficient integration of ethical deliberation. We seek to cultivate a
professional ethos that recognizes good normative design as an
essential component of good development work. Therefore and
because Principlism won’t do, it needs to be made clear why to
engage in normative deliberation as well as how to integrate it
(Mittelstadt, 2019). This means they require the possibility of
exercised judgment (1). First, we briefly elaborate on what we
mean by ethical deliberation with regard to IT technology (1.1).
Techno-ethical judgment requires autonomous persons, i.e.,
persons who perceive themselves as independent and whose
independence is promoted within work culture. The empower-
ment of all participants who are involved in the process is thus a
prerequisite for the successful integration of techno-ethical
deliberation (1.2). Second, we discuss how the nature of digital
artifacts and their societal implementation shape the technical
mindset. The focus on the technological artifact is what provides
relevant input that guides normative reasoning (1.2). We
emphasize that these techno-ethical deliberations must be inte-
grated into the work culture if they are to foster a professional
ethic and a developer mentality that is not exclusively focused on
technical functionality (1.3). Agile processes are suitable, we
claim, because they empower engineers in their independence
and thus leave room for ethical deliberations. Finally, we give five
reasons why agile software development processes may help the
implementation of ethical deliberation (2): (1) agile methods are
already prevalent in software development (which eases the
introduction of ethical deliberation due to low transaction costs),
(2) their emphasis on flat hierarchies promotes independent
thinking (an essential prerequisite to deliberation), (3) their
reliance on existing team structures serves as an incubator for
deliberation, (4) agile development enhances object-focused

| (2022)9:191] https://doi.org/10.1057/541599-022-01206-4

ARTICLE

techno-ethical realism, and, finally, (5) agile structures provide a
salient endpoint to deliberation.

Empower the engineer: autonomy as a requirement for good
normative design
Agile development processes naturally lend themselves to ethical
considerations because they empower developers to work in small
teams and solve problems independently, without tight central
control (cf. Spreitzer, 2008; Tariq et al., 2016). This approach
gives developers substantial leeway in influencing the design of
the system. However, agile software development is no silver
bullet. Agile methods do, for instance, have drawbacks compared
to traditional software development methods (see for example,
Cho, 2008 or Savolainen et al., 2010), especially when developing
sizable and complex systems. There are many situations in which
agile methods are difficult to implement. Examples include highly
regulated industries including medical, aerospace, and auto-
motive, where regulation often demands specific processes and
elaborate documentation; the design of physical products where
specifications often need to be decided on a long time before
software development begins; large-scale projects; or corporate
cultures that are highly hierarchical (e.g., Poth et al., 2020). One
can point to four reasons that might explain these drawbacks:
First, agile methods prefer code over documentation which is a
problem in systems that legally require extensive documentation
in order to satisty safety and compliance demands such as
medical software or automotive systems (Turk et al., 2002).
Second, while agile methods work well for small teams, scaling
them to systems where multiple teams are interdependent on one
another has proven to be difficult. Third, the agile processes
themselves are sometimes seen as too much of a burden to
developers—demanding an excessive amount of meetings and
other interactions that negatively impact a developer’s ability to
focus and these obligations bind resources that could be used for
other purposes. Fourth, as alluded to in the adage that “agile
development means replacing one bad developer with two good
developers”, agile processes require capable and motivated
employees (Solinski and Petersen, 2016). Of course, capable and
motivated individuals usually perform better than their less
capable and motivated colleagues in any situation. For agile
methods, thus, it has to be shown that they have the ability to
further support developers because of the nature of this devel-
opment style. We will provide reasons for this claim regarding the
implementation of ethical deliberation in the section “Imple-
menting ethics in the agile softwaredevelopment environment”.
Agile development practices work particularly well in contexts
where a small team of developers builds a product and require-
ments for said product are subject to frequent change. Here, the
iterative nature of agile processes and the close communication
with the customer improves the end result, because customers get
to see early interim results and can thus help clarify their
requirements. To oversimplify, true agile practices are more often
found in teams that develop websites or phone apps than com-
panies that develop braking systems or EEG monitors. Tradi-
tional software development often incorporates a reduced version
of ethical deliberation in the form of a technology assessment or
dedicated safety or security analysis (Schneier, 1999; Ruijters and
Stoelinga, 2015; Grunwald, 2018). While many technology
assessments concern risk forecasts, it is only since the early 2000s
that ethical technology assessments came into play such as the
VDI 3780 standard (Verein Deutscher Ingenieure, 2000) or Palm
and Hansson’s eTA approach (Palm and Hansson, 2006). In
regard to the ethical design of software systems the IEEE 7000/D3
(2020) focuses on team members’ competencies that are necessary
in order to consider and deal with ethical issues while developing

software. In doing so, they stress that ethical theories help in
evaluating and identifying ethical values (IEEE 7000/D3, 2020,
pp- 13-22). This is why, McLennan et al. (2020) stress to include
an ethicist in development teams to foster ethical considerations
during development. They argue that “the gold standard for
embedded ethics integration would be an ethicist, or a team of
ethicists, as a dedicated member of the development team” who—
rather obviously—“possess[es] competence in ethical inquiry” but
also “ha[s] domain-specific understanding and knowledge of the
area of technology development in which they will be embedded”
(McLennan et al., 2020). When it is not possible to include an
ethicist directly into the team due to financial reasons or lack of
available (full-time) ethicists, they propose an indirect approach
with ethicists working—for instance—at universities to support
ethical inquiry for the project. Larger tech companies have
already begun to integrate ethicists into their workforce (Metcalf
et al,, 2019). Whether or not the supply of such experts is enough
to staff every development team or at least provide part-time
assistance remains to be seen. In any case, the focus on enriching
the development process itself with ethical deliberation seems
very promising as a formal process within the organization may
also facilitate ethical awareness (Rottig et al., 2011). This has the
additional advantage that all roles (developer, designer, manager,
etc.) with their respective backgrounds are involved.

Normative deliberation. Values are often regarded as the key
starting point to enable normative deliberation in software
engineering (Spiekermann, 2015; Senges et al., 2017; Spiekermann
and Winkler, 2020). This reasoning also inspires Codes of Con-
duct and Codes of Ethics as a means of establishing certain values
that either shall not be violated by software or shall be taken into
account in development. Codes of Conduct are certainly useful
for establishing a set of (potential) values. For the development of
ethical software, however, they do not constitute more but a mere
starting point (Gogoll et al., 2021). Codes of Conduct typically
comprise a set of higher-level regulative ideas, whose status is
more or less self-evident, but they do not set forth a method of
how to weigh these different ideas and to solve potential conflicts
between them. They are to a large extent neutral regarding dif-
ferent theories of normative ethics, which is an advantage in
terms of acceptability, but a disadvantage in terms of practic-
ability. Hence, they cannot be more than the starting point of
normative deliberations, especially when we consider that soft-
ware is deployed in almost all contexts today. Not surprisingly,
the characteristics of software also turn out to be very context-
specific (Briand et al., 2017), as does the practice of software
engineering. It therefore seems utterly unrealistic to expect a one-
size-fits-all solution, i.e., a solution applicable to any kind of
software, for embedding ethical values into software or applying
ethical rules to the development process. The fact alone that
software is context-specific requires a customized approach for
each new software product.

Values are ideals to which people aspire. There are different
types of values, economic values are motivated by economic
reasons such as efficiency and profit, political values by political
reasons and so forth. Moral values are motivated by moral
reasons which means that their motivation goes beyond any
personal interest an agent may have. Moral reasons often vary
across cultures and can change over time. They can, however, be
transformed into universal laws or incorporated into morally
desirable behavior, i.e., virtues. To stress this point: A value such
as care is displayed in a concrete principle such as “do not harm
others”. This can be formulated as a right once it has been
recognized as a legitimate claim, such as the Offenses against the
Persons Act. Alternatively, it can be expressed in a moral norm

| (2022)9:191] https://doi.org/10.1057/541599-022-01206-4 3

ARTICLE

which commands that you shall not abuse anybody, neither
physically nor psychologically.

Good normative products display, foster or promote desirable
values, norms, and laws., i.e. perpetuate desirable practices. The
effects they have on our lifeworld goes beyond mere avoidance of
negative externalities; meaning that normative deliberation in the
context of these product’s development goes beyond evaluating
the consequences and trade-offs. Good normative design stresses
the various modes of normative thinking that could and in fact
should apply. Our approach of good normative design therefore
systematizes normative deliberation and ties it back to manage-
ment structures (Zuber et al., 2020).

Morally illegitimate IT entails software products that might,
often accidentally, exclude people due to their capabilities; make
people change their daily life without their consent; display
information consent forms in such a way that the user feels
overwhelmed; or nudge people to spend hours on their homepages
or apps (Harris, 2016; Coeckelbergh, 2021; Mathur et al,
2019, 2021). Conversely, normative desirable software systems
include aspects of integration, minimization of discrimination,
reduction of sexism and racism, fostering mutual respect,
inclusivity, trust, sustainability etc. (cf. Nissenbaum, 1999; Fried-
man et al,, 2008; Zwart, 2014; Nida-Riimelin and Weidenfeld,
2018; Steed and Caliskan, 2021; van Wynsberghe, 2021). This
quickly leads to an endless list of values that are considered
relevant depending on the nature of the technology, techno-generic
values, or the context of use, meaning structural values. So, it
comes as no surprise that what makes a normative desirable
products is notoriously difficult to identify and any ethical
deliberations in that regard cannot be realized by using checklists
or with the help of predefined answers (cf. Gogoll et al., 2021).

Instead, we need to identify and evaluate relevant ethical
aspects. Relevant aspects in this sense may stretch across all
phases suggested by value sensitive design and applied to agile as
is done by Umbrello and Gambelin (2022). Still, we must outline
the stages of normative thinking that are necessary for each phase
and map those onto the development process. This requires
concept of normativity that is responsive to the individual,
intersubjective and collective characteristics of an artifact and
how these characteristics are affected by how and where the
artifact is used: Communication tools, for example, influence
individual perception, ie., what a person perceives to be fake
news and how tolerant they are towards hate speech, inter-
subjective aspects may be particularly relevant in cases of
cybermobbing; and of course, communication tools and any
normative deliberation on them must consider their influence on
the collective assessment of normative democratic features. In this
case, this kind of normative deliberation merges hermeneutic
phenomenology, structural analysis and practice theory. Social
scientific methods such as stakeholder analysis and focus groups
that all belong to the domain of acceptability research will further
enrich the process of value elicitation. Let’s call this the epistemic
phase of value elicitation. Once accomplished, values need to be
prioritized and evaluated which in turn needs evaluative thinking.
In doing so, we exercise judgmental reasoning (cf. Rohbeck,
1993): we apply general principles (wisely) to particular cases.
How we link principles and their application in particular
circumstances cannot be achieved through deduction or sub-
sumption alone. It is this rational-hermeneutic deliberation that
cannot be understood in any algorithmic pattern. This kind of
deliberation requires experience in practical principle application
as well as the necessary working conditions (for the latter see also
Umbrello and Gambelin (2022)). The concluding phase empha-
sizes habitualized willpower and decisiveness, which are to be
grasped as personality traits rather than cognitive abilities. This
approach is closely linked to bottom-up ethical approaches that

4

refrain from Principlism in ethics (Dancy, 2004, 2018)—a
dominant trend in modern times since the rise of European
rationalism. We call all necessary normative deliberations the
exercise of techno-ethical judgment. This kind of judgment needs
to be part of a software development mentality in general and in
this sense a daily routine: It combines factual technological
knowledge with practical normative reasoning.

It seems reasonable to address values in IT within the
framework of virtue ethics, ie., to think about whether a
particular information technology fosters or undermines e.g.,
moral, sustainable or autonomy-respecting practices. In virtue
ethics moral practice is defined as a collective action whose
purpose is shared and designated as valuable, e.g., honesty,
friendship or care (cf. MacIntyre, 1981). If IT hinders people from
establishing and nurturing caring relationships and even brings
about behavior that makes it easier to stalk, bully, humiliate, or
defame people, it is certainly worthwhile to rethink its design or—
in the worst case—think about whether to deploy it at all. Virtue
ethics highlights the fact that people who show the trait of being a
caring person will act accordingly without constantly having to
cognitively deliberate whether they want to be a caring person.

This makes virtue ethics a viable approach in the domain of
software systems, in which desirable behaviors, in the classical
sense virtues, are applied to techno contexts (cf. Vallor, 2016;
Reijers and Coeckelbergh, 2020). Once desirable attitudes are
formulated, they need to be promoted by practices. Vallor (2016)
focuses on 12 techno-moral virtues: 1. honesty, 2. self-control, 3.
humility, 4. justice, 5. courage, 6. empathy, 7. care, 8. civility, 9.
flexibility, 10. perspective, 11. magnanimity, 12. techno-moral
wisdom. In contrast to values applicable to a technical design,
virtues pertain to the characters of the developer as well as to the
user or other stakeholders. The habituation of those 12 good
techno virtues will promote a good life and reduce at its best
moral wrongdoing through the deployment and use of techno-
logical devices. Thus, Vallor is not exclusively addressing software
developers, but the entire community. Therefore, desirable virtues
need to be taken into account in the design of a product insofar as
desirable practices should not be undermined by the develop-
ment, deployment, and use of IT. In this context, virtue ethics
may be an interesting move in information ethics, as it places the
same demands on users and developers. Developers should
develop those desirable virtues, strengthen and live them through
work practices. The same is true for users: They should be
enabled to live their lives in line with their good attitudes and
shall not be corrupted. Virtue ethics can enrich systems theory
approaches with the idea of the good life. This, in turn, means
that management and development cultures should encourage
and foster techno-virtuous behavior by introducing desirable
practices into the development process. The ultimate goal is to
focus on a development process that fosters normative delibera-
tions, which in turn means to design products in such a way that
they will not undermine morally good user behavior, but rather
support desirable outcomes. Following this line of thought
promotes the idea that any deliberation, decision-making and
action within the context of software development as well as
handling the product throughout the entire lifecycle must be in
line with techno virtues reflection.

Thus, ethical issues need to also be addressed from the
engineers’ perspective. We need to foster practical reasoning with
regard to software engineering. On the one hand, this is a question
of curricula and education (cf. Shen et al.,, 2021; Anderson, 2017;
Tavani, 2013, esp. Chap. 3). On the other hand, it is relevant for
enabling or encouraging normative reasoning within the working
environment (Umbrello and Gambelin, 2022). Ethical deliberation
requires opportunities to explicate and navigate the context
between values, goals and specific requirements that guide

| (2022)9:191] https://doi.org/10.1057/541599-022-01206-4

ARTICLE

implementation (for an overview of goals in requirements
engineering, see van Lamsweerde (2001)). This skill should be
learned and practiced, esp. because normative competence is not
only an epistemic endeavor, which would mean that the main goal
is an increase in knowledge, but rather a technique: It is exercising
judgment, or in Vallor’s terminology, disposing of technomoral
wisdom. It must be emphasized that this power of judgment is also
an attitude. This enables the individual to acquire an ethical
awareness about the necessity for normative deliberation if the
developed products are to be moral, sustainable, or promoting
democratic values etc. This means, then, that practical reasoning is
not a purely cognitive process, but also a hexis: a stance towards
the world. We understand virtues (arete) rather in Aristotle’s
classic sense that a virtue (arete) is not only a result of habituation
(ethos), but also entails a krisis (decision) and a hexis (attitude) (cf.
Nida-Riimelin, 2020). In modern virtue ethics this threefold
constitution of virtues is often left out and virtues are reduced to
result from social habituation only (cf. McIntrye, 1981).

Normative deliberation requires autonomous thinkers who are
aware of their ability to integrate different normative reasoning
requirements into one judgment. This is why, any sense of being
externally determined or limited in one’s deliberation must be
reduced as much as possible, so that people develop their own
ideas. Developers need to be empowered and encouraged to not
reduce their thinking and development skills to technical
functionality only. In order for strong autonomous thinkers to
be effective, they must develop their own ideas and must not be
externally determined, neither by processes, roles nor hierarchies.
These favorable working conditions ensure developers are bound
to normative principles and to normative thinking because they
operate along processes that are enriched with ethical delibera-
tions. These conditions, ultimately, lead to the formation of a
work ethic that understands normative deliberations as a daily
work routine. Our approach, then, offers a process responsive to
the heterogeneity prevalent in software development and the
consequential lack of shared objectives in the profession. Both
issues are discussed in Mittelstadt (2019), who identifies the lack
of “common aims and fiduciary duties” as well as missing
“methods to translate principles in practice” as difficulties to
introduce ethical standards. Only development processes that are
instilled with ethical deliberations shape a professional ethos that
promotes good ethical behavior as a routine. Hence, rather than
Principlism we strive for desirable attitudes (arete) in jointly
supported work cultures (praxis).

Techno-ethical deliberation: How software steers normative
deliberations. If the software engineer is expected to deliberate
on normative issues and not only to focus on technical issues in
terms of feasibility and functionality, digital artifacts should be
understood as purporting or implying values itself. However, this
is not to be misunderstood as the digital product creating its own
moral values. Rather, the value attitudes of the respective designer
are incorporated in the digital artifact. Such an understanding of
technology is called the embedded values approach (Friedman and
Nissenbaum, 1997; Brey, 2000b; van Wynsberghe and Moura,
2013). In John Moor’s (2005) terminology: the subjects of this
analysis are ethical impact agents and ethical implicit agents, that
is, those software systems that either cause external negative
moral effects or those in which (distorted) moral expressions have
already been implemented. Accordingly, the analysis excludes
attempts to develop explicit and completely ethical agents, i..,
artificial agents that are supposed to be able to autonomously
perform deontic deliberations in a certain domain or across many
situations, i.e., agents that can deliberate morally and justify their
decision in a well-founded way.

Normative deliberations need to go beyond the value neutrality
thesis of technology. Only in doing so, are we able to understand
and think in a normative adequate manner about information
technology and good normative system requirements. Therefore,
it is crucial to debate the ontological particularity of digital objects
not only in technical terminology.

Information technology comprises preset products over which
the user has no complete control (cf. Hubig, 2015; Grunwald,
2015): Take washing machines, search engines or assistance
systems in robotics. They already contain many assumptions
about the water consumption, the power consumption or about
the placement procedures of the search results up to the external
design of a robot, which can be anthropomorphic or zoomorphic
and thus simulate a lively encounter. All these features are not
neutral insofar as they contain or convey values. The way in
which the user can interact with this kind of digital technology is
already partially predetermined by the technology itself which
means that the user’s autonomy is restricted in the interaction.
B.J. Fogg (2002) refers to this characteristic of many IT-systems as
persuasiveness insofar as the autonomy is affected by certain types
of social clues that are triggered by the integration of technology
within social interactions (e.g. social dynamics, social roles, etc.).
This concept may be partially transferable to classical technology
insofar as every technology requires certain behaviors, because
certain reactions are usually necessary for technology to be
functional. In the case of information technology, however, many
pre-formed properties and infrastructures already have certain
values which are not immediately obvious, and which cannot be
influenced from the outside (or only to a limited extent).

Additionally, information technology is implemented through-
out many domains of daily life and its determining force is often
quite invisible, impenetrable, and multidimensional and thus
difficult to grasp. Those phenomena are subsumed under the
concept of opacity (Brey, 2000a, 2000b; van den Eede, 2011). It is
claimed that information technology is of an opaquer nature than
many traditional tools, such as doors, hair dryers, or hammers.
Information technology is not restricted to one specific working
context, precisely because it can serve a variety of purposes. Just
think of the telephone receiver that one puts down so that one is
not reachable at a given moment. Surely that is not the intended
purpose of the telephone receiver. This surplus of purposes
(Rohbeck, 1993) makes an ethically defined scenario difficult
sometimes, since the use and orientation can change at any time
(Vallor, 2016). Even the speed with which software products are
developed makes them rather unique. Moreover, executing mind
work (Agar, 2019), information technology substitutes or
supports not only a pure physical force but is often placed
within the very core of humanity as such: It strikes into the
marrow of sociality, emotionality and reason. This can be
illustrated by information technology supporting communication
(e.g., social media or video calls) or decision-supportive analysis
and recommendation software assisting medical diagnosis,
application processes or parole conditions. Many information
technologies transform the way we live precisely because they
impact that which is genuinely human: how we express our
emotions, how we judge, how we evaluate trust relationships, and
much more. Thus, information technology can realign reciprocal
normative commitments that sustain our sociality (cf. Nida-
Riimelin, 2019). These are all very compelling reasons for
demanding and imposing ethical deliberation, but also for why
this endeavor is difficult and complex.

Hence, in the case of information technology, it remains
unclear in many cases which questions are the right ones to ask
and to subject to normative deliberation. This is precisely because
emergent technologies are not yet embraced as practices and thus
are not assignable to the stakeholders’ outcomes (Vallor, 2016).

| (2022)9:191] https://doi.org/10.1057/541599-022-01206-4 5

ARTICLE

Practices are fixed modes of actions that aim at specific desirable
values, such as to foster friendship or benevolence. Information
technologies are still too dynamic and hence do not present
options to act but rather different forms of life (Vallor, 2016;
Nida-Riimelin, 1996, 2009). Vallor (2016) put it nicely when
highlighting the fact that to ask whether “Is Twitter right or
wrong?” (p. 27) or even whether “T'weeting is right or wrong?”
(pp. 27-28) are meaningless, empty questions, since they cannot
take into account any particular existing contexts of shared
actions. To make this point clearer: The rightness of an action
cannot be determined by one single criterion or principle, the
action’s consequences or the agent’s motivation alone. The
desirability of the decision needs also to be evaluated against
existing valued structures and norms. An ethical deliberation has
to grasp questions such as: Does Twitter promote the value of
“caring”, “courtesy”, “friendship” if to take structuralist values
seriously: For example, questions such as which values need to be
taken into account and which practices need to be addressed
within communication platforms that allow for short statements?
How does Twitter respond to the demand of a respectful handling
of each other despite diversity? Therefore, in the context of many
ITs, it is not only necessary to ask about individual moral actions,
but about the moral goodness of whole forms of life (Nida-
Riimelin, 2005, 2009), i.e. to address them from an intersubjective
and collective point of view.

Indeed, there are some important issues that need to be taken
into consideration regarding the integration of ethical delibera-
tions into the daily work environment. Firstly, who do we need to
deliberate on ethical issues while developing and when should
this deliberation be conducted? Since this is a procedural
endeavor it needs to locate specific organizational moments in
which the deliberation should be conducted, e.g. in an agile work
environment, retrospectives or reviews might serve as an eligible
place (Umbrello and Gambelin, 2022). Another aspect, which is
also a procedural task, is to ask how such an ethical deliberation
might itself look like? The latter is not a question of software
engineering or requirement engineering as no requirements are
formulated beyond technical functionality (Vakkuri et al., 2021).
It is clear that good normative design must rest on both
procedural aspects taken together. Methods like ECCOLA take
the procedural aspect of implementing ethics into the develop-
ment seriously by introducing a card deck that displays issues
relevant to a specific ethic, such as AI or blockchain (Vakkuri).
Within this approach the rationale and justification of normative
deliberation, i.e. which values, norms or rules ought to be taken
into account, is left aside, since “[f]or every iteration, the groups
would select the ECCOLA cards they felt were the most relevant
for the requirements of that iteration” (Vakkuri et al., 2021, p.
11). While Vakkuri et al. embed ethics into processes using
familiar methods of software engineering it remains unclear what
guides such an ethical deliberation besides sheer luck of looking at
the right card at the right moment. Therefore, it is of great
importance to combine such a software engineering approach
with ethical frameworks that support the identification of relevant
normative aspects. For various societal subfields or branches so
called ethical frameworks exist ranging from medicine ethics (van
Bruchem-Visser et al., 2020) to ethics of technology, e.g. ETICA
(Stahl and Flick, 2011). Such frameworks rather focus on making
an ethical evaluation transparent than on discussing its correct
implementation. Besides academic approaches, business canvas
exist that try to give practical guidance and try to tackle
normative deliberation in a less complex manner, e.g. the Open
Data Institute. This is not the place to discuss the findings,
benefits or shortcomings of ethical frameworks. Still, the problem
remains that only the cornerstones of deliberation can be
articulated rather than an exact procedure regarding how we

6

need to communicate and discuss values or how values are to be
weighted. Therefore, the performance of evaluative rationality
cannot be described due to the very nature of the matter: We
cannot capture the procedure of normative reason, but only
exercise it. This exercise, in turn, must be trained, which is why
underdetermined principles, values and laws are nevertheless of
great help as orientation and provide guidance. Taking a stance is
strenuous, but it belongs to the core of moral autonomy.

Embedding ethics into software development. In the domain of
software development, agile methods (Scrum, extreme Pro-
gramming, Essence, etc.) offer many features that enable the
development of ethically informed products throughout the
entire development process. If ethical deliberation is to become a
part of software development culture, it must be compatible with
the processes used by software developers, designers, and
operators; any other approach bears the risk of ethics to be
ignored or reduced to a mere window-dressing effort. Ethical
deliberation of information technology (IT) requires in-depth
knowledge of the technical feasibility of normative criteria.
However, even if the required expertise existed, it has, so far, not
been explicitly integrated into an entrepreneurial culture,
although some scholars have begun to tackle this question.
Umbrello and Gambelin (2022), for instance, propose a systems-
theoretical approach to the interactions and repercussions of
individual domains. In this way, they emphasize that the devel-
oper must also see herself as part of the system. Likewise, the
developer must focus on the various facets of the digital-technical
system, i.e., cannot view the artifact exclusively as a technical
object. Our approach is grounded in rationality theory to firstly,
highlight the structures of thought to which different spheres of
action belong, and, secondly, to emphasize their logical con-
sistency and practical coherence (Nida-Riimelin, 2000, 2020).
This enables an approach of descriptive-sociological structural
analyses as well as discussing normative questions (Nida-
Riimelin et al., 2021).

Umbrello and Gameblin (2022) show how techniques
suggested by value sensitive design may neatly be integrated into
agile processes using the method of “value flows and dams” as an
example. We do agree with their overall argument. However, we
want to justify why agile processes—on any level—are particularly
suited for the integration of ethical deliberation due to their
empowerment aspects. While this article does not explore any
specific concepts, future research may systematize ethical
deliberations by highlighting the relevant concepts we need to
consider when designing software. Broadly speaking, the focus
needs to be put on arguments and deliberations, not only on
methods to gather more information. To this end, the difference
between theory, method and techniques must be illuminated and
their place in the agile process must be determined.

Ethical deliberations must be integrated into work processes in
such a way that they are perceived as something positive.
Individual software engineers need to be empowered and
encouraged to reason normatively and be trained in ethical
communication skills. We focus on software engineers because we
address ethical issues that result from technical designs: Finding
technical solutions for normative questions will not solve all
ethical questions related to information technology. It will,
however, promote more thoughtful designs and a responsible art
of engineering in general. At the same time, it must be
emphasized that those deliberations require structural embed-
ding, but cannot be replaced by it, i.e, what is required is a
process that enables and fosters ethical thinking. Therefore, we
suggest including normative deliberation into development
processes and thus make it part of documentation as well as

| (2022)9:191] https://doi.org/10.1057/541599-022-01206-4

ARTICLE

quality assurance. Ideally, this approach links normative
deliberation to the whole software lifecycle, for example by
embedding agile ethics into DevOps methods, which integrate the
development and the operation of software into a single
methodology (Ebert et al., 2016).

Such a proactive stance towards information technology is
worked out e.g., by Brey (2012), Floridi (2008, 2011; Russo, 2012)
and Reijers and Coeckelbergh (2020). They highlight, indepen-
dent of their different theoretical foundation, the ability to
influence real-life issues by changing technical design features. In
this way, they expand the scope of action of the individual
software engineer. A similar approach called Values in Design or
Ethics by Design (Simon, 2016) has become popular since the
1990s. This ethical push emerged primarily in software
engineering (van den Hoeven et al., 2015) to enable the
deliberation of embedded values. The idea is that technology
conveys values that have lifeworld implications, more precisely,
that these values have moral consequences in the real world.
Furthermore, these values implicitly embedded in technology
reflect and perpetuate the attitudes and actions of its developers.
Therefore, the focus throughout the entire development and
deployment process is put on the project team’s actions and
decisions, which includes the software developer. Value sensitive
design (Friedman et al., 2002), Ethics by design that primarily
addresses Al issues (Richards and Dignum, 2019), values in
design (e.g. Manders-Huits, 2009) or values in play (Flanagan
et al,, 2008; Flanagan and Nissenbaum, 2014) are similar methods
to approach the embeddedness of values in digital technical
products. They all oppose (strong) technological determinism and
affirm individual autonomy to control technology and its
outcomes. Hence, software engineering teams and companies
have at least partial power and control over the design of their
digital products, i.e., software engineering can intentionally exert
influence on individuals (cf. van den Hoeven, 2015). It is
important to stress that incorporated values do have some sort of
moral impact on real-life structures and are therefore subject to
normative evaluation.

Embedded values approaches are a very practical enterprise
that is intended to support the software developer in translating
normative attitudes into technical objects. It can therefore be
understood as a form of hermeneutics. Since the approach
originates from software engineering, it is less theoretical or meta-
theoretical, but brings with it a plethora of individual cases, which
in themselves do not provide any real normative guidance (e.g.,
discussing one particular issue such as privacy by design or
accountability). Thus, those approaches remain rather a second-
degree decision aid, even in the case of value sensitive design that
presents the most theoretical fundament (Friedman and Hendry,
2019). As values and normative principles are identified and
prioritized, which is a theoretical and empirical endeavor,
methods that integrate values in design will become necessary
and helpful (cf. Grunwald, 2015). However, little thought is given
to the work environment or competences that are needed for such
an approach to be successful (cf. Mittelstadt, 2019; Umbrello and
Gambelin, 2022).

Therefore, introducing ethical deliberation into the software
development process from the very beginning is strongly
recommended when building ethically sensitive machines and
software. Of course, institutional support for ethical behavior is
not only a question for software producers or developers (Gogoll
et al,, 2021). Yet, in comparison to other professional ethics such
as medical ethics or business ethics, software engineering ethics
needs to address peculiar demands in dealing with normative
aspects simply because actions and decisions by software
engineers are instantly translated into technical requirements
and thus are so often perpetuated millionfold. Likewise, ethics for

software systems cannot be defined exclusively in terms of a social
domain with its associated value systems, as is possible, for
example, in business ethics or medical ethics. Due to the diverse
use in the different areas, normative orientation standards must
be reconsidered and adapted. Moreover, since software engineer-
ing lacks institutional sanctions and an overall professional
commitment to consider public welfare (Abbas et al., 2019), it is
essential that the development team itself is capable of knowing
how to guide itself through normative concerns. Hence, ethical
deliberation and technical skills are competences that are required
to achieve good normative design.

Thus, a humanistic, anticipatory ethics of information
technology with regard to a professional group (software
engineers) is needed, which includes techno-ethical judgment
and approves of a procedural character such as rational discursive
moments (Ott, 2005). In order to understand such a humanistic
approach as professional ethics, ethics must be understood as a
guided practice that strengthens an ethos, i.e., habits that most
professionals recognize as their purposes for action. For this, one
needs a proactive ethics, i.e., the understanding that normative
considerations must play a role from the very beginning and
throughout the whole product lifecycle in order to be able to
specifically develop normatively desirable artifacts. Since technol-
ogy falls into the realm of possibility and uncertainty, and is thus
intrinsically dynamic, we can only capture this through a
processual ethics, ie., rethinking the conditions, or to use
Shilton’s (2013) designation to introduce value levers, that make
such a work ethic possible. This means that companies need to
empower software engineering teams to undertake ethical
deliberations, i.e., taking values, social goals and collective goods
seriously in their considerations. In doing so, software engineers
are bound to reflect in an ethical manner since ethical
deliberations are part of the management process and thus may
become a daily routine. This may overcome the problem of lack
of commitment as identified by Mittelstadt (2019). Moreover,
bringing normative deliberation into a systematic schema that is
directly focused on software systems (Zuber et al., 2020) will
reduce moral distress and help to overcome anxieties on the
developers’ side. This will help establish a professional ethical
approach and institutionalize practices. Precisely because Prin-
ciplism, in terms of setting forth certain desired value attitudes to
which a digital product should be aligned, is not sufficient for
practical development work (Mittelstadt, 2019). On one hand,
there is a need for the exercise of techno-ethical judgment and, on
the other, for procedural integration into management structures.
The latter is now discussed.

Implementing ethics in the agile software development
environment

Although Talcott Parsons made the concept of agility part of
organizational theory as early as the 1950s, it had only a limited
influence on the 2001 Agile Manifesto set up by Kent Beck and
other experienced software developers (Forster and Wendler,
2012). In their manifesto they formulated four basic value slogans
as the essence of agility (see http://agilemanifesto.org):

Individuals and interactions over processes and tools,
Working software over comprehensive documentation,
Customer collaboration over contract negotiation,
Responding to change over following a plan.

The Agile manifesto prioritizes individuals, working software,
customer collaboration, and responding to change over a strict
plan that needs to be followed, processes that need to be imple-
mented, or documentation that needs to be filed. The goal of
these principles is to provide simple responses to constantly

| (2022)9:191] https://doi.org/10.1057/541599-022-01206-4 7

http://agilemanifesto.org

ARTICLE

Stakeholder(s)

Sprint
Planning

Product Owner

Product
Backlog

X

Davelopers

Sprint
Backlog

X

Scrum Master

Fig. 1 A schematic view of Scrum.

changing external requirements and thereby avoiding costs gen-
erated by finalized but unsatisfactory software products—whether
this is because of changing requirements, contexts, technological
shortcomings or non-functional problems, which are often rooted
in disregarding values. The objective formulated by agile methods
is to produce working products while taking into account con-
stantly changing environments. In agile processes, working (i.e.,
executable) products can continuously be presented to the cus-
tomer who may test and evaluate the software immediately so
that the current status quo of the product can serve as a basis for
further deliberations (Flewelling, 2018). The idea of agility is
rooted in the belief that a software system can hardly be specified
up front and that it will always be necessary to react to unex-
pected changes, because of unforeseen environmental impacts,
technological development or simply because the customer
changed their mind. Thus, agility can be defined as provided by
the Advanced Research Programs Agency (ARPA) and the Agility
Forum as “the ability to thrive in an environment of continuous
and often unanticipated change” (Sarkis, 2001, p. 88).

Due to its flexibility, agile processes have become the de facto
standard for software development in non-regulated industries in
recent years. According to a survey by digital.ai “95% of
respondents report their organizations practice Agile develop-
ment methods” (Digital.ai, 2020). The field of software engi-
neering leads with about 37% of teams using the agile method to
develop software. Arguably, respondents in these studies may
overstate the level of agile adoption, e.g., how many teams are
actually adhering to the complete toolkit of agile methods vs. only
cherry-picking some aspects of it. Yet, it seems accurate that
agility has “become a mainstream development methodology”
(Shim and Lee, 2017) or even “the new normal”—especially when
we take into account that many companies plan to adopt agile in
the short and medium future (Koning and Koot, 2019; Hewlett
Packard, 2017). Agile development methods such as Scrum,
Extreme Programming or Kanban were used to anchor individual
techniques such as user stories or pin boards in organizational
cultures. By implementing them in work processes classic hier-
archization (top-down approach) can be avoided in order to
realize the values of agile programming. To analyze how ethical
deliberations can be integrated in agile programming, we focus on
one specific and also the most common (Digital.ai, 2020) agile
process, Scrum, as depicted in Fig. 1. (cf. Schwaber and Beedle,
2002; Cao and Ramesh, 2008; Schwaber and Sutherland, 2011).

As outlined above, the core idea of Scrum is that customer
requirements and development conditions will change. The best
way to satisfy a customer is to deliver small incremental releases
that will slowly converge with the customer’s wishes in fixed time
intervals, so-called sprints that usually last 2-4 weeks. (It is not by
chance that this incremental approach also alleviates a funda-
mental problem of software engineering, namely the integration
of different subsystems.) A Scrum consists of a product owner,

8

Daily
Scrum

Sprint
Review

Releasable
Increment

2-4 weeks

who interfaces with the stakeholders (mainly the customer and
the users. However, this could also include representatives of the
government, NGOs or other groups with an interest or stake in
the final product (Sverrisdottir et al., 2014)) and represents their
interests; developers who implement the functionality; and a
scrum master who is responsible to remove any work impedi-
ments and ensures that the development process runs smoothly.
While in traditional development processes requirements are
often prioritized at the beginning of the project, agile projects
often change the priority of requirements or even remove them in
their entirety. In Scrum, the product owner will be part of every
sprint planning meeting and jointly with the developers decide
which requirements will be part of the next iteration. Require-
ments that are not selected for the next sprint remain in the so-
called product backlog, essentially a list of requirements, and will,
if they have not become obsolete, implemented in one of the next
sprints. It is important to note that the sprint planning meeting is
time-boxed: for a 2-week sprint it should last 4 h and up to 8 h for
a 4-week sprint. This means that the deliberations must come to
an end and a decision must be reached. After this, if no major
problems occur, the development team could focus on delivering
code and not be stressed by making new decisions every day.

Of specific interest to our work is when and how requirements,
which are normative in nature, are translated from being values
or principles to concrete requirements to be implemented by
developers. It is precisely here where the scope of normative
deliberation can be widened, and, consequently, values and atti-
tudes must be addressed and made explicit. However, the Agile
Manifesto (2001) did not address ethical issues when introducing
its agile principles. It does, for instance, highlight the need for the
customer’s or the product owner’s positive attitude towards
changing requirements and fluid prioritization in exchange with
the software team; but this does not explicitly include public
interests (Judy, 2009). This results in an incongruity in the for-
mulation of technical, economic, and ethical requirements.
Besides the integration of ethical deliberations in an agile work
culture, it may also be important to foster moral attitudes such as
whistle blowing or ethical peer pressure which are often neglec-
ted, after scandals such as Cambridge Analytica.

In the following, we will offer five reasons to illustrate why agile
processes should be considered as a well-equipped platform to
enable ethical deliberation during the development of software
products.

Agile is already widely spread in the industry. Introducing any
approach to implementing ethical deliberation to software
development that would require practitioners to completely
change their way of working would be an uphill battle. Funda-
mental changes to a management culture are costly (both in terms
of money and time) and require strong commitments from

| (2022)9:191] https://doi.org/10.1057/541599-022-01206-4

ARTICLE

developers, designers and management (Gablas et al, 2018).
Morality certainly is an important factor to consider in software
development, but it is by far not the only one. Software engineers
and designers want to build products; and companies have to
create cash flow. Therefore, instead of creating an entirely new
way of doing business, we suggest including ethics into a working
style that is already widely used and has features and capabilities
that promote and foster ethical deliberation.

In order to avoid transition costs and minimize costs of
implementation in general, we should thus look for ethical
deliberation to be implemented in an already existing manage-
ment system. While agile offers more than just a high rate of
adoption, prevalence is one of the necessary conditions when
trying to put theoretical considerations into actionable practice. If
a method of developing ethically guided technical products
required a fundamental change in a company’s workflow, it is
hard to imagine that it would succeed. The agile method being
widespread in software engineering makes a symbiotic approach
auspicious and more likely to have a positive effect on
development in the near future. Agility being anchored in the
software industry eases the introduction of ethical deliberation
because it is integrated into a well-known, learned, and already
working method of development. Consider, for instance, the fact
that agile already has a well-defined process of meetings and
planning. It seems obvious that the addition of ethical delibera-
tion and the documentation of it will decrease the friction as
opposed to the introduction of new processes.

Furthermore, since the specificity of a potential ethical issue
depends on the concrete product and situation which makes a
one-size-fits-all approach to tackle ethical issues during the
development impossible, the use of an already implemented
development regime offers the advantage of providing risk-free
leeway for testing out various mechanisms to further ethical
deliberation within the agile framework. For instance, a company
could experiment with the introduction of ethical deliberation
within teams as a follow-up to the daily sprint (a regular short
meeting) every fortnight or add user stories (requirements) that
deal with the experience of minorities, different perspectives etc.
Thus, firms would be able to learn more about when and to what
extent ethical deliberation is necessary depending on a project’s
context, its domain as well as team size, seniority of developers,
and other relevant factors (cf. Spiekermann and Winkler, 2020).
This could all be done with comparatively little additional effort
for the developers since it would be implemented into the already
existing framework of agile.

It is important to note that for agile frameworks to work, strong
support of management is a necessity (Dikert et al., 2016). The
same is true for ethical deliberation within the process. If ethics is
perceived as a part of agile software development, hopefully, it can
also piggyback on management’s support of agile in general.

Flat hierarchies offer autonomy to developers and designers.
As we have argued above, ethical deliberation requires that
software developers have certain degrees of freedom in their
work. In an environment in which developers strictly follow
orders, work on a narrowly defined problem, and are thus isolated
from interactions with other steps or actors in the development
process, there is little room for ethical deliberation other than on
the level of management. However, the information asymmetry
that management faces especially in the IT domain, might render
many ethical issues which might become obvious during the
development process inaccessible to the decision makers at
management level so that they remain unsolved. If we want to
introduce moral attitudes within the development process and
include developers in the act of detecting ethical pitfalls,

incorporating stakeholder values, and developing normative
desirable software, we must provide developers with greater
freedom in the development process. Agile as a process offers just
that. In fact, empowerment and autonomous decision making are
seen as a key factor in regard to forming truly agile teams (Kidd,
1994; van Oyen et al.,, 2001; Mudili, 2017).

If software developers and designers work in clearly defined
hierarchies with a narrowly defined scope of action, there is little
to no place for critical thinking. For example, employees who
expect primarily monotonous work are more likely to accept
organizational misconduct or attempt it themselves (cf. Staffel-
bach et al, 2014). In such contexts, critical thinking and the
additional motivation required to attempt this kind of thinking
are perceived as external factors and therefore something that can
be delegated. Conversely, intrinsically motivated employees need
a working environment that offers them varied tasks, enables
them to have a good relationship with their colleagues and
superiors, and provides them with a safe environment. This
means that employees need more room of action so that they can
feel autonomous and respected which in turn positively
influences motivation (Noll et al, 2017; Law and Charron,
2005; Melo et al., 2012). Furthermore, Stein and Untertrifaller
(2020) found evidence in a laboratory experiment that “workers
who prefer to work in an ethical work environment perform
better if they are also responsible for it, compared to a situation
where it was imposed on them”—underlining the effect of
autonomy and responsibility on performance.

Autonomous persons are more likely to assume responsibility
because they realize that they have the option to decide by
themselves—to structure their life according to their well-justified
choices. Psychologically empowered employees strengthen agile
teams because of their acknowledged cognitive abilities that
underpin the relationship of the individual to its work such as
meaningfulness, competence, self-determination, and impact
(Breu et al., 2002; Muduli, 2017). This aspect cannot be over-
emphasized, because people must be able to integrate themselves
into a social system according to their abilities. Therefore,
employees must experience integration as cooperation and not as
oppression (cf. Boes et al, 2020a, 2020b). Psychological
empowerment in turn needs to be structurally integrated to
enhance resilient individuals. This is exactly where agility comes
into play. An illustrative example is the fact that the more
supervised employees are, the less likely they are to trust other
individuals (Grund and Harbring, 2009). However, mutual trust
allows for a more respectful and equal treatment of each other
which in turn fosters a work culture that supports cooperative
behavior and thus needs to rely less on contractual or
institutionalized procedures (Mulki et al, 2006; Lester and
Brower, 2003; Chow et al., 2009).

Figure 2 shows the relationship between these concepts. If
developers are structurally empowered their self-perception as
respected autonomous beings and the feeling of responsibility
increase their motivation (Valentine and Fleischman, 2008;
Koronios et al., 2019). This is a crucial cornerstone of ethical
deliberation. In order to motivate people to look for ways to build
normative desirable software products, we must provide the
opportunity to deliberate, decide and execute the code based on
that justified decision. In fact, if a software developer has no other
choice but to implement software in a specifically predetermined
way, we exclude the developer from the process of designing
ethically sound software and have to rely on upper hierarchies to
simply get the product normatively correct from the start. Hence,
it will be more likely that ethical issues will only be recognized ex
post. This, in turn, will either lead to them being ignored or
require costly changes to alter the product after completion (Beck
and Andres, 2004, Ch. 13; Brey, 2012).

| (2022)9:191] https://doi.org/10.1057/541599-022-01206-4 9

ARTICLE

£aychologleal || »| Responsibility
Empowerment
1 Autonomy #-| Ethical Deliberation > Benle’re::?sri:\nanve
Structural Intrinsical
Empowerment > Motivation

Fig. 2 Empowerment, autonomy, and ethical deliberation.

Ethical deliberation needs functioning teams and participation.
The third aspect why agile methods lend themselves to be
enriched with ethical deliberation is the emphasis that is put on
the value of teamwork and the constant sharing of knowledge.
This is of great importance when we want to embed a procedure
that is based on rationally discursive elements to formulate,
prioritize, and decide upon values and their technical imple-
mentation. Additionally, the procedural approach will promote
ethical habits within the software community, i.e., establish cri-
tical thinking and value explorations as normal every-day
behavior with regard to designing and developing digital pro-
ducts. This is precisely what Vallor (2016) points to when she
discusses virtues as the foundation of ethically sound software
systems. Virtues form an ethos that stabilizes and structures good
normative software engineering skills. This results in the creation
of an environment in which developers not only think in terms
of technical functionality but also in terms of ethically desirable
features and products.

In agile processes, teams are given a high degree of autonomy,
being referred to as “self-organized teams” in Scrum and
“empowered teams” in extreme programming. As a best-case
scenario, teams with high maturity and experience can indepen-
dently organize their work and choose which resources should be
applied to what part of the development task and at what time.
Work experience and working with peers have also been
empirically connected to positively influence ethical decision
making (Craft, 2013; Chow et al., 2009; Flynn and Wiltermuth,
2010). An agile team needs to have the ability to understand and
implement the items in the backlog which often leads to the fact
that a team is to be composed of several people with different
backgrounds and skills. The fact that the team has a certain degree
of autonomy regarding the planning of the work requires constant
communication between team members so that every single team
member has to have at least a basic understanding of the skills of
their teammates as well as the knowledge of what they are working
on and how this integrates with their own work. Knowledge silos
are thus less likely to emerge. Ethical deliberation also relies on
communication among team members and the disruption of
knowledge silos facilitates identifying ethical issues that emerge
through the interaction of different parts of software. The obvious
advantage in agile methods lies in the fact that teamwork is
already at the core of the methodology and thus does not need to
be artificially introduced, e.g., as a special ethics meeting between
developers who otherwise do not share their work or have no
personal connections. Interestingly, the strengthening of team-
work through the process of mutual discussions during ethical
deliberations could also, in turn, provide a positive effect on the
promotion of agility among developers (Mudili, 2017).

Agile processes promote techno-ethical realism. Due to the
iterative approach and the constant increments of software,
ethical deliberations tend to be less abstract because reasoning is
more concrete and object-focused: Since the goal of each sprint is
a “working prototype” certain practical consequences of the
design are already tangible during the development process. As

10

outlined above, within the agile process incremental releases are
continuously delivered so that unsatisfactory elements due to
technological problems or in regard to usability can be detected
early on and changed. Thus, many difficulties in handling and
operation can be solved immediately. It also ensures that any
extensive and rigid requirements set at the beginning of the project
are constantly adjusted, weighed or, if necessary, dropped in order
to be able to develop an adequate product. This can also be
understood as a conservative stance within technology assessment
methodologies—a stance that puts more focus on generic nor-
mative issues rather than on speculative ones (Brey, 2012), i.e., big
data refers to privacy issues: Due to the amount of data required,
big data inevitably leads to ethical and legal deliberations in
dealing with privacy, be it data storage and the corresponding
questions of data security and accessibility or how this data has to
be collected. Privacy is therefore a generic ethical issue. The de
facto handling of existing software guides further thinking and
specifies abstract ideas. Ethical deliberations benefit from this
because normative concerns can be localized and responded to
more directly through this step-by-step development. This, in
turn, supports reasoning on normative questions at each level of
abstraction without going astray, i.e., technological thinking about
war drones does not entail general moral questions on the issue of
a “just war” which is located at a political level. Normative
expectations thus become tangible and less speculative, as they are
aligned with concrete objects. Requirements that have not been
met are therefore made visible, and requirements that do no
longer seem reasonable because they leave the considered domain
can be identified and rejected. In this sense, the ethical object-
orientation emphasizes a techno-ethical realism.

Sprints offer a salient endpoint to deliberation. Another
advantage that agile processes offer are the clearly structured time
frames that are tied to specific deliverables (“working prototype at
the end of the sprint”). Since normative deliberations, such as
factual knowledge, can be inexhaustible, people tend to find
themselves in a position in which they search for the perfect
normative design or, if the deliberation is on an issue close to their
heart, focus on the perfect implementation of every single detail.
The psychological burden that one “has not done enough” might
be an impediment that hinders the continuation of development.

While the statement that trade-offs matter in software design
as they do in life is certainly trivial, it is still important to keep in
mind that ethical deliberation is itself subject to empirical
constraints. Among these are a realistic account of human
(psychological) limitations and the economic costs of a
(prolonged) ethical deliberation, namely in the form of search
costs. It seems obvious that it is not sensible to spend a long time
deliberating on small details with little impact just to aim for a
maximization of the normative good design. Of course, the higher
the stakes, the more time should be spent deliberating—but a
final decision needs to be made eventually. Time and the
associated costs are a limiting factor in every software develop-
ment process and the time attributed to the deliberation of ethical
issues should be spent wisely. Obviously, any deliberation that

| (2022)9:191] https://doi.org/10.1057/541599-022-01206-4

ARTICLE

claims to produce any practical impact must (eventually) come to
an end. Between the two extremes—an omniscient being who
does not need to deliberate at all and imperfect beings with
limited knowledge such as humans, who could deliberate
endlessly—there is a sweet spot, the perfect balance between
advantages of deliberating about how to implement normative
features into software and the costs of prolonging deliberation
(time to market, etc.). In a way this mirrors the debate in
psychology and economics between the two concepts of
“maximizing” and “satisficing” which dates back to Simon
(1956). If deliberation is a process “that begins in ignorance
and ends in knowledge” (Johnson, 2007) and given the fact that a
complete and maximizing ethical deliberation is not realistic, we
must look for a reasonable “end point” at which the deliberation
stops. The concept of satisficing calls this the “aspiration level.”
This level serves as a stopping rule once a certain level of “good
enough” is achieved. Here, choosing the first alternative that
satisfies an aspiration level, e.g., the considered value has been
given proper and “good enough” consideration, instead of a
continued deliberation process might be a more feasible solution.

Agile processes with their concrete focus on time frames offer
clear endpoints at which deliberation must come to an end and a
decision must be made: either stop deliberating when any issues
seems sufficiently explored for the time being or, if deliberation
needs to continue, actively (and intentionally) push it forward to the
next sprint. Especially with regard to normative issues and the
assumption of responsibility resulting from recorded and docu-
mented decisions, external guidelines help to reach a decision when
it is due. In a sense this feature of agile processes lies within the
domain of moral design (Gigerenzer, 2010), which focuses on the
creation of suitable environments for ethical deliberation to prosper
rather than to focus on the values of any single developer.

Concluding remarks
In this paper, we argued that agile development processes can
include and enhance ethical deliberation due to certain features of
this particular organizational style—among them the focus on
autonomy of the engineer promoted by flat hierarchies, the existing
focus on team collaboration, the provision of techno-ethical realism,
and the introduction of clear endpoints for (ethical) deliberations.
While it is a promising idea that a widespread development
style can foster ethical deliberation during the development
process, it is also necessary to think about how, when, and who
must tackle these questions within management (Umbrello and
Gambelin, 2022). It is also necessary to think about the possibility
of formalizing ethical procedures regarding generic as well
structural ethical topics and implement them within the agile
framework.This calls for further empirical research which needs
to test the implementation of ethical deliberation into agile, e.g.
which scrum ceremonies are particularly apt to foster delibera-
tions, to monitor design choices and to increase feedback with
stakeholders. Furthermore, ethically informed engineering has to
entail continuous observation and possibly alteration of digital
artifacts throughout their entire life cycle focusing on normative
good design via DevOps.

Received: 19 October 2021; Accepted: 16 May 2022;
Published online: 06 June 2022

References

Abbas AE, Senges M, Howard RA (2019) A Hippocratic Oath for Technologists.
Next-Generation Ethics: Engineering a Better Society, 71 in: Abbas AE (ed)
Nextgenerationethics: Engineering a better society. Cambridge University
Press, pp. 71-81

Agar N (2019) How to be human in the digital economy. MIT Press

Anderson C (ed) (2017) Overcoming challenges to infusing ethics into the devel-
opment of engineers: Proceedings of a workshop. National Academies Press

Beck K, Andres C (2004) Extreme Programming Explained: Embrace Change
Second Edition. XPSer

Boes A, Giil K, Kampf T, Lithr T (2020) Empowerment als Schliissel fiir die agile
Arbeitswelt. In: Gestaltung vernetzt-flexibler Arbeit. Springer Vieweg, Berlin,
Heidelberg, pp. 89-102

Boes A, Giil K, Kdmpf T, Lithr T (eds) (2020) Empowerment in der agilen Arbeitswelt:
Analysen, Handlungsorientierungen und Erfolgsfaktoren. Haufe-Lexware

Breu K, Hemingway CJ, Strathern M, Bridger D (2002) Workforce agility: the new
employee strategy for the knowledge economy. J Inf Technol 17(1):21-31

Brey P (2000a) Disclosive computer ethics. ACM Sigcas Comput Soc 30(4):10-16

Brey P (2000b) Method in computer ethics: towards a multi-level interdisciplinary
approach. Eth Inf Technol 2(2):125-129

Brey PA (2012) Anticipatory ethics for emerging technologies. Nanoethics 6(1):1-1

Briand L, Bianculli D, Nejati S, Pastore F, Sabetzadeh M (2017) The case for
context-driven software engineering research: generalizability is overrated.
IEEE Softw 34(5):72-75

Cao L, Ramesh B (2008) Agile requirements engineering practices: an empirical
study. IEEE Softw 25(1):60-67

Cho J (2008) Issues and challenges of agile software development with SCRUM.
Issues Inf Syst 9(2):188-195

Chow WS, Wu JP, Chan AK (2009) The effects of environmental factors on the
behavior of Chinese managers in the information age in China. J Bus Eth
89(4):629-639

Coeckelbergh M (2021) AI for climate: freedom, justice, and other ethical and
political challenges. AI Eth 1(1):67-72

Craft JL(2013) A review of the empirical ethicaldecision-making literature: 2004-
2011. J bus ethics 117(2):221-259

Dancy J (2004) Ethics without principles. Oxford University Press on Demand

Dancy J (2018) Practical shape: a theory of practical reasoning. Oxford University
Press

Digital.ai (2020). 14th Annual State of Agile Report. State of Agile https://explore.
digital.ai/state-of-agile/ 14th-annual-state-of-agile-report

Dikert K, Paasivaara M, Lassenius C (2016) Challenges and success factors for
large-scale agile transformations: a systematic literature review. J Syst Softw
119:87-108

Ebert C, Gallardo G, Hernantes J, Serrano N (2016) DevOps. IEEE Softw
33(3):94-100

Flanagan M, Howe DC, Nissenbaum H (2008) Embodying values in technology:
theory and practice. Inf Technol Moral Philos 322:24

Flanagan M, Nissenbaum H (2014) Values at play in digital games. MIT Press

Flewelling P (2018) The Agile Developer’s Handbook: get more value from your
software development: get the best out of the Agile methodology. Packt
Publishing Ltd

Floridi L (2008) Foundations of information ethics in: Himma KE, Tavani HT
(Eds) The handbook of information and computer ethics. John Wiley & Sons,
pp. 3-25

Floridi L (2011) A defence of constructionism: philosophy as conceptual engi-
neering. Metaphilosophy 42(3):282-304

Flynn FJ, Wiltermuth SS (2010) Who's with me? Falseconsensus, brokerage,and
ethical decision making in organizations. Acad Manage] 53(5):1074-1089

Fogg BJ (2002) Persuasive technology: using computers to change what we think
and do. Ubiquity 2002:2

Forster K, Wendler R (2012) Theorien und Konzepte zu Agilitéit in Organisationen.
Dresdner Beitrage zur Wirtschaftsinformatik, NR. 63/12

Friedman B, Nissenbaum H (1997) Software agents and user autonomy. In Proceed-
ings of the first international conference on Autonomous agents, 466-469

Friedman B, Kahn P, Borning A (2002) Value sensitive design: theory and meth-
ods. University of Wahington technical report, pp. 2-12

Friedman B, Kahn PH, Borning A (2008) Value sensitive design and information
systems in: Himma KE, Tavani HT (eds) The handbook of information and
computer ethics. John Wiley & Sons, pp. 69-101

Friedman B, Hendry DG (2019) Value sensitive design: shaping technology with
moral imagination. MIT Press

Gablas B, Ruzicky E, Ondrouchova M (2018) The change in Management Style
during the course of a project from classical to the agile approach.] Com-
petitiveness 10(4):38-53

Gigerenzer G (2010) Moral satisficing: rethinking moral behavior as bounded
rationality. Top Cogn Sci 2(3):528-554

Gogoll J, Zuber N, Kacianka S, Greger T, Pretschner A, Nida-Riimelin] (2021)
Ethics in the software development process: from Codes of Conduct to
Ethical Deliberation. Philos Technol 1-24

Grund C, Christine H (2013) Trust and control at the workplace: Evidence from
representative samples of employees in Europe.] Econ Stat (Jahrbuecher fuer
Nationaloekonomie und Statistik), 233(5-6) 619-637

Grunwald A (2015) Technology assessment and Design for Values. Handbook of
ethics, values, and technological design, pp. 67-86

| (2022)9:191] https://doi.org/10.1057/541599-022-01206-4 11

https://explore.digital.ai/state-of-agile/14th-annual-state-of-agile-report
https://explore.digital.ai/state-of-agile/14th-annual-state-of-agile-report

ARTICLE

Grunwald A (2018) Technology assessment in practice and theory. Routledge

Harris T (2016) How technology Hijacks people’s minds—from a magician and
Google’s design ethicist. Medium Mag. https://medium.com/thrive-global/
how-technology-hijacks-peoples-minds-from-amagician-and-google-s-
design-ethicist-56d62ef5edf3

Hewlett Packard (2017) Agile is the new normal: adopting Agile project man-
agement. Hewlett Packard Enterprise Development LP

Hubig C (2015) Die Kunst des Moglichen 1. Transcript-Verlag

IEEE (2020) Draft standard for model process for addressing ethical concerns
during system design 7000TM/D3. IEEE

Ijsselsteijn W, De Kort Y, Midden C, Eggen B, Van Den Hoven E (2006) Persuasive
technology for human well-being: setting the scene. In: International con-
ference on persuasive technology. Springer, Berlin, Heidelberg, pp. 1-5

Johnson RN (2007) Prichard, Falk, and the end of deliberation. Can] Philos
37(Suppll):131-147

Judy KH (2009) Agile principles and ethical conduct. In: 2009 42nd Hawaii
international conference on system sciences. IEEE, pp. 1-8

Kidd PT (1994) Agile manufacturing: forging new frontiers. Addition-Wesley,
England

King J, McCrudden CJ (2017) The Dark Side of Nudging: The Ethics, Political
Economy, and Law of Libertarian Paternalism. Hart Publishing

Koning T, Koot W (2019) Agile Transformation: KPMG Survey on Agility. KPMG.
Retrieved from https://assets.kpmg/content/dam/kpmg/nl/pdf/2019/advisory/
agile-transformation.pdf

Koronios K, Kriemadis A, Dimitropoulos P, Papadopoulos A (2019) A values
framework for measuring the influence of ethics and motivation regarding
the performance of employees. Bus Entrep J 8(1):1-19

Law A, Charron R (2005) Effects of agile practices on social factors. In: Proceedings of
the 2005 workshop on human and social factors of software engineering, pp. 1-5

Lester SW, Brower HH (2003) In the eyes of the beholder: the relationship between
subordinates’ felt trustworthiness and their work attitudes and behaviors. |
Leadersh Organ Stud 10(2):17-33

Macintyre A (1981) After virtue. University Press of Notre Dame, Notre Dame

Manders-Huits N, Zimmer M (2009) Values and pragmatic action: The challenges
of introducingethical intelligence in technical design communities. Int Rev
Inf Ethics 10, 37-44

Mathur A, Acar G, Friedman M]J, Lucherini E, Mayer], Chetty M, Narayanan A
(2019) Dark patterns at scale: findings from a crawl of 11K shopping web-
sites. Proc ACM Hum-Comput Interact 3(CSCW):1-32

Mathur A, Kshirsagar M, Mayer] (2021) What makes a dark pattern... dark?
Design attributes, normative considerations, and measurement methods. In:
Proceedings of the 2021 CHI conference on human factors in computing
systems. pp. 1-18

McLennan S, Fiske A, Celi LA, Miiller R, Harder J, Ritt K, Haddadin S, Buyx A
(2020) An embedded ethics approach for AI development. Nat Mach Intell
2:488-490

Melo CDO, Santana C, Kon F (2012) Developers motivation in agile teams. In:
2012 38th Euromicro conference on software engineering and advanced
applications. IEEE, pp. 376-383

Metcalf], Moss E, Boyd D (2019) Owning ethics: corporate logics, Silicon Valley,
and the institutionalization of ethics. Soc Res 82:449-476

Mittelstadt B (2019) Principles alone cannot guarantee ethical AI. Nat Mach Intell
1(11):501-507

Moor JH (2005) Why we need better ethics for emerging technologies. Eth Inf
Technol 7(3):111-119

Muduli A (2017) Workforce agility: examining the role of organizational practices
and psychological empowerment. Global Bus Organ Excell 36(5):46-56

Mulki JP, Jaramillo F, Locander WB (2006) Emotional exhaustion and organiza-
tional deviance: can the right job and a leader’s style make a difference?] Bus
Res 59(12):1222-1230

Nida-Riimelin J (2000) Rationality: Coherence and Structure in: Nida-Riimelin J,
Spohn W (eds) Rationality, Rules, and Structure. Theory and Decision
Library, vol 28. Springer, Dordrecht, pp. 1-16

Nida-Riimelin J (2005) Angewandte Ethik Die Bereichsethiken Und Ihre Theore-
tische Fundierung: Ein Handbuch, Kréner Verlag, 2. Auflage

Nida-Riimelin J (2009) Philosophie und Lebensform. Suhrkamp, Frankfurt am
Main, pp. 14-15

Nida-Riimelin], Weidenfeld N (2018) Digitaler Humanismus: Eine Ethik fiir das
Zeitalter der Kiinstlichen Intelligenz. Piper, Miinchen

Nida-Riimelin J (2019) Structural rationality and other essays on practical reason,
vol. 52. Springer

Nida-Riimelin J, Gutwald R, Zuber N (2021) Structural rationality. In: Knauff M,
Spohn W (eds) The handbook of rationality. The MIT Press, pp. 625-633

Nida-Riimelin J (2020) Eine Theorie praktischer Vernunft. De Gruyter, Berlin

Nissenbaum H (1999) Can Trust be Secured Online? A theoretical perspective.
Etica E Politica, 1(2)

Noll J, Beecham S, Razzak A, Richardson B, Barcomb A, Richardson I (2017)
Motivation and Autonomy in Global Software Development. In: Oshri I,

Kotlarsky J, Willcocks L (eds) Global Sourcing of Digital Services: Micro and
Macro Perspectives. Global Sourcing 2017. Lecture Notes in Business Infor-
mation Processing, vol 306. Springer, Cham, pp. 19-38

Open Data Institute. Data skills framework https://theodi.org/article/data-skills-
framework/. Accessed 29 Mar 2022

Ott K (2005) Technikethik in: Nida-Rimelin J (ed) Angewandte Ethik Die
Bereichsethiken und Thre Theoretische Fundierung: Ein Handbuch, Kréner
Verlag, 2. Auflage, pp. 568-648

Ozdemir §$ (2020) Digital nudges and dark patterns: the angels and the archfiends
of digital communication. Digit Scholarsh Humanit 35(2):417-428

Palm E, Hansson SO (2006) The case for ethical technology assessment (eTA).
Technol Forecast Soc Change 73(5):543-558

Poth A, Jacobsen J, Riel A (2020) Systematic Agile Development in Regulated
Environments. In: Yilmaz M, Niemann], Clarke P, Messnarz R (eds) Sys-
tems, Software and Services Process Improvement. EuroSPI 2020. Commu-
nications in Computer and Information Science, vol 1251. Springer, Cham,
pp. 191-202

Ramos C, Augusto JC, Shapiro D (2008) Ambient intelligence—the next step for
artificial intelligence. IEEE Intell Syst 23(2):15-18

Reijers W, Coeckelbergh M (2020) A narrative theory of technology. In: Narrative
and technology ethics. Palgrave Macmillan, Cham, pp. 79-111

Reitberger W, Ham], Weiss A, Spahn A, Meschtscherjakov A, Nickel P, Tscheligi M
(2009) The ubiquitous persuader: mechanisms, applications and ethical dilemmas
of ambient persuasion. In: 3rd European Conference on Ambient Intelligence
(AmlI 2009). International Ambient Media Association (IAMEA), pp. 201-207

Richards D, Dignum V (2019) Supporting and challenging learners through ped-
agogical agents: addressing ethical issues through designing for values. Br J
Educ Technol 50(6):2885-2901

Rohbeck J (1993) Technologische Urteilskraftzu einer Ethik technischen Handelns,
Suhrkamp Verlag

Rottig D, Koufteros X, Umphress E (2011) Formal infrastructure and ethical
decision making: an empirical investigation and implications for supply
management. Decis Sci 42(1):163-204

Russo F (2012) The Homo Poieticus and the Bridge Between Physis and Techne .
In: Demir H (eds) Luciano Floridi’s Philosophy of Technology. Philosophy of
Engineering and Technology, vol 8. Springer, Dordrecht, pp. 65-81

Ruijters E, Stoelinga M (2015) Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput Sci Rev 15:29-62

Savolainen J, Kuusela J, Vilavaara A (2010) Transition to agile development-
rediscovery of important requirements engineering practices. In: 2010 18th
IEEE international requirements engineering conference. IEEE, pp. 289-294

Sarkis J (2001) Benchmarking for agility. Benchmarking: Int J 8(2):88-107. https://
doi.org/10.1108/14635770110389816

Schneier B (1999) Attack trees. Dobb’s J 24(12):21-29

Schwaber K, Beedle M (2002) Agile software development with Scrum, vol 1.
Prentice Hall, Upper Saddle River

Schwaber K, Sutherland J (2011) The scrum guide. Scrum Alliance 21:19

Senges M, Ryan PS, Whitt RS (2017) Composite ethical frameworks for IoT and
other emerging technologies. Available at SSRN 3092362

Shen H, Deng WH, Chattopadhyay A, Wu ZS, Wang X, Zhu H (2021) Value cards:
an educational toolkit for teaching social impacts of machine learning
through deliberation. In: Proceedings of the 2021 ACM conference on fair-
ness, accountability, and transparency. pp. 850-861

Shilton K (2013) Values levers: building ethics into design. Sci Technol Hum
Values 38(3):374-397

Shim W, Lee SW (2017) An agile approach for managing requirements to improve
learning and adaptability. In: 2017 IEEE 25th International Requirements
Engineering Conference Workshops (REW). IEEE, pp. 435-438

Simon HA (1956) Rational choice and the structure of the environment. Psychol
Rev 63(2):129

Simon] (2016) Values in design. In: Heesen J (ed) Handbuch Medien-und
Informationsethik. Springer-Verlag

Spreitzer GM (2008) Taking stock: a review of more than twenty years of research
on empowerment at work. Handb Organ Behav 1:54-72

Stahl BC, Flick C (2011) ETICA workshop on computer ethics: exploring nor-
mative issues. In: Fischer-Hiibner S, Duquenoy P, Hansen M, Leenes R,
Zhang G (eds) Privacy and identity management for life. Privacy and identity
2010. IFIP advances in information and communication technology, vol 352.
Springer, Berlin, Heidelberg

Staffelbach B, Arnold A, Feierabend A (2014) Fehlverhalten und Courage am
Arbeitsplatz-analysiert anhand des Schweizer HR-Barometers. Dis-
kussionspapiere der Tagungdes Ausschusses "Wirtschaftswissenschaften und
Ethik" des Vereins fiir Socialpolitik, Frankfurt am Main

Steed R, Caliskan A (2021) Image representations learned with unsupervised pre-
training contain human-like biases. In: Proceedings of the 2021 ACM con-
ference on fairness, accountability, and transparency. pp. 701-713

Stein C, Untertrifaller A (2020) The effect of ethical responsibility on performance
(No. 99176). University Library of Munich, Germany

| (2022)9:191| https://doi.org/10.1057/s41599-022-01206-4

https://medium.com/thrive-global/how-technology-hijacks-peoples-minds-from-amagician-and-google-s-design-ethicist-56d62ef5edf3
https://medium.com/thrive-global/how-technology-hijacks-peoples-minds-from-amagician-and-google-s-design-ethicist-56d62ef5edf3
https://medium.com/thrive-global/how-technology-hijacks-peoples-minds-from-amagician-and-google-s-design-ethicist-56d62ef5edf3
https://assets.kpmg/content/dam/kpmg/nl/pdf/2019/advisory/agile-transformation.pdf
https://assets.kpmg/content/dam/kpmg/nl/pdf/2019/advisory/agile-transformation.pdf
https://theodi.org/article/data-skills-framework/
https://theodi.org/article/data-skills-framework/
https://doi.org/10.1108/14635770110389816
https://doi.org/10.1108/14635770110389816

ARTICLE

Spiekermann S (2015) Ethical IT innovation: A value-based system design
approach. CRC Press

Spiekermann S, Winkler T (2020) Value-based engineering for ethics by design.
arXiv preprint arXiv: 2004.13676

Solinski A, Petersen K (2016) Prioritizing agile benefits and limitations in relation
to practice usage. Softw Qual J 24(2):447-482

Sverrisdottir HS, Ingason HT, Jonasson HI (2014) The role of the product owner in
scrum-comparison between theory and practices. Procedia-Soc Behav Sci
119:257-267

Tariq S, Jan FA, Ahmad MS (2016) Green employee empowerment: a systematic
literature review on state-of-art in green human resource management. Qual
Quant 50(1):237-269

Tavani HT (2013) Ethics and technology: controversies, questions, and strategies
for ethical computing. Wiley, Hoboken, NJ

Turk D, France R, Rumpe B (2002) Limitations of agile software processes. In:
Third international conference on eXtreme programming and agile processes
in software engineering (XP 2002). pp. 43-46

Umbrello S, Gambelin O (2022) Agile as a vehicle for values: a value sensitive
design toolkit. In: Santa-Maria Andres, Fritzsche Albrecht (eds) Philosophy
of engineering and technology. Springer, Cham, (in press)

Vakkuri V, Kemell KK, Jantunen M, Halme E, Abrahamsson P (2021) ECCOLA
—a method for implementing ethically aligned AI systems. J Syst Softw
182:111067

Valentine S, Fleischman G (2008) Ethics programs, perceived corporate social
responsibility and job satisfaction.] Bus Eth 77(2):159-172

Vallor S (2016) Technology and the virtues: a philosophical guide to a future worth
wanting. Oxford University Press

Van Bruchem-Visser RL, van Dijk G, de Beaufort I, Mattace-Raso F (2020) Ethical
frameworks for complex medical decision making in older patients: a nar-
rative review. Arch Gerontol Geriatr 90:104160

Van Den Eede Y (2011) In between us: on the transparency and opacity of tech-
nological mediation. Found Sci 16(2-3):139-159

Van den Hoven, J., Vermaas, P. E., & Van de Poel I. (2015) Design for values:
Anintroduction in: Van den Hoven, J., Vermaas, P. E., & Van de Poel 1.
(eds) Handbook of ethics, values, and technological design: Sources,
theory, values and application domains. Dordrecht: Springer Netherlands,
pp-1-7

Van Lamsweerde A (2001) Goal-oriented requirements engineering: a guided tour.
In: Proceedings of the fifth IEEE International symposium on requirements
engineering. IEEE, pp. 249-262

Van Oyen MP, Gel EG, Hopp W] (2001) Performance opportunity for workforce
agility in collaborative and noncollaborative work systems. IIE Trans
33(9):761-777

Van Wynsberghe AL, Moura GM (2013) The concept of embedded values and the
example of Internet Security. Responsible research and innovation in ICT,
Oxford, Technical Report, 1101

Van Wynsberghe A (2021) Sustainable AI: Al for sustainability and the sustain-
ability of AI. AI Eth 1:213-218

Verein Deutscher Ingenieure (VDI) (2000) Technology assessment concepts and
foundations. VDI 3780

Zuber N, Kacianka S, Pretschner A, Nida-Riimelin] (2020) Ethical deliberation for
agile processes: the EDAP manual. In: Hengstschldger M (ed) Digital trans-
formation and ethics. ecowin, pp. 134-150

Zwart SD (2014) Modeling in design for values. In: Van den Hoven J, Vermaas P,
van de Poel I(eds) Handbook of ethics, values, and technological design.
Springer, Dordrecht

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Ethical approval
Not applicable.

Informed consent
Not applicable.

Additional information
Correspondence and requests for materials should be addressed to Jan Gogoll.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
BY

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

| (2022)9:191] https://doi.org/10.1057/541599-022-01206-4 13

http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Empowered and embedded: ethics and agile processes
	Empower the engineer: autonomy as a requirement for good normative design
	Normative deliberation
	Techno-ethical deliberation: How software steers normative deliberations
	Embedding ethics into software development

	Implementing ethics in the agile software development environment
	Agile is already widely spread in the industry
	Flat hierarchies offer autonomy to developers and designers
	Ethical deliberation needs functioning teams and participation
	Agile processes promote techno-ethical realism
	Sprints offer a salient endpoint to deliberation

	Concluding remarks
	References
	Funding
	Competing interests
	Additional information

