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Tissue-specific multi-omics analysis of atrial
fibrillation
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Genome-wide association studies (GWAS) for atrial fibrillation (AF) have uncovered
numerous disease-associated variants. Their underlying molecular mechanisms, especially
consequences for mRNA and protein expression remain largely elusive. Thus, refined multi-
omics approaches are needed for deciphering the underlying molecular networks. Here, we
integrate genomics, transcriptomics, and proteomics of human atrial tissue in a cross-
sectional study to identify widespread effects of genetic variants on both transcript (cis-
eQTL) and protein (cis-pQTL) abundance. We further establish a novel targeted trans-QTL
approach based on polygenic risk scores to determine candidates for AF core genes. Using
this approach, we identify two trans-eQTLs and five trans-pQTLs for AF GWAS hits, and
elucidate the role of the transcription factor NKX2-5 as a link between the GWAS SNP
rs9481842 and AF. Altogether, we present an integrative multi-omics method to uncover
trans-acting networks in small datasets and provide a rich resource of atrial tissue-specific
regulatory variants for transcript and protein levels for cardiovascular disease gene
prioritization.
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enome-wide association studies (GWAS) have discovered

thousands of disease-associated single-nucleotide poly-

morphisms (SNPs) and improved our understanding of
genetic and phenotypic relationships!. In this regard, GWAS have
been applied to investigate atrial fibrillation (AF), which affects
more than 30 million individuals worldwide?. More than 100
distinct genetic loci have been identified>* and integrated into
genome-wide polygenic risk scores (PRS) for AF risk
prediction>. While rare monogenic effects exist, additive poly-
genic effects of many common variants explain a much higher
proportion of AF risk in the population’. More than 95% of these
GWAS variants are localized in non-coding regions® most likely
acting through regulatory elements affecting expression of mul-
tiple genes and pathways that remain largely elusive®.

A common approach to further investigate those mechanisms
is to consider tissue-specific cis-acting expression quantitative
trait loci (eQTL), where genetic variants affect the transcription of
nearby genes. However, cis-eQTLs can only explain a fraction of
the identified AF risk loci3. Therefore, trans-eQTLs, where the
variant is distant to the target gene, and more complex genetic or
epigenetic mechanisms need to be considered®-10. To date, it
remains difficult to quantify the contribution of cis- and trans-
variants to the heritability of complex diseases such as AF.

Recently, the contribution of trans-effects to the genetic
architecture of complex polygenic traits was theoretically assessed
by the omnigenic model!l. Based on this model, it was estimated
that trans-genetic effects explain at least 70% of the disease her-
itability by indirect propagation through gene regulatory
networks!!, Within these networks, multiple trans-effects can
accumulate on just a few central genes, so-called core genes,
which in turn are functionally related to a phenotype. Identifying
those core genes by trans-eQTLs remains challenging due to the
small effect size of each individual locus®!? and the associated
large multiple testing burden. Since a PRS summarizes the genetic
risk information, it can act as a proxy for the accumulation of
trans-effects in one score!2. By correlating the score with tran-
script expression (eQTS), the propagation of trans-effects to
mRNA level!? can be evaluated. However, not only transcript
abundance, but also the abundance of translated proteins can
determine phenotypic consequences. To date, little is known
about genetic effects on protein levels (pQTLs), e.g. through post-
transcriptional regulation!3-16, especially in atrial tissues. It is
both challenging and important to establish methods to identify
AF core genes and to integrate data from multiple omics levels to
improve the understanding of genotype—phenotype relationships.

In this work, we present a multi-omics analysis that uses
genomics, transcriptomics and proteomics of human atrial tissue

to better understand how genetics are related to molecular
changes in AF. The first aim was to systematically integrate omics
data and identify genome-wide cis-regulatory mechanisms on
transcript as well as protein level. We reasoned that core genes are
key for a better understanding of complex molecular patho-
mechanisms of AF. Therefore, the second aim was to identify
candidate core genes for AF and the trans-acting regulatory
networks that link them to AF GWAS loci. We develop an
approach combining the correlation of gene expression with a
PRS for AF®!2 and pathway enrichment analysis to identify AF-
associated biological processes. Based on those processes, candi-
date core genes for targeted trans-QTL analyses with AF GWAS
SNPs are selected. This approach allows the identification of
putative core genes, their molecular networks and downstream
consequences in AF.

Results

Cis-QTL analysis. Microarray transcriptomics and mass
spectrometry-based proteomics were used to profile human atrial
tissue samples collected during coronary artery bypass surgery.
We analyzed disease-independent effects of genetic variants on
transcript, cis-expression quantitative trait loci (cis-eQTLs), and
protein levels, cis-protein quantitative trait loci (cis-pQTLs), of
nearby genes. All cis-QTLs were calculated using expression values
for 16,306 genes and 1337 proteins (Table 1) with additional
PEER!718 factors, an established method which allows to adjust
for known as well as unknown confounders (see methods, Sup-
plementary Fig. 1). Comparison of PEER factors and observed
covariates showed that PEER factors successfully captured disease
status, cardiovascular risk factors and technical covariates (Sup-
plementary Fig. 2). We assessed the replication rate of our eQTLs
in GTEx!? v7 atrial appendage tissue. Effect sizes for the best
eQTL (P<1x107°) per gene showed a correlation of 0.81
(P=2.3x1071) in GTEx, 62% replicated (GTEx P< 1 x 10~°) and
87% showed concordant allelic effects (see also Supplementary
Note 1 Cis-QTL replication?’, Supplementary Fig. 3). Further-
more, correlations between transcript and protein abundances
were comparable to previous studies!# (Supplementary Fig. 4,
Supplementary Table 1) indicating high quality of the proteomics
measurements.

Cis-regulatory patterns in atrial tissue. We first sought to func-
tionally characterize the cis-regulatory variants. Local genetic varia-
tion can lead to different modulations in mRNA and protein
abundance, which are commonly attributed to transcriptional and
post-transcriptional regulation!#1>21.  Protein abundances are

Results for all available transcriptomics and proteomics measurements

Table 1 Summary of tested data and discovered cis-quantitative trait loci.

Tested FDR < 0.05: P<1x10-5

SNPs Pairs Genes Pairs Genes Loci Pairs Genes Loci N
eQTL 4,861,118 56,139,851 16,306 57,403 1058 1657 40,267 552 870 75
pQTL 2,323,504 4,508,654 1337 4081 91 139 2543 45 71 75
Results only for genes with both transcriptomics and proteomics measurements
eQTL 2,249,758 4,198,168 1243 4603 124 201 3218 64 109 75
pQTL 2,249,758 4,198,168 1243 3906 87 133 2406 42 66 75
ratioQTL 2,249,758 4,198,168 1243 563 16 23 575 18 27 66

clumping. Source data are provided as a Source Data file.

Discovered cis-QTLs in human heart right atrial appendage tissue for mRNA and protein measurements. Two-sided t-tests were evaluated and Benjamini-Hochberg procedure to calculate FDR per omic
was applied to account for multiple comparisons. Listed are the results for significance thresholds FDR < 0.05 and nominal P-value <1x 10>, Loci denote the number of independent loci derived by LD

QTL quantitative trait loci, FDR false discovery rate, LD linkage disequilibrium, eQTL expression quantitative trait loci, pQTL protein quantitative trait loci, N sample size.
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a Significant cis—eQTLs and cis—pQTLs (FDR<0.05)

b Overlapping eQTL and pQTL loci
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Fig. 1 Significant cis-eQTLs, cis-pQTLs and their overlap. a Circular plot of the significant cis-eQTLs (blue) and pQTLs (purple) at a FDR cutoff of 0.05
(dotted line, plot created using the R package circlize85). Considering only genes with both transcriptomics and proteomics measurements, we visualized
the overlap of significant eQTLs and pQTLs in the circle center. In total, the lead SNP-gene pair of 200 QTL clumps in 124 genes had a significant eQTL and
133 loci in 87 genes a significant pQTL. Only 19 lead variants (13 genes) had an eQTL and pQTL for the same gene. The numbers in brackets represent the
number of significant SNP-gene pairs. b Characterization of overlapping eQTL and pQTL loci. All 19 LD clumps (based on eQTL and pQTL summary

statistics) where the lead SNP-gene-pair was a significant eQTL and pQTL were classified as a shared QTL by either our residual regression approach or
colocalization analysis. € Characterization of eQTL loci without a corresponding pQTL. Only 83 out of 181 LD clumps (based on eQTL and pQTL summary
statistics) that had a lead SNP-gene-pair with a significant eQTL but no pQTL were classified as an independent eQTL by either our residual regression
approach or colocalization analysis. d Characterization of pQTL loci without a corresponding eQTL. Only 42 out of 114 LD clumps (based on eQTL and
pQTL summary statistics) that had a lead SNP-gene-pair with a significant pQTL but no eQTL were classified as an independent pQTL by either our residual
regression approach or colocalization analysis. eQTL expression quantitative trait loci, pQTL protein quantitative trait loci, QTL quantitative trait loci, FDR

false discovery rate, LD linkage disequilibrium, SNP single-nucleotide polymorphism. Source data are provided as a Source Data file.

suggested as more direct determinants for phenotypic consequences
of expression QTLs!4 emphasizing the need to integrate mRNA and
proteomic measurements to better understand functional
genotype—phenotype relationships. Thus, only for the following
characterization of cis-genetic variation on transcripts and proteins,
we focused on genes with both transcriptomics and proteomics
measurements (1,243 genes, Table 1). As observed previously!41:21,
significant eQTLs and pQTLs (FDR < 0.05) differ considerably. On
gene level, 32% of the top eQTLs replicated in pQTLs and 50% vice
versa, with a Pearson correlation of 0.58 and 0.66 for corresponding
effect sizes (see Supplementary Information Overlap of cis- eQTLs
and pQTLs). Considering all individual SNP-gene pairs, only 8.2%
of significant associations are shared between mRNA and proteins
(Fig. la, Supplementary Fig. 5, Supplementary Table 2). Linkage
disequilibrium (LD) clumping was performed on eQTL and pQTL
summary statistics simultaneously allowing for the partitioning of
cis-regions into independent loci for further evaluation.
Divergence of mRNA from protein abundance can arise
through diverse molecular mechanisms which we additionally
analyzed by calculating protein-per-mRNA ratios (ratioQTLs)

(see methods). Lack of overlap can either indicate independent
effects or lack of power in one of the studies. To distinguish these
scenarios, we quantified for every variant if its effect was shared
between the omic levels using a linear regression based residual
QTL analysis. A residual eQTL considers the association between
a variant and the mRNA measurements after removing variation
shared with protein measurements for the same gene. Vice versa,
a residual pQTL describes the association between the variant and
protein levels after removing variation shared with mRNA.
Having removed variation that was shared across omics levels for
each gene, we can now assess the omic-specific effect of a variant.
Three simple regulatory categories were defined by our regression
approach (see methods, Fig. 2, Supplementary Fig. 6, Supple-
mentary Table 3). We compared these categories to a formal
colocalization analysis based on approximate Bayes Factor
analysis?? to estimate posterior probabilities for a shared or
independent causal variant within each LD clump:

(i) For 11 genes, 14 independent loci with shared cis- eQTL/
PQTL were identified, where the lead SNP is associated with
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Fig. 2 Different genetic regulatory patterns derived by multi-omics cis-QTL integration. a Shared eQTLs/pQTLs represent QTLs, where the effect of
transcriptional regulation translates into MRNA and protein abundance exemplified by the significant SNP-gene pair rs9664184-MYOZ1. No corresponding
ratioQTL can be observed as the genetic variation is shared across both omics levels. b Independent eQTLs depict variants with regulation on mRNA but
not on protein level displayed by the significant SNP-transcript pair rs2070594-ATP5CI. ¢ Independent pQTLs represent variants that show regulation only
on protein level as shown for the SNP-protein pair rs3916-ACADS. Genetic influence is not observable on transcript level. In the boxplots, the lower and
upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The median is denoted by the central line in the box. The upper/
lower whisker extends from the hinge to the largest/smallest value no further than 1.5 x IQR from the hinge. Nominal P-values were derived based on two-
sided t-tests for N=75 (eQTLs), N=75 (pQTL) and N = 66 (ratioQTL) biologically independent samples. To assess significance, FDR correction per omic
based on the Benjamini-Hochberg procedure was applied to account for multiple comparisons. eQTL expression quantitative trait loci, pQTL protein
quantitative trait loci, ratioQTL ratio quantitative trait loci, TssA active transcription start site, UTR untranslated region, TF BS transcription factor binding
site, RBP RNA binding protein, SNP single-nucleotide polymorphism, IQR interquartile range. Source data are provided as a Source Data file.

both mRNA expression and the respective protein abun-
dance as depicted in Fig. 2a. The corresponding variants
were primarily enriched in cis-regulatory elements such as
active transcription start sites (TssA) (Supplementary
Fig. 6a, Supplementary Fig. 7). For all but one lodi,
colocalization analysis also confirmed a shared causal
variant (Fig. 1b).
(ii) For 37 genes, 62 independent loci with independent eQTLs
were identified, where the lead SNP is associated only with
transcript levels, but the respective protein abundance is
independent of the genotype (Fig. 2b). Corresponding
variants were enriched in elements regulating transcription,
e.g. transcription factor binding site (TF BS) or enhancer
regions, and within splicing regions (Supplementary Fig. 6b,
Supplementary Fig. 7a). Possible mechanisms involved in
unchanged protein levels remain largely elusive and range
from adaptation of translational rate to protein degradation
and long-non-coding RNAs2324, For 43 out of 62 LD
clumps, colocalization analysis also confirmed an indepen-
dent eQTL (Fig. 1c).
For 21 genes, 25 independent loci with independent pQTLs
were identified, where the lead SNP affects only protein
abundance (Fig. 2c). pQTL variants were enriched for
exonic regions and although not significantly, in binding
sites of RNA binding proteins (RBP) (Supplementary

(iii)

Fig. 6¢, Supplementary Fig. 7a), where they may influence
mRNA translation resulting in an independent pQTL
association?®. For 16 out of 25 LD clumps, colocalization
analysis also confirmed an independent pQTL (Fig. 1d).

For only a small fraction of 5 out of 181 loci with an eQTL but
no pQTL, colocalization analysis suggested a shared QTL and the
other way around, 7 out of 114 loci with a pQTL but no eQTL
may be actually shared. Altogether, we confirmed that QTL
variants corresponding to different categories tended to cluster in
distinct genomic regions (Supplementary Fig. 7, Supplementary
Note 1)141826 By integrating matched transcriptome and
proteome data, we were able to differentiate functional regulatory
mechanisms not observable by transcriptomics only.

GWAS overlap and enrichment. In order to investigate
genotype—phenotype relationships in the context of cardiovas-
cular disease, we used all available cis-QTL data (not only those
quantified on both omics levels, FDR < 0.05) to annotate GWAS
variants for phenotypes either related to cardiovascular mea-
surements or cardiovascular disease (Fig. 3a).

Of all the overlaps between GWAS hits and cis-QTLs
(Supplementary Table 4), AF-related loci were most abundant
(17 eQTLs, four also with pQTL, see Supplementary Table 5).
Furthermore, we found an independent pQTL overlapping with
the GWAS hit for creatine kinase levels (Fig. 3b). This genetic
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Fig. 3 Overlap of cis-QTL associations with GWAS hits annotated in the GWAS catalog. a Overview of significant cis- eQTLs and pQTLs (FDR <0.05)
overlapping with GWAS hits for different disease traits. b Independent pQTL for GWAS hit creatine kinase levels. Shown are the non-significant cis-eQTL
and the significant cis- pQTL and ratioQTL for the SNP rs1801690 and the gene APOH (FDR < 0.05). Statistics were derived based on two-sided t-tests for
N =75 (eQTLs), N=75 (pQTL) and N = 66 (ratioQTL) biologically independent samples. A FDR < 0.05 per omic based on the Benjamini-Hochberg
procedure was applied to assess significance and to account for multiple comparisons. In the boxplots, the lower and upper hinges correspond to the first
and third quartiles (the 25th and 75th percentiles). The median is denoted by the central line in the box. The upper/lower whisker extends from the hinge
to the largest/smallest value no further than 1.5 x IQR from the hinge. ¢ For three different trait categories (cardiovascular traits, arrhythmias and atrial
fibrillation) as well as rheumatoid arthritis as a negative control, the enrichment of GWAS hits at significant cis-QTLs (FDR < 0.05) was evaluated.
Enrichments were calculated using Fishers exact test (two-sided). 4,815,266 (eQTL) and 2,301,873 (pQTL) SNPs were evaluated for 7,817/4,661 (eQTL/
pQTL) cardiovascular trait, 2,287/1,006 (eQTL/pQTL) arrhythmic, 691/394 (eQTL/pQTL) AF and 468/297 (eQTL/pQTL) RA GWAS hits. Odds ratios
are presented with their 95% Cl. Source data are provided as a Source Data file. QTL quantitative trait loci, GWAS genome-wide association study, SNP
single-nucleotide polymorphism, eQTL expression quantitative trait loci, pQTL protein quantitative trait loci, ratioQTL ratio quantitative trait loci, CI
confidence interval, IQR interquartile range. Source data are provided as a Source Data file.

effect was not detected on mRNA level illustrating the importance
of proteomics data. In addition, we systematically assessed
whether significant QTLs are enriched at GWAS loci in the
hierarchical groups cardiovascular traits, arrhythmias and AF
(two-sided Fishers exact test). We identified a strong significant
overrepresentation (P < 1 x 107°) of eQTLs at GWAS hits for all
three groups, and a significant overrepresentation (P <0.05) of
pQTLs in variants annotated with arrhythmias and AF (Fig. 3c).
Additionally, we evaluated rheumatoid arthritis (RA) as negative
control, a trait that should not share atrial-specific disease
mechanisms. Indeed, there were no overlaps between cis-QTLs
and RA GWAS loci. Alltogether, we presented widespread effects
of cis-acting variants on gene expression and protein abundance
in atrial tissue and a possible relation to AF.

Trans-QTL analysis. We further extended cis-regulatory analyses
by investigating trans-effects. Specifically, we addressed a key
hypothesis of the omnigenic modelll, which postulates the exis-
tence of core genes. Core genes are central genes with frans-asso-
ciations to AF GWAS loci, whose expression levels directly affect
the disease phenotype. Here we sought to identify candidate core
genes for AF to understand the contribution of trans-genetic effects
in the pathology of AF. To prioritize genes satisfying the properties
predicted by the omnigenic model, we evaluated the accumulation
of trans-effects, their relevance in gene regulatory networks, and the
association with AF by the following strategy (Fig. 4):

(1) We evaluated the cumulated trans-effects of AF-associated
variants on expression by ranking genes based on their
correlation of mRNA and protein abundance with the PRS
for AF® (see Supplementary Fig. 8), so called expression/
protein quantitative trait score (eQTS/pQTS)!2. While
correcting for possible cis-effects by including the top

SNP per independent cis-QTL loci, the PRS served as a
proxy for an aggregation of AF-related trans-effects across
the whole genome.

To identify genes sharing molecular function and repre-
senting biological networks that propagate trans-effects to
core genes, gene set enrichment analysis (GSEA)2728 was
performed on the eQTS and pQTS rankings. Genes driving
the enrichment of multiple gene sets were selected as core
gene candidates.

The link between the core gene candidates and AF was
established based on a significant trans-eQTL or pQTL for
an AF GWAS hit and further supported by differential
protein abundance analysis.

)

3)

Identification of candidate AF core genes. Based on this strategy,
we first used the GO biological process gene set annotations,
which are not a priori disease-related, to recover processes
functionally related to AF. Using the eQTS ranking of all mea-
sured transcripts (top hits in Supplementary Table 6) as back-
ground for the gene set enrichment, 81 GO biological processes
were enriched (adjusted P-value <0.05, Supplementary Table 7)
mostly related to heart muscle or energy metabolism, including
the processes GO:0006091 (generation of precursor metabolites
and energy), GO:0055117 (regulation of cardiac muscle con-
traction), GO:0048738 (cardiac muscle tissue development) and
G0:0002027 (regulation of heart rate). Furthermore, we identified
three processes that implicate calcium homeostasis (GO:0010880
regulation of release of sequestered calcium ion into cytosol by
sarcoplasmic reticulum, GO:0010881 regulation of cardiac muscle
contraction by regulation of the release of sequestered calcium
ion, and GO:0010882 regulation of cardiac muscle contraction by
calcium jon signaling). For pQTS rankings (top hits in
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Fig. 4 Graphical illustration of the strategy for trans-QTL analysis to identify AF-relevant genes. a Overview: Based on patient-specific PRS values for AF
correlated with transcript and protein expression, we performed GSEA to preselect genes for trans-eQTL and pQTL analyses from the leading edge of

enriched pathways. Core genes were identified as significant trans-eQTLs or trans-pQTLs. We further assessed their functional targets to investigate the
genotype-phenotype relationship in the context of AF. Graphical concept adapted from Liu et al.". b Identified core genes as trans-eQTLs (blue), trans-
pQTLs (purple) (FDR < 0.2) and functional NKX2-5 targets (light purple). PRS, genome-wide polygenic risk score; GSEA gene set enrichment analysis, QTS
quantitative trait score, eQTL expression quantitative trait loci, pQTL protein quantitative trait loci, FDR false discovery rate, AF atrial fibrillation, blue, green
or gray dots = core gene candidates, red dots = core genes with trans- eQTL/pQTL, stars = functional targets of core genes. Circular plots were created

with the R package circlize®.

Table 2 Trans-QTL results.

Variant Gene Trans-QTL

GWAS SNP QTL SNP Chr Position Symbol Chr QTL 1/} T value P-value FDR

rs9675122 rs11658168 chr17 7,406,134 TNNT224 chrl Transcript —-0.517 —4.27 6.43%x107° 0.081
rs9481842 rs9481842 chré 118,974,798 NKX2-5b chr5 Transcript —0.593 —4.27 6.54x10° 0.081
rs34292822 rs11588763 chrl 154,813,584 CYB5R3 chr22 Protein —0.786 —4.89 6.86 %106 0.113
rs34292822 rs11588763 chrl 154,813,584 NDUFB3¢ chr2 Protein —0.916 —4.44 3.56x10~> 0.133
rs9675122 rs11658168 chr17 7,406,134 HIBADH chr7 Protein —0.512 —4.43 3.66x107> 0.133
rs34292822 rs11588763 chrl 154,813,584 NDUFA9d chr12 Protein —0.752 —4.42 3.85x107> 0.133
rs34292822 rs11588763 chrl 154,813,584 DLAT chr1l Protein -0.716 —4.40 4.05%x1075 0.133

polymorphism, Chr Chromosome.

aMutation known to affect cardiovascular phenotypes.

bMutation known to affect arrhythmias.

CDifferential expression functional impairment for cardiovascular phenotypes.

Significant trans-eQTLs and pQTLs for a FDR < 0.2 (Benjamini-Hochberg procedure to account for multiple comparisons per omic). Two-sided t-tests were performed on 23 transcripts with 74 samples
and 152 proteins with 73 samples of human heart right atrial appendage tissue for 108 variants associated with atrial fibrillation from the GWAS catalog (or their proxy, if the GWAS SNP was not
measured). Calculations were carried out using the SNP rs11658168 as a proxy for the GWAS SNP rs9675122 as well as rs11588763 instead of the GWAS SNP rs34292822.

eQTL expression quantitative trait loci, pQTL expression quantitative trait loci, QTL quantitative trait loci, FDR false discovery rate, GWAS genome-wide association study, SNP single-nucleotide

dDifferential expression or functional impairment for arrhythmias; For details to disease links in literature see Supplementary Table 12. Source data are provided as a Source Data file.

Supplementary Table 8) and restricting the background only to
those proteins quantified in our dataset, one GO biological pro-
cess (GO:0044281 small molecule metabolic process) connected
to metabolism was enriched (adjusted P-value<0.05, Supple-
mentary Table 9).

Our pathway enrichment approach yielded 23 transcripts
(Supplementary Table 10) and 152 proteins (Supplementary
Table 11) as core gene candidates that we used to calculate trans-
QTLs with 108 AF GWAS SNPs. On mRNA level, we identified
two trans-eQTLs encoding for a cardiac structural protein
(rs11658168-TNNT2) and a transcription factor (rs9481842-
NKX2-5) (Table 2). Since NKX2-5 was not detected on protein
level using mass spectrometry, we performed additional Western
blot experiments to identify the respective pQTL (see Supple-
mentary Fig. 9-10, f=—-045 T=-29, P=0.049, N=29,
df =21, two-sided t-test). On protein level, we discovered five
trans-pQTLs which are all connected to metabolism (rs11588763-
CYB5R3/NDUFB3/NDUFA9/DLAT, rs11658168-HIBADH)
(Table 2). Noticeably, four out of five identified genes encode
for mitochondrial enzymes (HIBADH) or enzyme subunits

(NDUFA9, NDUFB3, DLAT). More than half of the putative
core genes have already been mentioned by other studies in the
context of arrhythmias and other cardiovascular diseases?9-3°
(detailed findings see Supplementary Table 12 and differential
expression results’%3¢ in Supplementary Table 13-14) which
independently replicates the disease link.

NKX2-5 transcription factor network. In order to get more
detailed information about complex molecular mechanisms
underlying AF, we further analyzed the TF network of NKX2-5
(see Fig. 5a) since the TF has already been described in the
context of cardiac development37, AF31-3238 and congenital heart
diseases?

To evaluate the downstream effects of the SNP rs9481842 via the
TF NKX2-5 in AF, we analyzed the influence of NKX2-5 transcript
levels on target genes by estimating NKX2-5 TF activity (TFA). We
annotated NKX2-5 binding sites in promoter regions based on
published iPSC-derived cardiomyocyte ChIP-seq and promoter-
capture HiC data to identify almost 10,000 target genes. The
number of binding sites per gene in open chromatin regions were
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Fig. 5 NKX2-5 activity controlled by AF GWAS variant rs9481842. a Graphical illustration of NKX2-5 TF target gene analysis in AF. b Strong trans-eQTL
of the SNP rs9481842 with the NKX2-5 transcript for N = 75 independent biological samples. ¢ Validation of the NKX2-5 trans-eQTL on protein level (trans-
pQTL) using western blot analysis in remaining tissue samples (N =29 independent biological samples). d NKX2-5 activity estimation based on target
mRNA expression stratified by the rs9481842 genotype for N =75 independent biological samples. e Depicted are functional NKX2-5 targets with the
number of TF binding sites (column 1), trans-eQTL strength (columns 2-4), trans-pQTL strength (columns 5-7) and protein level in AF (columns 8-9). The
colour scale represents median transcript or protein values per group (=columns). Residuals corrected for fibroblast-score and RIN-score / protein
concentration with subsequent normal-quantile-normalization per gene were used to calculate the medians per group. A quantitative description of the
qualitative results presented in the heatmap can be found in Supplementary Table 16 and Table 3. In the boxplots, the lower and upper hinges correspond
to the first and third quartiles (the 25th and 75th percentiles). The median is denoted by the central line in the box. The upper/lower whisker extends from
the hinge to the largest/smallest value no further than 1.5 x IQR from the hinge. AF atrial fibrillation, QTL quantitative trait loci, BS binding site, IQR
interguartile range *Mutation known to affect cardiovascular phenotypes, **Mutation known to affect arrhythmias, *Differential expression or functional
impairment for cardiovascular phenotypes, *++Differential expression or functional impairment for arrhythmias. Source data are provided as a Source

Data file.

counted for each gene and the TFA was computed as the sum of
target transcript expression weighted by the number of binding
sites. We observed a high correlation between the SNP rs9481842
and the NKX2-5 transcript (cor = —0.43, P = 1.4 x 10~4, two-sided
Pearson’s correlation, Fig. 5b, Supplementary Fig. 11a) as well as
for the direct molecular link between the NKX2-5 transcript and
the TF activity (cor=0.36, P=1.3x 1074, one-sided Pearson’s
correlation, Supplementary Fig. 11c). In addition, there was a weak
association between SNP rs9481842 and the TF activity (cor =
—0.13, P=0.145, one-sided Pearson’s correlation, Fig. 5d, Sup-
plementary Fig. 11b) most likely attributed to the indirect link
through NKX2-5. Partial correlation analysis further supported
NKX2-5 being the causal link between SNP and target expression
(Supplementary Table 15). Based on the western blot data that was
used to identify the NKX2-5 pQTL (Fig. 5c), we also observed a
high correlation (Spearman’s rank correlation p = 0.42, P = 0.026)
between the calculated TF activity and the actual protein
abundance (Supplementary Fig. 12).

Next, to elucidate the role of NKX2-5 as a link between the
disease variant and AF, we further analyzed its effect on specific
targets, which we also prioritized as putative core genes. Overall,
we identified 13 functional targets that are significantly influenced
by the SNP rs9481842 as well as NKX2-5 transcript levels on both
mRNA and protein level (see methods and Supplementary Fig. 13
for details, Supplementary Table 16). For these 13 targets, we
observed a consistent downregulation on mRNA and protein
level with respect to the rs9481842 risk allele (Fig. 5e). As the core
gene model predicts a direct effect of core gene expression on the
phenotype!l, we evaluated the protein abundance of the NKX2-5
target genes in patients with AF compared to patients in sinus
rhythm to assess functional connection to the disease. For all
targets, AF cases showed lower protein levels (Fig. 5e). When
adjusting for common risk factors of AF, five out of 13 targets

showed a nominal P-value P < 0.05 (Table 3). More importantly,
the identified target set collectively displayed a strong association
with AF on proteomics level (GSEA P = 7.17 x 10~°). This serves
as independent validation of the disease link, since these genes
were identified based on molecular data in our cohort in
combination with public AF annotations without using the actual
cohort phenotypes.

The coordinated downregulation of those 13 targets in patients
with AF was replicated in two independent datasets (Fig. 6a, for
details see methods) with a GSEA P-value of 0.00593 for RNA-seq
data in right atrial appendage samples of GSE128188%, a GSEA P-
value of 0.0248 for RNA-seq data in left atrial appendage samples of
GSE128188 (see Supplementary Table 13 for differential expression
results) and with a GSEA P-value of 2.43 x 1073 in left atrial samples
from the proteomics dataset PXD006675%0 (see Supplementary
Table 14 for differential protein abundance results). Similarly,
regulation of our identified targets by the TF NKX2-5 was
corroborated by coexpression of NKX2-5 mRNA with target
transcript levels in GTEx atrial appendage tissue and GSE128188
(Fig. 6b).

Furthermore, the majority of the identified proteins are in fact
involved in contractile function (MYL4, MYL7, TNNCI1 and
TCAP) or metabolism (PPIF, CKM, AK1, PGAM2, CYC1, ETFB
and ALDOA), two mechanisms linked to processes involved in
the pathophysiology of AF.

At this point, our identified putative core genes point to
potential novel targets for further experimental research to better
understand molecular consequences of genetics underlying AF.

Discussion

We present a comprehensive multi-omics analysis that integrates
genomics, transcriptomics and proteomics in human atrial tissue
in a case control cohort of AF. This unique dataset allowed us to
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Table 3 Putative core genes and functional targets with disease association.

Protein AF association
Gene Chr Type p T-value P-value FDR
TNNT22d chrl Trans-eQTL —0.0609 —1.61 0m3 1.00
NKX2-5b chr5 Trans-eQTL
CYB5R3 chr22 Trans-pQTL —0.0212 —0.662 0.5 1.00
NDUFB3¢ chr2 Trans-pQTL —0.0631 -135 0.182 1.00
HIBADH chr7 Trans-pQTL —0.0454 —1.24 0.218 1.00
NDUFA9d chr12 Trans-pQTL —0.0533 —1.20 0.235 1.00
DLAT chrh Trans-pQTL —0.0231 —-0.579 0.564 1.00
PPIF chr10 NKX2-5 target —0.0342 -1.13 0.261 1.00
MYL4bd chr17 NKX2-5 target —0.0270 —0.664 0.509 1.00
ckmd chr19 NKX2-5 target —0.0875 —2.78 0.00705 0.120
MYL7 chr7 NKX2-5 target —0.0421 -1.04 0.304 1.00
PGAM2d chr7 NKX2-5 target —0.75 -3.70 0.000452 0.00813
TNNC12 chr3 NKX2-5 target —0.0557 —-1.71 0.0929 1.00
cyc chr8 NKX2-5 target —0.0946 —2.14 0.036 0.545
ETFBbd chr19 NKX2-5 target —0.0553 —1.65 0.105 1.00
PRDX5 chrm NKX2-5 target —0.0524 -1.79 0.0789 1.00
AK1 chr9 NKX2-5 target —0.0669 —217 0.0341 0.545
ALDOAd chrié NKX2-5 target —0.0646 —2.17 0.0341 0.545
TCAP2 chr17 NKX2-5 target —0.0178 —0.282 0.779 1.00
TOMIL2 chr17 NKX2-5 target —-0.0771 -1.75 0.0849 1.00
Proteomics differential abundance results in human atrial appendage tissue for prevalent AF. Two-sided t-tests were calculated as part of a multiple linear regression model including AF-related
covariates sex, age, BMI, diabetes, systolic blood pressure, hypertension medication, myocardial infarction and smoking status (see methods differential protein analysis, N = 78, df = 66). The Benjamini-
Hochberg procedure was used to asses FDR and account for multiple comparisons.
AF atrial fibrillation, BMI body mass index, QTL quantitative trait loci, FDR false discovery rate.
aMutation known to affect cardiovascular phenotypes.
bMutation known to affect arrhythmias.
CDifferential expression or functional impairment for cardiovascular phenotypes.
dDifferential expression or functional impairment for arrhythmias.

improve our understanding of how genetic factors are related to
intermediate molecular phenotypes in AF.

We found widespread genetic effects associated with the
expression of nearby genes on transcript and protein level. Our
integrated cis-eQTL and pQTL analysis allowed the distinction
between functional regulatory mechanisms with consequences for
mRNA and protein levels. For example, we found many genetic
variants exclusively affecting mRNA or protein abundances
contributing to a modest overlap between both molecular levels
using stringent statistical criteria. In this regard, we and others
found that proteome-specific pQTLs are enriched in the coding
sequence!4, where post-transcriptional regulatory elements might
be affected by sequence variants, which may at least partially
explain the divergence between eQTLs and pQTLs. Compared to
other studies, a similar extent of co-regulation between mRNA
and protein levels was previously documented by comparing cis-
pQTLs in human plasma to cis-eQTLs in GTEx tissuel® (see
Supplementary Note 1, Supplementary Table 2). We assume that
the use of less stringent significance cutoffs or multiple testing
correction as well as more sensitive measurement techniques
might achieve a higher overlap as observed by Battle and col-
leagues for cell-type-specific transcriptomics and proteomics in
the same lymphoblastoid cell lines!4. In line with prior studies, we
observed large differences in transcript and protein expression as
well as their regulation!®1>21, emphasizing the necessity and
benefit of taking multiple molecular entities into account to
investigate genotype-phenotype relationships.

To extend the cis-QTL analysis, we assessed trans-associations
by applying a candidate selection strategy based on the correla-
tion of gene expression with a PRS, a concept termed eQTS!2.
PRS accumulate small genetic effects at many individual genome-
wide loci. In the theoretical omnigenic model!! it has been sug-
gested that these loci are linked to the phenotype by weak trans-
effects on gene expression, which accumulate in so called core

genes. It has been shown that this accumulation of trans-effects
would lead to strong eQTS associations for core genes!'2. Here we
used eQTS and pQTS in combination with gene set enrichment
analysis to identify core gene pathways and putative core genes
for AF. As core genes are postulated to have trans-associations
with AF GWAS SNPs, we subsequently performed a targeted
trans-QTL analysis. This strategy allowed the investigation of
tissue-specific trans-acting genetic mechanisms in AF using a
relatively small clinical dataset by reducing the multiple testing
burden; however, it is limited to genes with functional annota-
tions available. Here we used gene sets from gene ontology, to
avoid introducing a bias towards already known disease gene set
definitions, as for instance contained in KEGG. The PRS-based
gene set enrichment approach revealed cardiac-specific pathways
associated with the genetic susceptibility for AF, which are similar
to results identified by Wang and colleagues’. We identified
different pathways on transcriptome and proteome level, which is
probably not only caused by biological but also technological
reasons like protein coverage. On transcriptome level, the
majority of the identified pathways were involved in contractile
function and metabolism. In general, these mechanisms have
been reported by clinical and experimental studies to play a major
role in the pathology of AF#1-43. As expected, also the putative
core genes identified by trans-eQTLs and trans-pQTLs were
involved in those mechanisms. In addition, all identified tran-
scripts and some of the proteins have been described in the
context of arrhythmias or cardiovascular disease?9-3444-50
(Supplementary Table 12, differential expression results in Sup-
plementary Tables 13-14). As observed for the cis-QTL analysis,
the trans-analysis revealed similar differences between tran-
scriptomics and proteomics level. Interestingly, none of the trans-
pQTLs had a significant association on expression level
(see Supplementary Table 17). Differences between trans-eQTLs
and pQTLs for the same gene have previously not been discussed
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Fig. 6 Replication of the core gene candidate AF association and NKX2-5 target coexpression in independent datasets. Published proteomics data
(PXD006675) as well as RNA-seq data (GSE128188, GTEx) generated from human atrial tissue samples were used for replication. a Centered and scaled
values of the mean mRNA or protein expression in AF ctrls and cases, with stronger effects on protein level. GSEA p-values quantify the negative
association of NKX2-5 targets with respect to AF. Sample sizes per column: 69 controls, 14 prevalent AF cases, 69 controls, 14 prevalent AF cases (AFHRI,
all right atrial appendage); five controls, five AF cases (GSE128188, both right atrial appendage); five controls, five AF cases (GSE128188, both left atrial
appendage); three controls, three AF cases (PXD006675, both left atrium). A quantitative description of the qualitative results presented in the heatmap
can be found in Supplementary Table 13-14 and Table 3. b Coexpression of NKX2-5 with the 13 identified NKX2-5 transcription factor targets (Pearson's
correlation). Quantified is the correlation between NKX2-5 and its targets on mRNA level for mRNA datasets and the correlation between the NKX2-5
transcript expression with the target protein concentrations for the AFHRI proteomics (NKX2-5 not quantified in proteomics). Sample sizes used for the
computation of correlations: 102 AFHRI mRNA, 96 AFHRI protein, 372 GTEx, 10 GSE128188 right, and 10 left atrial appendage samples. AF atrial fibrillation,
Ctrl control i.e. individuals in sinus rhythm, GSEA gene set enrichment analysis *Mutation known to affect cardiovascular phenotypes, **Mutation known to
affect arrhythmias, *Differential expression or functional impairment for cardiovascular phenotypes, T+ Differential expression or functional impairment for

arrhythmias. Source data are provided as a Source Data file.

in detail in the literature. Sun and colleagues analyzed over-
lapping cis-QTLs but not trans-QTLs!®. Yao and colleagues
analyzed overlaps of cis- and trans- eQTLs and pQTLs in
plasmal®, however no overlaps were found in trans. Suhre and
colleagues validated plasma pQTL findings in other proteomics
datasets, but did not evaluate corresponding trans-eQTLs!3.
Possible reasons besides the small sample size might be the effect
of other genetic variants, post-transcriptional regulation or
environmental factors.

To investigate more complex molecular mechanisms under-
lying AF, we further analyzed the TF network of NKX2-5, since
the TF has been described in the context of heart development
and arrhythmias. A loss-of-function mutation in NKX2-5 is
associated with increased susceptibility to familial AF?? demon-
strating its causal role for AF. However, this result still does not
provide mechanistic insights. A study of allele specific binding of
NKX2-5 identified relevant targets and demonstrated that var-
iants that change NKX2-5 binding at the promoters of target
genes contribute to electrocardiographic phenotypes38. Hence
this study established a mechanistic link of NKX2-5 to AF sus-
ceptibility at common GWAS variants, which alter cis-regulatory
elements bound by NKX2-5 at the target genes. In this work, we
link the expression of NKX2-5 to an AF-associated GWAS variant
in trans. Moreover, we investigated downstream effects by inte-
grating the functional data® with our genotype and expression
data. We identified a set of target genes, where the AF-associated
variant did not alter the cis-regulatory elements but the activity of
the trans-acting TF NKX2-5. Taken together, prior studies
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demonstrate a causal link of NKX2-5 with AF and suggested that
AF-associated variants alter cis-regulatory elements. Here we
showed that in addition trans-acting mechanisms are important
to link AF-associated variants to their downstream target genes.
The high correlation between the estimated NKX2-5 TF activity
and its mRNA levels implies that NKX2-5 modulates target gene
expression. The fact that the NKX2-5 eQTL is a key regulatory
mechanism prompted us to validate the trans-QTL on protein
level with western blot analyses. Furthermore, the TF activity that
was estimated based on genome-wide transcriptomics data as well
as independent tissue and cell-type-specific annotations, highly
correlated with actual protein intensities. While measured mRNA
and protein abundance show a stronger association with the
rs9481842 genotype than the estimated TF activity, correlation
between the TF activity and protein measurements was higher
compared to the correlation between mRNA and protein. Con-
sistent with other studies?”38, our analysis suggests that NKX2-5
acts as a transcriptional activator for the majority of genes.
However, the TF can also function as a transcriptional repressor
of genes like ISL137>1. We were able to detect strong effects of the
NKX2-5 transcript on various target transcript and protein levels.
Most of the identified target genes are involved in contractile
function or metabolism, two mechanisms highly linked to pro-
cesses involved in AF. Our unique trans-QTL approach revealed
direct disease-relevant associations between candidate core genes,
NKX2-5 target genes and AF. These genes were identified based
on molecular data in our cohort in combination with public AF
annotations without using the actual cohort phenotypes. The
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collective differential protein abundance of NKX2-5 targets in AF
patients compared to controls therefore serves as an independent
validation of the disease relevance, which we independently
replicated in additional RNA-seq® and proteomics3? datasets of
AF patients and controls.

Overall, we successfully integrated multi-omics data and
established a unique approach to investigate not only cis- but also
trans-regulatory effects. This provided a platform to generate
hypotheses on functional interactions underlying the genetic
associations that can be further experimentally investigated.

We acknowledge some limitations that are attributed to com-
mon biological and technical factors. First, the use of human
heart tissue came with several challenges including restricted
sample sizes and heterogeneity of cellular composition. The small
sample size affects the statistical power of QTL analyses and does
not allow for assessing causality of molecular and physiological
changes, for example by Mendelian randomization®>>3. Changes
in cell-type composition and structural remodeling have been
described for the pathology of AF>% To take differences in the
cellular composition into account, we used a fibroblast-score
based on a fibroblast-specific gene signature to adjust expression
levels in eQTL/pQTL analyses®. Furthermore, although AF
prevalently originates from pulmonary vein ostia, the relevance
and usefulness of right atrial appendage tissue was demonstrated
by prior studies which identified various AF disease mechanisms
and candidate genes3”%°7. Therefore, we believe that the
extracted tissue samples are well suited and the best proxy for
atrial impairment for our analysis. Another strength is that tissue
samples were explanted during cardiac surgery and not post-
mortem as in comparable datasets, which can affect various
pathways e.g. metabolism. Second, expression data were gener-
ated using microarrays, however, to date, more information can
be generated by RNA-seq. Third, human cardiac muscle tissue is
dominated by mitochondrial and sarcomere proteins®, which
affects the detection of less abundant proteins such as TFs (e.g.
NKX2-5). Therefore, missing TF coverage was not due to data
quality but biological and technological restrictions. In addition,
only limited functional genomic annotations specific for atrial
tissue are currently available including TF-, miRNA- and RBP
binding sites. Therefore, we integrated multiple sources to render
functional annotations as reliable and accurate as possible.
Replication in an independent dataset was not feasible, since this
was the first study investigating pQTLs in atrial tissue. Due to this
restriction, literature research was carried out to validate the
relevance of the identified AF core genes and NKX2-5 targets in
the context of arrhythmia (Supplementary Table 12, differential
expression results in Supplementary Table 13-14). Furthermore,
we validated the association of target genes with AF by analyzing
the differential expression on protein level between AF and
controls. The consistent downregulation of the 13 NKX2-5 targets
in AF cases compared to controls was replicated in two inde-
pendent datasets including RNA-seq data from left and right
atrial samples as well as proteomics from left atrial tissue.
Additionally, coexpression of NKX2-5 mRNA with transcript
levels of the 13 targets was replicated in two independent datasets.
Taken together this evidence suggests the identified genes as
strong candidates for follow-up analyses. Yet, for clinical trans-
lation, further validations and molecular characterization are
required.

In this study we suggest an integrative analysis of genomics,
transcriptomics and proteomics data of human atrial tissue to
identify genome-wide genetic effects on intermediate molecular
phenotypes in the context of AF. Our multi-omics approach per-
mits the identification of shared and independent effects of cis-
acting variants on transcript expression and protein abundance.
Furthermore, we proposed a PRS-guided analysis strategy to

successfully investigate complex genetic networks even with a
limited sample size. By providing these unique tissue-specific omics
results as a publicly accessible database in an interactive browser, we
hope to extend the availability of valuable resources for hypothesis
generation, experimental design and target prioritization.

Methods

Analyses were performed using R 3.4.1 and 3.6.3 (r-project.org). Genomics data in
R was handled using the Bioconductor packages rtracklayer> 1.46.0 and
GenomicRanges®” 1.38.0.

Patient cohort. Patients were consecutively enrolled in the ongoing observational
cohort study AFHRI-B (Atrial fibrillation in high risk individuals-biopsy) inde-
pendent of AF disease status. Participants were older than 18 years of age and were
scheduled to undergo open heart coronary artery bypass surgery. Any patients with
other bypass surgeries or additional procedures, e.g. valve surgery, were excluded.
For the current analyses, N = 118 patients with multi-omics data were available.
Omics measurements were performed in batches (one batch genotypes, two bat-
ches transcriptomics both with approximately equal distribution of cases and
controls and one batch of proteomics) depending on the amount and quality of the
material and resource availability. Thus, the number of individuals who entered
analyses differed by omics type. Information on classical cardiovascular risk factors
and potential confounders (age, sex, body mass index, systolic and diastolic blood
pressure, hypertension, hypertension medication, diabetes, diabetes medication,
history of myocardial infarction, smoking) was collected by questionnaire and from
medical records. Non-valvular prevalent AF was the clinical diagnosis based on
patient history and routine cardiology work-up, that was used as outcome in our
analysis. Baseline blood samples were aliquoted and stored prior to surgery. Right
atrial appendage tissue remnants were collected when the extracorporeal circula-
tion was started and shock frozen immediately. Follow-up for AF and other car-
diovascular disease outcomes was done by questionnaire, telephone interview and
medical chart review. The observational cohort study was approved by the
Ethikkommission Arztekammer Hamburg (PV3982). The study was performed in
compliance with the Declaration of Helsinki. The study enrollment and follow-up
procedures were in accordance with institutional guidelines. All participants pro-
vided written informed consent. Sex stratification of the results was not possible
due to the inherently small number of women in the study (Supplementary
Table 18). Analyses were adjusted for sex where appropriate. Analyses were per-
formed in all samples with respective omics data that passed appropriate quality
control as stated in the preprocessing steps. This resulted in slightly different
samples analysed in eQTL/eQTS, pQTL/pQTS and differential protein expression
analysis. Baseline characteristics of the cohort stratified by analysis type can be
found in the supplement (Supplementary Table 18).

Genotypes. The genotype data were generated using the Affymetrix GeneChips
Genome-Wide Human SNP Array 6.0, with quality control (QC) at different levels.
Using the Birdseed v2 algorithm, PLINK 1.9 and standard quality control
procedures61, 749,272 SNP were identified in 83 blood samples with a MAF > 0.01,
HWE exact test P> 1 x 107 and a call rate > 98%. Genotypes were further imputed
with IMPUTE262 2.3.2 based on the 1000 genomes Phase 3 genotypes®>64 [https://
www.internationalgenome.org/] (per SNP: confident genotype calls with genotype
probability > 95%, percentage of confident genotype calls across samples > 95%)
and included only variants with HWE P> 1 x 10~* resulting in 5,050,128 SNPs for
83 individuals. All samples were of central European ancestry, no close relatedness
(max. IBD = 0.04 <« 0.19) or population substructure could be detected.

For QTL analyses, outliers in the expression data which coincide with rare
genotypes can lead to false positive findings. For SNPs with less than three
individuals with the homozygous-minor-allele genotype, all samples with
homozygous-minor-allele genotype were therefore recoded to heterozygous

genotype.

PRS for AF. The polygenic risk score was calculated based on the LDpred
omnigenic score for AF published by Khera et al.b. To account for a realistic
representation of risk score values across the general population, we calculated risk
score values together with unrelated 1000 genomes®>%* CEU individuals. Phase 3
1000 genomes genotypes were filtered for variants in the risk score and merged
with our AFHRI genotypes, resulting in SNP data for 6,730,540 variants out of
6,730,541 in the score. The PRS per individual was computed using the Plink 1.9
score function, imputing missing variants based on the frequency of the risk allele.
From this, percentiles across all 490 individuals (1000 genomes: 407, AFHRI
cohort: 83) were further used as PRS values for further analysis.

mRNA. The mRNA data were generated from human heart atrial appendage tissue
samples obtained during heart bypass surgery. They were frozen in liquid nitrogen
and pulverized for further analysis. RNA isolation was performed with subsequent
assessment of the RNA integrity number (RIN) for quality determination of the
samples. HuGene 2.0 ST Arrays were used with the Affymetrix® GeneChip WT
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Plus Reagent Kit, the Affymetrix GeneChip 3000 scanner and the Affymetrix
Genechip Command Console 4.0.0.1567. The R Bioconductor package oligo®
1.50.0 was used to create expression sets, perform the background correction and
quantile-normalization per sample, as well as log-transform the data. Left atrial
appendage tissues and samples with a RIN-score smaller than 6 were excluded, in
case of replicates the one with the highest RIN-score was used. The mean of
multiple transcript clusters annotated to the same gene symbol was used to derive
gene level expression values for 26,376 genes in 102 samples.

Protein. To measure the protein concentrations of 97 right atrial appendage
samples, the tissues were homogenized using a micro dismembrator (Braun,
Melsungen, Germany) at 2600 rpm for 2 min in 100 pl of 8M urea/2M thiourea
(UT). Then homogenates were resuspended in 300 pl of UT. Nucleic acid frag-
mentation was gained by sonication on ice three times for 5 s each with nine cycles
at 80% energy using a Sonoplus (Bandelin, Berlin, Germany). The homogenates
were centrifuged at 16,000 x g for 1 h at 4 °C. After that, protein concentration was
determined by Bradford with BSA as standard (SE). Three micrograms protein
were reduced and alkylated and digested with LysC (1:100) for 3 h followed by
tryptic digestion overnight both at 37 °C. Subsequently peptide solutions were
desalted on C18 material (4 ZipTip). Finally mass spectrometry analysis was
performed on a LC-ESI-MS/MS machine (LTQ Orbitrap Velos). One sample was
excluded due to irregularities in the chromatographic pattern. The Rosetta Eluci-
dator 3.3 workflow was used to extract feature intensity and derive protein
intensities by summing of all isotope groups with the same peptide annotation for
all peptides annotated to one protein (further parameters: Uniprot_-
Sprot_human_rel. 2016_05: static modification: carbamidomethylation at Cys,
variable modification: oxidation at methionine, 2 missed cleavages, fully tryptic,
filtered for peptides with FDR < 0.05 corr. to Peptide Teller probability > 0.94 and
shared peptides were excluded). Intensities for 1419 proteins with one or more
peptides (877 with 2 or more peptides) were quantified for 96 samples, median-
normalized and logl0-transformed. The original protein concentration was
determined as an important technical covariate and therefore used in further
analyses.

For cis-QTL computations, matched genotypes and proteomics data were
available for 1337 proteins in 75 samples including 62 missing values (0.06% of all
values) that were imputed using the KNN-method implemented in the R
bioconductor package impute 1.50.1.

Protein analysis using western blot. Human atrial tissue samples (15 mg each)
were pulverized in liquid nitrogen and lyzed with M-PER Mammalian Protein
Extraction Reagent (Thermo Scientific) supplemented with protease inhibitor.
Protein concentrations were measured using a BCA assay (Thermo Scientific). The
same amount of protein for each sample was heated at 95 °C for 10 min in 1x
Laemmli. Proteins were separated on a 10% SDS-PAGE gel and transferred to
nitrocellulose membranes. Membranes were blocked with 5% skim milk in TBS-T
for 1 hour. Staining with the primary antibody was performed overnight at 4 °C,
and secondary antibody staining for 1h at room temperature. The following pri-
mary antibodies were used: NKX2-5 (ab205263, 1:1000), alpha-actinin (CST #3134,
1:1000), GAPDH (CST #3683, 1:2000). The following HRP-conjugated secondary
antibody was used: goat anti-rabbit IgG (PI-1000-1, 1:10,000). The antibodies were
visualized with enhanced chemiluminescence (ECL) detection reagent (Bio-Rad
#1705060) or the SuperSignal West Pico PLUS chemiluminescent substrate
(Thermo Scientific #34579). The membranes were reprobed with GAPDH anti-
body after incubation with stripping buffer (Thermo Scientific #46430) for 4 min,
washing and blocking with 5% skim milk in TBS-T. Antibody detection was per-
formed with a chemiluminescence imaging system (FUSION Solo S). Blot analyses
were achieved with the Image Lab software (Bio-Rad 6.1).

Protein-per-mRNA ratios. mRNA and protein measurements were already per-
sample quantile-normalized and log-transformed. Both mRNA and protein mea-
surements were additionally quantile-normalized per gene and the ratio was
computed as the difference between protein and transcript values.

Residuals. Per-sample quantile-normalized, log-transformed mRNA and protein
values were used to compute residuals. mRNA residuals were derived as the resi-
duals from a linear model explaining mRNA by protein levels, i.e. mRNA ~ f, +
B - protein + €. Protein residuals were derived as the residuals from a linear model
explaining protein by mRNA levels, i.e. protein ~ B, + ; - mRNA + ¢. Covariates
were used for further analyses but not for the calculation of residuals.

Correction for cell-type composition—fibroblast-score. Tissue samples consist
of different cell-type compositions. Samples with more fibroblasts probably contain
less cardiomyocytes, one of the functionally most relevant cell-types in primary

atrial appendage tissue. We used a fibroblast-score based on the sum of expression
values of genes upregulated in fibroblasts compared to cardiomyocytes in rats>>:

ELN, FGF10, FOSB, FCRL2, SCN7A, ARHGAP20, CILP, FRAS1, DCDC2, NRGI,
AFAP1L2, ITGBL1, NOV, CLEC3B. Cardiomyocyte specific gene signatures were
avoided to prevent interfering effects due to structural remodeling common in AF.

Genome annotations. Ensembl BioMart®® GRCh37.p13 hgl9 annotations were
used as genome annotations.

GWAS catalog. GWAS annotations were based on the GWAS catalog®” ([https://
www.ebi.ac.uk/gwas/], 2019-11-26). We looked at the traits annotated to cardio-
vascular measurements (EFO_0004298) and cardiovascular disease
(EFO_0000319), further referred to as cardiovascular traits. We also distinguished
the subcategories arrhythmias, i.e. all traits annotated to atrial fibrillation, cardiac
arrhythmia, sudden cardiac arrest, supraventricular ectopy, early cardiac repolar-
ization measurement, heart rate, heart rate variability measurement, P wave
duration, P wave terminal force measurement, PR interval, PR segment, QRS
amplitude, QRS complex, QRS duration, QT interval, R wave amplitude, resting
heart rate, RR interval, S wave amplitude or T wave amplitude and AF, i.e. all traits
annotated to Atrial fibrillation or QT interval based on the EFO-mapping (https://
www.ebi.ac.uk/gwas/api/search/downloads/trait_mappings, 2019-11-26).

VEP. Ensembl Variant Effect Predictions®® were downloaded from the Ensembl
Biomart GRCh37.p13 based on SNP rs-IDs. The label Missense was used to
summarize all possible missense consequences of the variant (gained stop codon, a
frameshift/amino-acid altering/protein-altering variant, a lost start/stop codon, an
inframe insertion/deletion).

Chromatin states. Roadmap Epigenomics ChromHMM 15 state model coremarks
for human heart right atrial appendage® (E104_15_coreMarks_dense.bed) were
used to annotate tissue-specific chromatin states.

Promoter-capture HiC. Promoter-capture HiC data from human iPSC-derived
cardiomyocytes’? E-MTAB-6014 (capt-CM-replicated-interactions-1kb.bedpe) was
used to annotate linked promoter regions.

Binding sites. TF BS were based on ChIP-seq data from the ReMap TF database’!
(ReMap2018 v1.2) filtered for highly expressed genes (log(TPM + 1) 2 1) in GTEx
atrial appendage tissue. Additionally, NKX2-5 binding sites from human iPSC-
derived cardiomyocytes®® GSE133833 were used. All TF BS were filtered for a
minimal overlap of 25 bp with open chromatin regions, i.e. chromatin states
1_TssA, 2_TssAFInk, 10_TssBiv, 6_EnhG, 7_Enh, 11_BivFInk or 12_EnhBiv.
Fine mapping for functional NKX2-5 BS was done integrating promoter,
promoter-capture HiC, chromatin states and NKX2-5 ChIP-seq data. Promoter
regions were annotated based on Gencode’? v31lift37 basic and long non-coding
RNA transcript start annotations as well as regions linked to those by promoter-
capture HiC. ChIP-seq binding sites were further overlapped with those promoter
regions and filtered for open chromatin regions (details see provided analysis
code).miRNA BS were based on TargetScan 7.2 default predictions for conserved
target sites of conserved miRNA families’3. RBP BS were derived based on eCLIP
data from HepG2 and K562 cell lines provided by the ENCODE Project
Consortium’47> (ENCODE, Supplementary Table 19). Peak calling was done using
the ENCODE uniform processing pipeline, peaks in the bed-files were further
filtered for an enrichment >log2(1), a Fisher P-value > —log10(0.05) and
overlapping peaks were then merged (details see provided analysis code).

Cis-QTL covariates including PEER factors. Tissue-specific expression analyses
remain challenging due to a large number of confounders. PEER factors!” are
widely used to account for known and unknown factors in the context of cis-QTL
analyses!®19 and were computed using the R package PEER 1.0 . One to 30 PEER
factors without additional covariates, with fibroblast-score only, with the first three
genotpye principle components, with age, sex, BMI, disease status, fibroblast-score
and with age, sex, BMI, disease status and fibroblast-score and three genotype
principle components were used as covariates in the QTL analysis (Supplementary
Fig. 1).

Cis-QTL computation. QTLs were calculated using the R package MatrixEQTL7®
2.2. A cis-range of 1 x 106 bp and a linear, additive model for genotype effect were
used. Expression quantitative trait loci (eQTL), protein quantitative trait loci
(pQTL), expression residual quantitative trait loci (res eQTL), protein residual
quantitative trait loci (res pQTL) and protein-per-mRNA ratio quantitative trait
loci (ratioQTL) analyses were performed for per-sample quantile-normalized as
well as additional per-gene quantile-normalized expression values, each for the
different sets of covariates as described above Normalization and covariate sets
were optimized for the highest number of QTL genes (i.e. genes, with at least one
significant QTL, as previously established by Lappalainen and colleagues'® and the
GTEx consortium!?), detected based on a FDR < 0.05 (Benjamini-Hochberg pro-
cedure, Supplementary Fig. 1). For the final analysis, QTLs were computed using
per-sample and per-gene quantile-normalized expression values, using only PEER
factors without additional covariates. Two-sided t-tests were performed with 12
PEER factors for eQTLs (N =75, df = 61), 10 PEER factors for pQTLs (N =75,
df = 63), 8 PEER factors for res eQTLs (N = 66, df = 56), 12 PEER factors for res
pQTLs (N = 66, df = 52) and 9 PEER factors and the fibroblast-score for ratioQTLs
(N = 66, df = 54).

| (2022)13:441 | https://doi.org/10.1038/s41467-022-27953-1| www.nature.com/naturecommunications 11


https://bioconductor.org/packages/release/bioc/html/impute.html
http://feb2014.archive.ensembl.org/biomart/martview/
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/api/search/downloads/trait_mappings
https://www.ebi.ac.uk/gwas/api/search/downloads/trait_mappings
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6014/
http://pedagogix-tagc.univ-mrs.fr/remap/download/remap2018/hg19/MACS/remap2018_nr_macs2_hg19_v1_2.bed.gz
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133833
https://www.gencodegenes.org/human/release_19.html
http://www.targetscan.org/vert_72/vert_72_data_download/Predicted_Target_Locations.default_predictions.hg19.bed.zip
https://www.encodeproject.org
https://github.com/PMBio/peer/
https://github.com/andreyshabalin/MatrixEQTL
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

To investigate independent QTLs for the same gene, LD clumping was
performed using the Plink 1.9 clump function with parameters —clump-r2 0.5,
—clump-kb 250, FDR cutoffs —clump-p1 0.05 and —-clump-p2 0.8 as well as P value
cutoffs ~clump-pl 1 x 10~ and —clump-p2 0.05 for each gene and QTL type.

Definition of functional QTL categories. Shared eQTL/pQTL were defined as
SNP-gene pairs with a significant eQTL (FDR < 0.05), pQTL (FDR < 0.05) and no
res eQTL (FDR < 0.05) or res pQTL (FDR < 0.05), i.e. genetic regulation is obser-
vable on transcriptomics and proteomics level and variation corresponding to the
SNP influence in one omic level can be explained and therefore removed by the
variation in the other omic level.

Independent eQTLs were defined as SNP-gene pairs with a significant eQTL
(FDR < 0.05) and res eQTL (FDR < 0.05) but no pQTL (FDR < 0.05) and no res
pQTL (FDR <0.05), i.e. regulation of SNP is only affecting transcript levels, not
proteins. Also, the res eQTL disappears, if the SNP influences protein levels too
much, for example a pQTL that barely missed the significance threshold.

Independent pQTLs were defined as SNP-gene pairs with a significant pQTL
(FDR < 0.05) and res pQTL (FDR < 0.05) but no eQTL (FDR < 0.05) and no res
eQTL (FDR <0.05), i.e. regulation of SNP is only affecting protein levels, not
transcripts, i.e. by post-transcriptional regulation.

Colocalization analysis. Colocalization analysis was performed using the colo-
c.abf() function from the R package coloc?? 3.2-1. Posterior probabilities > 0.5 were
used to classify colocalization. For independent eQTLs and independent pQTLs, we
considered the sum of the posteriors for H1/H2 and H3 representing either only
one independent QTL or independent eQTL and pQTL.

Enrichment of functional elements. Similar as described by Battle and
colleagues'#, annotations of the top 5 QTL hits per gene were compared to a
background distribution (100 background SNPs per QTL SNP) matched for MAF
(difference <0.05) and distance to TSS (difference < 1000 bp). Top QTL SNPs per
gene were ranked according to the FDR of pQTLs for shared eQTLs/pQTLs, res
eQTLs for independent eQTLs and res pQTLs for independent pQTLs. Odds ratios
were computed using Fisher’s exact test (two-sided) on the QTL-by-annotation
contingency tables.

GWAS overlap and enrichments. To determine the overlap between GWAS hits
and cis-QTLs, we first annotated all GWAS hits for cardiovascular traits and RA in
the GWAS catalog®” with proxies in high linkage-disequilibrium using SNiPA””
([https://snipa.helmholtz-muenchen.de/], EUR population, R? > 0.8) as well as
significant QTLs (P <1 x 10~7). For each of the original GWAS SNPs, the corre-
sponding proxy-gene pair with the strongest QTL was selected to annotate this
GWAS hit.

To assess a general enrichment of GWAS hits in QTLs, for all tested QTL SNPs
we constructed the cross tables that a SNP has significant QTL (P<1x 1075)
versus was the SNP (or R? > 0.8 proxy) annotated in the GWAS catalog. These
tables were evaluated for eQTLs and pQTLs for each of the groups cardiovascular
traits, arrhythmias, AF and RA using Fisher’s exact test (two-sided).

PRS correlations/eQTS/pQTS rankings. Transcriptomics and proteomics
ranking based on PRS correlations were evaluated using linear regression models
with additional covariates age, sex, BMI, systolic blood pressure (sysBP), C-reactive
protein (CRP) and N-terminal prohormone of brain natriuretic peptide (NT-
proBNP) as well as the lead SNP for each independent cis-QTL loci (based on LD
clumps, FDR < 0.05) to correct for potential cis-effects included in the PRS. We
assume that genetic-centered analyses are less susceptible to confounding than
differential expression analyses. While we still included the most relevant cardio-
vascular risk factors and technical covariates RIN-score or protein concentration,
we reduced the number of highly correlated covariates (e.g. blood pressure,
hypertension and hypertension medication) and preferentially included continuous
covariates to avoid overfitting/overcorrecting and to increase power. The following
models were evaluated:

mRNA ~ B+ f3, - PRS+ 3, - age + f3; - sex + 8, - BMI + 3, - sysBP + 3, - CRP
+f, - NT-proBNP + f3, - RIN + > B,SNP; + ¢
i

protein ~ B + B, - PRS + 3, - age + f3; - sex + B, - BMI + j3; - sysBP + 3, - CRP

+B, - NT-proBNP + f; - protein conc. + - 8,SNP; + ¢
i

We further used summary statistics (T statistic) for 8}, equivalent to comparing the
nested models with/without the PRS and derived corresponding two-sided P
values. Degrees of freedom for genes without significant cis-loci were 65 for mRNA
(N =74) and 64 for protein (N = 73). Different numbers of samples compared to
cis-QTL analyses are due to missingness in the used covariates.

Pathway enrichment analysis. Gene set enrichment analysis (GSEA)? was per-
formed using the Bioconductor R package fgsea?® 1.8.0 and MSigDB v6.1 gene sets

for Gene Ontology biological processes (c5.bp.v6.1.symbols.gmt.txt?”7879). To
avoid bias towards gene sets specific to human disease as e.g. KEGG pathways,
Gene Ontology gene sets, which are not linked to a disease a priori were favoured.
The GSEA method was selected to further identify the leading edge genes, which
represent the drivers of the enrichment. Enrichments were calculated with 100,000
permutations on eQTS T-values (considering gene sets with minimal 15 and
maximal 500 transcripts) and pQTS T-values (considering gene sets with minimal
5 and maximal 500 proteins).

SNP and gene candidate selection for trans-analyses. To reduce the multiple
testing burden, trans-analyses were only performed on AF GWAS SNPs and
candidate genes derived from the gene set enrichment analysis. We selected all
SNPs with MAF > 0.1 that were annotated with atrial fibrillation in the GWAS
catalog®” or the best proxy if the annotated SNP was not measured in our dataset.
We further evaluated SNPs in high LD using SNiPA77 (R2 > 0.5) and took only the
SNP with the highest P-value in a recent GWAS?, resulting in 108

independent loci.

We performed power analysis for the ability to detect strong trans-eQTL effects
with our fixed sample size (N =74 for eQTLs). The trans-eQTL effect size was set
to 21.8% of variance explained, which is the strongest trans-eQTL found in
eQTLGen®". In particular we evaluated how many genes can be tested in a targeted
trans-eQTL analysis of all LD pruned AF loci (N = 108 SNPs) to still have a power
of at least 50% at a Bonferroni adjusted significance level of 5%, based on power
calculations for the F test. We found that 23 genes could be tested (Supplementary
Fig. 14). Thus we designed our candidate selection strategy to identify the most
promising 23 candidates.

Leading edge genes?’ defined by GSEA on the eQTS/pQTS associations were
considered drivers of the enrichments of gene sets. A gene set was considered
significantly enriched with a FDR < 0.05 (Benjamini-Hochberg procedure). This
resulted in 1261 genes for 81 gene sets on transcript and 152 genes for one gene set
on protein level.

Due to the hierarchical structure of the GO biological processes, we favoured
genes that were driving the enrichment of multiple gene sets, i.e. also contained in
smaller, more specialized child terms. For that reason, we selected all leading edge
genes as trans-QTL gene candidates that appeared in the transcript leading edge set
of 14 or more gene sets, reducing the 1261 to 23 genes (as based on the power
analysis suggesting <23 genes).

Although protein candidates were much more abundant than 23 genes, because
of only one significant gene set we could not apply the same selection strategy
resulting in no further preselection.

Trans-QTL computations. Trans-QTLs were calculated using the R package
MatrixEQTL76. An additive linear model was evaluated for 108 SNPs for AF and
23 transcripts as well as 152 proteins. Additional covariates age, sex, BMI,
sysBP, CRP, NT-proBNP, the fibroblast-score and RIN-score/protein con-
centration for transcripts/proteins were used similar to the QTS analyses and
resulted in two-sided t-test with 74 samples (df = 64) for transcripts and

73 samples (df = 63) for proteins. Different numbers of samples compared to
cis-QTL analyses are due to missingness in the used covariates. In contrast to
the ¢is-QTL analyses, no PEER factors were used as has been previously sug-
gested for trans-analyses!S.

NKX2-5 trans-pQTL evaluation. The rs9481842-NKX2-5 trans-pQTL was eval-

uated using a linear model with additive genotype effect and covariates age, BMI,
sysBP, CRP, NT-proBNP and the fibroblast-score to explain logarithmized NKX2-
5 protein intensities normalized to alpha-actinin (N = 29, df =21). Compared to
the original trans-QTL computations, sex was dropped as a covariate since only

one female sample was present.

NKX2-5 target definition. We were interested in investigating the link between a
GWAS hit to target genes through a trans-eQTL-regulated TF, that was not
measured on proteomics level. We therefore investigated the effect of the SNP as
well as the TF transcript on target genes on transcriptomics and proteomics level. A
graphical summary of the target definition procedure is shown in Supplementary
Fig. 13. To prioritize target genes with most evidence of an association with the
QTL SNP which is mediated by the TF, we aimed to establish the following
properties:

(a) The target has a NKX2-5 binding site (ChIP-seq) overlapping with an open
chromatin state in the promoter or an promoter interacting region (HiC).
To establish that the TF mediates the effect of the QTL SNP on the target
gene transcription we further need to show that:

(b) The transcript expression of the target gene is associated with the SNP
genotype and

(c) the association between the SNP and the target transcript expression
disappears when adjusting for TF expression levels.
Finally, the most relevant endpoint, i.e. target protein abundance, should be
mediated by the TF.
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(d) The protein expression of the target is significantly and positively correlated
with the transcript expression of the TF.

We do so by evaluating the following regression models (two-sided t-tests):

(1) Association of GWAS SNP with target transcript (trans-eQTL, N=67,
df = 63): target transcript ~ 8, + f8; - SNP + 3, - fibroblast-score + ;- RIN + ¢

(2) Independent effects of the SNP on target transcript, that are not mediated by
the TF transcript (N = 67, df = 62): target transcript ~ o + 8, - SNP + f3, -
TF transcript + f3; - fibroblast-score + f8, - RIN + ¢

(3) Association of target protein with TF transcript (N=79, df=75): target
protein ~ B, + B, - TF transcript + f3, - fibroblast-score + f3; - protein conc. + ¢

(4) Additionally, we quantify the corresponding trans-pQTL for Supplementary
Table 16: Association of GWAS SNP with target protein (trans-pQTL,
(N=66, df=62): target protein~ f,+ f3; - SNP + f3, - fibroblast-score +
B3 - protein conc. + &.

For direct binding a) we considered only genes with transcriptomics and
proteomics measurements and at least one functional TF BS (see methods Binding
sites: functional NKX2-5 BS).

To establish regulation by the SNP, we selected only genes with a significant
association of the SNP with the target transcript (concordant effect to the TF
expression) in regression model (1) 8, <0, P(B;) <0.05 to ensure (b) and
additionally checked the vanishing effect when adding the TF transcript model, i.e.
for (c) we assessed in regression model (2) P(f3;) > 0.2. For the remaining
candidates, we performed FDR correction (Benjamini-Hochberg) on P-values of
model (3). We finally identified all proteins that satisfy (d) by (3) FDR(P(f;)) < 0.05
and T(B;)) >0 as functional NKX2-5 targets.

Partial correlations. Partial correlations were computed using the R package
ppcord! 1.1.

Differential proteome analysis for AF. Differential analysis of proteins was done
by comparing protein expression of controls without AF to cases diagnosed with
prevalent AF. Cases that developed only post-operative AF after surgery were
excluded from the analysis. Since differential expression analyses with respect to
AF might be more confounded by underlying conditions, more stringent adjust-
ment was carried out by including covariates covs: age, sex, BMI, diabetes, sysBP,
hypertension medication, myocardial infarction, smoking status, fibroblast-score
and protein concentration. Summary statistics for $;(AF) in the following linear
model (N = 78) were used: protein ~ By + f8; - AF 4+ > cove covs Beov * €OV + &.

Replication in the GSE128188 dataset. RNA-seq transcriptomics data of 20 atrial
appendage tissue samples from males undergoing coronary artery bypass grafting
and/or atrial/mitral valve repair or replacement was downloaded from the public
repository GSE1281883¢. Norm factors were calculated to derive log-transformed
TMM-based RPKMs using the functions calcNormFactors() and rpkm() from the
bioconductor R package edgeR82 3.28.1. Full summary statistics for the AF dif-
ferential expression analysis were supplied by the original authors after inquiry.
GSEA was performed on the log fold changes while ranking significant genes
before non-significant ones. For left and right atrial appendage samples each, all ten
samples as well as the mean of cases and the mean of controls were scaled and
centered per gene to produce relative values comparable across datasets.

Replication in the PXD006675 dataset. Mass spectrometry proteomics data of
six left atrial tissue samples were downloaded from the public repository
PXD006675%. Full summary statistics for the AF differential expression analysis
were supplied by the original authors after inquiry. GSEA was performed on the log
fold changes while ranking significant genes before non-significant ones. Pro-
teomics data of triplicates for three AF cases and three controls were median-
normalized per measurement and log-transformed. All 18 samples as well as the
mean of the AF cases and the mean of the controls were scaled and centered per
gene to produce relative values comparable across datasets.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The genotype, transcriptomics and proteomics data are available under restricted access,
as they contain identifying participant information. Deposition in online repositories or
controlled access repositories is not authorized by the patient’s consent. Access to the
complete data including phenotypes can be obtained by any qualified researchers as part
of an academic or industry collaboration. Co-authorship on resulting publications is
required only if authorship criteria are fulfilled according to the guidelines of good
scientific practice of the Deutsche Forschungsgemeinschaft (10.5281/zenodo.3923602).
Requests including a formal research proposal indicating the use of data and planned
analyses should be addressed to Renate Schnabel (r.schnabel@uke.de) and will be
processed within two weeks. Successful applications enable the unrestricted analysis of

the data in the context of cardiovascular disease. Mandated source data are provided with
this paper. All results are available at http://qtldb.helmholtz-muenchen.de and in the
Zenodo repository [https://doi.org/10.5281/zenodo.5080229]83. For replication purposes,
publicly available data were obtained from GTEx (RNA-seq and cis-eQTL results),
GSE128188 and PXD006675. Additionally, the following annotations were used Ensembl
BioMart GRCh37.p13: hgl9 and Ensembl Variant Effect Predictions [http://
feb2014.archive.ensembl.org/biomart/martview/], 1000 Genomes Phase 3 genotypes
[https://www.internationalgenome.org/], GWAS catalog [https://www.ebi.ac.uk/gwas/]
(2019-11-26), Roadmap Epigenomics E104_15_coreMarks_dense.bed [https://
egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/
coreMarks/jointModel/final/], E-MTAB-6014 capt-CM-replicated-interactions-
1kb.bedpe [https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6014/],
ReMap2018 v1.2 [http://pedagogix-tagc.univ-mrs.fr/remap/download/remap2018/hg19/
MACS/remap2018_nr_macs2_hgl9_v1_2.bed.gz], TargetScan 7.2 [http://www.
targetscan.org/vert_72/vert_72_data_download/Predicted_Target_Locations.default_
predictions.hg19.bed.zip], GSE133833 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE133833] and ENCODE eCLIP HepG2/K562 data [https://

encodeproject.org]. Source data are provided with this paper.

Code availability
The analysis code is available on github at https://github.com/heiniglab/symatrial
[https://doi.org/10.5281/zen0d0,5094276]84.
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