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Abstract 

Background:  Expression quantitative trait loci (eQTL) studies show how genetic 
variants affect downstream gene expression. Single-cell data allows reconstruction of 
personalized co-expression networks and therefore the identification of SNPs alter-
ing co-expression patterns (co-expression QTLs, co-eQTLs) and the affected upstream 
regulatory processes using a limited number of individuals.

Results:  We conduct a co-eQTL meta-analysis across four scRNA-seq peripheral blood 
mononuclear cell datasets using a novel filtering strategy followed by a permutation-
based multiple testing approach. Before the analysis, we evaluate the co-expression 
patterns required for co-eQTL identification using different external resources. We 
identify a robust set of cell-type-specific co-eQTLs for 72 independent SNPs affecting 
946 gene pairs. These co-eQTLs are replicated in a large bulk cohort and provide novel 
insights into how disease-associated variants alter regulatory networks. One co-eQTL 
SNP, rs1131017, that is associated with several autoimmune diseases, affects the co-
expression of RPS26 with other ribosomal genes. Interestingly, specifically in T cells, the 
SNP additionally affects co-expression of RPS26 and a group of genes associated with T 
cell activation and autoimmune disease. Among these genes, we identify enrichment 
for targets of five T-cell-activation-related transcription factors whose binding sites 
harbor rs1131017. This reveals a previously overlooked process and pinpoints potential 
regulators that could explain the association of rs1131017 with autoimmune diseases.

Conclusion:  Our co-eQTL results highlight the importance of studying context-
specific gene regulation to understand the biological implications of genetic variation. 
With the expected growth of sc-eQTL datasets, our strategy and technical guidelines 
will facilitate future co-eQTL identification, further elucidating unknown disease 
mechanisms.
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Background
In recent years, genome-wide association studies (GWAS) have revealed a large number 
of associations between genetic variation and disease [1]. Many of these variants also 
change downstream gene expression, as identified using expression quantitative trait 
locus (eQTL) analysis [2]. However, even with many such connections now identified, 
the upstream biological processes that regulate these eQTLs often remain hidden. Such 
knowledge is important for better understanding the underlying processes that lead to 
specific disease, which would aid in drug development [3].

One way to study the biological processes in which eQTL genes are involved is to 
construct gene co-expression networks. In these networks, genes (nodes) involved in 
shared biological processes are expected to be connected through co-expression (edges) 
[4]. Traditionally, these networks have been reconstructed with bulk RNA sequencing 
(RNA-seq) data, using a variety of computational tools [5–7]. However, whether certain 
biological processes are active can depend on various factors, such as cell type, envi-
ronmental exposures, and even single-nucleotide polymorphisms (SNPs) [2, 8, 9]. With 
single-cell technologies, many of these highly specific contexts can now be captured at 
high resolution. Single-cell RNA-seq (scRNA-seq) not only allows for cell-type-specific 
analyses, it does so without the technical biases introduced by the cell sorting required 
to perform similar analyses with bulk RNA-seq.

In addition to capturing the cell-type-specific contexts, scRNA-seq can also be used to 
construct personalized co-expression networks using the repeated measurements (i.e., 
multiple single-cell gene expression profiles) for each individual. This enables quantifica-
tion of the covariance between genes, and thus their co-expression strengths, within an 
individual [10]. These personalized co-expression networks can then be used to study 
the effects of genetic variation on network properties. Some of these network changes 
can be linked to individual SNP genotypes, called co-expression QTLs (co-eQTLs).

While we have previously shown that co-eQTLs can be both cell-type-specific and 
stimulation-specific, several challenges to systematic identification remain [10, 11]. 
Firstly, it is unclear how to best construct gene regulatory networks (GRNs) with 
scRNA-seq data. Co-expression patterns identified from bulk RNA-seq data have been 
shown to be informative for physical and functional gene–gene interactions [5–11], but 
it is unclear whether the co-expression patterns identified with scRNA-seq data also 
reflect gene–gene functional interactions given technical challenges of scRNA-seq data 
such as sparseness and low signal-to-noise ratios [12, 13]. These issues are caused by 
a combination of low mRNA counts in cells, imperfect capture efficiencies, and the 
inherent stochasticity of mRNA expression [14]. Many methods have been proposed to 
account for this issue. A recent benchmark paper suggested “rho proportionality” [15] 
as an association measure because of its consistent performance [16]. Also complemen-
tary strategies could be beneficial, such as combining association measures with Meta-
Cell, a recently proposed method that groups homogeneous cells to reduce sparsity, but 
to our knowledge it has not yet been evaluated in benchmark studies [17]. Moreover, 
a recent benchmark paper concluded that different GRN construction methods show 
moderate performance that is often dataset-specific [18], indicating that many chal-
lenges remain in GRN reconstruction. Therefore, validation of the robustness and func-
tional relevance of the network is warranted.
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Secondly, there is no consensus method for co-eQTL mapping and personalized GRN 
construction. In bulk data with only one measurement per individual, it is not possible 
to identify co-eQTLs directly. To carry out a similar type of analysis in bulk data, we pre-
viously used a linear regression model with an interaction term to identify interaction 
QTLs in bulk data from whole blood [8]. This approach can reveal co-eQTLs using the 
expression levels of individual genes as interaction terms. However, as bulk data nearly 
always comprises a mixture of cell types, it is not straightforward to unequivocally con-
clude that eQTLs showing an interaction effect reflect co-eQTLs (genetic variants that 
affect the co-expression between pairs of genes) rather than a change in cell-type com-
position. A further compounding problem is that very large numbers of samples are 
required to identify co-eQTLs, and effects that manifest in specific (rare) cell types can 
easily be missed because they are masked by more common cell types. In theory, single-
cell data allows direct estimation of cell-type-specific and individual-specific co-expres-
sion strength and should reduce the sample size requirement compared to bulk datasets. 
However, in practical terms, there are currently no datasets large enough to provide the 
statistical power to do genome-wide co-eQTL mapping, as this involves a large multiple 
testing burden due to billions of tests for every SNP and every possible gene pair com-
bination. As such, there is a clear need for a robust co-eQTL strategy that can overcome 
the severe multiple testing issues and deal with the aforementioned issues with regard to 
the construction of reliable personalized co-expression networks.

In this work, we studied the genetic regulation of gene co-expression by conducting 
the largest-to-date co-eQTL meta-analysis in 173 peripheral blood mononuclear cell 
(PBMC) scRNA-seq samples. Previous studies [10, 11] focused on a small set of SNP–
gene–gene triplets and specific cell types, limiting the number of identified co-eQTL. 
Compared to previous studies, we have increased the sample size, improved the co-
eQTL mapping strategy, and have applied comprehensive interpretation strategies. This 
enabled a larger search space of SNP–gene–gene triplets, consequently highlighting the 
cell-type specificity of gene–gene regulation underlying GWAS signals. To make this 
possible, we first benchmarked various GRN construction methods and compared the 
obtained co-expression patterns in our scRNA-seq data to two bulk RNA-seq datasets 
and a CRISPR-coupled scRNA-seq screen knockout dataset [19]. We then studied the 
effects of cell type and inter-individual differences in gene co-expression networks by 
reconstructing personalized and cell-type-specific networks. We subsequently devel-
oped a robust co-eQTL mapping strategy with a novel filtering approach and a custom-
ized permutation-based multiple testing procedure to deal with the correlation structure 
in the co-expression networks. With the improved strategy, we could perform a co-
eQTL meta-analysis using data from three different scRNA-seq studies. We provided 
a comprehensive analysis of the different factors that affect the quality and quantity of 
co-eQTLs, including the number of cells, gene expression levels and filtering strategy. 
We then studied which biological processes and genes are regulated by the identified co-
eQTLs by performing different enrichment analyses and exploring common biological 
functions, transcription factor (TF) binding, and disease associations to pinpoint poten-
tial direct regulators of the co-eQTL genes. In sum, our results suggest that the combi-
nation of a robust method and a large sample size is crucial for identification of genetic 
variants that affect co-expression networks.
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Results
Overview of the study

To uncover the contexts and biological processes that affect gene expression regula-
tion, this study took advantage of both the resolution of single-cell data and the direc-
tionality captured by co-eQTLs. First, we constructed cell-type-specific co-expression 
networks using five scRNA-seq PBMC datasets from three recently generated PBMC 
scRNA-seq studies [10, 11, 20] totaling 187 individuals and approximately one million 
cells. Two of the studies contained data that was in part generated using different ver-
sions of 10 × chemistry (version 2 or version 3, the donors were measured with either 
version 2 or version 3 chemistry). To avoid batch effects due to these technical differ-
ences, we split both these studies into two datasets, depending on the chemistry, lead-
ing to five datasets in total: (1) two datasets from the Oelen study [11] that collected 
unstimulated PBMCs from 104 healthy individuals from the Northern Netherlands, 
a dataset measured using version 2 chemistry (Oelen v2 dataset) and one measured 
using version 3 chemistry (Oelen v3 dataset), (2) a dataset from the van der Wijst 
study [11] that collected unstimulated PBMCs from 45 healthy individuals from the 
Northern Netherlands measured using version 2 chemistry (van der Wijst dataset), 
and (3) two datasets from the van Blokland study [20] that collected unstimulated 
PBMCs from 38 individuals 6–8 weeks after having a heart attack, one dataset meas-
ured using version 2 chemistry (van Blokland v2 dataset) and one measured using 
version 3 chemistry (van Blokland v3 dataset) (Fig. 1a). Details about these datasets 
are described in Additional file 1: Table S1.

We focused on the six major cell types (B cells, CD4 + T cells, CD8 + T cells, dendritic 
cells (DCs), monocytes and natural killer (NK) cells), of which CD4 + T cells, CD8 + T 
cells and monocytes were the most frequent cell types (Additional file 2: Fig. S1). We 
compared commonly used measures of correlation and those previously reported to 
be particularly suitable for capturing co-expression in scRNA-seq data, including rho 
proportionality [15], the Spearman correlation, and GRNBoost2 [21], and tested com-
plementary strategies such as MetaCell [17]. We validated that the co-expression pat-
terns from our single-cell dataset are enriched for actual gene regulatory relationships 
by benchmarking the concordance of the co-expression patterns across the three sin-
gle-cell studies [2, 11, 20] and three cell-type-specific or whole-blood bulk RNA-seq 
datasets [2, 22, 23] (Fig. 1b). Furthermore, we validated identified connections with a 
CRISPR dataset [19].

Next, we evaluated the concordance of the co-expression networks between the major 
blood cell types and between different individuals within each cell type (Fig.  1b). For 
the comparison of co-expression networks among cell types, we merged data from all 
individuals before calculating co-expression. For the comparison between individuals, 
we calculated co-expression per individual. To identify the genetic contribution to such 
common and cell-type-specific effects, we performed a constrained co-eQTL meta-
analysis. For this, we first removed the van Blokland v3 dataset from our analyses as the 
small number of donors (n = 14) was too limited to provide added value for this pur-
pose. After this, we filtered SNPs that exhibit an eQTL effect (with the corresponding 
gene referred to as an eGene below) and tested all genes with sufficient co-expression 
strength with the eGene (called co-eGenes below) among different individuals (Fig. 1c).
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For the co-eQTL interpretation, we considered different scenarios that can lead to 
detection of a co-eQTL. One is that the genetic variant changes the binding affinity of 
a TF and thus the regulation of its target gene, which would cause a co-eQTL between 
the variant, the TF, and the target gene (Fig. 1c, Scenario 1). However, a co-eQTL will 
also occur indirectly for all genes in strong correlation with this TF (Fig. 1c, Scenario 2): 
a gene correlated with the TF will also be correlated with the eGene and this correlation 
strength will also depend on the genotype because of the indirect association via the TF. 
To distinguish both scenarios, we used additional annotations and enrichment analy-
ses to identify the potential direct regulators. Other scenarios include genetic variants 

Fig. 1  Study overview. a Overview of the three PBMC scRNA-seq studies used in our study. The studies, the 
version of the used chemistry for data generation (version 2 and 3, referred to as v2 and v3, respectively), 
number of individuals involved (indicated as the number in the parenthesis), and relative composition of 
the major blood cell types used in this study. b Co-expression benchmarking scheme. We first benchmarked 
co-expression patterns among the three scRNA-seq studies and compared them to co-expression patterns 
in different bulk datasets. As an additional external validation, we benchmarked both the scRNA-seq and 
bulk co-expression patterns with a CRISPR knockout dataset. After benchmarking, we evaluated differences 
in co-expression patterns among cell types and among individuals within a cell type. c Co-expression QTL 
(co-eQTL) mapping. Building on the benchmarked co-expression pattern, we developed a novel strategy 
to identify co-eQTLs (genetic variants changing co-expression). Part of the strategy is a strict filtering of 
tested SNP–eGene–co-eGene triplets, where the SNP is required to be an eQTL for one of the genes and the 
genes show significant correlation in at least a certain number of individuals. d Co-expression QTL (co-eQTL) 
insights. We first check if the SNP we tested has been identified in previous GWAS studies, or it is in high LD 
with GWAS variants. Then we check the group of co-eGenes on what pathways and traits and TF binding 
sites they are enriched for. We hypothesize two possible scenarios of the underlying biological mechanism 
for the identified co-eQTLs. Scenario 1 portrays a direct regulatory association between the co-eGene and 
the eGene through the genetic variants that change the binding affinity. Scenario 2 portrays an indirect 
association between the co-eGene and the eGene. That is, the co-eGene is co-expressed with the TF that 
regulates the expression level of the eGene
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that change the structure of the TF and thereby its binding affinity and genetic variants 
that affect sub-cell-type composition and thus the correlation pattern of sub-cell-type-
specific genes.

We then replicated the identified co-eQTLs in a large bulk study (BIOS Consortium), 
explored technical factors influencing the identification of co-eQTLs (sample size, num-
ber of cells, different filtering approaches) and biologically interpreted several examples 
of co-eQTLs (Fig. 1d).

Correlation validation

Co-expression correlations can be assessed using various dependency measures. 
A recent benchmark study [16] reported that the proportionality measure from the 
propr package [15] outperforms several other methods in the identification of func-
tional, coherent biological clusters. We observed high correlations between the rho 
proportionality and Spearman correlations (r = 0.68) for genes expressed in > 5% of 
the cells (Additional file 2: Fig. S2a), but for genes expressed in fewer cells, rho pro-
portionality gave arbitrarily high values while the Spearman correlation remains near 
zero (Additional file  2: Fig. S2b). The reason for the stark differences for very lowly 
expressed genes is probably that rho proportionality changes zero values to the next 
lowest value of the gene pair, which may result in false positive associations (i.e., very 
high rho values) for lowly expressed gene pairs. Another drawback of rho proportion-
ality is the high computational demand [24], which makes it challenging to evaluate all 
gene pairs. As the differences between the Spearman correlation and rho proportion-
ality are very small for highly expressed genes and the Spearman correlation calcula-
tion is far more efficient and handles zero values better, we chose to use the Spearman 
correlation over rho proportionality.

We also tested other approaches, including GRNBoost2 [21], grouping cells into 
MetaCells [17] before calculation of the Spearman correlation, and testing pseudotime 
ordering [25] and RNA velocity [26], but these did not yield more reliable results than 
the Spearman correlation (Additional file 2: Fig. S3,4,5; Additional file 3). We therefore 
selected the Spearman correlation to measure the co-expression patterns in scRNA-seq 
data for its robustness and simple interpretability. However, although we determined 
that the Spearman correlation was optimal for the single-cell PBMC datasets that we 
studied, we cannot exclude that the other methods might be optimal for other single-cell 
datasets.

We then evaluated whether the co-expression patterns obtained from scRNA-seq data 
are robust and reproducible across different single-cell datasets and whether they reflect 
functional interactions among genes. Benchmarking the co-expression patterns obtained 
from scRNA-seq data is difficult because, to our knowledge, there is no clear gold stand-
ard dataset of known functional gene–gene interactions for different cell types. As an 
alternative approach to assess the reliability of the identified co-expression relationships, 
we compared to what extent we could replicate the co-expression patterns found in one 
dataset in another dataset.

We first compared the cell-type-specific co-expression patterns among the five 
scRNA-seq datasets in our study [10, 11, 20]. For this, we inferred the co-expression 
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strength using the Spearman correlation for each gene pair in each dataset and cell type, 
where gene pairs were only considered when both genes were expressed in at least 50% 
of the cells. We summarized the concordance between datasets by calculating the Pear-
son correlation on the gene pair correlation values. Overall, there was high concordance 
across all cell types (median r = 0.80 across all cell types). CD4 + T cells, the most abun-
dant cell type in our dataset, had a high correlation across the different 10X chemistries 
and datasets, with values ranging from 0.67 to 0.86 and a median of 0.81 (Fig. 2a). For 
CD8 + T cells and NK cells, we observed a comparably high correlation (CD8 + T cells 
median r = 0.86, NK cells median r = 0.80), while the correlation was slightly lower for 
the other cell types (monocytes median r = 0.69, B cells median r = 0.70, DCs median 
r = 0.71) (Additional file 2: Fig. S6). The number of genes expressed in 50% of the cells 
varied between dataset and chemistry, so it was not always possible to test the same set 
of genes. In general, this filtering strategy is quite stringent, yielding a limited number of 
tested genes (at most 766 genes for the Oelen v3 dataset in CD4 + T cells, Fig. 2a). This 
ensured a high-quality gene set remained for testing despite the sparseness of the com-
plete single-cell datasets. A detailed evaluation of the expression cutoff follows in the 
next sections.

Next, we compared the co-expression patterns from the single-cell datasets to three 
different bulk datasets from BLUEPRINT [22], ImmuNexUT [23], and the BIOS Consor-
tium [2]. The BLUEPRINT dataset contains fluorescence-activated cell sorting (FACS)-
sorted expression data from naive CD4 + T cells and classical monocytes for up to 197 
individuals. The ImmuNexUT study collected gene expression data from 337 patients 
for 28 FACS-sorted immune cell subsets. The BIOS dataset contains whole-blood 
expression data from 3198 individuals. Notably, the co-expression correlation between 
the single-cell and bulk-based datasets (Fig. 2b) was much lower than those between the 
single-cell datasets themselves (Fig. 2a).

Comparing our single-cell data with ImmuNexUT, the only dataset with cell-type-spe-
cific expression for all evaluated cell types, CD8 + T cells showed the highest correla-
tion (median r = 0.570) and monocytes (median r = 0.395) and DCs (median r = 0.259) 
showed the lowest correlations (Fig. 2b, Additional file 2: Fig. S7). The correlations from 
BLUEPRINT were slightly lower but in the same range (CD4 + T cells median r = 0.356, 
monocytes median r = 0.339) (Fig. 2b, Additional file 2: Fig. S7). Finally, we observed that 
the whole-blood bulk data from the BIOS dataset correlated reasonably with the differ-
ent single-cell cell types (median r between 0.265 and 0.458 across cell types; Fig.  2b, 
Additional file 2: Fig. S7).

We studied this seemingly low correlation between bulk and single-cell data and iden-
tified multiple factors that play a role. One is the sparseness of the single-cell data, which 
could introduce noise and therefore lead to less stable co-expression values. To test this, 
we correlated the co-expression from the Oelen v3 dataset with that from ImmuNexUT 
using varying expression cutoffs based on the number of cells expressing a gene (Fig. 2c). 
Indeed, the sparseness of the single-cell data affects the correlation. We observed 
increased concordance with increasing gene expression levels: the correlation increased 
from r = 0.21 for an expression cutoff of 10% to r = 0.71 at a cutoff of 90%. However, the 
number of genes that can be tested dropped from 4482 at an expression cutoff of 10% 
to 172 at a cutoff of 90%. The same trends were observed when comparing the Oelen v3 
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Fig. 2  Evaluation of correlation metrics. a Comparison of the co-expression profiles among the different 
single-cell datasets in this study. The Spearman correlation of the Oelen v2 and v3 datasets, the van Blokland 
v2 and v3 datasets and the van der Wijst dataset were compared with each other, always taking the 
CD4 + T cells and genes expressed in at least 50% of the cells in the corresponding datasets. The number 
of genes tested is shown in parentheses below the exact Spearman correlation value. b Comparison of the 
co-expression profiles between the single-cell datasets and with the bulk RNA-seq datasets from BLUEPRINT, 
ImmuNexUT (both measuring FACS-sorted naive CD4 + T cells), and BIOS (whole blood). Again, we only 
assessed genes expressed in at least 50% of the cells for the single-cell dataset (number of tested genes 
shown in parentheses below the Spearman correlation value). c Relationship between the co-expression 
similarity between the ImmuNexUT naive CD4 + T cells and Oelen v3 dataset CD4 + T cells and increasing 
gene expression cutoffs (the ratio of cells with non-zero expression for a given gene). The number of genes 
tested is indicated by color scale and the numbers in the bar plot. d Comparison of the co-expression profiles 
between the bulk RNA-seq datasets, taking the same gene subset as in a and b. The number of tested genes 
is shown in parentheses below the exact Spearman correlation value. e Enrichment of correlated genes in 
scRNA-seq (Oelen v3 dataset) among associated genes identified by CRISPR knockout. For the enrichment, 
genes differentially expressed after knockout of FOXP1, FUS, HNRNPK, IRF1, and PCBP1 were identified 
and tested for enrichment. P-values in the plot show the significance level of the Wilcoxon rank-sum test. f 
Enrichment of correlated genes in bulk RNA-seq (ImmuNexUT) among associated genes identified by CRISPR 
knockout. See e and “Methods” for further details
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dataset with the BLUEPRINT dataset for different cutoffs (Additional file 2: Fig. S8). For 
this reason, we chose a cutoff of 50% as a trade-off between both extremes in our bench-
marking study (Fig. 2a,b,e,f ).

Other aspects that may affect correlations between genes are the difference in reso-
lution and potential biases introduced by acquiring cell-type-specific data, such as the 
gene expression changes induced by FACS and the technical complications of decon-
voluting cell types. Furthermore, the validity of bulk-based correlations is affected by 
the possibility of Simpson’s paradox [27] occurring. Simpson’s paradox describes the 
incorrect introduction or removal of correlations by averaging expression levels. This 
can potentially occur in bulk datasets, whereas single-cell data can accurately identify 
the co-expression value since we can calculate co-expression values per cell type and 
per individual (Additional file 2: Fig. S9a). To estimate the effects of this phenomenon, 
we recalculated co-expression from the single-cell data using the so-called pseudo-
bulk approach, where we average the counts over all cells per individual and calculated 
the correlation across the individual-level counts. We compared this to the single-cell 
co-expression values, calculated across cells, and observed several examples of highly 
expressed genes in which Simpson’s paradox occurs (Additional file 2: Fig. S9b, c). How-
ever, taking the average gene expression over many cells also results in more robust 
expression estimates, which can generate less noisy co-expression estimates, especially 
for lowly expressed genes. For this reason, we cannot differentiate for all genes which co-
expression differences between single-cell and bulk are caused by Simpson’s paradox and 
which are caused by noisy single-cell data.

To contextualize the correlation values between single-cell and bulk data, we also 
compared the bulk datasets with each other and assessed whether bulk datasets actually 
capture gene co-expression consistently. Surprisingly, the co-expression correlation sim-
ilarity between bulk datasets was quite low (r between 0.47 and 0.52 for CD4 + T cells 
and between 0.35 and 0.42 for monocytes) (Fig.  2d, Additional file 2: Fig. S10). Given 
that these correlations are expected to be an upper bound when comparing bulk data-
sets with single-cell datasets, our observed correlations in those comparisons are very 
reasonable.

Given the imperfect correlation between the different bulk datasets, we used gene 
expression data from CRISPR-knockouts as an additional evaluation criterion. For this 
purpose, we benchmarked the co-expression patterns from our single-cell datasets 
against a CRISPR knockout scRNA-seq dataset in CD4 + T cells [19]. While a unique 
single-guide RNA barcode reveals which gene was targeted in which cell, some cells may 
escape from successful CRISPR perturbation. To account for this, we used Mixscape to 
assign a perturbation status to each cell [28]. For each knockout, we then determined 
other genes that were differentially expressed (DE) in successfully perturbed cells com-
pared to wild-type cells. We then selected genes for which perturbation resulted in at 
least 10 DE genes and compared the correlation of these DE genes with non-DE genes 
using the Wilcoxon rank-sum test (see “Methods”). For four out of five gene knockouts, 
we observed significantly higher correlation of the knockout gene with the DE genes 
than with non-DE genes (p < 0.05) in the single-cell dataset (Fig.  2e). In contrast, the 
bulk naive CD4 + T cell data from ImmunNexUT showed a weaker connection between 
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correlation and DE genes, with only two out of five knockout genes having significantly 
higher correlation with the DE genes (p < 0.05) (Fig. 2f ).

As another line of evidence, we tested whether pairs of genes known to interact on the 
protein level showed higher co-expression correlation compared to other pairs of genes. 
Here we found that gene pairs with protein interactions listed in the STRING database 
[29] had a higher co-expression correlation than gene pairs not in STRING, both when 
using the single-cell dataset and the bulk dataset (for both Wilcoxon rank-sum test, 
p < 0.05, Additional file 2: Fig. S11).

Overall, we have shown that single-cell data can identify true gene co-expression rela-
tionships as supported by the high replicability of the scRNA-seq-derived co-expression 
patterns among different datasets and which are also supported by functional interac-
tions among genes identified by CRISPR perturbations and the STRING database.

Cell type and donor differences in co‑expression pattern

Next, we examined cell-type-specific and individualized co-expression patterns. As 
expected, lymphoid cell types (B, T and NK cells, r > 0.73) were more alike with each 
other but they are less alike with myeloid cell types (monocytes and DCs, r > 0.45) 
(Fig.  3a, Additional file  2: Fig. S12a). However, myeloid cell types were not as alike to 
each other as lymphoid cell types. This is possibly due to the fact that DCs are one of 
the least abundant cell types (Additional file 2: Fig. S1), which would have resulted in 
less accurate co-expression estimations. Overall, the correlation between different cell 
types within one scRNA-seq dataset (for Oelen v3 dataset median r = 0.64, Fig. 3a) was 

Fig. 3  Comparison of correlation across cell types and donors. Each analysis was performed in the Oelen 
v3 dataset for all genes expressed in at least 50% of the cells of the respective cell type. a Comparing 
co-expression patterns across cell types within the Oelen v3 dataset for genes expressed in 50% of the cells 
for both cell types in each pair-wise comparison. The number of tested genes is shown in parenthesis below 
the Spearman correlation value. b Correlation distribution within each cell type. c Correlation between 
different individuals within each cell type showing the distribution of all pair-wise comparisons between 
individuals. d Relationship between the number of cells per individual and cell type and correlation between 
individuals separately for each cell type. In each subsampling step, we assessed all individuals who have at 
least this number of cells and subsampled to exactly this number (this leads to removal of some individuals 
for higher number of cells and thus, a direct comparison with the correlation values in c is not possible)
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generally lower than the correlation between different scRNA-seq datasets when study-
ing a single cell type (median r = 0.80 across all cell types, Fig. 2a, Additional file 2: Fig. 
S6). These differences highlight cell-type-specific differences in the correlation pattern, 
further confirming the biological aspects captured by scRNA-seq co-expression values. 
We also explored the distribution of co-expression among cell types (Fig. 3b, Additional 
file  2: Fig. S12b). Typically, the correlations between gene pairs were rather low, with 
only a small proportion of gene pairs (median 12.4%) showing correlations above 0.1. 
However, we did observe cell-type-specific differences, with DCs possessing a higher 
proportion of co-expressed gene pairs compared to the other cell types (32.3% of gene 
pairs with r > 0.1).

In addition to detecting cell-type-specific associations, scRNA-seq enables direct cal-
culation of co-expression correlations per individual as it provides many observations 
(cells) per donor. When we calculated the correlation separately for each donor and cell 
type, we observed overall strong correspondence of co-expression networks between dif-
ferent donors for the more frequent cell types (CD4 + T cells median r = 0.56, CD8 + T 
cells median r = 0.48, monocytes median r = 0.47) (Fig. 3c, Additional file 2: Fig. S12c). 
As a result of noisier estimates, the correlation between individuals was drastically lower 
for the less frequent cell types (DCs median r = 0.24, B cells median r = 0.06). Moreover, 
these correlations were much smaller than comparing one cell type across entire data-
sets (i.e., including all individuals at once), which showed correlations of at least 0.81 
for CD4 + T cells, 0.64 for CD8 + T cells, 0.49 for monocytes, 0.66 for NK cells, 0.62 for 
B cells, and 0.38 for DCs (Fig. 2a). This decline is potentially caused by the number of 
cells used to calculate the correlation, which is drastically lower when comparing donors 
within one dataset. The number of cells could also explain the differences between the 
cell types. To test this, we subsampled the number of cells for each cell type and indeed 
observed that the correlation increased when the number of cells increased (Fig.  3d). 
Apart from the number of cells, we also observed potential cell-type differences. The 
similarities between individuals were significantly smaller in NK cells compared to 
monocytes and T cells, when the same number of cells was used (Fig. 3d). We also con-
firmed these observations in another scRNA-seq dataset (Additional file 2: Fig. S12d).

We further explored the relationship between the number of cells per individual and 
the correlation between individuals by fitting a logarithmic curve for the four most fre-
quent cell types: CD4 + T cells, CD8 + T cells, monocytes, and NK cells (Additional 
file 2: Fig. S13). Each of the observed trends could be fit well with the logarithmic curve 
(adjusted R2 values between 0.86 and 0.98). We then extrapolated the trend to 1000 cells, 
showing that a correlation > 0.80 would be expected for T cells and monocytes with this 
number of cells and a correlation of 0.65 for NK cells (Additional file 2: Fig. S13). We 
acknowledge, however, that the exact upper bound for the correlation between donors 
cannot be estimated accurately with our current dataset. For example, the correlation 
close to 100% for CD4 + T cells and 1500 cells is likely too high considering that donor-
specific differences such as genetics and environment will remain independent of the 
number of cells. Nevertheless, our fits highlight the value of having measurements from 
many cells for accurate correlation estimates as well as cell-type-specific differences in 
the correlation pattern.
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During this comparison, we observed a few gene pairs that showed a high variance in 
correlation across donors within one cell type (median fraction of gene pairs with cor-
relation Z-score variance > 2 across cell types: 4.9% for Oelen v2 dataset and 3.3% for 
Oelen v3 dataset, Additional file  2: Fig. S14). This high variance could, in theory, be 
caused by different sources, e.g., technical factors or environmental influences, but could 
also reflect genetic differences between individuals. Since we observed low co-expres-
sion variance between different individuals for the same cell type and similar numbers of 
cells (Fig. 3d), we concluded that these differences are not likely to originate from techni-
cal factors, and thus we next looked into genetic variation as one of the other potential 
major influences.

Establishing a method to identify co‑expression QTLs

To assess how strongly genetic variation influences the correlation between pairs of 
genes, we performed a co-eQTL analysis. In contrast to classical eQTL analysis, co-
eQTL analysis not only reveals the downstream target gene whose expression is affected 
by a genetic variant, it can also help identify the upstream regulatory factors that affect 
these eQTLs, as discussed in the overview.

Compared to an eQTL analysis, a full co-eQTL analysis with all SNP–gene pair combi-
nations would massively increase the multiple testing burden. Previously, we showed the 
necessity of filtering the SNP–gene pair combinations to reduce the multiple testing bur-
den associated with a genome-wide co-eQTL analysis on all possible triplets while not 
missing true co-eQTLs [11]. For example, in our current study, testing all pairs of genes 
expressed in monocytes would lead to 1.96 × 108 tests when considering only one SNP 
per pair and to a very limited power to detect small effect sizes (power of 1.4% to detect 
a significant effect for a phenotype (here the co-expression relationship) with a heritabil-
ity of 10% that is explained by a single locus, Additional file 2: Fig. S15).

In this study, we aimed to define a generally applicable co-eQTL mapping strat-
egy that yields a large number of highly confident co-eQTLs, which, compared to our 
previous studies, represents the following: (1) a rigorous assessment and comparison 
of different analysis strategies, (2) an updated gene and gene pair filtering strategy, (3) 
an improved computational pipeline for better handling the missing values, and (4) a 
customized stricter multiple testing strategy. For the updated filtering strategy, we first 
decided to focus on cis-eQTL SNPs and genes because we expect a SNP influencing the 
co-expression of two genes to also influence the expression of one of the genes directly 
(a strategy we applied successfully before in [10, 11]). To identify these cis-eQTLs, we 
first performed a cis-eQTL meta-analysis across four of the five scRNA-seq datasets. We 
excluded the van Blokland v3 dataset from this eQTL analysis and all subsequent analy-
ses because the small sample size (N = 14) provided very few variants above the minor 
allele frequency (MAF) cutoff (> 10%), which made it unsuitable for this meta-analysis. 
To reduce the multiple testing burden and maximize the number of cis-eQTLs detected 
given the relatively low number of individuals (N = 173) used for the eQTL mapping, we 
confined ourselves to 16,987 lead cis-eQTLs previously identified in a large (N = 31,684) 
bulk blood eQTL study [2]. Depending on cell type, we identified between 904 (for 
CD4 + T cells) and 58 (for B cells) eQTLs (FDR < 0.05; Additional file 1: Table S2, Addi-
tional file 4: Table S3).
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As filtering for the eQTL effects still resulted in a large number of tests (e.g., for 
CD4 + T cells, n = 12,137,281, Additional file 1: Table S4) and consequently a large mul-
tiple testing burden, we imposed additional filtering on the co-eGenes to study. Here, we 
used a filtering strategy based on the co-expression significance, selecting co-eGenes for 
which we observed a significant (nominal p ≤ 0.05) correlation with the eGene in at least 
10% of the individuals (“Methods”). We assumed this captures genuine co-expression 
effects that are present in at least one of the genotype groups (i.e., homozygous refer-
ence/heterozygous/homozygous alternative allele). Note that the filtering strategy we 
used here is less stringent than the cutoff used in the co-expression benchmarking analy-
ses (Figs. 2 and 3; “Methods”). This is because the two analyses have very different goals, 
while the benchmarking was more technical in nature, we aimed to uncover new biology 
in the co-eQTL analyses. Thus we used a less stringent selection in the co-eQTL analysis 
to ensure that we did not miss out on detecting relevant biological processes underlying 
gene regulation.

An additional challenge is the large number of missing co-expression values for gene 
pairs within individuals. This is introduced by the sparsity of the scRNA-seq data: cor-
relation is missing when the expression of one gene is zero in all cells of an individual. 
We argue that these missing co-expression values may not reflect true null correlations 
between gene pairs because zero values in single-cell data can also be caused by lowly 
expressed genes not being quantified accurately. As we observed that replacing miss-
ing values with 0 can lead to spurious co-eQTL results (Additional file 2: Fig. S16), we 
remove the missing correlations and do not impute the missing correlation to 0 when 
mapping co-eQTLs.

Finally, we applied a customized permutation strategy for each gene pair. Since com-
mon upstream regulators might lead to co-expression of many co-eGenes, we expect 
correlated test statistics among the family of tests carried out for each SNP–eGene 
pair. Therefore, we applied a customized permutation and multiple testing correction 
strategy per SNP–eGene pair based on FastQTL [30, 31]. We used 100 permutations to 
adjust nominal p-values and determined significance using Benjamini–Hochberg cor-
rection over all SNP–eGene pairs. We considered those with FDR ≤ 0.05 as significant 
(see “Methods” for details).

Meta‑analysis identified 948 co‑eQTLs

With our co-eQTL mapping strategy, we conducted a meta-analysis with four of the 
five single-cell datasets (Oelen v2 and v3, van Blokland v2 and the van der Wijst data-
set). This identified cell-type-specific co-eQTLs for 72 independent SNPs, affecting 946 
unique gene pairs in total (Table 1, Additional file 1: Table S5, Additional file 5: Table S6). 
We identified the maximum number of 500 co-eQTLs in CD4 + T cells, comprising 30 
SNPs, 500 gene pairs, and 420 unique genes. We identified the minimum number of 35 
co-eQTLs in B cells, comprising 1 SNP, 35 gene pairs, and 36 unique genes.

We first examined the cell-type specificity of these co-eQTLs. This analysis is limited 
by the fact that, due to our filtering strategy, we used a different set of cell-type-specific 
eQTLs and tested a different set of co-eGenes. Consequently, this resulted in very dif-
ferent sets of tested triplets for biologically different cell types, which could explain the 
small overlap of significant co-eQTLs between cell types (Additional file 2: Fig. S17, 18a; 
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Additional file 5: Table S6). Therefore, to give a complete picture of the cell-type speci-
ficity of co-eQTLs, we replicated co-eQTLs from each cell type in all other cell types 
and quantified this with two different measures: (1) the ratio of co-eQTLs that could be 
tested in the replication cell type (Additional file 2: Fig. S18a) and (2) the rb concord-
ance measure [32], which reflects the correlation of the effect sizes for the co-eQTLs 
that were tested in the replication cell type (Fig. 4a, Additional file 2: Fig. S18b, details in 
“Methods”). Consistent with the co-eQTL overlap results, the ratio of tested co-eQTLs 
are generally small, with the median value being 37% (Additional file 2: Fig. S18a). How-
ever, for the SNP–eGene–co-eGene triplets that were tested in the replication cell type, 
their effect sizes and directions were generally highly concordant, with a median rb value 
of 0.85 (Fig. 4a, Additional file 2: Fig. S18b, Additional file 1: Table S7). The highest rb 
were observed between CD4 + T cells and CD8 + T cells (0.97 for co-eQTLs identified in 
CD4 + T cells replicated in CD8 + T cells, 0.99 for co-eQTLs identified in CD8 + T cells 
replicated in CD4 + T cells).

To validate our co-eQTL results, we first examined the effect sizes and directions 
among the datasets used in the meta-analysis and observed high correlations (Addi-
tional file 2: Fig. S19). Next, we replicated them in the BIOS bulk whole-blood dataset 
(N = 2491 excluding common individuals, see “Methods”) (2), using the ratio of tested 
co-eQTLs and rb value (see “Methods”). For this replication, we used a linear regres-
sion model with an interaction term to model the associations between the expression 
level of eGenes and the product of genotype and the expression level of co-eGenes (see 
“Methods” for detailed explanation), as we have done before [8]. We tested all identi-
fied co-eQTLs in the BIOS data and their effect sizes and directions showed rb values 
between 0.30 to 0.61 (Fig. 4b, Additional file 1: Table S8, Additional file 6: Table S9), with 
the highest concordance achieved for CD4 + T cells, with an rb value of 0.61 (SE = 0.06). 
We only considered BIOS, rather than the BLUEPRINT and ImmuNexUT, as a replica-
tion dataset because BIOS has 2491 individuals while the other two only have a few hun-
dred individuals.

After we established a baseline for the number of co-eQTLs identified and their 
replication rates, we used this to evaluate various technical factors such as the filter-
ing strategy, sub-cell-type composition, sample size, and cell number. We first com-
pared the analysis to a set of co-eQTLs identified when omitting the filtering step for 
significantly correlated gene pairs, which increased the number of tests (Additional 
file  1: Table  S4). While this led to detection of an increased number of co-eQTLs 
for the more abundant cell types (CD4 + T, CD8 + T, monocytes, and NK cells) and 

Table 1  Summary statistics of the identified co-eQTLs

Cell type # co-eQTLs # unique co-eQTL 
SNPs

# unique co-eQTL 
gene pairs

# unique co-eQTL 
genes

# tests

CD4 + T 500 30 500 420 179,841

CD8 + T 420 22 420 322 73,017

Monocyte 281 24 280 235 304,707

DC 58 9 58 62 41,655

NK 123 10 123 121 25,998

B 35 1 35 36 2,936
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a decreased number of co-eQTLs for less abundant cell types (B cells and DCs) 
(Additional file 1: Table S4, Additional file 7: Table S10), we also observed a general 
decrease in concordance among cell types compared to the co-eQTLs obtained with 
the filtering strategy (Additional file 2: Fig. S18, 20; Additional file 1: Table S11). We 
then repeated the BIOS replication procedures for co-eQTLs found without the filter-
ing strategy and observed a decrease in effect concordance compared to the set of co-
eQTLs identified with the filtering strategy (Additional file 2: Fig. 21–23; Additional 
file  1: Table  S12, Additional file  8: Table  S13), indicating that the filtering increases 
the robustness of the co-eQTLs.

We additionally explored the correlation mean and variance, as well as the non-zero 
ratio for co-eQTLs compared to non-significant triplets, in the scenarios with and 
without additional filtering (Additional file 2: Fig. S24). Here we observed that signifi-
cant co-eQTLs show both a higher co-expression correlation mean and variance and a 
higher non-zero ratio for their expression (Additional file 2: Fig. S24) compared to non-
significant triplets. This is to be expected as gene pairs with a high average co-expres-
sion correlation more likely reflect true biological associations and gene pairs with a 

Fig. 4  General characteristics of identified co-eQTLs. a Replication of discovered co-eQTLs across the major 
cell types. Correlation of the effect sizes in replications among different cell types, measured by rb value. 
Text inside each block indicates the rb value, and number of replicated co-eQTLs. Color intensity indicates rb 
value. For certain cell-type combinations, the number of co-eQTLs were too few to reliably estimate rb values. 
For those cell types, only the number of co-eQTLs is shown. b Replication in BIOS dataset for different cell 
types, indicated by the rb values. Scatter plot shows the detailed Z-score comparison between the co-eQTL 
meta-analysis and the Z-score from the BIOS replication for CD4 + T cells. c Number of significant co-eQTLs 
for varying cell numbers. Dot color indicates the cell type, as indicated in the text next to each dot. “cMono” 
means classical monocytes. “ncMono” means non-classical monocytes. “CD4 + T Subsampled cells” means 
that this analysis was done for CD4 + T cells, but for every individual we randomly downsampled cells to the 
desired cell number as indicated in the x-axis. d Number of significant co-eQTLs for varying sample numbers. 
“CD4 + T Subsampled Individuals” indicates that this analysis was done for CD4 + T cells, but we randomly 
subsampled for the individuals
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high correlation variance likely reflect true co-expression network polymorphisms. This 
trend is also much clearer for the filtered set compared to the non-filtered set (Addi-
tional file 2: Fig. S24), suggesting that alternative preselection strategies could be envi-
sioned that are based on specific expression values or co-expression correlation variance 
thresholds.

Sub-cell-type composition is a potential confounder that might introduce false posi-
tive co-eQTLs, similar to cell-type composition in bulk studies [33]. If a genetic vari-
ant is associated with sub-cell-type composition, co-eQTLs with sub-cell-type-specific 
genes might be identified even when there is no direct association between the SNP and 
the co-expression. To assess this, we analyzed co-eQTLs found among classical mono-
cytes, non-classical monocytes, and the whole set of all monocytes. Here we found that 
co-eQTL effect sizes are highly concordant (rb ≥ 0.9) (Additional file 2: Fig. S25) for co-
eQTLs tested in one of the subtypes and in the major cell type (> 82% of co-eQTL identi-
fied in monocytes were tested in both classical monocytes and non-classical monocytes). 
This suggests that the co-eQTLs are not generally driven by sub-cell-type composition, 
although individual co-eQTLs could still be caused by sub-cell-type differences.

To highlight how future co-eQTL analyses can benefit from the expected expansion 
of population-based scRNA-seq datasets with available genotype data, we determined 
how the number of identified co-eQTLs is related to the number of individuals and cells 
per individual. To test the influence of the number of cells, we randomly subsampled the 
CD4 + T cells and monocytes per individual and repeated the co-eQTL mapping pipe-
line (Fig. 4c). For the influence of the number of individuals, we randomly subsampled 
the individuals for CD4 + T cells (Fig. 4d). We observed that the number of co-eQTLs 
is linearly and positively correlated with both the number of cells and the number of 
individuals, although the number of individuals had a stronger effect than the number of 
cells (Fig. 4c, d; Additional file 1: Table S5).

Annotating identified co‑expression QTLs

After we successfully validated the identified co-eQTLs by exploring different techni-
cal aspects and replicating them in the BIOS dataset [2], we examined to what extent 
the co-eQTLs could provide interesting biological insights into genetic regulation, which 
could be relevant for the interpretation of disease variants. As discussed in the overview, 
we hypothesize that among the co-eGenes identified for each SNP–eGene pair there are 
direct regulator genes or genes co-expressed with the direct regulators for the eGene. 
Even if the direct upstream regulatory factor was not evaluated in the co-eQTL analysis, 
due to the limited capturing efficiency of the single-cell data, the biological function of 
the co-eQTLs could still be inferred by the other co-eGenes in strong co-expression with 
the unknown upstream regulator as they presumably share the same biological function 
and potentially also a common role in disease. To assess these hypotheses, we combined 
different lines of evidence: functional enrichment based on gene ontology (GO) terms, 
enrichment of TF binding sites and enrichment of GWAS annotations.

Each enrichment analysis was run separately per cell type and for all co-eGenes associ-
ated with the same SNP–eGene pair (see “Methods” for details). To increase the power 
of enrichment analyses, we restricted ourselves to SNP–eGenes pairs with at least five 
co-eGenes, which covered 25% of SNP–eGenes pairs in at least one cell type (19 out 
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of 76 unique SNP–eGene pairs). GO enrichment analysis revealed shared functional 
pathways for the co-eGenes. For 18 of the 19 SNP–eGene pairs, we found enrichment 
among the associated co-eGenes for at least one GO term (Additional file 9: Table S14). 
Moreover, we assessed potential common TFs regulating the shared function of these 
co-eGenes using ChIP-seq data processed by ReMap 2022 [34] and found enrichment of 
TF binding sites in the promoter regions of co-eGenes for 7 of the 19 SNP–eGene pairs 
(Additional file 10: Table S15). For four of the SNP–eGene pairs, the co-eQTL SNP itself 
or a SNP in high linkage disequilibrium (LD) (R2 ≥ 0.9) lay in the binding region of the 
enriched TFs (Additional file 10: Table S15), making these likely candidates for the direct 
regulator.

We also explored whether co-eQTLs and the respective sets of co-eGenes could 
enhance our understanding of disease-associated variants. For this, we annotated co-
eQTL SNPs with GWAS loci, identifying approximately half the SNPs to be in high 
LD (R2 ≥ 0.8) with a GWAS locus (41 out of 72 SNPs, Additional file 11: Table S16). To 
assess if sets of co-eGenes for a specific SNP–eGene share a common role in disease, we 
explored if the co-eGenes show higher gene-level trait association for GWAS traits that 
are also associated with the respective co-eQTL SNP. We identified overlapping GWAS 
traits for two co-eQTL SNPs and their co-eGenes for at least one GWAS trait and cell 
type, with many of the traits covering blood cell counts and immune-mediated dis-
eases (GWAS SNP p-value < 5 × 10−8, FDR < 0.05, Additional file 12: Table S17), further 
strengthening the biological connection of the co-eGenes with the eQTL.

Furthermore, we observed that the direction of effect of the co-eQTLs can be help-
ful in grouping genes sharing the same functions. For this, we compared the direction 
of effect of the co-eQTL with the direction of the associated eQTL, choosing the same 
reference allele in both cases. If the direction matched, we classified it as concordant. 
In these co-eQTLs, increasing expression of the eGene led to increasing co-expression. 
If the directions did not match, we said the direction of the co-eQTL is discordant. 
Between 37 and 97% of the co-eQTLs showed a concordant direction of effect across 
cell types (Additional file 2: Fig. S26), but the majority of co-eGenes were associated with 
rs1131017–RPS26 and thus the observed distributions are probably not generalizable for 
future larger studies that identify more co-eQTL.

In the following section, we highlight some examples of how these co-eQTL can help 
to better understand the molecular functional consequences of genetic variants associ-
ated with disease. To gain additional support for the biological interpretation of these 
co-eQTLs, we performed a colocalization analysis overlaying the eQTL and co-eQTL 
signals with the GWAS signals of the most important traits from the enrichment analy-
sis (Additional file 13: Table S18, Additional file 14: Table S19).

When grouping co-eQTLs based on their associated eQTL, eQTL rs1131017–RPS26 
had the most significantly associated co-eGenes in all cell types except for DCs (between 
372 co-eGenes for CD4 + T cells and 35 for B cells) (Fig. 5a–d). RPS26, encoding a ribo-
somal protein, showed strong correlation with other ribosomal proteins, and we had 
previously reported a few RPS26 co-eQTLs in CD4 + T cells [10] and monocytes [11]. 
Our new methodology and the larger sample size in the current study allowed us to now 
compare the genes part of the rs1131017–RPS26 co-eQTLs across cell types.
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In monocytes, NK cells and B cells, nearly all the associated genes showed a positive 
direction of effect, concordant with the eQTL direction (95% of all co-eGenes for mono-
cytes, 90% for NK cells and 97% for B cells), while in CD4 + T cells and CD8 + T cells, 
several genes showed a negative direction of effect, discordant with the eQTL direction 
(46% of all co-eGenes for CD4 + T cells and 43% for CD8 + T cells).

Fig. 5  Annotation of co-eQTLs. a Union network constructed with co-eQTLs found in CD4 + T cells or 
monocytes that are associated with the SNP–eGene: rs1131017–RPS26. The two circled clusters contain 
co-eGenes that are in those corresponding GO terms. b Example of one co-eQTL: rs1131017–RPS26-CD74. 
Left plot indicates the co-expression patterns from all individuals in the Oelen v3 dataset. Each regression 
line was fitted using the normalized gene counts resulting from the “SCTransform” workflow [35], from one 
individual. Right plot indicates the co-expression values from the three genotype groups. c Comparison 
between Z-scores from monocytes and Z-scores from CD4 + T cells. Red dots indicate positive co-eQTLs 
from CD4 + T cells. Blue dots indicate negative co-eQTLs from CD4 + T cells. d Example of one co-eQTL: 
rs1131017–RPS26-RPL11 with the same layout as b. e GO term enrichment results for the co-eGenes in 
negative co-eQTLs from CD4 + T cells (top five GO terms for the Ontology Biological Process). f GO term 
enrichment results for the co-eGenes in positive co-eQTLs from CD4 + T cells (top five GO terms for the 
Ontology Biological Process)
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The positively associated genes replicated well across all cell types (Fig. 5c, Additional 
file  2: Fig. S27) and were enriched for functions associated with translation (Fig.  5f ), 
which is consistent with the fact that many co-eGenes were ribosomal proteins from 
both the large and the small subunit (for CD4 + T cells: 46 of 47 tested RPL genes and 
all 31 tested RPS genes were associated). In contrast, the negatively associated genes 
only replicated well between CD4 + T cells and CD8 + T cells (Additional file 2: Fig. S27; 
Fig. 5c, d), despite the fact that these genes were sufficiently high expressed in the other 
cell types. This negatively associated set of genes showed enrichment in functions asso-
ciated with immune response and T cell activation (Fig. 5e).

TF enrichment analysis identified six TFs—RBM39, TCF7, LEF1, KLF6, CD74, and 
MAF—whose binding sites were enriched in the promoter region of the rs1131017–
RPS26 co-eGenes, that had a binding site overlapping with rs1131017 and that were 
among the rs1131017–RPS26 co-eGenes themselves (Additional file 10: Table S15). This 
led us to the assumption that one or more of these TFs represent the direct regulators 
of the eQTL, as described in the overview (Fig. 1c, Scenario 1). Five of the TFs (TCF7, 
LEF1, KLF6, CD74, and MAF) are also connected with lymphocyte activity (the first four 
based on GO annotations, MAF based on a recent study [36]), further strengthening the 
link with T cell activation. Of these, MAF and CD74 were specifically enriched not only 
among all co-eGenes but additionally among co-eGenes with a negative effect direction 
(Additional file 10: Table S15).

GWAS enrichment analysis showed enrichment for several different blood cell counts 
in all cell types. However, in CD4 + T cells and CD8 + T cells, we additionally observed 
specific enrichment for the immune-mediated diseases (rheumatoid arthritis (RA), 
Crohn’s disease (CD), multiple sclerosis (MS) and hay fever). This shows the relevance 
of T cell-associated co-eGenes for these diseases (Additional file 12: Table S17). We con-
firmed with colocalization analyses that there is very likely a shared signal between the 
eQTL and co-eQTLs signals and the GWAS signals from RA and asthma (Additional 
file  13: Table  S18, Additional file  14: Table  S19). Among the co-Genes with the high-
est colocalization posterior probability (PP4 > 0.9), 6 out of 41 were again associated 
with lymphocyte activation. Interestingly, several studies have highlighted a connec-
tion of RPS26 with T cell activation and survival [37], and the associated co-eQTL SNP 
rs1131017 is associated with the enriched immune-mediated diseases (RA, CD, MS, hay 
fever) [38].

We examined whether the large number of co-eQTLs for rs1131017 were confounded 
by sub-cell types in CD4 + T cells. We cannot exclude the possibility that this variant 
showed this effect in CD4 + and CD8 + T cells by specifically affecting the amount of 
circulating CD4 + or CD8 + sub-cell types whose marker genes would subsequently 
show up as co-eQTLs in our analysis, where we have not distinguished between sub-cell 
types. To test whether this is a possibility, we associated SNP rs1131017 and the ratio 
between CD4 + /CD8 + TEM cells and CD4 + /CD8 + naïve T cells, but we did not see 
a significant correlation (Additional file 2: Fig. S28). Together, these results suggest that 
RPS26 plays a dual-function role, both in general transcription and specifically in lym-
phocytes in T cell activation. This points to a potential working mechanism in the role of 
rs1131017 in the manifestation of autoimmune diseases.
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Another set of promising co-eQTLs are those associated with rs7806458–TMEM176A 
in monocytes (11 co-eGenes) and rs7806458–TMEM176B in monocytes (6 co-eGenes) 
and DCs (1 co-eGene) as they connect the co-eQTL SNP rs7806458 that has been asso-
ciated with MS [39] with blood coagulation. This is interesting as this disease has previ-
ously been connected to disturbances in blood coagulation [40]. The relevance of the 
co-eGenes to MS is supported by two lines of evidence. Firstly, GO enrichment sug-
gested that the six co-eGenes associated with rs7806458–TMEM176B in monocytes are 
enriched for complement component C3b binding (Additional file 9: Table S14), which 
is closely related to the blood coagulation system [41]. When looking closely at the exact 
gene functions, we found three genes (ITGB1, FCN1, and CFP) that contribute to the 
local production of complement [42]. Secondly, GWAS enrichment analysis showed MS 
enrichment for co-eGenes associated with rs7806458–TMEM176A in monocytes (Addi-
tional file 12: Table S17). Intriguingly, the eGene TMEM176B was previously found to 
be associated with the maturation of DCs [43], and it has been shown that white blood 
cells, including DCs, can act as a local source of certain complement proteins [44, 45]. 
Though we could not identify (in)direct regulator genes for these co-eQTL in our TF 
enrichment analysis with the ReMap database (version 2022) [34], we argue that these 
co-eGenes, supported by several lines of evidence, provide valuable mechanistic insights 
for the MS SNP rs7806458.

For several of the other co-eQTLs, we could not provide as strong and coherent evi-
dence for the interpretation but nevertheless found promising connections to biological 
functions and disease that can be explored in further studies. One is the SNP–eGene 
pair rs9271520–HLA-DQA2. We found co-eQTL effects for it in CD4 + and CD8 + T 
cells, monocytes, and DCs, with the number of co-eGenes ranging from 7 to 17. Inter-
estingly, rs9271520 is in LD with several immune disease SNPs where we also found 
enrichment for the co-eGenes in the same GWAS traits. The most significant (sorted by 
GWAS SNP p-values) enriched traits include rheumatoid arthritis, MS, and asthma (see 
Additional file 12: Table S17 for full GWAS enrichment results). The connection with 
these three diseases was also supported in our colocalization analysis, indicating colo-
calization in various cell types (29 colocalizing co-eGenes for asthma, 21 for RA, and 
2 for MS; PP4 > 0.5, Additional file 13: Table S18, Additional file 14: Table S19). How-
ever, we found several other genes in the HLA region being co-eGenes associated with 
rs9271520–HLA-DQA2, and, when we removed those HLA genes, the GWAS enrich-
ment signals disappeared. This indicated that the enriched signal could be due to the 
LD structure in the HLA region and a confident mapping of the causal regulatory con-
nections is not possible with our dataset. Other interesting co-eQTL examples and their 
interpretations are discussed in Additional file 3.

In general, our study is still underpowered in finding a lot of associated co-eGenes 
(Fig. 4c, d, Additional file 2: Fig. S15). This limits the set of SNP–eGenes, for which we 
can perform a well powered enrichment analysis and so the biological interpretation 
of these co-eQTLs. One of the potentially interesting SNP–eGenes, with too few co-
eGenes for the enrichment analysis, is rs393727—RNASET2, which is associated with 
four co-eGenes (B2M, ITGB1, ALOX5AP, CRIP1). The SNP rs393727 is in very high LD 
with two previously described SNPs associated with Crohn’s disease (CD) and inflamma-
tory bowel disease (IBD) (Additional file 11: Table S16). Additionally, the results of our 



Page 21 of 37Li et al. Genome Biology           (2023) 24:80 	

colocalization analysis support a shared signal between the eQTL rs393727—RNASET2 
in CD4 + T cells and GWAS signals for IBD (including Crohn’s disease and ulcerative 
colitis cases together) and more specifically only CD (Additional file 13: Table S18). For 
the co-eQTL colocalization, the posterior probabilities for a shared signal were lower 
(around 0.5), which could be caused by a lack of power in our current analysis (Addi-
tional file 14: Table S19). The eGene RNASET2 has also been previously associated with 
IBD [46], and among the four co-eGenes, ITGB1 was previously associated with CD [47] 
and CRIP1 is associated with gut immunity [48], further supporting the link of these co-
eQTL genes with IBD and CD.

Intriguingly, we found a number of overlapping co-eGenes associated with different 
SNP–eGene pairs, indicating potential common upstream regulatory pathways. For 
example, all the co-eGenes positively associated with rs4147638–SMDT1 are also found 
to be positively associated with rs11311017–RPS26, while the four co-eGenes negatively 
associated with rs393727–RNASET2 are also negatively associated with rs1131017–
RPS26 (Additional file 2: Fig. S29).

Discussion
In this study, we validated the use of scRNA-seq data to identify cell-type-specific 
co-expression patterns and developed a novel approach to extend the discovery of 
co-eQTLs. Applying this to a large meta-analysis with 173 samples, we identified 72 
independent SNPs leading to co-eQTLs for 946 unique gene pairs across different cell 
types. These co-eQTLs shed light on the biological processes upstream of individual cis-
eQTLs, such as that seen for rs1131017, which affects RPS26 expression levels and is 
associated to autoimmune diseases. We observed that this variant affects T cell activa-
tion genes, providing a potential explanation for the association of this variant to auto-
immune diseases.

In this study, we used the Spearman correlation to quantify the co-expression pat-
terns from scRNA-seq data because of its straightforward interpretability, scalability, 
robustness against outliers, and high reproducibility among different scRNA-seq and 
bulk RNA-seq datasets. However, we acknowledge that such correlations do not take 
into account the sparseness of scRNA-seq data, and it is difficult to infer direct regulator 
genes. This of course also depends on the quality of the single-cell data. Direct inter-
actions can only be distinguished from indirect interactions when the direct upstream 
target was measured, which is currently not always the case. We tested other associa-
tion methods [15, 21], including the proportionality measure and GRNBoost2, that were 
recognized as top-performing in independent benchmarking studies [16, 18]. However, 
they did not perform better in our validation. Additionally, a reliable temporal ordering 
of the cells [25, 26] was not possible in our dataset. We therefore applied the Spearman 
correlation as a solid basis for the co-eQTL analysis. However, we do acknowledge that 
the Spearman correlation may not be the ideal method to handle scRNA-seq data due to 
sparseness. Future work may find that other association measures are equally suitable or 
more suitable, and this may potentially depend on the specific single-cell dataset under 
investigation.

We also found that scRNA-seq and bulk RNA-seq data do not always correlate well for 
all gene pairs and explored different factors that could explain this. Part of the variable 
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correlation could be explained by the sparsity of the single-cell data, as higher expressed 
gene pairs correlated better, but at least a few example cases showed the potential occur-
rence of Simpson’s paradox. With regard to cell-type composition, however, the FACS-
sorted datasets did not correlate better with single-cell datasets than the whole-blood 
bulk dataset, which could either be caused by the smaller sample size of the single-cell 
data, technical changes introduced by FACS or specific differences in the (sub-)cell 
types, as we had naïve CD4 + T cells and classical monocytes (subsets of CD4 + T cells 
and monocytes, respectively) for BLUEPRINT and ImmuNexUT that we tested for the 
single-cell data. Another interpretation is that scRNA-seq and bulk RNA-seq data cap-
ture different functional gene clusters, as a previous study showed in tumor samples [49]. 
One possible explanation for this is that bulk and single-cell capture different sources of 
variability. Whereas single-cell data captures between-cell variability, bulk data captures 
between-person variability, which is affected by additional factors like genetics and envi-
ronment. Therefore, a statistical framework combining both data types could be benefi-
cial in the future.

Our study sheds light on several important considerations for future scRNA-seq study 
design regarding personalized network construction and co-eQTL mapping. Firstly, 
we showed that several factors, including cell number and gene selection, greatly influ-
ence the stability of co-expression patterns. We observed a clear trend indicating that 
a certain minimum number of cells from one individual is needed to achieve a stable 
co-expression pattern (Fig. 3d). Secondly, we also explored factors influencing the num-
ber and quality of co-eQTLs. We showed that the number of significantly detected co-
eQTLs can be greatly increased by either increasing the number of individuals or by 
increasing the number of cells per individual (Fig. 4c, d). The limited power is also visible 
in the number of identified single cell eQTLs, which is well in line with other single-
cell studies of similar sample size [11], but lower compared to large bulk eQTL studies 
[2]. We believe that future larger single-cell datasets such as two very recent studies [50, 
51] and the sc-eQTLGen consortium [52] will improve statistical power to identify more 
robust eQTLs and co-eQTLs.

Furthermore, we showed that a sophisticated filtering strategy of tested SNP–gene–
gene triplets is essential to maximize the number of reliable co-eQTLs. However, we also 
suggest that the filtering strategy should be designed for the specific goals of the respec-
tive analysis. In this study, we systematically searched for robust co-eQTLs and adapted 
our strategy to balance the trade-off between achieving a stable co-expression pattern 
and enlarging the search space. For this reason, we first selected SNP–gene pairs and 
then used co-expression strength as an additional criterion rather than the very strin-
gent expression cutoff criterion we used in our benchmarking analysis. In contrast, in 
our previous study [11], we focused specifically on co-eQTLs among the eQTLs that 
changed after pathogen stimulation and performed a strict pre-filtering for a highly tar-
geted analysis. In the current study, we were, in particular, able to replicate the most 
significant co-eQTLs from the targeted analysis (Additional file 2: Fig. S30). While the 
targeted analysis identified additional lower significance co-eQTLs that are below our 
much stricter multiple testing-corrected significance threshold, we were able to quan-
tify the number of co-eQTLs more broadly for several additional SNPs and to include, 
for the first time, a comparison across cell types. In other cases, a selection of known 
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TF–target pairs or pathway information could be desirable, e.g., for prioritizing TFs con-
nected with diseases for experimental validation purposes.

Additionally, we investigated if there is an eQTL effect between SNP and co-eGene 
from SNP–eGene–co-eGene triplets. As a result, we found this to be the case for just 
two out of 946 distinct co-eQTL triplets, thus we may infer that generally the co-eQTL 
effect is not directly controlled by the cis-eQTL SNP. In these two specific situations, the 
co-eGene and eGene were located close to each other and their regulatory SNP.

We showed that the annotated co-eQTLs could identify potential direct regulators 
of the associated eQTLs as well as the affected biological processes, with several exam-
ples based on a combination of different enrichment analyses. We identified several 
TFs either directly as co-eGenes or via enriched binding sites among the co-eGenes of 
a SNP–eGene pair, providing potential regulatory mechanisms for explaining the co-
eQTL. For the eQTL rs1131017–RPS26, six enriched TFs were themselves co-eGenes in 
CD4 + T cells, providing compelling evidence to support the hypotheses that direct reg-
ulators can be identified among co-eQTLs. Among these six TFs, five are associated with 
lymphocyte activation, further strengthening the connection of the eQTL with lympho-
cyte activation and through this to autoimmune diseases.

Another interesting aspect of the rs1131017–RPS26 example is that we revealed a 
potential mechanism for a previously described GWAS signal by showing cell-type-spe-
cific genetic regulation of a multi-functional gene. The SNP rs1131017 is in high LD with 
rs773125 (R2 = 0.879), which has previously been associated with rheumatoid arthritis 
in several large-scale GWAS studies [53, 54]. A recent TWAS study [55] utilized the 
GWAS summary statistics [53] and RPS26 was identified as one of the significant genes 
in the locus. Additionally, the SNP rs1131017 was found as the leading SNP for a trans-
eQTL locus specifically in T cells [56]. Inspired by these observations, a recent paper 
[37] sought to elucidate the role of RPS26 in T lymphocytes. They examined a T-cell-
specific RPS26 knockout mouse model and reported that ablation of RPS26 in T cells 
impairs peripheral T cell homeostasis and leads to T cell developmental arrest in the 
thymus. Despite the great interest in this locus and the role of RPS26 in lymphocytes, 
the associated pathways and biological processes that underlie the rheumatoid arthritis 
GWAS signal are still largely unknown. By comparing T cells and monocytes, we identi-
fied that RPS26 may be involved in two distinct biological functions. Interestingly, these 
two distinct functional co-eQTL clusters are characterized by opposite effect directions. 
Moreover, while RPS26 showed enough variation to be picked up as an eQTL effect, it 
did not show high correlation with either gene cluster (Additional file 2: Fig. S31), which 
may be why understanding its role in multiple functions has been challenging up to now 
[37]. We envision that more multi-functional eGenes could operate in such a cell-type-
specific manner, with variation in expression that could be explained as the downstream 
consequences of many other conserved or highly co-expressed gene clusters, and this 
understanding could assist in interpreting GWAS signals. We also observed that differ-
ent eGenes could have shared upstream genes/pathways as we identified four common 
immune-related co-eGenes associated with rs393727–RNASET2 and rs1131017–RPS26, 
and both SNPs were in LD with immune diseases (T1D and CD), suggesting a shared 
upstream process for these two eQTL effects. By providing cell-type-specific gene 
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regulation backgrounds through co-eQTLs, we expect more eQTLs and GWAS signals 
to be explained in the relevant cell type via future large-scale co-eQTL studies.

The choice of the background set for the enrichment analyses affects the interpreta-
tion. We decided to include all genes tested for co-eGenes in the respective cell type 
into the background gene set. We also explored the effect of a more specific background, 
which focused on the genes tested for the respective SNP–eGene in the cell type (Addi-
tional file 1: Table S20). The total number of enriched pairs was reduced slightly with 
the more specific background, but the enrichment results for rs1131017-RPS26 and our 
other examples in the results section stayed very similar and the changes did not affect 
our interpretation.

For other co-eQTL examples, no enriched TF was found in the co-eGene list, poten-
tially because the TFs were not measured in the scRNA-seq datasets due to low expres-
sion. By also doing an enrichment analysis for TFs regulating the set of co-eGenes, we 
did identify a set of candidate TFs which are likely candidates for further investigation as 
potential regulators. A third group of co-eQTL examples were supported by GWAS or 
GO enrichment analysis but not TF enrichment analysis. Here, the co-eGenes revealed 
part of the disease-relevant network, but we could not pinpoint the direct regulatory 
TFs. One explanation for this may be that our study is still underpowered to discover 
co-eGenes, while the enrichment strategy works best when there are a substantial num-
ber of co-eGenes as for rs1131017–RPS26. Based on our evaluation, we estimated that 
future studies with larger sample size and more cells will identify many more co-eQTLs 
(Fig. 4c,d). This can help identify the direct regulators for some of our other examples, 
where the current enrichment analyses provided no clear interpretation, as well as co-
eQTLs associated with other SNP–eGenes.

There are also several challenges to interpret the identified co-eQTLs. Firstly, as dis-
cussed earlier, it is difficult to determine the direct and indirect regulators that work 
through co-expression among correlated co-eGenes. This creates problems in using 
correlation-based metrics to quantify replication performance. For example, all the co-
eQTLs we identified in B cells were associated with the rs1131017–RPS26 pair, making 
the correlation-based rb measure invalid for this case. Also, to reduce the multiple testing 
burden, we only tested the top-SNP, a choice that could pose additional challenges for 
follow-up analysis such as colocalization to identify the causal SNP. Moreover, compari-
son of co-eQTLs between cell types remains challenging. We showed that the number 
of co-eQTLs is strongly driven by the number of cells (Fig. 4c), so that it is not meaning-
ful to only compare the absolute number of co-eQTLs between cell types in the current 
study. Furthermore, the sparsity of the single-cell data lead to the removal of many lowly 
expressed genes which, combined with the strict filtering our analysis required, meant 
only a small number of genes were tested in all cell types.

Several confounding factors such as sequencing depth, number of cells and sub-cell-
type composition could influence the results. In this study, we used SCT normalization 
for the scRNA-seq data to reduce the impact of sequencing depth on downstream analy-
sis. We normalized the individualized co-expression values by the number of cells per 
individual and calculated z-statistics (see “Methods”) for co-eQTL mapping. In addition, 
fine grained compositional differences within a cell-type can introduce false positive co-
eQTLs within a cell type if a genetic variant influences this composition and one of the 



Page 25 of 37Li et al. Genome Biology           (2023) 24:80 	

tested genes shows differences in expression that also depend on this composition. How-
ever, in our evaluation of classical and non-classical monocytes, we observed no strong 
confounding of monocyte co-eQTLs by the subtypes of cells (Additional file 2: Fig. S24). 
Although we cannot fully rule out all other possible confounding factors that could 
potentially create false positive findings, we have shown that the identified co-eQTLs 
show highly consistent effect sizes and directions across all datasets used in our meta-
analysis and also in the independent bulk replication cohort. This indicates that the 
majority of our reported co-eQTLs are not due to batch effects. However, we do encour-
age future studies to further examine potential confounding factors to further reduce the 
possibilities of false positives and false negatives.

Several of the limitations of our current analysis will be overcome by on-going tech-
nological developments. First of all, we expect that follow-up analyses with larger sam-
ple sizes and more cells per person will identify many additional co-eQTLs. This can be 
further enhanced by improvements in single-cell technologies that lead to better cap-
ture efficiency of expressed genes. CITE-seq [57] and similar technologies [58, 59] allow 
improved cell type and sub-cell-type classification that can show the effect of sub-cell-
type differences more accurately. The combination of multiple-omics, such as scRNA-
seq, scATAC-seq, and/or single-cell proteomics [60–62], will enable us to capture 
regulation happening outside the mRNA level and lead to improved association analysis 
of gene pairs above the standard Spearman correlation.

Conclusion
Through our co-eQTL mapping strategy we identified a robust set of co-eQTLs that 
provides insight into cell-type-specific gene regulation and leads for future functional 
testing. Among these results, we uncovered a potential mechanism for a previously iden-
tified GWAS signal and a multi-functional gene. Our evaluation of different technical 
factors provides valuable suggestions for future experimental study design. We believe 
that more co-eQTLs will be uncovered by applying our general co-eQTL mapping pipe-
line to future large-scale scRNA-seq data. We envision that these co-eQTLs will in the 
future help to position eQTL and GWAS signals into cell-type-specific GRNs by anno-
tating which regulatory edges are affected by which genetic variants. This knowledge is 
important for interpreting the effects of genetic variants in general, but also specifically 
for improve personalized medicine through better genetic risk prediction for diseases 
and personalized drug treatment based on genotype [52].

Methods
Single‑cell datasets

Three different scRNA-seq datasets were included in this study, both for bench-
marking the associations and for combined meta-analysis of co-expression QTLs. 
All five datasets from the three studies were generated from human PBMCs and are 
referred to by their first author: the Oelen dataset (n = 104 donors) [11], the van 
der Wijst dataset (n = 45 donors) [10], and the van Blokland dataset (n = 38 cardiac 
patients) [20]. Further specifications can be found in Additional file  1: Table  S1a) 
and 1b), and the respective manuscripts. Briefly, the Oelen dataset and the van 
der Wijst dataset included general population participants with European ancestry 
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background, whose ages range from 20 to 79. The van Blokland dataset included 
patients 6–8 weeks post ST-elevated myocardial infarction, whose ages range from 
43 to 95, the majority of whom are of European ancestry background. In the van 
Blokland data, there are two individuals of Asian ancestry background. We exam-
ined how much the meta-analysis Z-scores of the identified eQTLs and co-eQTLs 
would be changed by excluding the two individuals, but did not observe a large dis-
crepancy (Additional file 2: Fig. S32, 33).

For each study, blood samples were collected from individuals into EDTA-vacu-
tainers (BD), after which PBMCs were isolated using Cell Preparation Tubes with 
sodium heparin (BD) and were cryopreserved in RPMI1640 containing 40% FCS 
and 10% DMSO until further use. For each individual, cryopreserved PBMCs were 
thawed and 6–8 donors were multiplexed in individual sample batches that were 
then loaded on a 10X Chromium controller. Subsequent libraries were then gener-
ated for each sample batch using 10 × Genomics single cell 3’ reagents (v2 and v3). 
Libraries were sequenced using 150PE sequencing on the Illumina NovaSeq 6000 at 
BGI (Hong Kong).

For dataset processing, we used CellRanger (v1.3 for van der Wijst and v3.0.2 for 
Oelen and van Blokland) for scRNA-seq alignment, Demuxlet for demultiplexing, 
and Seurat (4.1.0) for quality control (QC) and Azimuth v0.4.6 (with the default ref-
erence from [63]) for cell-type classification. Cells with a high percentage of mito-
chondrial genes (5% in the van der Wijst study, 8% and 15% in v2 and v3 chemistries 
respectively in both Oelen and van Blokland studies), number of genes expressed 
per cell (more than 3500 genes/cell in van der Wijst study and less than 200 genes/
cell in Oelen and van Blokland studies), and doublets (Demuxlet for van der Wijst 
and SoupOrCell for Oelen and van Blokland) were excluded during these QC steps. 
The Oelen dataset also contains cells stimulated with different pathogens, but we 
only included the unstimulated cells in this analysis to improve comparison with the 
other datasets. For the van Blokland dataset, we included the data from the time 
point 6–8  weeks after the individual was admitted to the hospital for myocardial 
infarction, again to improve comparison across datasets. More details on dataset 
processing are provided in the original publications [10, 11, 20].

For cell-type classification, we took the annotation for the Oelen data from their 
original publication [11] and annotated the van Blokland and van der Wijst data-
sets using the Azimuth classification method [63]. For Azimuth classification, we 
used the following settings: (1) the FindTransferAnchors function to find anchors 
using the reference from publication [63], normalization method “SCT”, reference.
reduction method “spca” and first 50 dimensions and (2) the MapQuery function 
to annotate cell types using the same reference and parameters such as reference.
reduction = “spca” and reduction.model = “wnn.umap”. We then compared the anno-
tation from the Oelen publication and the Azimuth classification and found high 
correspondence (Additional file  2: Fig. S34). For analyses using the sub-cell-type 
classification, we always refer to the Azimuth classification results.
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Single‑cell co‑expression

For co-expression quantification, we used SCTransform [35] from the Seurat pack-
age and used the log transformed counts as input. We then calculated the Spearman 
correlation of gene pairs in the three different single-cell studies (Oelen dataset [11], 
van Blokland dataset [20] and van der Wijst dataset [10]) and then compared between 
datasets and 10XGenomics chemistry. In the benchmarking section, correlation was 
calculated separately per cell type but together over all individuals and only for gene 
pairs for which both genes were expressed in at least 50% of the cells from the respec-
tive cell type. The correct gene counts resulting from the “SCTransform” [35] were 
used to calculate gene–gene correlations. For the comparison between two datasets, 
the gene pair-wise Spearman correlation values from each dataset were compared 
using the Pearson correlation.

Rho calculation

Rho proportionality was calculated using the “propr” function in R, from the “propr” 
package, with the symmetrized value set to true. We used the v3 unstimulated mono-
cytes to compare the rho proportionality values to the Spearman-rank correlations of 
the same data. We filtered out genes expressed in fewer than 5% of cells, leaving 8634 
genes to be assessed. Concordance between the rho values and Spearman correlations 
was assessed with the Pearson correlation.

We also explored rho proportionality values for very lowly expressed genes because 
the log-normalization of the method potentially introduces false associations for 
these genes [15]. However, the computational demand to run the method was so high 
that we could not evaluate all expressed genes at once. Instead, we subsampled a set 
of 50 very lowly expressed genes (expressed in 0–5% of the cells) and 50 very highly 
expressed genes (expressed in at least 90% of the cells) and calculated the rho propor-
tionality and Spearman correlation values for each combination of these 100 genes. 
We then compared gene pairs for which both genes were lowly expressed, pairs for 
which both genes were highly expressed, and mixed pairs, for which one gene was 
lowly and one highly expressed.

Alternative association metrics besides the rho proportionality and Spearman cor-
relation are discussed in Additional file 3.

Validation in bulk datasets

The Spearman correlations from single-cell data were compared to the Spearman 
correlations made with three different bulk datasets: the BLUEPRINT Epigenome 
consortium data [22], the ImmuNexUT dataset [23], and the BIOS dataset [2]. For 
BLUEPRINT, we further removed the first principal component from the monocyte 
dataset to remove any uncorrected covariates. For the ImmuNexUT dataset, preproc-
essing was performed as described in the publication: we filtered out genes with less 
than 10 counts in 90% of the samples, performed TMM normalization with edgeR and 
scaling to CPM, batch corrected with combat, and removed samples with a mean cor-
relation coefficient smaller than 0.9. For the BIOS dataset, we corrected for 20 RNA 
Alignment metrics and then calculated the co-expression values using all individuals.



Page 28 of 37Li et al. Genome Biology           (2023) 24:80 

We then calculated the Pearson correlation across all gene pair-wise correlation val-
ues. As BLUEPRINT and ImmuNexUT are cell type-sorted datasets, we matched the 
cell types between bulk and single-cell data in these cases in the comparison. Again, 
we used only genes expressed in at least 50% of the cells from the cell type. This 
threshold was chosen after our initial evaluation of different thresholds from 10 to 
90% in the comparison of BLUEPRINT and Oelen v3 dataset, with 50% chosen to bal-
ance the number of genes that can be used against the correlation strength between 
the datasets.

Validation using CRISPR knockout data

To further validate the correlation values, we used CRISPR knockout data from [19]. 
Mixscape was used to identify perturbed vs unperturbed cells for each CRISPR pertur-
bation [28]. We selected five knockout genes for which a sufficient number of success-
ful CRISPR-perturbed cells were identified and that were expressed in our single-cell 
dataset (Oelen v3 dataset, CD4 + T cells) in > 50% of cells. The publication identified DE 
genes in wild-type vs perturbed cells and wild-type vs non-perturbed cells, as labeled by 
Mixscape. We selected a credible set of DE genes that were expressed in the single-cell 
dataset and significant in the wild-type vs perturbed cells but not in the wild-type vs 
non-perturbed cells. For this, we applied FDR-correction based on all genes expressed 
in the single-cell dataset. The correlation of these genes was compared to the correlation 
of non-DE genes, i.e., all other genes expressed in the single-cell dataset, using the Wil-
coxon rank-sum test (one-sided test with “greater” in DE genes). The same test was done 
using the naive CD4 + T cells from the ImmuNexUT dataset.

Validation using STRING annotations

Following the same approach used for the CRISPR knockout data, we explored if gene 
pairs whose proteins are interacting show higher correlation. We used the STRING 
database (version 11) [28], processed by the [18] benchmark study, to identify interact-
ing gene pairs. We compared the correlation of gene pairs in STRING versus gene pairs 
not listed in STRING via Wilcoxon rank-sum test (one-sided test with “greater” for Gene 
pairs in STRING): once using the correlation estimates from the Oelen v3 dataset and 
once using the estimates from the ImmuNexUT dataset, both times for the CD4 + T 
cells and filtered for genes expressed in > 50% of single cells.

Exploring Simpson’s paradox

To identify whether our strategy to identify single-cell co-expression is affected by 
Simpson’s paradox and whether bulk-based approaches would suffer from it, we stud-
ied the co-expression outcomes for two different strategies. In both strategies, we only 
included genes with non-zero expression in at least half of all monocytes in the Oelen 
v3 dataset. In the first strategy, we calculated the Spearman correlations for gene pairs 
per individual separately for each gene pair, based in the corrected gene counts resulting 
from the “SCTransform” workflow [35]. In the second strategy, we calculated the average 
expression of genes per individual, called pseudo-bulk approach and then calculated the 
Spearman correlation between genes. To identify potential Simpson’s paradox events, 
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we looked into the gene pairs that had the largest deviation in co-expression estimate 
between the two strategies.

Comparison between cell types

After successful validation of the Spearman correlation values, we compared differences 
between cell types within one dataset for the Oelen v2 and v3 dataset. Here we applied 
the same strategy as in the dataset comparison. We selected genes expressed in 50% of 
the cells from both cell types for each corresponding comparison, calculated the Spear-
man correlation per gene pair within each cell type, and followed up with the Pearson 
correlation to compare both cell types. We also explored the absolute distribution of 
correlation coefficients between the cell types.

Comparison between individuals

Again, we applied the same strategy as for the cell type and dataset comparison. We cal-
culated gene pair-wise Spearman correlation values for each cell type and donor sepa-
rately, taking all genes expressed in 50% of cells from the cell type in general (not per 
donor). We then compared each donor with each other donor by calculating the Pearson 
correlation over the gene pair-wise correlation values to get a distribution of how well 
donors match per cell type.

To explore the effect of the number of cells per donor on this distribution, we subsam-
pled each cell type to different numbers of cells (depending on the frequency of the cell 
type). For this, we take all individuals with at least this number of cells in this cell type 
and subsample the cell number to exactly this value for each individual. We stop sub-
sampling at a threshold for the cell type when more than 75% of all measured individu-
als have fewer cells than the threshold. For the four most abundant cell types (CD4 + T 
cells, CD8 + T cells, monocytes and NK cells), we additionally fitted a logarithmic curve 
separately for each cell type to better quantify the connection:

We then used the fitted formulas to extrapolate up to 1500 cells for each cell type.

Power calculation

For power calculation, we use an F-test, as implemented in [61], with a sample size of 
173 (the total size of the combined cohorts), a heritability between 10 and 30% and a 
Bonferroni-corrected significance threshold of 0.05. The range for the heritability was 
chosen based on previously detected co-eQTLs [11]. The number of tests influences 
the Bonferroni-corrected thresholds and depends on the selected gene–gene–SNP tri-
plets. Here we assumed only one SNP per gene pair and all genes are tested against each 
other. Then, we increased the non-zero ratio threshold for gene selection from 0 to 0.95 
(monocytes, Oelen v3 dataset), got the number of tests, and calculated the power.

Testing multiple SNPs per pair would further increase the total number of tests and 
reduce the overall power.

correlation_individuals ∼ log(number_cells)(withlogbeingthenaturallogarithm)
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eQTL mapping

We performed a meta-analysis to identify significant eQTL in four out of the five single-
cell datasets (Oelen v2 and v3 dataset [11], van Blokland v2 dataset [20] and van der 
Wijst dataset [10]) per each major cell type for expressed genes in the corresponding cell 
type. We excluded the van Blokland v3 dataset because the sample size was so small that 
few variants lay above the MAF threshold (see below). Due to the limited sample size, 
we chose to perform a constrained eQTL analysis rather than a genome-wide analysis. 
We have shown previously [11] that this confined eQTL mapping strategy can greatly 
reduce the multiple testing burden and identify additional significant eQTLs. In our 
eQTL meta-analysis, we have increased the number of significant eQTLs from 560 [11] 
to 615. To select the SNP–gene pair to test for eQTL mapping, we took the eQTL results 
from the largest eQTL meta-analysis study in whole blood [2] and selected the most sig-
nificant SNP for each gene. This resulted in 16,987 SNP–gene pairs to test. For these 
selected SNP–gene pairs, we performed eQTL mapping using eQTLPipeline v1.4.9 [64] 
within a confinement of top-SNP-Gene from eQTLGen Consortium [2], using 1000 per-
mutation rounds for determining FDR as described in [2] and a MAF of 0.1. The eQTL-
Gen Consortium conducted the cis-eQTL analysis with 1 Mb distance. After filtering for 
the MAF cutoff in our datasets, 14,009 SNPs remained in total for testing, from initially 
16,290 selected SNPs from the eQTLGen Consortium. For each eGene, we first calcu-
lated the average of the normalized gene expression level per individual for the eQTL 
analysis. For each dataset separately, we then calculated a Spearman correlation coef-
ficient for each SNP–eGene. Finally, we performed a sample size weighted meta-analysis 
over all datasets to determine the meta-analysis p-value.

Co‑expression QTL (co‑eQTL) mapping and the filtering strategy

First, we generated all possible combinations of the cell-type-specific eQTL findings 
(denoted as SNP–eGene) from the constrained eQTL mapping procedure in the respec-
tive cell type (as explained in the eQTL mapping method section above) and all other 
genes (denoted as co-eGene) that are expressed in the corresponding cell types. This 
resulted in the full list of SNP–eGene–co-eGene triplets for co-eQTL mapping analy-
sis. We then calculated co-expression using the Spearman correlation for the unique 
eGene–co-eGene pairs for each individual using untreated cells of the six major cell 
types (CD4 + T and CD8 + T cells, monocytes, B cells, NK cells, and DCs) and the sub-
cell types in monocytes (classical monocytes and non-classical monocytes). We addi-
tionally transformed the Spearman correlation into a t-statistics with the sample size 
being the number of cells in one individual, and subsequently normalized the t-statistics 
to a z-statistics that follows a normal distribution with mean of zero and variance of one. 
For each gene pair, we counted the ratio of individuals who exhibit a significant correla-
tion (nominal p-value from the Spearman correlation < 0.05). If at least 10% of individu-
als showed a significant co-expression correlation for the specific eGene–co-eGene, we 
took this gene pair further into follow-up analysis. The total number of tests for each cell 
type can be found in Additional file 1: Table S4.

To assess the impact of cell numbers and sample numbers on the quality and quan-
tity of co-eQTLs, we artificially created a few scenarios with fewer cells per individual 
and fewer individuals using a random subsampling strategy. To examine the impact of 
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cell numbers, we randomly subsampled the CD4 + T cells per individual to three differ-
ent levels [50, 150 and 250 cells]. In each level, we kept the individuals with fewer cells, 
randomly subsampled those with a cell number higher than the corresponding level and 
performed the co-eQTL analysis using the strategies mentioned. Similarly, to examine 
the impact of sample numbers, we randomly subsampled 50 and 100 individuals, and 
excluded nine individuals with fewer than 10 CD4 + T cells for both scenarios.

To map co-eQTLs, we calculated the Spearman correlation coefficients for each 
selected SNP–eGene–co-eGene triplet within each dataset separately. Similar to the 
eQTL analysis, we then used a sample size weighted Z-score method to perform meta-
analysis across included datasets for each triplet, yielding the nominal p-value.

Multiple testing correction strategy for co‑eQTL

To account for the correlation structure between co-eQTL SNP–eGene–co-eGene 
triplets, we modified and applied the permutation-based multiple testing correction 
strategy from FastQTL [30], implementing the method as follows. For each triplet, we 
performed 100 permutations. Then, for each SNP–eGene pair, we determined the lowest 
non-permuted nominal p-value and the lowest permuted p-value per permutation over 
all the genes (co-eGene) tested for the SNP–eGene pair, resulting in a list of the 100 low-
est permuted p-values per SNP–eGene pair. For each SNP–eGene pair, we then fitted a 
beta-distribution over these 100 permuted lowest p-values, which enabled us to subse-
quently establish the empirical p-value for the lowest non-permuted p-value. Through 
this procedure, we ensured that under the null test statistic each SNP–eGene pair has 
a uniform p-value distribution. Finally, over the empirical p-values for all SNP–eGene 
pairs, we calculated Benjamini–Hochberg FDR over the empirical p-values. Those SNP–
eGene pairs with a FDR ≤ 0.05 were deemed significant.

For each SNP–eGene pair, we also derived a p-value cutoff that indicates which of the 
co-eGenes are significant for that SNP–eGene pair via the following steps. After deter-
mining the FDR for all SNP–eGene pairs, we determined the empirical p-values that are 
closest to FDR = 0.05. Using the beta distributions for each SNP–eGene pair, we then 
determined its nominal p-value threshold. All co-eGenes with a nominal p-value lower 
than the corresponding p-value threshold for that SNP–eGene pair were considered sig-
nificant. The nominal p-value thresholds range from 1.75e − 41 to 1.34e − 4.

Replication in BIOS dataset

We replicated the co-eQTL findings in bulk whole-blood RNA-seq data from the BIOS 
Consortium, using the same method described in a previous study [8]. Briefly, we imple-
mented the following ordinary least squares model with the Python package statsmodels 
[65]: eGene ~ SNP + co-eGene + SNP:co-eGene. We then examined the effect sizes of the 
interaction term SNP:co-eGene and used Benjamini–Hochberg procedures for multiple 
testing correction.

Calculation of rb values and allelic concordance

We used the same evaluation metrics to quantify the cell-type specificity and replication 
performance in the BIOS data set of the co-eQTLs. First, we used the rb method with 
modification. We followed the same procedures as the original study [32] but chose a 
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suggested alternate strategy to estimate errors across gene pairs between two tissues. 
Whereas the original paper used null SNPs per each eQTL for this purpose, we tested 
only the significant eQTL SNP for SNP–eGene–co-eGene triplets and therefore we did 
not have information for the null SNPs. Thus, we used the alternative approach indi-
cated in the original paper with Eq. 1), where re is the estimation errors across gene pairs 
between two tissues, rp is the correlation of co-expression levels between two cell types 
in the overlapping sample, ns is the number of overlapping samples, and ni and nj are 
the number of samples in cell typed i and j, respectively. For the BIOS replication, we 
excluded overlapping individuals from the BIOS RNA-seq dataset for the replication 
analysis. Additionally, in cases where fewer than 10 co-eQTLs were tested in the replica-
tion analysis, for example, B cells, we could not get a robust estimation of the rb value 
and hence represent them as missing in the “Results” section.

Due to our filtering strategy, we did not always test the same set of SNP–eGene–co-
eGene triplets in all cell types. Therefore we also need to compare the tested ratio when 
quantifying the cell-type specificity. The tested ratio means the SNP–eGene–co-eGene 
triplets that were also tested in another cell type or the BIOS replication analysis.

A third evaluation metric that we used is allelic concordance between the discovered 
co-eQTLs and the results in the replication study. This is defined as the ratio of co-
eQTLs with concordant effect direction by the number of significant co-eQTLs identi-
fied in the replication study.

Biological interpretation based on enrichment of GO terms, TF binding sites, and GWAS 

variants

We explored the biological function of the co-eQTLs based on different enrichment 
analyses that all tested if co-eGenes associated with the same SNP–eGene pair in the 
same cell type show similar functional properties. For this, we selected all SNP–eGene 
pairs that had at least five significant co-eGenes in the same cell type.

First, we performed GO enrichment analysis separately for each co-eGene set, 
grouped by SNP–eGene and cell type, applying the R package clusterProfiler (ver 4.0.5) 
[66] and performing FDR multiple testing correction separately for each SNP–eGene 
pair across the different GO terms (defining enrichment below FDR < 0.05 as significant). 
As the background set for the enrichment, we used all genes tested in the co-eQTL anal-
ysis in the respective cell type.

Next, we explored if these co-eGene sets were enriched for certain TF bind-
ing sites. TF annotations were taken from ChIP-seq peaks processed in the ReMap 
2022 database [34], which we filtered for cell lines associated with blood cell lines. 
This resulted in a final set of 511 blood-cell-related TFs that were tested. We tested 
the overlap of these TF peaks with the promoter regions of the co-eGenes tested, 
defining the promoter region as the region 2kB upstream and downstream of the 
first transcription start site of the gene. Enrichment was tested based on Fish-
er’s exact tests for each TF, using all genes tested in the co-eQTL analysis in the 
respective cell type as the background set. We performed FDR multiple testing 

(1)re = rp ×
ns

ni × nj
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correction separately for each SNP–eGene pair over all TFs (defining enrichment 
below FDR < 0.05 as significant). Furthermore, we explored if the enriched TF itself 
was a co-eGene associated with the respective SNP–eGene pair and if the co-eQTL 
SNP or a SNP in high LD (R2 ≥ 0.9) lies in a binding site of the enriched TF. The 
SNPs in high LD were obtained from SNiPA [67] using the variant set from the 1000 
Genomes Project, Phase 3 v5, European population, Genome assembly GRCH37 and 
genome annotations from Ensembl 87.

For the GWAS annotations, we considered two different strategies. In the first 
approach, we annotated SNPs or SNPs in high LD (R2 ≥ 0.8) with GWAS loci from 
the GWAS Catalog [1], with the last updated timestamp being 3/1/2022, 07:13 AM 
(GMT + 0100). LD information for this was taken from LDtrait [68] with the follow-
ing parameters: window size = 500 KB, reference population = 1000 Genomes CEU, 
GRCh37. In the second approach, we used the magma method [69] to assess enrich-
ment of GWAS associations among co-eGenes. We obtained uniformly processed 
GWAS summary statistics for 114 traits that were used for the GWAS analysis of the 
GTEx consortium [38]. We then followed the strategy previously described by [67]. 
We defined gene sets for each co-eQTL SNP in each tissue as the set of significant 
co-eGenes associated with the SNP, as done for the GO and TF enrichment analysis. 
Protein names/gene symbols were converted to Entrez gene ids and mapped to the 
corresponding annotations on the human genome assembly 38. We performed indi-
vidual magma analyses for each trait based on summary statistics and LD structure 
from the 1000 genomes European reference panel for all gene sets compared to the 
background set of genes tested for co-eQTL, always conditioning on default gene-
level covariates (for example, gene length). Subsequently, we applied the Benjamini–
Hochberg method and selected gene set–trait associations with FDR < 5%.

After we observed different distributions of co-eQTLs for rs11311017–RPS26 with 
regard to the direction of effect in the different cell types, we repeated all enrich-
ment analysis (GO, TF, and GWAS) separately for the positively associated co-
eGenes and negatively associated co-eGenes in CD4 + T cells.

Biological interpretation based on colocalization analysis

Based on the results of the different enrichment analyses, we selected five loci 
(RPS26, HLA.DQA, RNASET2, SMDT1, TMEM176A) and seven GWAS traits 
(T1D, rheumatoid arthritis, CD, MS, asthma, IBD, white blood cell count) for which 
we decided to further investigate the underlying mechanisms by applying colocaliza-
tion analysis on the eQTL signal as well as the co-eQTL signal of each co-eGene pair. 
We tested SNPs surrounding the 1  MB window of the TSS of the eGene for both 
eQTL and co-eQTL analysis. Then we overlapped those SNPs with the SNPs given in 
the selected GWAS data of the trait. For all traits except T1D, we used the consoli-
dated GWAS summary statistics of the GTEx consortium [38]. For T1D, we used the 
GWAS summary statistics reported by Chiou et al. [70]. Then we ran the colocaliza-
tion analysis separately for each eGene and co-eGene pair in each cell type using the 
coloc.abf function of the R package Coloc (ver: 5.1.0.1) [71] (setting p12 = 1e − 6, 
default values for the other parameters).
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Direction of effect

We compared the direction of effect in eQTLs and co-eQTLs by comparing the direc-
tion of the Z-scores. After ensuring that the reference allele aligns in the eQTL and co-
eQTL analysis, co-eQTLs for which the sign of the Z-score matches the sign of the eQTL 
Z-score are called concordant. If otherwise, they are called discordant.
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