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Cell-selective proteomics segregates pan-
creatic cancer subtypes by extracellular
proteins in tumors and circulation

Jonathan J. Swietlik1,10, Stefanie Bärthel 2,3,4,10, Chiara Falcomatà 2,3,4,10,
Diana Fink5, Ankit Sinha6, Jingyuan Cheng1, Stefan Ebner5, Peter Landgraf7,
Daniela C. Dieterich7,8, Henrik Daub9, Dieter Saur 2,3,4 & FelixMeissner 1,5

Cell-selective proteomics is a powerful emerging concept to study hetero-
cellular processes in tissues. However, its high potential to identify non-cell-
autonomous disease mechanisms and biomarkers has been hindered by low
proteome coverage. Here, we address this limitation and devise a compre-
hensive azidonorleucine labeling, click chemistry enrichment, and mass
spectrometry-based proteomics and secretomics strategy to dissect aberrant
signals in pancreatic ductal adenocarcinoma (PDAC). Our in-depth co-culture
and in vivo analyses cover more than 10,000 cancer cell-derived proteins and
reveal systematic differences between molecular PDAC subtypes. Secreted
proteins, such as chemokines and EMT-promoting matrisome proteins, asso-
ciated with distinct macrophage polarization and tumor stromal composition,
differentiate classical and mesenchymal PDAC. Intriguingly, more than 1,600
cancer cell-derived proteins including cytokines and pre-metastatic niche
formation-associated factors in mouse serum reflect tumor activity in circu-
lation. Our findings highlight how cell-selective proteomics can accelerate the
discovery of diagnostic markers and therapeutic targets in cancer.

Cells in multicellular organisms adapt their phenotypes and function
by crosstalk with other cell types. Short- and long-ranged intercellular
signals are an integral part of organismal homeostasis and, when
altered, drive the pathogenesis of diverse diseases. For example, in
cancer, vivid interactions between transformed cells and non-
transformed stromal cells promote or inhibit tumor development,
metastasis, and the efficacy of drugs.

A rising incidence and high lethality make pancreatic ductal ade-
nocarcinoma (PDAC) one of the leading causes of cancer-related

deaths1. Since PDAC is typically discovered in advanced stages and
refractory to most treatment modalities, there is a pressing need for
more effective therapy and biomarkers that allow early detection.
However, hallmark features of PDAC, such as a dense and fibrotic
stroma, an immunosuppressive tumor microenvironment (TME), and
often low neoplastic cellularity, exacerbate its molecular character-
ization and therapy development2,3. Based on the transcriptional pro-
file and pathological features, PDAC is stratified into two major
molecular subtypes4. Classical PDAC is characterized by a well-
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differentiated histopathology and epithelial gene expression sig-
nature. In contrast, mesenchymal (basal-like) PDAC shows an undif-
ferentiated, non-glandular histology, a mesenchymal gene expression
profile, and is associated with a poor prognosis and high resistance to
standard-of-care chemotherapy compared to the classical subtype5–9.
Despite the substantial clinicopathological differences between the
two PDAC subtypes, the underlying differences in the intercellular
signaling of cancer cells with their TME have not been studied sys-
tematically so far.

Important insights into tumor cell composition and phenotype
have been gained by systems-wide transcriptional approaches. How-
ever, the correlation between mRNA and protein copy numbers can
vary widely10,11, especially for proteins with roles in intercellular
crosstalk12,13. Therefore, systems-wide and unbiased tools for

comprehensive quantitative protein analyses can provide unique
perspectives on the context-dependent crosstalk of cancer cells with
their microenvironment14. Mass spectrometry (MS)-based proteomics
is today’s gold standard for high throughput protein analysis and has
significantly improved our understanding of cancer pathogenesis15–18.
The combination of proteomics with cell-selective metabolic protein
labeling strategies promises to resolve context-dependent cell beha-
vior and interaction in complex heterocellular systems like tumors.
One of the emerging methods uses the specially engineered
methionyl-tRNA-synthetaseL274G (MetRS*), which enables the time-
controlled and cell-specific introduction of the non-canonical amino
acid azidonorleucine (Anl) into proteomes19–21. Azide-alkyne click
chemistry allows the subsequent extraction ofMetRS*-expressing cell-
derived proteins from cell mixtures. Successful application in living
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Fig. 1 | A sensitive workflow for comprehensive cell type-selective proteomics
and secretomics. a Schemeof cell-selective proteomics workflows: Themethionyl-
tRNA synthetaseL274G (MetRS*) activates azidonorleucine (Anl) by loading it onto
methionyl-tRNAs. MetRS*-expressing cells incorporate Anl as a methionine sub-
stitute into newly synthesized proteins. Lentivirally transduced primary MetRS*-
expressing or wild-type (Ctrl) PDAC cells isolated from mouse tumors with a con-
ditional pancreatic expression of KrasG12D were grown for 8 h in Met-depleted
medium supplementedwith 4mMAnl. 1 × 107MetRS* and Ctrl cells were processed
by DST enrichment, DBCO enrichment, and our improved alkyne-agarose CuAAC
enrichment protocols (n = 3, workflow replicates). b Peptide yields (mean± SD)
determined by absorbance at 280 nm after enrichment, digestion, and solid phase
peptide extraction. c Identified protein groups (mean ± SD) afterMS-based analysis
using 2 h chromatographic gradient length and data-dependent acquisition (DDA).
d Intensity ratios of proteins identified in MetRS* and Ctrl samples. Counts of

overlapping identifications with ratios are indicated. e Specifically enriched protein
groups (exclusive or >3-fold higher intensity compared to Ctrl samples) identified
after alkyne-agarose enrichment and single run DDA, DDA analysis of 16 fractions
separated by offline high-pH reverse phase chromatography, or single run data-
independent acquisition (DIA) (mean ± SD, fractionation n = 1, single shots n = 3,
workflow replicates). The latter was used for all further experiments. f Scheme of
cell-selective secretomicsworkflow:MetRS* andCtrl 8661 PDACcells were cultured
for 8 h in 5% FBS containing Met-depleted medium with 4mM Anl (n = 3, workflow
replicates). MetRS*-expressing cell-derived Anl-proteins were enriched from cell
supernatants after buffer exchange and concentration. g Specifically-enriched
PDAC cell-released proteins ranked by label-free quantification (LFQ) intensity.
Proteins with cytokine function are indicated. Source data are provided as a Source
Data file.
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animals provided evidence for broad tissue compatibility22 and
revealed, for example, differential expression of 200 proteins in hip-
pocampal excitatory neurons in mice exposed to an enriched
environment23. In contrast to cell-sorting-based strategies such as
FACS or MACS, intact tissues are snap-frozen directly after harvesting
and subsequently lysed without cell dissociation. This effectively
avoids cell-damage-related losses, selection bias for more robust cell
populations, and potential protein expression or modification state
artifacts by stresses and environmental changes during the enzymatic
and mechanical treatment necessary to extract cells from tissues24–27.
However, the achievedproteomecoveragehas generally been low, and
even the deepest studies remained under 4000 specifically enriched
proteins23,28, leaving open the feasibility of comprehensive Anl
enrichment-based proteomics analysis.

Here, we developed an improved workflow that enables an
unprecedented proteomics depth for cell type-specific cellular pro-
teome and secretome profiling in vitro and in vivo. This vastly
increased the detection capacity of often low abundant intercellular
signaling proteins such as secreted cytokines or receptors and there-
fore raised the potential for MetRS*/ Anl-based cellular communica-
tion analyses. We applied our approaches in the context of primary
PDAC co-culture and orthotopic transplantation models and demon-
strated unique advantages in capturing extracellular proteins com-
pared to conventional cell sorting-based proteomics. We used the
strength of our comprehensive cell-type specific proteomics workflow
to reveal functional differences between classical and mesenchymal
PDAC subtypes in tumors and circulation, such as context-specific
secretion of cancer cell-derived EMT-promoting molecules and
immunomodulators that correlated with differential immune cell
recruitment in vivo, as well as distinct qualitative and quantitative
contributions of cancer cell-derived proteins to the tumor extra-
cellular matrix (ECM).

Results
An improved workflow enables highly efficient and specific cell-
selective enrichment of proteins
Conceptually, methionyl-tRNA synthetaseL274G (MetRS*)-based azido-
norleucine (Anl) labeling offers unique possibilities for analyzing
intercellular interactions in complex heterocellular systems. However,
the achieved proteomic depth in our initial experiments and pre-
viously published MetRS*-based studies did not exceed 4000
proteins23,28 and was therefore significantly lower than state-of-the-art
with modern mass spectrometers and software29, limiting the dis-
covery potential. Hence, we set out to identify and overcome technical
bottlenecks.

We first evaluated the Anl-incorporation rates of MetRS*-expres-
sing cells in vitro by conventional MS-based shotgun proteomics with-
out specific enrichment. Quantifying Anl-containing peptides compared
to their unmodified counterparts showed that Anl incorporation was
indeed highly specific to MetRS*-expressing cells but much slower than
the incorporation of methionine (L-methionine-methyl-13C,d3) or the
MetRS*-independent Met-substitute azidohomoalanine (Aha) (Supple-
mentary Fig. 1a, b). Furthermore, Anl labeling is strongly dosage-
dependent and reduced with methionine competition, as shown in
previous studies19,30,31. We reasoned that the Anl-protein abundance
would be very low in most applications, especially in vivo, considering
often pronounced cell type heterogeneity and limited Anl bioavailability
in tissues. Consequently, the demands for both recovery and specificity
of the enrichment workflow are very high when aiming for deep pro-
teomics analyses. We chose a straightforward copper(I)-catalyzed azide-
alkyne cycloaddition (CuAAC) and alkyne agarose-based strategy for
scalability and high reaction rates32 as the basis for protocol optimiza-
tion. We individually evaluated key experimental steps to improve
protein extraction from tissue and click chemistry efficiency by sys-
tematic implementation of previous findings33,34 and empirical testing of

reactant ratios, buffer components, and new reagents, including next-
generation Cu(I)-stabilizing agents35.

A direct comparison of our improved alkyne-agarose CuAAC
protocol with frequently used dibenzocyclooctyne (DBCO) resin- and
cleavable disulfide biotin alkyne-tag (DST)-based procedures (Fig. 1a)
demonstrated substantial advantages: Using MetRS*-expressing and
negative control wild-type primary PDAC cells that were both incu-
bated in Anl-containing media, our protocol showed minimal unspe-
cific background and a drastically increased yield of specifically
enriched peptides (Fig. 1b). This advantage translated well into the MS
analysis: While DST-based enrichment provided good specificity but
reduced overall coverage, DBCO-based enrichment led to many iden-
tifications in both MetRS* and negative control samples, concordant
with higher side reactivity of strained alkynes32,36. In contrast, our
protocol yielded deep proteome coverage but with the fewest identi-
fications in negative controls (Fig. 1c). The technical reproducibility
was equal to or better than alternative protocols, with 84% of all
MetRS* sample identifications quantified in all three replicates and a
medianprecursor coefficient of variation (CV) of 11.5% (Supplementary
Fig. 2a, b). Importantly, low overlap and high-intensity differences of
proteins identified in bothMetRS* samples and controls demonstrated
very low background interference from unspecific enrichment with
our workflow (Fig. 1d). We defined proteins as specifically enriched if
they were exclusively identified in MetRS* samples or quantified with
at least threefold higher intensity than in negative controls and
excluded all other proteins from further analysis, as described by
Alvarez-Castelao et al.23,37. Accordingly, our workflow identified a total
of 6576 specifically enriched protein groups (compared to 4416 and
4736 with DST- or DBCO-based enrichment, respectively), including
almost all proteins covered with both other methods together plus
1039 exclusive identifications (Supplementary Fig. 3).

To optimize deep proteomics investigations, we combined our
workflow with offline high pH reverse phase fractionation of peptides
after enrichment and digestion, resulting in the identification of 10,146
specifically enriched protein groups, demonstrating exceptional pro-
teome coverage (Fig. 1e). Furthermore, using a data-independent
acquisition (DIA) method, we achieved an average of 8770 specifically
enriched protein groups per sample in 2-h runs without fractionation.
The use of DIA also improved data completeness between replicates
anddecreasedprecursorCVs compared todata-dependent acquisition
(DDA) (Supplementary Fig. 2c, d).

To further evaluate the technical reproducibility of our enrich-
ment,we repeated the experimentwith tennegative control replicates,
confirming the previously observed high signal-to-noise ratio between
specifically enriched proteins and unspecific background (Supple-
mentary Fig. 4a, c). While the very low signal intensity in negative
controls caused more stochastic identifications than in MetRS* sam-
ples (Supplementary Fig. 4b), results remained very consistent when
control samples were divided into groups of three and used separately
to evaluate background interference in MetRS* samples (Supplemen-
tary Fig. 4c). The vastmajority of proteinswith sparse identifications in
controls had high ratios far above our chosen specificity cutoff (Sup-
plementary Fig. 4d). Conversely, the majority of proteins with lower
MetRS*/Ctrl ratios had very high data completeness. Thus, not only
were there a very limited number of proteins with higher background
interference overall, but the controls were also effective in capturing
most of these proteins consistently.

We applied the described filtering strategy to all subsequent
MetRS* experiments in this study, using at least three experimentswith
wild-type cells as negative controls for corresponding MetRS* sample
groups to define specifically enriched proteins and ensure high con-
fidence in cell selectivity. To enable both very deep and MS time-
efficient analysis with high throughput for larger-scale experiments,
we used our enrichment workflow together with DIA single-shot
analyses.
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Comprehensive cell-selective secretomics analysis in serum-
containing media
Encouragedby the strongly increased specific peptide recovery, we next
aimed to adapt our methods for investigations of intercellular signaling,
specifically for the comprehensive analysis of secreted proteins. Pre-
viously, non-cell-selective incorporation of azide amino acids has
improved the detection of comparably low abundant secreted cellular
proteins in the presence of highly abundant serum proteins in serum-
containing conditioned media38. MetRS*-based Anl-labeling could
expand this concept for cell-selective analyses in heterocellular systems
such as co-culture experiments. To establish proof-of-concept for in-
depth secretomics with our enrichment protocol, we analyzed super-
natants of primary PDAC cells in the presence of 5% serum (Fig. 1f). This
yielded deep coverage of PDAC cell-released proteins, with a total of
2229 specifically enriched protein groups and 788 protein groups
annotated with UniProtKB Keywords “secreted” and/or “signal.” Of
those, 103 protein groups are known ligands for intercellular commu-
nication according to CellPhoneDB39, including 46 with described
cytokine function (Fig. 1g). Despite their often small size and low
abundance, 83 (81%) and 41 (89%) of the detected intercellular signaling
proteins and cytokines were identified with at least two peptides.

Increased yields and extracellular protein coverage of MetRS*-
based cell-selective proteomics compared to FACS in vivo
A key feature of MetRS*-based Anl labeling is its applicability in living
animals. As shown previously in Falcomatà and Bärthel et al.40, we
modeled molecular PDAC subtypes in vivo by orthotopic transplan-
tation of primary low-passaged cancer cells in the pancreas of fully
immunocompetent syngeneic mice. We evaluated our enrichment
workflow with tissue samples from this model by directly comparing
Anl-based enrichments with conventional fluorescence-activated cell
sorting (FACS) from MetRS* and eGFP co-expressing cells. After cell

injection and an initial tumor growth period, we supplemented Anl by
intraperitoneal injection and then used one-half of each tumor for Anl-
enrichment or FACS (Fig. 2a). In total, 13–17% of the dissociated cells
were cancer cells, as indicated by eGFP-fluorescence (Supplemen-
tary Fig. 5).

Peptide yields revealed striking differences with an over 50-fold
higher average recovery of cancer cell-derived proteins by click
chemistry enrichment compared to FACS, indicating significant cell
losses during the dissociation and sorting procedure (Fig. 2b). How-
ever, bothmethods yielded a sufficient peptide amount for single-shot
proteomics analyses with modern MS instrumentation. Both methods
resulted in more than 8100 protein groups, with a lower median
coefficient of variation between replicates for Anl-enrichment sam-
ples, indicating better quantitative precision (Fig. 2c, d). While around
70% of the identified protein groups overlapped between both FACS
and Anl-enrichment-based analysis (Fig. 2c), exclusive identifications
with each method revealed distinct strengths. Flow cytometry-sorted
samples showed, for example, enrichment of transmembrane pro-
teins, likely facilitated by strong ionic detergent-based lysis, which
enhances transmembrane protein extraction and digestion41,42 but can
interfere with CuAAC reactions34. Conversely, cell-selective labeling
captured proteins released by cells, such as ECM components and
cytokines, specifically well (Fig. 2e). We primarily attribute this to the
enrichment of proteins from the interstitial space in tumors, which are
accessible for MetRS*-based cell-selective proteomics but lost in
tissue-dissociation and sorting-based protocols.

Co-culture promotes inflammatory responses of PDAC cells and
polarization of primary macrophages
After closing the gap to state-of-the-art proteomics performance and
extending Anl labeling applications to in-depth cell-selective secre-
tomics,we applied our toolkit to studypancreatic cancer biology. Both
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the coverage of lower abundant proteins and cell type-resolved
information on released signaling proteins are invaluable for under-
standing intercellular communication. In cancer, complex interactions
between transformed cells and tumor stromal cells shape each other’s
phenotypes and the overall tumor biology.Macrophages, for example,
are a major component of solid tumors and are among the earliest
tumor-infiltrating immune cells in PDAC43,44. To evaluate the potential
of MetRS*-based cell-type specific proteomics for the molecular dis-
section of such intercellular crosstalk, we explored the bidirectional
interaction between PDAC cells and macrophages in a controlled
in vitro setting. All primary PDAC cell cultures were derived from a
genetically engineered KrasG12D -driven autochthonous mouse PDAC
model45. They are representative of the classical subtype, displaying an
epithelial morphology (“8661” and “8442”), or of the basal-like
mesenchymal subtype (“8513” and “9091”), characterized by
increased oncogenic Kras gene dosage (Kras-mut iGD) and a particu-
larly unfavorable prognosis. By generating LysM-Cre-MetRS* mice,
which specifically express MetRS* in the myeloid compartment, we
were able to obtain primary MetRS*-expressing bone marrow-derived
macrophages (BMMs). We then cultured the four PDAC lines, and the
BMMs alone or in co-culture (Fig. 3a) and cell type-selectively analyzed
proteins from cells and cell supernatants. Principal component

analyses (PCAs) showed reciprocal adaptions of cancer cells andBMMs
to co-culture with changes in both global proteome expression and
protein secretion, although less clear for PDAC secretomes (Supple-
mentary Fig. 6). PCAs further indicated distinct differences between
PDAC subtypes and PDAC line-specific BMM responses.

We first investigated broad trends and processes in the proteome
and secretome dynamics between each cell type in isolation and co-
culture. A gene ontology (GO)46 enrichment analysis showed increased
expression of antigen-presentation and major histocompatibility
complex (MHC) class I-associated proteins in classical, and to a lesser
degree in mesenchymal PDAC cells (Fig. 3b), which was previously
observed in breast cancer cells co-cultured with macrophages in
transwell systems47. Interaction with BMMs also induced strong upre-
gulation of chemokine production and interferon response signatures
in both classical and mesenchymal PDAC cells, while, in particular,
mesenchymal cells strongly increased structural matrix protein
deposition (Fig. 3b, d). Secretomics analysis at the individual protein
level revealed secretion of complex immunomodulatory signals with
pronounced differences between PDAC subtypes and significant
changes upon interaction with macrophages (68 signaling proteins
with cytokine function and significant abundance differences (ANOVA,
FDR = 5%, S0 = 0.1) between subtypes and culture conditions, see
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36h with Anl labeling during the last 8 h (n = 3, workflow replicates). Asterisks

indicate MetRS* expression. b–e Strongly enriched gene ontology (GO) terms and
UniProtKB keywords in upregulated proteins after PDAC—BMM co-culture com-
pared to each cell type in isolation (two-sided 1D annotation enrichment128 (full list
in Supplementary Data 4)). f Heatmap of protein intensities associated with mac-
rophage polarization states in BMM proteomes and secretomes.
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Supplementary Fig. 7). For example, co-culture induced increased Il6
release by both subtypes but withmuch higher levels in classical PDAC
cells, whereas specifically mesenchymal PDAC cells strongly increased
secretion of CCL8 and 9. Moreover, significant enrichment of surface-
exposed plasma membrane proteins in secretomes, including MHCI
proteins, suggested increased shedding activity in cancer
cells (Fig. 3d).

Upon interaction with classical PDAC cells, BMMs expressed
higher levels of proteins associated with exogenous antigen pre-
sentation, T cell regulation, and regulation of key cytokines involved in
the coordination of pro- and antitumoral response reactions48,49

(Fig. 3c). Although trends could also be observed upon co-culturewith
mesenchymal PDAC cells, effects were less pronounced and did not
reach statistical significance. However, BMM secretomes showed
strong enrichment of immunomodulatory proteins, hormones, and
growth factors, and extracellular matrix (ECM)-modifying proteins
after co-culture with both PDAC subtypes (Fig. 3e). In addition tomany
cytokines, interaction with cancer cells broadly induced ECM reg-
ulators such as matrix metalloproteinases (MMPs), a disintegrin and
metalloproteinases (ADAMs), and ADAMs with thrombospondin
motifs (ADAMTSs), with crucial functions in cancer50,51 (Supplemen-
tary Fig. 7).
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PDAC co-culture. a Macrophage polarization-associated intercellular signaling
protein expressed by mesenchymal or classical PDAC cells in co-culture with cor-
responding receptors detected in BMM proteomes. Ligands with significantly dif-
ferent secretion among PDAC subtypes (two-sided Student’s t-test, permutation-
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Co-culturedmacrophages acquire TAM-like features driven by a
complex mix of cancer cell-secreted and -displayed signaling
proteins
To further evaluate the cancer-cell-induced macrophage states in co-
culture, we annotated proteins from BMM-selective secretome and
cellular proteome datasets using a panel of markers commonly asso-
ciated with macrophage polarization52. M1 and M2 states exemplify
broadly clustered extremes on a spectrumofmacrophage states—with
M1 being associated with interferon and Toll-like receptor signals and
efficient production of effector molecules and inflammatory cyto-
kines, andM2macrophageswith the resolution of inflammation or TH2
response-driven physiological reponses52,53. As an experimental refer-
ence, we stimulatedMetRS*-expressing BMMswith lipopolysaccharide
(LPS), a Toll-like receptor 4 (TLR4) agonist, and acquired their

proteome and secretome profiles. As expected, LPS-stimulated BMMs
showed exclusive expression and strong upregulation of M1-
associated marker proteins compared to unstimulated cells (Fig. 3f).
PDAC co-cultured macrophage M1-associated marker expression was
detected only sporadically and mostly at basal levels, except for
increased secretion of the pro-inflammatory cytokines Il6 and Tnf
upon interaction with 8661 classical PDAC cells. Instead, co-culture
primarily induced upregulation ofM2-associatedmarkers such as Arg1
and Chil3, again often with stronger responses to classical PDAC cells.
Together, cancer cell co-culture therefore induced fast and profound
adaptions in BMMs reminiscent of tumor-associated macrophage
(TAM) features, which often show M2-like differentiation, contribute
to immune cell recruitment and regulation, and remodeling of the
tumor ECM54–56.
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Cell-selective proteomes and secretomes also allowed us to
investigate potentially active intercellular signaling circuits that
shapedmacrophage polarization.Wemapped PDAC-released proteins
with corresponding macrophage receptors using ligand-receptor
interactions curated in CellPhoneDB39. While PDAC cells did not
release hallmark M2 polarizing factors IL-4 and IL-13, we found a
complex mix of other proteins that have been associated with mac-
rophage polarization (Fig. 4a): Some proteins were secreted without
significant differences between subtypes, such as Tgfb1, a known M2
promoter57, or Tnf (atmuch lower abundance, see also Supplementary
Data 1), an important M2-suppressing factor in cancer58. Other Tgfb-
and Tnf-family members, macrophage survival essential colony-
stimulating factors (Csfs), and many other signaling proteins, how-
ever, showed strong and consistent differential expression between
PDAC subtypes. Classical PDAC cells secreted, for example, more Il6, a
pleiotropic cytokine that has been described to enhance both M1- or
M2-like states59, and Tnfsf15 (Supplementary Fig. 7), whichhas recently
been shown to promote macrophage differentiation toward an M1
phenotype and increased cancer cell phagocytosis60. Mesenchymal
PDAC cells secreted higher levels of Tgfb2 and Tgfb3 as well as Mif,
Ccl5, and the alarmin Hmgb1, which have been found to skew macro-
phage polarization toward M1- and M2-like states in a context-
dependent manner61–64. Furthermore, both PDAC subtypes expressed
similar levels of Cd47, a contact-dependent anti-phagocytotic signal
often upregulated by cancer cells to escape elimination by
phagocytes65,66. Also, there is increasing evidence for the contribution
of semaphorins to macrophage recruitment and differentiation, a
family of exclusively secreted (class 3) or membrane-bound proteins
(that can act as contact-dependent signals) with important roles in
cancer67. For example, increased Sema3a has been associated with
poor outcomes in PDAC68 and attraction of tumor-associated
macrophages69, while Sema7a was shown to recruit and polarize
macrophages toward the M2 state in the context of sepsis70.

Themajority of detectedPDAC signal corresponding receptors on
BMMs showed stable expression, but some were regulated upon co-
culture with cancer cells (Fig. 4a). Notably, BMMs upregulated Pvr
(Poliovirus receptor) expression after interaction with both PDAC
subtypes. Pvr activation on macrophages has been linked to an anti-
inflammatory phenotype71, and targeting the Pvr-Tigit axis is being
explored as a potential cancer immunotherapy strategy72.

PDACcancer cell subtype-specific chemokine secretion patterns
correlate with immune cell recruitment in vivo
Overall, both macrophages and PDAC cells responded to co-
culture with increased production and release of immunomodu-
latory signaling proteins. Looking specifically at expression dif-
ferences of immune cell recruiting factors, we noticed clear
trends between PDAC subtypes: Mesenchymal PDAC cells secre-
ted high levels of key monocyte recruitment and macrophage
survival signals such as Ccl5 and Csf1 (Fig. 4b). In isolation, all
four PDAC cell lines secreted many primarily neutrophil attract-
ing proteins at similar levels. Interestingly, interaction with
BMMs, however, strongly induced neutrophil recruiting chemo-
kines like Cxcl2, Cxcl3, Cxcl5, and Cxcl15 in classical PDAC cells,
whereas release remained unchanged (9091) or increased much
less (8513) in mesenchymal cancer cells. BMM chemokine secre-
tion patterns followed similar trends. Intrigued, we investigated
the TME composition of tumors formed by the four PDAC sub-
type lines after orthotopic transplantation into mice. Immuno-
phenotyping by flow cytometry revealed subtype-specific
differences in immune cell populations. Among the analyzed cell
types, differences between macrophage and neutrophil recruit-
ment were the most significant and reflected the recruitment
factor expression patterns from our secretomics experiments
(Fig. 4c and Supplementary Fig. 8).

PDAC tumors show systematic differences inmatrisomeprotein
production between mesenchymal and classical cancer
subtypes
To further investigate subtype differences between classical and
mesenchymal PDAC, we transplanted all four MetRS*-expressing can-
cer lines orthotopically into syngeneic mice and compared cancer cell
protein expression in the complex TME in vivo. In total, we identified
9415 specifically enriched cancer cell-derived proteins, which makes
this one of the deepest cell type-specific PDAC in vivo proteomics
datasets to date. Gene ontology enrichment analysis indicated pro-
nounced differences in hallmark processes of epithelial–mesenchymal
transition (EMT), such as cytoskeleton organization, ECMmodulation,
and cell–cell junctions (Fig. 5a). Moreover, mesenchymal PDAC cells
showed an enriched interferon response signature and elevated anti-
gen presentation-related protein expression, reminiscent of the
adaptions that we observed in co-culture with macrophages in vitro
and coincidingwith the highermacrophage infiltration in these tumors
(Fig. 3b and Fig. 4c).

Notably, many of the most prominent differences between
mesenchymal and classical PDAC cell protein expression in vivo were
ECM-related. Among diverse functions in cancer progression, dysre-
gulated ECM in tumors strongly contributes to drug resistance,
immune suppression, and metastasis51. Recent research has shown
that, in particular, pancreatic cancer cell- rather than stromal cell-
derived matrix proteins correlate with poor patient survival, although
contributing only a minor fraction of the total ECM mass73,74. This
introduced cell type-resolved profiling of ECM in tumors as a pro-
mising resource for therapeutic target and biomarker discovery. In
contrast to the previous studies that characterized the cancer cell-
derivedmatrix using xenotransplants73,74, Anl-labeling allows cell type-
resolved analysis in syngeneic immunocompetent mice. Therefore,
our PDACmodel integrates interactions with infiltrating immune cells,
which directly modulate the tumor ECM and change the ECM-
associated protein expression of other cell types such as cancer
cells50,51 (see also Supplementary Fig. 7). Motivated by this and the
previously demonstrated advantages of Anl-enrichment for extra-
cellular protein characterization (Fig. 2e),we further investigated ECM-
related proteins in our data.

We annotated proteins that constitute the ECM using an in silico
defined matrisome atlas by Naba et al.75, which specifies “core matri-
some” proteins such as collagens and proteoglycans, or proteins that
are “matrisome-associated” such as ECM remodeling enzymes or
secreted growth factors and cytokines that are known to bind to the
ECM.Cancer cells expressed adiverse representationof each category,
covering 405 matrisome proteins with only minor differences in
overall identification numbers and very similar class distribution
between classical and mesenchymal subtypes (Fig. 5b). Mesenchymal
PDAC cancer cells have been shown to suppress cancer-associated
fibroblasts (CAFs), the most prominent producers of ECM proteins in
PDAC tumor stroma, leading to tumors with lower overall stromal and
collagen content than classical PDAC76. However, quantitative analysis
of cancer cell-derived proteins showed a higher abundance of
mesenchymal-derived matrisome proteins and over-proportional
expression of core matrisome and ECM regulators (Fig. 5b), indicat-
ing an increased relative contribution to the tumor ECM. Rather than
being driven by a few highly abundant outliers, increased abundance
of core matrisome expression in mesenchymal cells was a broad and
statistically significant motif (Fig. 5c).

At the individual protein level, more than a hundred matrisome
protein groups had significant expression differences between the two
PDAC subtypes (Fig. 5d). This included proteins recently identified as
promising therapeutic targets, such as the predominantly cancer cell-
rather than stromal cell-expressed PDAC metastasis promoters Agrn,
Serpinb5, and Cstb74. All three proteins were detected in our experi-
ment, and classical PDAC cancer cells produced significantly more
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Agrn and SerpinB5, suggesting potential subtype-specific responses to
inhibition. Mesenchymal cancer cells, however, consistently produced
higher amounts of EMT-promoting matrisome components, for
example, fibrillar collagen types I and V, fibronectin, Fgf2, Tgfb family
proteins such as Tgfb3 and Bmp2 as well as proteins involved in Tgfb
signaling modulation, indicating a feed-forward loop with sustained
local EMT signals (Fig. 5d, e). Moreover, we detected a much higher
expression of lysyl oxidases Lox, Loxl1, and Loxl3 in mesenchymal
cancer cells. Lysyl oxidase-family members mediate crosslinking of
collagens and elastin and regulate cellular processes like adhesion,
motility, and invasion77. They correlate with unfavorable patient
prognosis in many cancers, including PDAC, and have been shown to
promote chemoresistance, EMT, and metastasis78.

In vivo, secretomics reflects tumor subtype and pathogenesis
based on more than 1000 cancer cell-derived proteins in
circulation
In addition to local effects, tumor cell-derived proteins can act in dis-
tant tissues after entering circulation through the lymphor leakyblood
vessels. Contrary to inference from cell expression data, profiling of
such proteins in the bloodstreamwould give spatially-specific insights
into many crucial aspects of tumor progression that involve long-
distance signals and effectors and would also be invaluable for bio-
marker discovery. However, the lack of cell type-selectivity and the
high dynamic range, with extremely abundant functional blood

proteins and comparatively low abundance of tissue leakage
proteins79, make this challenging with conventional methods.

To evaluate whether Anl-labeling could be used to enrich cancer
cell-derived proteins directly from body fluids, we collected mouse
serum after orthotopic PDAC transplantation and Anl labeling of
MetRS*-expressing cancer cells (Fig. 6a). Particularly, serum samples
from mice bearing the 8661 (classical) and 8513 (mesenchymal) PDAC
subtype tumors showed a good signal-to-noise ratio, with all replicates
distinctly clustering from negative controls and each other in a prin-
cipal component analysis (Supplementary Fig. 9). In these samples,
1614 proteins passed filtering criteria for specific enrichment, includ-
ing 64 CellPhoneDB-annotated intercellular signaling protein ligands
such as 23 cytokines (Fig. 6b), with around 42% identification overlap
between the subtypes (Fig. 6c).

After discovering significant differences in matrisome protein
expression between both PDAC subtypes in primary tumors, we were
interested if these would be reflected in circulation. In total, we
detected 199 core matrix or matrix-associated cancer cell-derived
proteins in serum. While identified proteins had a very similar quali-
tative matrisome class distribution as primary tumors, quantitative
distribution in serum was distinct, with the top two highest summed
intensity classes shifting from secreted factors and ECM-affiliated
proteins to ECM glycoproteins and ECM regulators (Figs. 6d and 5b).
However, differences between subtypes followed the trends observed
in primary tumors: Mesenchymal-derived matrisome proteins were
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more abundant and had an over-proportional share of core matrix
proteins, specifically collagens and proteoglycans (Fig. 6d, e). At the
individual protein level, we again found a higher abundance of laminin
complex proteins in classical and fibrillar collagens in mesenchymal
PDAC samples (Fig. 6f). Also, key subtype differences in immunomo-
dulatory and matrix-modifying protein release identified in our pre-
vious experiments could be captured in serum, such as high Loxl1 and
Csf1 secretion bymesenchymal cancer cells, providing direct evidence
for potential long-range effects (Fig. 6g). Both proteins have indeed
been described to pre-condition future places of metastases and,
strikingly, we identified many other previously described pre-
metastatic niche conditioning factors80–83 (Fig. 6g). A supportive pre-
metastatic niche is vital for metastatic colonialization, which is con-
sidered a rate-limiting step of the invasion-metastatic cascade84,85. The
premetastatic-niche-promoting signature of cancer cell-derived pro-
teins in circulation likely contributes to the previous observation that
increased KrasG12D gene dosage (Kras mut-iGD) promotes EMT and
metastasis in the mesenchymal PDAC subtype45.

Discussion
Increasing insight into intercellular communication in the tumor
microenvironment has helped to identify cancer vulnerabilities, for
example, crucial immunosuppressive intercellular signaling
circuits40,86. The combination of MS-based proteomics and cell-
selective labeling is emerging as a powerful strategy to further accel-
erate the knowledge gained about heterocellular processes driving the
disease. Direct analyses of labeled peptides offer straightforward
solutions for multiplexed cell type-resolved proteomics and the eva-
luation of enrichment specificity87. However, with thorough back-
ground interference controls, analyses of all peptides from labeled
proteins yield increased sensitivity and protein quantification
accuracy.

Nonetheless, previous studies were limited by low proteome
coverage and/ or used extensive offline fractionation and less stringent
filtering criteria to increase identifications19,23,28,88,89. The latter comes at
the cost of sample throughput and specificity of enriched proteins,
which are both key for the discovery of specific pathophysiological
mechanisms. Here, we strongly increased the achievable proteomics
depth with Anl labeling-based cell-selective proteomics by improving
the biochemical enrichment of azide-modified proteins from complex
biomolecule backgrounds. Beyond that, the increased recovery and
enrichment specificity enabled additional applications for this con-
cept, where low signal-to-noise was previously prohibitive. Combined
with high-end mass spectrometry, data-independent acquisition, and
recently developed software90, our workflow provides comprehensive
andMS time-efficient cell-selective proteomes and secretomes in vitro
and in vivo.

In this study, we applied our improved workflows for the in-depth
exploration of TME features between classical andmesenchymal PDAC
subtypes in model systems with different degrees of complexity. In
vitro, co-culture experiments offer a very controlled environment for
focused and detailed mechanistic investigation of heterocellular
interaction. Frequently used indirect co-culture systems such as
supernatant transfer experiments or transwell assays facilitate cell-
selective analysis by keeping cell types physically separated. However,
they cannot cover all communication channels and reciprocal signal-
ing dynamics91,92. In contrast, cell-selective labeling enables analysis of
cells in direct co-culture, which fully integrates reciprocal commu-
nication means, including cell contact formation. Cell-selective label-
ing using amino acid precursors (CTAP)93, for example, granted
invaluable insight into reciprocal signaling between pancreatic cancer
cells and fibroblasts18. Specific enrichment of cell-selectively Anl-
labeled proteins allowed us to extend this concept to in-depth profil-
ing of heterocellular secretomes. Our findings not only recapitulated
the pro-inflammatory secretory programs of macrophages as

determined previously by distinct proteomics methods independent
of MetRS*12,38 but identified, for example, 68 cancer cell-derived pro-
teins with cytokine function in serum-containing culture media. Co-
culture of PDAC cells and macrophages underlined the advantage of
experiments that allow bidirectional intercellular communication,
revealing broad reciprocal adaptions and strong regulation of inter-
cellular signals upon co-culture, with an overall trend toward increased
secretion of cytokines and chemokines in both cell types. While mac-
rophages will be exposed to many more stimuli in tumors in vivo,
including signals from other stromal cell types, both PDAC subtypes
secreted a complex mix of macrophage polarization-associated pro-
teins. Direct interaction with PDAC cells for less than two days was
sufficient for macrophages to acquire many TAM-associated features.
Moreover, in vitro secretomics allowed in-depth analysis of cancer cell-
released chemokines and showed systematic differences between
PDAC subtypes that reflected significant differences in TME cell com-
position, with higher macrophage infiltration in mesenchymal and
higher neutrophil infiltration in classical PDAC tumors. This suggests
that pancreatic cancer cell-derived signals directly contribute to the
recruitment of these cell types. Specifically, large parts of the classical
PDAC cell neutrophil recruiting signature became only apparent in co-
culture, exemplifying how heterocellular systems expand the inter-
cellular signaling capacity of a single cell type.

For cell type-specificproteomics analysis in vivo, cells are typically
extracted from tissue and sorted by FACS or MACS. We have shown
that MetRS*-based cell-selective protein labeling and enrichment can
have a fundamental cell-type-of-interest protein recovery advantage in
pancreatic tumors compared to cell sorting. The high specific yields
promise more effective analysis of less abundant or less robust cell
types and even provide enough peptides to reach the higher input
material demands of extended proteomics techniques such as offline
fractionation for the construction of large peptide libraries or post-
translational modification-specific enrichment. Importantly, Anl-
enrichment also allows freezing of the cell states in tissues directly
after harvesting, which provides an additional major benefit for PTM
analysis since PTM-states such as protein phosphorylation are often
highly dynamic and can be enzymatically modified within minutes in
response to environmental changes94,95. The combination of Anl-
enrichment and PTM analysis, therefore, outlines highly promising
avenues for future research.

Here, we focused on another advantage of the technique—the
accessibility of extracellular proteins for click chemistry enrichment.
Anl labeling facilitates the cell-selective analysis of secreted proteins in
tissue or body fluids, which is of great interest and difficult to achieve
with conventional techniques. For example, recent pioneering work
has demonstrated the high value of cancer cell-selective matrisome
analyses in primary tumors and metastases73,96 but relied on xeno-
transplants and immunocompromised mice to achieve cell-selectivity.
In comparison, MetRS*-based cell-selective proteomics can provide
additional value by overcoming the need for species-distinguishing
peptides and avoiding potential dynamic range issues caused by the
co-analysis of abundant host proteins, which can both reduce the cell-
selectivematrisome coverage.Moreover, in principle, any cell type can
be studied without the need for immunosuppression.

Our MS-based proteomics approach revealed pancreatic cancer
cell and subtype-specific matrisome proteins in fully immuno-
competent mice and provided proof-of-concept for in-depth analysis
of cancer cell-derived proteins in tumor-bearing mouse serum. Pre-
vious research has shown a higher cellularity, less activated CAFs,
and a less pronounced desmoplastic reaction in mesenchymal PDAC
tumors97. Our cell-selective tumor analysis revealed that, among the
lines we tested, mesenchymal cancer cells themselves produce sig-
nificantly higher levels of matrisome proteins, particularly core
matrix proteins, compared to classical PDAC cells. Furthermore,
mesenchymal cancer cells exhibited a distinct matrisome signature
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that promotes epithelial-to-mesenchymal transition (EMT). Studies
of human PDAC patient cohorts have demonstrated a high ECM
content for the mesenchymal subtype, and mesenchymal/ECM-high
PDAC correlated with a poor prognosis in comparison to classical/
immune-rich PDAC98. Matrisome protein release could clearly seg-
regate PDAC subtypes in our experiments, even when analyzing
cancer cell-derived proteins in circulation. Remodeled ECM in cancer
has been appreciated as critical for tumor progression51,99. Early trials
directed towards broad depletion of aberrant stroma, however,
revealed a dichotomous nature of the ECM and underlined the need
for a more precise understanding of stromal components and their
role in pathogenesis100–102. Using cell type-specific MetRS* mouse
models, stromal cell types and their contribution to the tumor ECM
can be studied systematically in the future. This combined knowl-
edge will help to evaluate the sources and functions of individual
tumor stromal components and identify tumor-promoting candi-
dates for targeted inhibition without simultaneous interference with
protective functions. Specifically, we detected elevated expression
levels of Lox, Loxl1, and Loxl3 in mesenchymal cancer cells. Loxl2 has
been identified as an independent prognostic factor in pancreatic
cancer patients associated with poor survival103,104. However, anti-
Loxl2 mAb treatment in a PDAC transplantation mouse model has
caused a significant reduction in matrix content and accelerated
tumor growth105. Other studies have shown a significant reduction of
metastasis, chemosensitization, and prolonged survival after lysyl
oxidase inhibition in PDAC78 or other cancers106,107. Future studies
should evaluate how cell-type specific lysyl oxidases shape the
composition of the tumor microenvironment and contribute to
cancer progression.

Cell type-selective profiling of tumor-derived proteins in
body fluids opens exciting opportunities for a more precise
understanding of long-range intercellular processes such as
tumor cell recruitment and the metastatic cascade. In this study,
we detected more than 1600 cancer cell-derived proteins in
serum, including more than 20 cytokines, strongly improving the
coverage achieved in previously published in vivo secretomics
approaches, which range from a few dozen to a few hundred cells
selectively identified proteins108–111. Our data revealed a strong
release of pre-metastatic niche formation-associated factors by a
mesenchymal compared to a classical PDAC line. Because the
abundance of tumor-derived proteins in serum was very low even
after enrichment, we expect current developments towards high
sensitivity proteomics112,113 to be highly complementary for even
more comprehensive cell-selective in vivo secretomics.

Our study has identified differentiating features among PDAC
subtypes with high consistency in our selected models. However,
the limited sample size, with only two cell lines per subtype and
one line per subtype in the serum secretomics experiment, and
the small number of replicates in in vivo mouse experiments do
pose limitations to our findings. Despite this, our results
demonstrate the unique strengths of cell-selective proteomics
analyses in uncovering disease mechanisms and provide a foun-
dation for further research with larger sample sizes to statistically
validate and expand upon these findings.

Although our cell type-specific metabolic labeling approach
cannot be directly applied to human cancer patients, it offers
several possibilities for clinical translation. MetRS* transduced
human premalignant cells (e.g., from pancreatic intraepithelial
neoplasia (PanIN) or intraductal papillary mucinous neoplasm
(IPMNs)), as well as PDAC cells and organoids (e.g., from invasive
tumors representing various stages of PDAC progression, differ-
ences in metastatic capacity or molecular subtypes), can be
transplanted into immunodeficient mice or mice with a huma-
nized immune system114. Subsequent MetRS*-based proteomic
profiling of tumors and body fluids, such as the blood, enables

not only a deeper understanding of PDAC development, pro-
gression, and subtype specification but has also the potential for
biomarker identification. So far, biomarkers for PanIN/IPMN and
early PDAC detection, subtype classification, prognostic and
therapeutic stratification, and the monitoring of targeted inter-
ventions are widely lacking115–117. Together, MetRS* based pro-
teomic profiling holds the promise of biomarker discovery in
tumors and circulation, which can be subsequently tested and
validated in prospective studies in cancer patients.

Methods
LysMCre-MetRS* mice
LysMCre/Cre118 and LSL-R26CAG-GFP,Mars*L274G/CAG-GFP,Mars*L274G (MetRS*)23 mice
have been described previously. Strains were on a C57Bl/6 J back-
ground and interbred to obtain homozygous LysMCre-MetRS* mice
for bone marrow isolation.

Cell culture
293 T cells were obtained from ATCC (CRL-3216) and maintained
at 37 °C, 5% CO2 in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% (v/v) heat-inactivated FCS (FCS HI)
(complete DMEM).

Primary mouse PDAC cells were obtained from autochthonous
PDAC tumors as described before119 and maintained in complete
DMEM for less than 30 passages.

The preparation of bone marrow-derived macrophages (BMMs)
followed the procedure described in Weischenfeldt and Porse
(2008)120. In brief, bonemarrow was harvested from femurs and tibiae
of C57BL/6J wild-type (WT) or LysM-Cre-MetRS* mice. Bone marrow
cells were passed through 70 µmnylonmesh filters and then plated on
sterile, non-tissue culture-treated Petri dishes (5 × 106 cells/dish). After
culture for 7 days in macrophage differentiation medium (DMEM
supplemented with 10% (v/v) FCS HI and 20% (v/v) Csf1-containing
L929 cell-conditioned media (replenished on day 3), BMMs were har-
vested in cold PBS and used for experiments.

Cell lines were authenticated by genotyping and regularly tested
for mycoplasma contamination by PCR.

Transfection, lentivirus production, and transduction
For Met-substitute incorporation comparison experiments, 293 T cells
were transfected with an eGFP-MetRS* expression vector based on the
pEGFP-C1 (Clontech) plasmid. Transient transfections were done with
Lipofectamine 3000 (Invitrogen) according to the manufacturer’s
instructions.

For stable MetRS* expression, PDAC cells were lentivirally
transduced using a modified Precision LentiORF Collection
(pLOC) library (GE Healthcare) plasmid (pLOC-CMV >
MetRS*:IRES:TurboGFP:P2A:BlastR; enrichment method compar-
ison experiment), generated as described previously121, or a pLV-
EF1A >MetRS*:P2A:EGFP:T2A:Puro plasmid, constructed by
VectorBuilder.

For virus production, 293 T cells were transfected with helper
plasmids pMD2.G (Addgene), and psPAX (Addgene), and a MetRS*
plasmid at a ratio of 1:1.5:2 (3 µg of plasmid DNA in total) in six-well
plates using Lipofectamine 3000 and following the manufacturer’s
instructions for lentiviral production, but using a total of 2ml com-
plete DMEM for virus collection 48 h post-transfection. After harvest-
ing, polybrenewas added to virus-containing supernatants at 10 µg/ml
final concentration. 1ml of virus and polybrene-containing super-
natant was added to 2.5 × 105 PDAC cells seeded in 6-well plates and
mixed with 1ml complete DMEM. After 16 h, media were exchanged
with 2ml complete DMEM. Forty-eight hours post-transduction, suc-
cessfully transduced cellswere selectedwith antibiotics (Blasticidin for
pLOC-MetRS* and Puromycin for pLV-MetRS*) at a final concentration
of 10 µg/ml.
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Pulse labeling with azidonorleucine or other Met-substitutes
in vitro
Cells were washed twice with PBS and then pre-incubated in methio-
nine (Met)-free DMEM supplemented with 10% FCS HI for 30min.
Afterward, the medium was replaced by Met-free DMEM, 10% FCS HI
containing 4mM azidonorleucine (Iris Biotech) or other Met-
substitutes (azidohomoalanine, L-methionine-methyl-13C,d3 (Met+4)).
Cells were incubated for 8 h, washed twice with PBS, and harvested by
scraping. For Anl enrichment-based secretome experiments, serum
concentration during labeling was reduced to 5% to avoid protein
precipitation in the supernatant concentration steps of the enrichment
workflow.

BMM—PDAC co-culture and LPS stimulation of BMMs
2 × 107 primaryWT orMetRS* BMMs and 5 × 106 primaryWT orMetRS*
PDAC cells were seeded in mono- or co-culture on 15 cm dishes,
incubated for 28h in complete DMEM, and subsequently labeled for
8 h in 4mM Anl (see above for details). BMMs seeded and cultured in
parallel to co-culture experiment samples were treated with 500 ng/
ml LPS or vehicle simultaneously with the Anl-labeling. Cells and
supernatants were harvested for cell-selective in vitro global pro-
teomics and secretomics analyses (see below for details).

Orthotopic transplantation and Anl administration in vivo
In vivo transplantation experiments were performed as described in
Nature Cancer volume 3, pages 318–336 (2022)40. In brief, 1 × 104

MetRS*/WT mouse PDAC cells were orthotopically transplanted into
the pancreas of syngeneic immunocompetent C57Bl/6J mice. PDAC
cell lines isolated from female endogenous mice were transplanted in
female recipients and vice versa for male mice. Two to three weeks
after transplantation, mice were treated with Anl (200μl 300mM Anl,
twice a day for 5 days, intraperitoneal injections). Animals were sacri-
ficed when individual mice reached the human endpoint or after Anl
treatment.

All mice experiments were performed in compliance with the
European and the ARRIVE guidelines for the care and use of laboratory
animals and were approved by the Institutional Animal Care and Use
Committees (IACUC) of the local authorities of Technische Universität
München and the Regierung von Oberbayern. A tumor diameter of
1.5 cm and a specific burden score, defined by a cumulative burden
score, allowed by the IACUC and Regierung von Oberbayern were not
surpassed in this study. Allmicewere kept indedicated facilities, with a
light–dark cycle of 12:12 h, housing temperaturebetween 20 and 24 °C,
and relative air humidity of 55%.

Serum collection
Blood from orthotopically transplanted mice was collected from the
submandibular vein in serum collection tubes and further processed
for downstream analysis (see below).

Flow cytometry analysis and FACS
Acquisition of eGFP-positive PDAC cell cultures byflow cytometry.
Cultured MetRS* and WT 8661 PDAC cell lines were detached using
trypsin, then washed three times with ice-cold PBS, filtered through a
30 µm mesh, and resuspended in an adjusted volume of ice-cold PBS.
Cell acquisition was performed using the BD FACS Aria Fusion. Flow
cytometry data were analyzed using FlowJo software (v10.6.2).

Acquisition and sorting of eGFP-positive cells from in vivo tumors
by flow cytometry. Dissociation of fresh tumor samples was per-
formed as described previously40. Next, the debris removal solution
(Miltenyi #130-109-398) was used to discard cell debris from the cell
suspension, and the removal of dead cells was performed using the
dead cell removal kit (Miltenyi #130-090-101). The enriched fraction of
live cells were collected in ice-cold 2% FCS/PBS buffer and filtered

through a 30 µmmesh before acquisition. Cell sorting was performed
using the BD FACS Aria Fusion. EGFP-positive cells were sorted in low-
bind tubes in PBS, washed two times with PBS, and the resulting cell
pellet was shortly dried and snap-frozen. Flow cytometry data were
analyzed using FlowJo software (v10.6.2).

Immunophenotyping byflowcytometry. Dissociation of fresh tumor
samples and antibody staining was performed as described
previously40. Cells were blocked with anti-mouse CD16/CD32 FC block
(Biolegend, 1:100) for 10min on ice and stained with Zombie Aqua
Fixable Viability Kit (Biolegend, 1:500) to discriminate live and dead
cells. The following antibody cocktails were used: CD4 BUV805 (BD,
1:100), CD3εBUV395 (BD, 1:20), CD8a BV785 (Biolegend, 1:100), CD25
BV650 (Biolegend, 1:50), TCRγ/δ BV421 (Biolegend, 1:100), CD62L PE
(Biolegend, 1:500), CD44 APC-Fire (Biolegend, 1:30), CD45 PerCPCy5.5
(Biolegend, 1:100), CD19 FITC (Biolegend, 1:100), EpCAM APC/AF647
(Biolegend, 1:200) for acquisition of adaptive immune cells; CD11c
BUV737 (BD, 1:30), NK1.1 BUV395 (BD, 1:25), Ly6C BV785 (Biolegend,
1:200), CD11b BV650 (Biolegend, 1:100), F4/80 BV421/PB (Biolegend,
1:30), CD45 PerCP Cy5.5 (Biolegend, 1:100), Ly6G PE (Biolegend,
1:200), CD68 APC-CY7 (Biolegend, 1:20), EpCAM APC/AF647 (Biole-
gend, 1:200) for acquisitionof innate immune cells. 1 × 106 eventswere
acquired per antibody panel on the BD LSRFortessa. Flow cytometry
data were analyzed using FlowJo software (v10.6.2).

Enrichment of Anl-containing proteins
DST-based enrichment. DST-based enrichment was done as descri-
bed in Methods in Molecular Biology volume 1266 pages 199–215
(2015)122 with slight modifications. In brief, samples were lysed in 1%
(w/v) SDS, 2% Triton X-100, PBS pH 7.8 supplemented with EDTA-free
protease inhibitors (PI) (Roche), diluted with PBS PI 1:1 for DNA
digestion by benzonase (added 1:1000 (v/v)), heated for 10min at
95 °C, diluted further with PBS PI to a final concentration of 0.1% SDS
and 0.2% Triton X-100, and cleared by centrifugation for 5min at
3000×g, 4 °C. Lysates were reduced and alkylated with immobilized
TCEP and iodoacetamide (IAA), and subsequently desalted with PD-10
columns (GE Healthcare) to remove excess of reduction and alkylation
agents. Click reactions were started by sequential addition of 200 µM
tris((1-benzyl-4-triazolyl)methyl)amine, 25 µM disulfide biotin alkyne-
tag (DST) (Click Chemistry Tools), and 100 µg/ml Cu(I)Br suspension
and samples were incubated in an end-over-end mixer overnight at
4 °C. Following a second desalting step with PD-10 columns, elution in
10.5ml 0.05% SDS, PBS pH 7.5, and the addition of 1% (v/v) NP40,
tagged proteins were bound to 300 µl washed NeutrAvidin agarose
(Thermo Scientific, 29202) in an end-over-endmixer overnight at 4 °C.
Afterwards, the resins were sequentially washed with a total of 36ml
0.2% SDS, 1% Triton X-100, PBS pH 7.4, then 18ml PBS pH 7.4, and
finally 18ml 50mM ammonium bicarbonate. Tagged proteins were
eluted in a two-step procedure with a 5% (v/v) 2-mercaptoethanol/
ammonium bicarbonate solution and subsequently lyophilized. After
drying, proteins were resolubilized in 8M Urea, 50mM Tris-HCl pH 8
with 1 µg trypsin and lysC, predigested for 4 h at room temperature,
and then diluted with 50mM Tris-HCl pH 8 to a final concentration of
2M urea for overnight digestion. Digests were desalted with C18
SepPak cartridges and in-house-made styroldivinylbenzol reversed
phase sulfonate (SDB-RPS) (3M Empore, 2241) StageTips.

DBCO-agarose SPAAC enrichment. DBCO-agarose enrichment was
done as described inMahdavi et al.19 with slight modifications. In brief,
sampleswere lysed in 1% SDS, 100mMchloroacetamide, PBS PI pH 7.4,
heated at 95 °C for 10min, sonicated to shear DNA, and centrifuged at
14.000 × g for 30min. Cleared lysates were incubated for 3 h at room
temperature with 100 µl washed dibenzocyclooctyne (DBCO)-agarose
in an end-over-end mixer, and unreacted DBCO groups were subse-
quently quenched for 30min by addition of 4mM Anl. Afterward,
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bound proteins were reduced with 10mMDTT for 15min at 70 °C and
alkylated with 40mM IAA for 30min at room temperature. The resins
were sequentially washed with a total of 40ml 0.8% SDS in PBS, 40ml
8M urea in 100mM Tris-HCl (pH 8.0), and 40ml 20% acetonitrile.
Washed resins were resuspended in 100 µl 10% acetonitrile, 50mM
ammoniumbicarbonate, andboundproteinswere on-beaddigested at
37 °C overnight with 1 µg of trypsin and lysC. Digests were collected,
resins were washed with 500 µl 50mM ammonium bicarbonate,
washes were combined with digests and desalted with C18 SepPak
cartridges.

Alkyne-agarose CuAAC enrichment. Samples were lysed in gua-lysis
buffer (6M guanidinium chloride, 4% (w/v) CHAPS, 0.5M NaCl,
200mMHepes (pH 8) PI), heated at 95 °C for 5min, sonicated to shear
DNA and centrifuged at 10,000×g for 30min. Cleared lysates were
mixed with 100 µl (enrichment method comparison) or 50 µl (all other
experiments) washed alkyne-agarose and diluted with ddH2O and a
premixed catalyst solution to a final concentration of 1.5M guanidi-
nium chloride, 1mM CuSO4, 6.25mM BTTAA (Click Chemistry Tools),
and 10mM sodium ascorbate. Samples were incubated at room tem-
perature overnight in an end-over-end mixer. Afterward, resins were
washed twice with ddH2O and once with SDS wash buffer (1% (w/v)
SDS, 250mM NaCl, 5mM EDTA, 100mM Tris pH 8). After protein
reduction with 10mM DTT for 15min at 70 °C and alkylation with
40mM IAA for 30min at room temperature in SDS wash buffer, resins
were sequentially washed with a total of 20ml SDS wash buffer, 20ml
20% isopropanol, 20ml 6M guanidinium chloride, 100mM Tris-HCl
(pH 8), and 20ml 20% acetonitrile.Washed resinswere resuspended in
100 µl 10% acetonitrile, 2mM CaCl2, 50mM Tris-HCl pH 8, and bound
proteins were on-bead digested at 37 °C overnight with 1 µg of trypsin
and lysC. Digests were collected, resins were washed with 500 µl
ddH2O, washes were combined with digests and desalted with C18
SepPak cartridges (enrichment method comparison and in vitro
experiments) or Pierce Peptide Desalting Spin Columns (Thermo Sci-
entific) (in vivo experiments).

For Anl-enrichment-based in vitro or in vivo secretomes experi-
ments, 15ml cell-conditioned media or 400 µl tumor-bearing mouse
serum were collected after Anl labeling (if yields from individual ani-
mals were lower, serum from multiple mice was pooled to reach the
total volume). Conditioned media were centrifuged for 5min at
1000×g to remove cell debris and supplemented with protease inhi-
bitors. Conditionedmedia ormouse serawerewashed twicewith 15ml
50mM Tris-HCl pH 8 and concentrated to a volume of 250 µl using
Ultracel-3 regenerated cellulose centrifugation filter units with a 3 kDa
molecular weight cutoff (Millipore). Samples were mixed 1:1 with gua-
lysis buffer, heated for 5min at 95 °C, 1200 rpm, and then further
processed using the alkyne-agarose CuAAC enrichment workflow
(see above).

Before lysis and CuAAC Anl-protein enrichment, tissue samples
were homogenized to a fine powder with a mortar and pestle in liquid
nitrogen.

Sample preparation for mass spectrometry
For proteomics analysis without Anl-enrichment, cells were lysed in
SDC buffer (1% sodium deoxycholate (SDC), 10mM tris(2-carbox-
y(ethyl)phosphine) (TCEP), 40mM 2-chloroacetamide (CAA), 100mM
Tris-HCl pH8.5) heated at 95 °C for 10min and sonicated to shearDNA.
Proteins were digested with trypsin and lysC (1:100 enzyme/protein
ratio, w/w) at 37 °C, 1000 rpm overnight. Digests were desalted using
in-house-made SDB-RPS StageTips.

Desalted peptides from workflows with or without Anl-
enrichment were dried in a vacuum concentrator and resolubilized
in 0.1% formic acid. Concentrations were determined using a Nano-
Drop spectrophotometer and normalized between samples for equal
peptide injection. Negative control (WT) samples for evaluating Anl-

enrichment specificity were adjusted with corresponding volumes to
their corresponding MetRS* samples for injections of equal total yield
proportions.

For offline high pH reversed-phase fractionation of peptide sam-
ples into 16 fractions (Fig. 1e), a spider fractionator was used as
described previously123.

LC–MS/MS
Peptide mixtures were analyzed with an EASY-nLC 1000 or 1200
ultrahigh-pressure system (Thermo Fisher Scientific) coupled to a Q
ExactiveHF (293 TMet-substitution), Q ExactiveHF-X (enrichment and
acquisition method comparisons) or Orbitrap Exploris 480 (all other
experiments) instrument (Thermo Fisher Scientific). Peptides (500ng
injections for Q Exactives or 300ng for Exploris machines) were
separated on 50cm in-house-made 75 µm inner diameter columns,
packed with 1.9-µm ReproSil C18 beads (Dr. Maisch GmbH) at a flow
rate of 300 nlmin−1 and 60 °Cmaintainedby an in-house-made column
oven. Offline pre-fractionated samples used for acquisition method
comparison (see Fig. 1) were eluted with a binary buffer system (buffer
A: 0.1% formic acid; buffer B: 80% acetonitrile, 0.1% formic acid) and a
nonlinear gradient starting at 3% buffer B followed by a stepwise
increase to 23% in 82min, 40% in 8min and a wash-out step for 10min
with an increase to 98% buffer B. Spectra were acquired with a data-
dependent Top15 MS/MS method: Full scans (300–1650 m/z, auto-
matic gain control (AGC) target = 3e6, maximum injection time = 25
ms, resolution = 60,000 at 200m/z) were followed by up to 15 MS/MS
scans with higher-energy collisional dissociation (HCD) (AGC target =
1e5, maximum injection time = 25ms, isolation window= 1.5m/z,
normalized collision energy (nce) = 27%, resolution = 15,000 at
200m/z). All other samples were analyzed without prefractionation in
single shot measurements with a nonlinear gradient starting at 5%
buffer B followed by a stepwise increase to 30% in 95min, 60% in 5min
and a wash-out step for 20min with an increase to 95% buffer B and
subsequent decrease to 5%buffer B. Spectrawere acquiredwith a data-
dependent Top15 MS/MS method (as described above, but full scans
with maximum injection time= 20ms and MS/MS scans with max-
imum injection time = 28ms, isolation window= 1.4m/z) or data-
independent acquisition (used for acquisition method comparison
(Fig. 1e) and all following experiments) using full scans with a range of
300–1650 m/z (AGC target = 3e6, maximum injection time = 60ms,
resolution = 120,000 at 200m/z) followed by MS/MS scans with 32
windows (nce = 27%, AGC target = 1e6, maximum injection time = 54
ms, resolution = 30,000 at 200m/z). Data acquisition was controlled
by Xcalibur (version 4.4.16.14, Thermo Fisher Scientific).

LC–MS/MS data analysis
DDA MS raw files were processed by MaxQuant124 (version 2.0.1.0.)
using default parameters for orbitrap instruments with 1% FDR at the
peptide and protein level, enabling MaxLFQ for label-free quantifica-
tion. For analysis of Met-substitute incorporation in 293 T cells, Met-
Anl, Met-Aha, and Met-Met+4 substitutions were added as variable
modifications.

DIA MS raw files were processed by DIA-NN90 (version 1.8) with
FASTA digest for library-free search and deep learning-based spectra,
RTs, and IMs prediction enabled. Precursor FDR was set to 1%, and
default parameters were used with the following changes: The pre-
cursor range was restricted to 300–1650 m/z, and the fragment ion
range to 200 – 1650 m/z. The “--relaxed-prot-inf” option was enabled
via the command line. Mass accuracies and scan windows were opti-
mized for individual experiments as recommended by the developers.
MBR was enabled, neural network classifier was set to “double-pass
mode,” and the quantification strategy to “robust LC (high accuracy).”

Spectra were matched against the human (June 2022, 79,276
entries) or mouse (January 2022, 55,105 entries) UniProt FASTA
database.
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Raw files were processed in two separate analyses for optimal
independenceof FACS- andAnl enrichment-based cancer cell-selective
proteomics results (Fig. 2). MetRS*/ WT 8661 tumor rawfiles were
reprocessed together with samples from other PDAC subtypes for
in vivo PDAC cell subtype comparison (Fig. 5). 8661 PDAC (solo)
secretome results (Fig. 3) were also used for secretome benchmark-
ing (Fig. 1).

Evaluation of Anl-enrichment specificity. Except for enrichment
method benchmarking (Fig. 1c, d), data from all Anl-enrichment-based
experiments were filtered for specifically enriched proteins before
further analysis. To evaluate enrichment specificity, samples were
compared to corresponding negative control samples (WTequivalents
of MetRS*-expressing cells that were treated equally and processed in
parallel) and only proteins that were not identified in controls or had
an at least 3fold highermedian intensity than in controlswere retained.
For technical experiments (Figs. 1 and 2), PDAC MetRS* tumor com-
parison experiments (Fig. 5), and serum secretomics experiments with
the PDAC lines 8661 and 8513 (Fig. 6), correspondingWTcontrolswere
used in triplicates for each PDAC line. We used aggregated control
sample groups for multiple experimental groups in the co-culture
experiments (Figs. 3 and 4): Three BMM WT samples were used to
control BMMMetRS* samples cultured in isolation. A group of four co-
cultured BMM WT+PDAC WT samples (one with each of the four
PDAC lines) was used as controls for all BMM MetRS* + PDAC WT co-
culture samples. Both solo and co-cultured PDAC MetRS* samples
were controlled with the more conservative corresponding co-culture
control samples (PDAC WT+BMM WT in triplicates for each of the
PDAC lines).

Statistical analysis. Bioinformatic analyses were performed with
Perseus125 (version 1.6.10.43) and R (version 4.1.2). Before statistical
analysis, quantifiedproteinswerefiltered for at least two valid values in
at least one group of replicates. The remaining missing values were
imputed by random draw from a normal distribution with a width of
0.3 and a downshift of 1.8 relatives to the standard deviation of mea-
sured values. Statistical tests and parameters used to evaluate anno-
tation enrichment and significant abundance differences of quantified
proteins are specified in the figure legends. For box-and-whisker plots,
standard boxplot features (lower quartile, median, upper quartile)
were used as defined by ggplot2 version 3.4.0.

Intercellular communication analysis. Interactions between PDAC
cells andmacrophages in co-culturewere inferred based on annotated
ligand–receptor interactions from CellPhoneDB39 (v.2.0) extended by
proteins with secretomes-derived experimental evidence126. BMM
receptor expression levelswere sourced fromglobal proteomes, PDAC
cell ligand expression levels from secretomes for secreted ligands, and
global proteomes for membrane-bound ligands after filtering and
imputation of missing values (see above).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the PRIDE partner repository127 with
the dataset identifier PXD040084, which is publicly avail-
able. Source data are provided in this paper.
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