SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Computational Science and Engineering

Representing Quantum System
Information and Topologies in sys-sage

Durganshu Mishra

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Computational Science and Engineering
Representing Quantum System Information
and Topologies in sys-sage

Abbilden von Informationen iiber
Quantensysteme und deren Topologien in

sys-sage
Author: Durganshu Mishra
Supervisor: Prof. Dr. Martin Schulz
Advisor: Stepan Vanecek

Submission Date: Aug 15, 2024

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Garching bei Miinchen, Aug 15, 2024 Durganshu Mishra

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my supervisor,
Stepan Vanecek, for offering me the remarkable opportunity to contribute to this project.
His invaluable guidance, insightful feedback, and unwavering support have not only
been instrumental but also influential in shaping the direction and enhancing the quality
of this thesis. I am also deeply thankful to my co-supervisor, Jorge Echavarria (LRZ), for
his time, expertise, and thoughtful feedback, which played a significant role in refining
this research methodology.

I want to sincerely thank Prof. Dr. Martin Schulz for his supervision and support,
which were crucial to the successful completion of this work. I am profoundly grateful
to Erctiment Kaya (LRZ), Lukas Burgholzer (CDA, TUM), and Ludwig Schmid (CDA,
TUM) for their valuable suggestions and feedback on the integration of sys-sage and
QDMI within the Munich Quantum Software Stack (MQSS).

I am profoundly grateful to my friends and family for their steadfast encouragement
and understanding throughout this academic journey. I would like to especially acknowl-
edge Harish Ramachandran, Gaurav Gokhale, Aditya Phopale and Srishti Upadhyay,
for their invaluable support, particularly during the completion of my master’s thesis.

My sincere gratitude goes to my parents, Sunita Mishra and Ajay Kumar Mishra, and
my brother, Yajush Mishra, whose unwavering support from India has been an enduring
source of motivation and strength

This work has been a part of the DEEP-SEA project and Munich Quantum valley.
The DEEP-SEA project has received funding from the European Union’s Horizon
2020/EuroHPC research and innovation programme under grant agreement No 955606.
National contributions from the involved state members match the EuroHPC funding.
Munich Quantum Valley (MQV) is supported by the Bavarian State Government with
funds from the Hightech Agenda Bayern.

Abstract

This thesis focuses on enhancing the sys-sage library to extend its functionalities for
quantum systems by serving as a unified interface for various quantum technologies.
The primary goal is to facilitate the management and representation of these technologies
by creating static and dynamic topologies. The work explores the integration of the
Quantum Device Management Interface (QDMI) within the compiler toolchain of the
Munich Quantum Software Stack (MQSS), with a specific implementation proposed
for the IBM backend. Significant modifications and extensions to the sys-sage library
are also introduced to enable a higher-level representation of quantum systems. These
extensions are complemented by proposed API calls designed to streamline the creation
and management of these representations from a user’s perspective. Performance and
integration aspects of sys-sage within the broader Munich Quantum Software Stack
(MQSS) ecosystem are examined, highlighting the potential for enhanced interoperability
and functionality across different quantum computing tools. The results demonstrate the
feasibility and effectiveness of the proposed enhancements, offering a robust framework
for quantum system management.

Abbreviations

QDMI Quantum Device Management Interface
HPC High Performance Computing

QC Quantum Computing

QPU Quantum Processing Unit

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

MQSS Munich Quantum Software Stack

NISQ Noisy Intermediate-Scale Quantum
MQT Munich Quantum Toolkit

HPC-QC High Performance Computing-Quantum Computing
QRM Quantum Resource Manager

NA Neutral Atoms

Tl Trapped lons

FoMaC Figures of Merits and Constraints

QIR Quantum Intermediate Representation

vii

Contents

Acknowledgments iii
Abstract A%
Abbreviations vii
1. Introduction 1
2. Background and Related Works 3
21. Quantum Computing L L oo 3
211, Qubits e e 3

2.1.2. Quantum Technologies 4

213. Quantum Gates 6

2.2. High Performance Computing-Quantum Computing (HPC-QC) integration 8
2.3. Munich Quantum Software Stack MQSS) 9

3. Quantum Device Management Interface (QDMI) 11
3.1. What is Quantum Device Management Interface (QDMID)? 11
3.2. Core Architecture of QDMI 12
3.2.1. Fundamental Data Types and Definitions in QDMI 12

3.22. QDMI Constantsand Macros v v v v 15

323. QDMICalls 16

3.3. IBM Implementation 18
3.3.1. Implementation Details 19

332, QDMIQueryCalls 20

34. Results e 24
341. OpenClose i 24

3.4.2. Quantum Resource Manager (QRM) Integration 26

4. sys-sage 29
4.1. Whatissys-sage? 29
4.1.1. Internal Representation 29

412 ExampleUsage 33

4.2. Extension for Superconducting-qubit based systems 35
421. sys-sageMacros. 36

422, QuantumBackend 36

423, Qubit 38

X

Contents

42.4. Relationsand Quantum Gate
4.25. QdmiParser Interface
43. Results e e
43.1. ExampleUsage
432. Outputs
4.3.3. Performance Analysis of Topology Generation in sys-Sage

4.4. Representation of Neutral Atoms (NA) and Trapped Ions (TI) systems . .

. sys-sage Integration within MQSS

5.1. Figures of Merits and Constraints (FoMaC)
5.1.1. Original Implementation
51.2. Implementation withsys-sage
513. Output
5.1.4. Advantages of usingsys-sage.

52. Compiler Passes o
5.2.1. Original Implementation
52.2. Implementation withsys-sage
5.2.3. Advantages of the Replacement

53. QMAP . .

. Conclusion and Future Research Outlook

6.1. Future Work

. Appendix
Al. QDMIOpenClose Test
A.2. QDMI Integrated with Quantum Resource Manager.
A.3. Sample Topology of a HPC system
A4, class QuantumBackend L o
A41. Declaration e e
AA42 Constructors. e e
AA43. PublicMembers. e
A44. Private Members
Ab. classQubit e e
ADb5.1. Declaration
AB2. Constructors. e
Ab53. PublicMembers.
A5.4. Private Members e
A6, classQuantumGate
A.6.1. Declaration e
A6.2. Constructors. e
A.6.3. PublicMembers.
A.6.4. Private Members

55
56
56
57
58
58
59
59
60
61
61

65
66

Contents

A.7. QdmiParser Interface

A.7.1. Declaration
A72. Constructor
A73. Methods
A8. QMAP Integration

List of Figures
List of Tables
Listings

Bibliography

89

91

93

95

xi

1. Introduction

Quantum Computing (QC) presents a significant departure from classical computing
paradigms by utilizing the principles of quantum mechanics to handle information in
ways beyond the capabilities of classical computers. Unlike classical bits, which can
strictly be either 0 or 1, quantum bits (qubits) can exist in multiple states simultane-
ously due to superposition. This characteristic allows quantum computers to perform
intricate calculations more efficiently. The distinctive characteristics of qubits, such as
superposition and entanglement, enable quantum computers to solve specific problems
at exponentially faster rates than classical computers.

However, recent developments in the field have shown that QC does not replace
traditional High Performance Computing (HPC). Instead, QC can be integrated into
existing heterogeneous HPC infrastructures as an additional accelerator, like Graphics
Processing Unit (GPU)s or Field-Programmable Gate Array (FPGA)s. This integration
will allow both paradigms to be utilized optimally. This push for integration dramatically
impacts the development of quantum computer software, subsequently affecting the
required software infrastructure.

Munich Quantum Software Stack (MQSS) aims to address the challenges of integrating
quantum computing with classical systems. The comprehensive and full-stack approach
involves creating a dedicated quantum software stack that facilitates direct experimental
access, integrating HPC systems, and using implicit quantum compilation and optimiza-
tion toolkits, ultimately supporting multiple backends. The users can interact with the
quantum system through a dedicated portal offering multiple language backends or tra-
ditional HPC systems using schedulers like SLURM. This enables hybrid applications to
offload certain computations to quantum computing backends seamlessly. The quantum
resource manager and associated quantum design tools, such as those from the Munich
Quantum Toolkit (MQT)!, process relevant parts of the programs. Appropriate backend
systems then execute the resulting quantum circuits. This workflow is designed to be
user-transparent, masking the underlying complexities while providing expert paths for
experimental computations.

One of the core components of the MQSS is the Quantum Device Management
Interface (QDMI). QDMI enables software tools to automatically retrieve and adapt to
different Quantum platforms’ changing physical characteristics and constraints. One
of this thesis’s focus areas was developing an initial implementation of QDMI for an
IBM quantum backend. The developed backend is an example implementation for all
the external vendors and manufacturers who wish to integrate their quantum platforms

Ihttps://www.cda.cit.tum.de/research/quantum/mqt/

https://www.cda.cit.tum.de/research/quantum/mqt/

1. Introduction

with the MQSS. The QDMI has been written in the C programming language and acts as
a low-level query interface for different quantum backends. The information provided
by QDMI is provided to compilers for target-specific compilation.

This is where sys-sage? comes into the picture. sys-sage is a comprehensive library
designed to capture and manipulate the hardware topology of computing systems and
their attributes. Initially focused on classical computing elements such as HPC nodes,
CPUs, and GPUs, sys-sage provides a robust framework for describing and managing
these systems’ static and dynamic properties.

In this thesis, we aim to extend the functionalities of sys-sage for quantum systems by
acting as a unified interface for different quantum technologies. Further, this work aims
to provide a higher-level representation of different quantum technologies in the form
of static/dynamic topologies.

The thesis is organized as follows: Chapter 2 focuses on some of the fundamentals of
QC, relevant for HPC-QC integration. Concepts on quantum qubits, quantum gates, and
the background of different technologies are presented. Chapter 3 outlines the role of
QDMI in the compiler toolchain of MQSS. This chapter also presents the core structure
of QDMI and proposed implementation for the IBM backend. Chapter 4 outlines the
core structure of sys-sage and its internal representation. Further, the extensions to the
library to represent the quantum systems are thoroughly discussed. This section also
lists the proposed API calls to create such a representation from a user’s viewpoint.

Chapter 5 discusses the possibility of integrating sys-sage with other tools within
MQSS. Finally, we discuss the conclusions and possible future research directions in
Chapter 6.

2https://github.com/caps-tum/sys-sage

https://github.com/caps-tum/sys-sage

2. Background and Related Works

In this chapter, the necessary foundations for this thesis are established through thorough
discussions on the fundamentals and related works on QC, HPC-QC integration, and
MQSS.

2.1. Quantum Computing

Quantum computing is a revolutionary paradigm harnessing the laws of quantum
mechanics to process and compute information. Unlike classical computing, which
uses bits as the basic unit of information, quantum computing uses quantum bits or
qubits. By exploiting phenomena such as superposition and entanglement, these qubits
can perform computations that are infeasible for classical computers. This potential
for unprecedented computational power makes quantum computing highly promising
across different fields, including cryptography, material science, optimization problems,
and complex system simulations. Nielsen and Chuang [NC12] have comprehensively
covered the fundamentals of quantum computing and quantum information science.
Quantum algorithms like Shor’s and Grover’s play vital roles in cryptography, unstruc-
tured search problems, and quantum error correction, proving quantum computing’s
potential in addressing complex problems.

Preskill [Pre18] explores the advancements in quantum computing during the Noisy
Intermediate-Scale Quantum (NISQ) era. This significant phase in quantum computing
involves the development of devices with 50 to 100 qubits capable of performing
computations beyond the capabilities of classical computers despite being hindered by
substantial noise and error rates. The discussion addresses the current state and future
potential of quantum computing, underscoring the necessity of designing near-term
quantum algorithms that can tolerate noise, given that full quantum error correction is
not yet practical for these devices.

2.1.1. Quantum Bits (Qubits)

Qubits are the fundamental units of information in a quantum computer. While classical
bits can be either in 0 or 1 states, qubits can simultaneously exist in a superposition of
states. Mathematically, a qubit is represented as a linear combination of the basis states
10) and 11):

) = «[0) + B[1) (2.1)

2. Background and Related Works

where « and B are complex numbers such that |a|? + |8|?> = 1. This normalization
condition ensures that the total probability is 1.

Moreover, qubits can become entangled, indicating that the condition of one qubit
can be influenced by the condition of another, regardless of their spatial separation. For
example, an entangled state of two qubits can be represented as:

) = —
Y=

This entanglement property is crucial for the parallelism and enhanced capabilities of
quantum computing.

(|00) +|11)) (2.2)

2.1.2. Quantum Technologies

Various technologies are being developed to realize practical quantum computers. These
technologies differ in how they implement and manipulate qubits. Some of the most
common technologies include superconducting qubits, neutral atoms, and trapped
ions-based quantum systems [Lad+10].

Olivier Ezratty [Ezr23] provides an in-depth perspective on superconducting qubit-
based systems, representing some of the most advanced and widely utilized quantum
computing technologies. These qubits are fabricated from superconducting materials
with zero electrical resistance at extremely low temperatures. Typically, superconducting
qubits are formed using Josephson junctions, enabling precise control of quantum states
via microwave pulses. In the case of superconducting qubits, the parameters a and g in
Equation 2.1 are manipulated through external microwave signals. Leading companies
like IBM and Google employ superconducting qubits in their quantum processors.

Kjaergaard [Kja+20] reviews several recent advancements in superconducting qubits,
including gate implementation techniques, enhanced readout capabilities, early imple-
mentations of NISQ algorithms, and quantum error correction strategies.

Mckay et al. [McK+18] explore the specifications and standards for interfacing with
quantum devices and simulators through IBM’s Qiskit framework, which focuses on
developing a common interface and standardized data structures to facilitate quantum
experiment execution. Two primary languages are discussed: OpenQASM, which
defines quantum circuits, and OpenPulse, which provides pulse-level control of quantum
devices, enabling users to specify the time dynamics of their experiments.

One of the most critical properties for representing the topology of superconducting
qubit-based systems is the coupling map of the qubits. This map describes the physical
layout of the qubits and their interconnections. In the context of quantum gates, the
coupling map specifies which pairs of qubits a given gate can operate on, highlighting
the permissible interactions based on the physical configuration. Figure 2.1 shows the
coupling map of a hypothetical 7-qubit quantum computer.

Wintersperger et al. [Win+23] provide valuable insights into neutral atom-based
quantum systems, which utilize neutral atoms as qubits by exploiting their internal
quantum states for computation. These systems typically employ optical tweezers to

2.1. Quantum Computing

1 6
3 2 4 5
7

Figure 2.1.: Possible Coupling Map of a 7-qubit Quantum Computer

trap and manipulate individual atoms, enabling precise control over their interactions
and states. A key advantage of neutral atom systems compared to other quantum
technologies, such as superconducting qubits or trapped ions, lies in their scalability
and connectivity. Neutral atoms can be arranged in large arrays, potentially integrating
thousands of qubits into a single device, with relatively low cross-talk due to the
greater distances between them. Furthermore, neutral atom systems often exhibit longer
coherence times, which is crucial for maintaining quantum information integrity. In
contrast, superconducting qubits, while powerful, require complex microwave control
and are more susceptible to noise. Trapped ions, although offering high fidelity, face
scalability challenges due to their reliance on ion traps and laser systems.

The concept of a coupling map does not apply to neutral atom-based quantum
computers like it does to superconducting qubits. In neutral atom systems, qubits
occupy fixed atom sites, and atoms can be dynamically rearranged using mobile optical
traps, known as shuttling of atoms. Shuttling allows for rearranging neutral atom qubits
during computation, enabling dynamic, non-local entanglement. Initially, qubits are
arranged in pairs with small relative distances, and a global controlled-Z (CZ) gate
is applied to entangle these pairs. After entanglement, the pairs can be rearranged
using mobile traps, allowing previously entangled atoms to interact with other atoms.
This shuttling process, performed at a controlled speed to maintain qubit coherence,
can transport information over a spatial range of about 2000 qubits. This capability
enhances the flexibility and connectivity of the quantum computing system, enabling
more complex operations and interactions between qubits.

2. Background and Related Works

Haffner et al. [HRBO08] describe the fundamentals of trapped ion-based quantum
computing. These systems utilize ions confined in electromagnetic fields as qubits,
leveraging their long coherence times and precise control through laser manipulation.
Trapped ions excel in achieving high-fidelity quantum gates and entanglement, making
them particularly suitable for implementing complex quantum algorithms and error
correction protocols, in contrast to other technologies.

In addition to the three leading quantum computing technologies discussed, sev-
eral others exist. Some of these include photonic qubits, which use particles of light
(photons) to represent quantum information, and topological qubits, which are based
on manipulating quasi-particles called anyons in two-dimensional materials [LP17].
Unlike conventional qubits, which are susceptible to decoherence and noise, topological
qubits leverage the unique properties of anyons. These exotic quasi-particles exhibit
non-Abelian statistics, meaning the information is stored in the global properties of
the system rather than in local states, providing a natural form of error protection. In
the scope of this thesis, we focus on the three primary technologies—superconducting
qubits, neutral atom-based systems, and trapped ions—and their representation in
sys-sage.

2.1.3. Quantum Gates

Quantum gates are the fundamental units of quantum circuits. They have unique
properties that set them apart from the classical logic gates. To perform computations,
quantum gates manipulate the states of qubits. Unlike classical gates, they are reversible,
i.e., their operations can be undone without loss of information, a fascinating difference
from classical gates that intrigues us with the unique properties of quantum computing.

Barenco et al. [Bar+95] explore the quantum gates and complexities of quantum gate
implementation, demonstrating how combining one-bit quantum gates with the two-bit
exclusive-or gate yields a universal set of gates capable of performing any unitary
operation on multiple bits. A detailed analysis of how these gates can be utilized to
construct versatile quantum computational networks is provided.

Types of Quantum Gates
* 1-qubit gates

1-Qubit gates manipulate the state of a single qubit. Some of the common 1-qubit
gates include:

— Pauli-X Gate (X): Flips the qubit’s state (analogous to the NOT gate in classical

computing).
01
=00

2.1. Quantum Computing

— Pauli-Y Gate (Y): Rotates the qubit state around the Y-axis of the Bloch sphere.

v=(1 7))

— Pauli-Z Gate (Z): Rotates the qubit state around the Z-axis of the Bloch

sphere.
1 0
= 5)

— Hadamard Gate (H): Creates a superposition state from a basis state, enabling
the qubit to be in both 0) and [1) simultaneously.

H=u)

¢ 2-qubit gates 2-Qubit gates manipulate the states of two qubits simultaneously
and can create entanglement between them. Common 2-qubit gates include:

— Controlled NOT Gate (CNOT): Hlips the state of the target qubit if the control
qubit is in the I1) state.

1000
0100
CNOT = 0 001
0010

— Controlled-Z Gate (CZ): Applies a Pauli-Z operation on the target qubit if
the control qubit is in the |1) state.

1 00 O
010 O
z= 001 O
0 00 -1

— SWAP Gate: Exchanges the states of two qubits.

SWAP =

O O O =
O = O O
S O = O
—_ O O O

Higher-order multi-qubit gates also exist (like Toffoli, Deutsch, etc.), but 1-qubit and
2-qubit gates are sufficient for universal quantum computation, meaning any quantum
algorithm can be decomposed into a sequence of these gates.

2. Background and Related Works

2.2. High Performance Computing-Quantum
Computing (HPC-QC) integration

HPC involves leveraging advanced computational systems and methods to execute intri-
cate calculations and process substantial volumes of data with remarkable speed—tasks
that would be infeasible for a single computer to handle. The speed and efficiency of
HPC systems are truly impressive, outperforming traditional single-core computing by
a significant margin. Unlike traditional single-machine computing, HPC systems intro-
duce additional complexities such as scheduling, communication, and synchronization.
Since their inception in the early 1970s, HPC systems have been integral to numerous
tields. Extensive efforts have been dedicated to developing versatile, workload-agnostic
systems and standardized interfaces to efficiently request and utilize HPC resources
[Els+23].

As previously noted, QC offers distinct advantages over classical computing, particu-
larly in specific computational tasks. However, current quantum systems face limitations,
such as the restricted number of available qubits and the challenges associated with
efficiently managing classical data within quantum environments. Consequently, a prac-
tical approach to leveraging quantum computing involves treating Quantum Processing
Unit (QPU)s as specialized accelerators for particular tasks, akin to using GPUs and
FPGAs for specific applications. This paradigm offloads certain computations to QPUs
while integrating HPC resources as needed. Many promising algorithms in the near
term rely on a hybrid model that combines classical and quantum information process-
ing. Effective execution of these hybrid algorithms necessitates a seamless integration of
classical and quantum resources, ensuring that data can be efficiently transferred and
processed across both systems.

Seitz et al. [Sei+23] explore the creation of an advanced toolchain to effectively bridge
HPC and QC. They address the complexities of achieving this integration, emphasizing
the need for seamless interoperability between classical and quantum systems. Key
challenges include developing a robust software infrastructure that can handle the
intricacies of both computing paradigms. Additionally, the varied landscape of quantum
hardware presents difficulties in executing hybrid algorithms, requiring hardware-
agnostic and hardware-specific solutions to support diverse technologies. Furthermore,
the rapidly advancing field of quantum technology necessitates that the integration
toolchain be flexible and forward-compatible, accommodating new algorithms and
hardware innovations as they become available.

Humble et al. [Hum+21] examine the integration of QC with HPC systems, highlight-
ing how quantum computers could significantly enhance computational capabilities
for tackling complex problems. While substantial technical challenges remain—such as
developing cryogenic controls for low-latency communication and improving device
metrics like gate fidelity and coherence times—the potential for successful integration
is encouraging. Various macro-architectures for hybrid computing are also discussed,
including distributed quantum computing systems that could facilitate entangling

2.3. Munich Quantum Software Stack (MQSS)

operations across different computational tasks.

2.3. Munich Quantum Software Stack (MQSS)

Schulz et al. [Sch+23] present the development of a comprehensive software stack
to integrate quantum computing systems into production environments, especially as
accelerators within HPC frameworks. The authors emphasize the importance of a unified
software environment to expand the user base beyond quantum physicists, including
domain experts from various fields. This involves providing higher-level programming
abstractions and extensive design automation tools. MQSS supports seamless access to
quantum resources, enables hybrid programming approaches, and facilitates implicit
quantum compilation and optimization. This initiative aims to create a transparent
workflow for users, addressing the complexities of quantum-classical hybrid systems.
Developed as part of the Munich Quantum Valley, this project collaborates with the
Leibniz Supercomputing Centre.

Figure 2.2 shows a higher-level overview of MQSS. As shown in the figure, MQSS
aims to enable user communities from different backgrounds to compute on quantum
devices by providing a unified software stack for managing quantum accelerators and
submitting and compiling quantum circuits for different applications.

8. .
Libraries N\)
¥ =
rad

Quantum
h Platform 3

Users ()

a8
a8
4

32X 20

HPC System with
QC accelerator

Platform-specific
Compilation Passes

Platform-specific
Compilation Passes

QDMI

Web-portal

Toolkits/Libraries
Resource Manager

Quantum Ptogramming

Compilation
. Passes

Figure 2.2.: Munich Quantum Software Stack

The scope of work during this thesis aims to support MQSS in the smooth integration
of QCs with HPC systems by creating a unified interface for retrieving the topologies
of different quantum computing systems and providing them in technology-agnostic
fashion. The compatibility of sys-sage with MQSS components such as Quantum
Device Management Interface (QDMI), compiler passes, and Figures of Merits and
Constraints (FoMaC) has also been investigated.

Finally, Wille et al. [WB23] introduce the MQT QMAP tool, a Munich Quantum
Toolkit (MQT) component designed to address the quantum circuit mapping problem—a
fundamental challenge in quantum computing. QMAP, with its efficient, automated
methods, provides a reliable solution for mapping quantum circuits to various quantum
computing architectures. The importance of this mapping process is highlighted, and

2. Background and Related Works

comparisons are made to compile high-level code into low-level instructions for classical
processors.

QMAP is also integrated within the MQSS framework. To map quantum circuits,
QMAP retrieves the properties of quantum backends and stores their topology in the C++
class Architecture. This class can import backend properties from multiple sources,
including files, strings, and QDMI (discussed later). Although the Architecture class is
an excellent implementation for QMAP’s internal representation, it is not universally
compatible with other tools. This thesis also explores the possibility of integrating
sys-sage with QMAP to streamline the process of retrieving the topology of quantum
systems.

10

3. Quantum Device Management
Interface (QDMI)

This chapter delves into the Quantum Device Management Interface (QDMI), a pivotal
component within MQSS. The primary objective of QDMI is to provide a standardized
and simplified interface for retrieving the dynamic physical properties and constraints
of various quantum platforms. Section 3.1 describes the objectives and core structure of
QDML

QDMI comprises several integral components, each serving a distinct function. Section
3.2 delves into the core components that form the basis of the QDMI architecture,
detailing their roles and functionalities within the system.

In Section 3.3, we propose the implementation of QDMI suitable for IBM’s quan-
tum backends. This section details the API calls used to interact with IBM devices,
demonstrating the process of querying device properties and managing device states.

Section 3.4 focuses on the testing methodologies employed, particularly the OpenClose
tests and the integration of IBM’s backend with the Quantum Resource Manager (QRM).

3.1. What is Quantum Device Management Interface (QDMI)?

The Quantum Device Management Interface (QDMI) is a pivotal element within the
MQSS, an advanced software infrastructure designed to foster collaboration between
users and a diverse array of quantum backends. QDMI’s role is crucial in enabling
software tools to dynamically retrieve and adapt to the evolving physical characteristics
and constraints inherent to various quantum platforms. By mediating between the
often divergent interests of software and hardware developers, QDMI provides essential
figures of merit and constraints that must be considered. This interface thus emerges as
the preferred method for incorporating new platforms or software tools into the MQSS
ecosystem, inviting all stakeholders to contribute to its evolution.

QDMI is defined as a C header file, offering a flexible and swift integration into
HPC environments. The MQSS seeks to offer a standardized implementation of QDMI,
serving as a template. This empowers hardware vendors to integrate their quantum
computers with the MQSS by developing customized versions of QDMI based on this
template. QDMI consists of 4 types of standard API calls (See section 3.2.3) that will
be common to all the implementations. The consistency of API calls across different
backends allows other MQSS components, such as the FoMaC library, pass selector, and
platform selector to seamlessly integrate with any given backend, irrespective of the

11

3. Quantum Device Management Interface (QDMI)

specific internal implementations of QDMI, giving you full control over the integration
process (See Chapter 5).

Figure 3.1 shows different components of MQSS and their role in the compilation
of quantum circuits. QDMI is placed very close to different Quantum Platforms and
serves as an interface to these backends. So, any other tool that requires to access any
platform-specific information can do so by making calls to their QDMI implementation.

FoMaC
Libraries
h # BT
l h Platform 1
Quantum
‘ Platform 2

Platform-specific
Quantum

Compilation Passes
h Platform 3

Platform-specific

Quantum Circuit Compilation Passes

QDMI

#Compilation Flow
#Information Flow

Figure 3.1.: Compilation flow of Quantum Circuits

In the context of this thesis, a practical implementation of QDMI has been developed,
utilizing IBM’s dummy quantum backend, Athens?, as a reference model. This imple-
mentation serves as a foundational example, demonstrating the process and feasibility of
integrating quantum computing platforms within the MQSS through the standardized
QDMI implementation. It demonstrates how QDMI can be used in real-world scenarios,
providing a clear understanding of its practical application.

3.2. Core Architecture of QDMI

3.2.1. Fundamental Data Types and Definitions in QDMI

QDMI utilizes a variety of core data types and definitions to facilitate the management
and interaction with quantum devices, qubits, and quantum gates. This section delves
into these fundamental components, explaining their structure, purpose, and significance.
These components, data types, and definitions form the basis of all the QDMI calls.

QlInfo Objects

The QlInfo library offers a versatile and user-friendly mechanism for passing supplemen-
tary information to the routines within MQSS. Modeled after the MPI_Info object from

4https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.
FakeAthens

12

https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeAthens
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeAthens

3.2. Core Architecture of QDMI

the Message Passing Interface (MPI) standard, a QInfo object is a flexible container for
additional metadata related to quantum devices or library routines.

At its core, a QInfo object is designed to hold an unordered collection of key-value
pairs, where each key is represented as a string, and the corresponding values can be
integers, floating-point numbers, or strings. This design allows users to embed a wide
range of auxiliary information directly into the library routines, such as configuration
hints, device-specific parameters, or runtime options.

QDMI Core Structures

The QDMI core structures, which serve as the foundational elements for representing
devices, qubits, and gates within QDMI, were heavily updated and extended during
this thesis. These enhancements aimed to provide a more comprehensive and flexible
representation of quantum hardware components. The updates included introducing
new members to the structures, such as additional properties for gates and a new
structure for qubits. These changes enable more detailed and accurate modeling of
quantum devices, thereby improving the overall functionality and usability of the QDML

e QDMI_Device

The QDMI_Device structure represents a quantum device, encapsulating the library,
session, and device state information. It is foundational for managing a quantum
device’s state and interactions. Listing 3.1 shows the definition of QDMI_Device.

typedef struct QDMI_Device_impl_d {
QInfo libinfo;
3 QInfo sessioninfo;

N

QDMI_Library_impl_t library;

SIS

void *device_state;
>+ QDMI_Device_impl_t;
typedef struct QDMI_Device_impl_d *QDMI_Device;

Listing 3.1: Definition of QDMI_Device

N

e QDMI_Gate

As shown in Listing 3.2, QDMI_Gate structure encapsulates the properties of a quan-
tum gate, including its name, coupling mapping, unitary matrix representation,
fidelity, and size. This structure is crucial for managing gate operations and their
characteristics.

Initially, the QDMI_Gate structure included only the properties name, coupling_mapping,

and size_coupling_mapping. However, it was realized that most of the quantum
backends also provide additional information necessary for creating the topol-
ogy and performing target-specific compilation passes. Subsequently, all the
members, including fidelity, unitary, and gate_size, were added during the
thesis to encompass additional information, providing a more comprehensive
representation of a quantum gate’s attributes.

13

3. Quantum Device Management Interface (QDMI)

typedef struct QDMI_Gate_impl_d {

const char *name;

QDMI_Gate_property** coupling_mapping;
4 char *unitary;

double fidelity;

6 size_t size_coupling_map;
7 size_t gate_size;
} QDMI_Gate_impl_t;
typedef struct QDMI_Gate_impl_d *QDMI_Gate;

Listing 3.2: Definition of QDMI_Gate

w N

e QDMI_Qubit

The QDMI_Qubit structure, introduced as part of this thesis, is a comprehensive
representation of an individual qubit within a quantum device. This data type is
meticulously designed to encompass all the necessary properties of a qubit. Using
a distinct data type for qubits ensures the organized storage and retrieval of related
properties in a consolidated manner. As illustrated in Listing 3.3, the QDMI_Qubit
structure includes properties such as the qubit’s index, coupling mapping, and
various physical characteristics like decoherence times(t1 and t2), readout_error,
and readout_length.

typedef struct QDMI_Qubit_impl_d {
QDMI_qubit_index index;

N

3 QDMI_qubit_index* coupling_mapping;

4 int size_coupling_mapping;
double t1;

6 double t2;

7 double readout_error;

8 double readout_length;

9 } QDMI_Qubit_impl_t;
10 typedef struct QDMI_Qubit_impl_d *QDMI_Qubit;

Listing 3.3: Definition of QDMI_Qubit

QDMI Property Structures

The properties of devices, qubits, and gates are now represented as structures with name
and type members. Previously, these properties were defined as typedef to int values
(e.g., typedef int QDMI_Device_property). This approach was changed during the
thesis to store the data type of the properties. For example, hardware vendor A provides
backend_version as a string value while vendor B provides the same property as a
double value. Having an extra attribute to store the type of property is beneficial for
both the vendor as well as the user.

This enhancement ensures that quantum hardware vendors have greater flexibility
in defining the data types of properties. It also ensures that users can easily and
safely access and interpret these properties by including the data type in the property

14

3.2. Core Architecture of QDMI

definition, regardless of the vendor’s implementation. This user-centric design makes
the system more accessible and user-friendly.

* QDMI_Device_property

As shown in Listing 3.4, QDMI_Device_property, structure defines properties
specific to a quantum device, such as its name and type. This abstraction allows
for the flexible definition and retrieval of device attributes.

typedef struct QDMI_Device_property_impl_d {
int name; // e.g., 15 for backend_name
int type; // INT_PROPERTY, etc.

¥ QDMI_Device_property_impl_t;

w N

'S

o

typedef struct QDMI_Device_property_impl_d *QDMI_Device_property;
Listing 3.4: Definition of QDMI_Device_property

* QDMI_Gate_property

As shown in Listing 3.5, the QDMI_Gate_property structure defines attributes for
a quantum gate, aiding in the efficient representation of quantum-gate-related
information.

typedef struct QDMI_Gate_property_impl_d {
int name;

W N

: int type;
4 } QDMI_Gate_property_impl_t;
5 typedef struct QDMI_Gate_property_impl_d *QDMI_Gate_property;

Listing 3.5: Definition of QDMI_Gate_property

e QDMI_Qubit_property

Similar to QDMI_Device_property and QDMI_Gate_property, the QDMI_Qubit_property
structure defines attributes for a qubit, aiding in the organized management of
qubit-specific information.

typedef struct QDMI_Qubit_property_impl_d {
int name;

N

3 int type;
} QDMI_Qubit_property_impl_t;
5 typedef struct QDMI_Qubit_property_impl_d *QDMI_Qubit_property;

Listing 3.6: Definition of QDMI_Qubit_property

=

3.2.2. QDMI Constants and Macros

QDMI utilizes several constants and macros to define the behavior and types of prop-
erties, as well as the status values for various operations. Some of these macros are as
shown in Listing 3.7:

15

3. Quantum Device Management Interface (QDMI)

// Property Behavior

#define QDMI_PROPERTY_NOTEXIST -1
#define QDMI_PROPERTY_STATIC 1
#define QDMI_PROPERTY_DYNAMIC 2

// Property Types
#define QDMI_INT 0
#define QDMI_FLOAT 1
#define QDMI_DOUBLE 2
// and so on...

// Backend Properties
#define BACKEND_NAME O
#define BACKEND_VERSION 1
#define NUM_QUBITS 2

// and so on...

// Qubit and Gate Properties

#define QDMI_FIDELITY 0
#define QDMI_QUBIT_COUPLING_MAP 6
#define QDMI_T1_TIME 1
#define QDMI_T2_TIME 2

3 // and so on...

Listing 3.7: Definition of QDMI_Qubit_property

3.2.3. QDMI Calls

The core design of QDMI consists of 4 kinds of function calls.

QDMI Core

These calls provide core functionality for managing sessions and opening and closing

connections to devices. Some of these calls include:

QDMI_core_version(...)

QDMI_core_device_count(...)

e (DMI_core_open_device(...)

QDMI_core_query_device(...)

QDMI_core_close_device(...)

QDMI_session_init(...)

e (DMI_session_finalize(...)

16

3.2. Core Architecture of QDMI

Currently, the concrete implementation and documentation for these QDMI calls are
not yet available. Moreover, since IBM’s Athens serves as a dummy backend, many of
these calls are not crucial. However, to ensure consistency and enable thorough testing,
a minimalistic implementation of these calls has been provided. Details can be found in
Section 3.3.1.

QDMI Control

These calls enable the control of the quantum device. Users can submit quantum circuits,
control the job queue, and read measurement results. Some of these calls include:

e (DMI_control_pack_qgasm2(...)

e (DMI_control_pack_qgir(...)

QDMI_control_submit(...)

QDMI_control_readout_hist_size(...)

QDMI_control_readout_hist_top(...)
e (DMI_control_readout_raw_num(...)
e (DMI_control_readout_raw_sample(...)

Currently, the concrete implementation and documentation for these QDMI calls are
not yet available. Moreover, since IBM’s Athens serves as a dummy backend, many of
these calls are not crucial. However, to ensure consistency and enable thorough testing,
a minimalistic implementation of these calls has been provided. Details can be found in
Section 3.3.1.

QDMI Device

These calls provide functionality for handling devices, such as initiating calibration or
checking the device status. Some of these calls include:

e (DMI_device_status(...)

® (QDMI_device_quality_check(...)

e (DMI_device_quality_limit(...)

® (QDMI_device_quality_calibrate(...)

Currently, the concrete implementation and documentation for these QDMI calls are
not yet available. Moreover, since IBM’s Athens serves as a dummy backend, many of
these calls are not crucial. However, to ensure consistency and enable thorough testing,
a minimalistic implementation of these calls has been provided. Details can be found in
Section 3.3.1.

17

3. Quantum Device Management Interface (QDMI)

QDMI Query

These calls allow querying properties of the device, such as supported gates, error rates,
gate duration, etc. These calls are most relevant for extracting the topology and mapping
the quantum circuits to the physical configuration of the quantum computer. Section
3.3.2 discusses in detail the role and purpose of these calls. Some of these calls include:

® (DMI_query_device_property_exists(device, property, ...)

e (DMI_query_device_property_type(device, property, ...)

® (QDMI_query_device_property(device, property, ...)

e (DMI_query_gateset_num(device, ...)

® QDMI_query_all_gates(device, ...)

e (DMI_query_byname(device, ...)

® (DMI_query_gate_property_exists(device, gate, property, ...)
e (DMI_query_gate_property_type(device, gate, property, ...)

® (DMI_query_gate_property(device, gate, property, ...)

e (DMI_query_all_qubits(device, ...)

e (DMI_query_qubit_property_exists(device, qubit, property, ...)
e (DMI_query_qubit_property_type(device, qubit, property, ...)

® (QDMI_query_qubit_property(device, qubit, property, ...)

3.3. IBM Implementation

This section delves into the crucial design and architectural details of the QDMI im-
plementation specifically tailored for IBM’s quantum backend. This implementation
enables efficient querying and retrieval of the physical properties of IBM’s dummy
backends, including IBM Athens.

IBM provides JSON files for its dummy backends, which include comprehensive
information about their physical properties [McK+18]. These properties encompass both
static and dynamic aspects. Some of these properties include:

* backend_version: The specific backend version indicates updates or changes in the
hardware or software.

¢ n_qubits: The total count of qubits available on the backend is critical for determin-
ing the scale of quantum computations possible.

18

3.3. IBM Implementation

* basis_gates: A list of the available gates on the backend as an array of gate names.
* coupling_map: The representation of the physical coupling map on the device.

e gate_error: This is the measure of the fidelity of a gate (1 - F_avg, where F_avg is
the average gate fidelity). The fidelity of a quantum gate measures how accurately
the gate performs its intended quantum operation, serving as a critical metric for
assessing gate quality in quantum computing. High fidelity, close to 1, indicates
that the gate operation closely matches the ideal, minimizing computational errors.

* Decoherence Times (T1, T2): These refer to the timescales over which qubits main-
tain their quantum states before decoherence occurs, affecting the reliability and
duration of quantum computations.

The QDMI implementation is designed to efficiently query these properties, providing
them easily retrievable. For instance, a potential user could use the QDMI to quickly
check these properties to map the quantum circuit or optimize their algorithms.

3.3.1. Implementation Details

The implementation uses Jansson Json reader® to parse the JSON files and provide all
the information. Jansson is recognized as a highly suitable library for JSON file parsing,
attributed to its simplicity and user-friendly interface. It boasts an intuitive API that
significantly reduces the initial learning curve. Jansson is designed efficiently for time
and memory consumption, rendering it an exemplary choice for high-performance
applications. This library offers extensive functionalities for parsing, generating, and
manipulating JSON data. Its comprehensive documentation facilitates a swift and
effective comprehension and utilization of the library. Furthermore, Jansson incorporates
advanced error-handling mechanisms that effectively manage parsing errors.

These features encouraged us to use Jansson to parse the JSON files provided by IBM.

The interface of QDMI does not store any information itself because it was designed
as a lightweight implementation. This design choice ensures minimal resource usage
and high performance. Instead, all JSON data is stored within the JSON root. The JSON
root dynamically provides the requested information when queried, acting as a central
repository for all data. This approach allows QDMI to operate efficiently, retrieving
and processing data on demand without the overhead of maintaining persistent states
within the interface.

The base version of QDMI is available in the main branch of the QDMI repository.
This version was the foundation for further development, particularly in integrating
with IBM’s backend.

The extension of QDMI involves implementing backend-specific calls, which are
provided as shared libraries. The user loads these shared libraries at runtime, allowing
for a flexible and modular architecture. The loading process is straightforward, enabling

Shttps://github.com/akheron/jansson

19

https://github.com/akheron/jansson

w N

3. Quantum Device Management Interface (QDMI)

QDMI to interface seamlessly with a diverse range of hardware backends. Each hardware
vendor can develop their version of QDM]I, tailored to their specific hardware capabilities
and features. Users can then link to these vendor-specific libraries, enabling QDMI to
seamlessly interface with a diverse range of hardware backends.

QDMTI’s implementation supports this modularity by allowing backends to define
common and unique properties. This flexibility ensures that while there is a consistent
interface for general functionalities, hardware vendors can extend the interface to expose
specialized features unique to their hardware. This design facilitates interoperability
and extensibility, making QDMI a versatile tool for various backend integrations.

As discussed in Section 3.2.3, QDMI consists of four core API calls: QDMI Core,
QDMI Control, QDMI Device, and QDMI Query. These calls collectively enable QDMI
to manage and interface with quantum backends. However, IBM’s Athens, serving
as a dummy backend, is not an actual quantum backend, and only represents one.
Consequently, it lacks essential features such as connections, job queues, and quantum
compilation capabilities. This limitation makes it impossible to submit quantum circuits
or jobs or to perform any measurements.

Given these constraints, implementing the QDMI Core, QDMI Control, or QDMI Query
calls for IBM’s Athens backend is impractical. These calls are designed to handle ac-
tual quantum operations and interactions, which do not apply to a dummy backend.
Therefore, implementing these calls would serve no functional purpose.

However, for the sake of consistency and thorough testing, a minimalistic imple-
mentation of these calls has been put in place. While these implementations do not
perform actual operations, they are designed to return valid return values. This ap-
proach ensures the QDMI can be rigorously tested and validated, even when interfacing
with non-functional backends like IBM’s Athens. It allows developers to verify that the
interface behaves correctly regarding structure and response without relying on actual
quantum backend capabilities.

As shown in Listing 3.8, the function QDMI_control_submit provides a minimalistic
implementation for testing purposes.
int QDMI_control_submit(QDMI_Device dev, QDMI_Fragment *frag, int numshots, QInfo info,

QDMI_Job *job)
{

printf (" [Backend] QDMI_control_submit\n");
return QDMI_SUCCESS;

Listing 3.8: Minimalistic implementation of QDMI_control_submit

3.3.2. QDMI Query Calls

The QDMI Query calls are essential for retrieving various properties and configurations of
quantum devices and qubits. These calls allow users to obtain detailed information about
the physical and logical configuration of quantum systems. For instance, information
on the coupling maps of a qubit can be used to visualize the physical connectivity of

20

o G

3.3. IBM Implementation

superconducting qubits and perform the circuit mapping accordingly. In the scope of
this thesis, we have implemented the query calls for IBM’s quantum backends.

Usage of Setters

Setters in QDMI are used to initialize or update the properties of quantum devices and
qubits. The setters are helper functions used internally by other QDMI Query calls. This
is because letting the user set values or update properties is counterintuitive. This has
to be the other way around, and the user must only have a read-only interface when
querying properties.

For instance, the QDMI_set_qubit_coupling_map and QDMI_set_qubit_properties
functions are responsible for setting up the coupling map and various properties of a
qubit, respectively. However, they are called internally by QDMI_query_qubit_info, a
public function that users can call.
void QDMI_set_gate_properties(QDMI_Gate gate)

{

gate->unitary = "Unitary_Matrix";
gate->fidelity = 1.0;

Listing 3.9: Helper Function for Setting Gate Properties

Querying Properties

There are various functions to query a wide range of quantum devices and qubits
properties using QDMI Query calls. These properties include qubit properties, gate
properties, and device properties. Each query function is designed to retrieve specific
information. Further, the name and signature of a function give a clear overview of
what that function might be doing. This is consistent across all types of query functions.

There are two categories of functions for querying properties: those that query all
properties of a single qubit or gate, or all qubits and gates, and those that query specific
properties.

* Querying all the properties

As discussed in Section 3.2.1, QDMI_Qubit is a pointer to a C-structure with several
members such as coupling_mapping, t1, t2, readout_error, and others. Similarly,
QDMI_Gate is also a pointer to a C-structure that includes members like unitary,
fidelity, gate_size, etc.

As shown in the Listing 3.10, to query all these properties simultaneously, functions
such as QDMI_query_qubit_info and QDMI_query_gate_info can be used. These
functions take an instance of QDMI_Qubit or QDMI_Gate as an output parameter
along with their respective indices. Internally, these functions use setters to retrieve
and populate the corresponding values from the backend. This approach ensures

21

3. Quantum Device Management Interface (QDMI)

that all relevant properties are efficiently retrieved and stored within the respective
structures, allowing easy access and querying.

int QDMI_query_qubit_info(QDMI_Qubit qubit, int qubit_index)
{

W o=

QDMI_set_qubit_coupling_map(qubit, qubit_index);
QDMI_set_qubit_properties(qubit);

SIS

Listing 3.10: Getting all the information of a Qubit

Additionally, it is possible to query all qubits and their properties for a single quan-
tum device. As shown in Listing 3.11, functions such as QDMI_query_all_qubits
and QDMI_query_all_gates facilitate this process. These functions are highly con-
venient for retrieving comprehensive information with a single call. By invoking
these methods, users can efficiently gather detailed data on all qubits or gates
in the device, streamlining the process of obtaining and managing quantum de-
vice properties. This capability is handy for applications that require a complete
overview of the device’s configuration and performance characteristics, enabling
effective diagnostics, optimization, and utilization of quantum resources.

1 int QDMI_query_all_qubits(QDMI_Device dev, QDMI_Qubit *qubits)
N
2 {

w

int err, num_qubits;

5 err = QDMI_query_qubits_num(dev, &num_qubits);

7 if (err '= QDMI_SUCCESS) {

8 printf ("QDMI failed to return number of qubits\n");

9 return QDMI_WARN_GENERAL;

*qubits = (QDMI_Qubit)malloc(num_qubits * sizeof (QDMI_Qubit_impl_t));
if (*qubits == NULL) {

4
5 printf ("Couldn’t allocate memory for the qubit array\n");
6 return QDMI_WARN_GENERAL;

9 for (int i = 0; i < num_qubits; i++) {
0 QDMI_query_qubit_info((*qubits) + i, i);

1 }

2

23 printf ("Returning available qubits\n");
24 return QDMI_SUCCESS;

25}

Listing 3.11: Getting all the information of all the Qubits

Querying specific properties

3.3. IBM Implementation

It is not always practical or necessary to query all qubits or gates and all their prop-
erties simultaneously. Depending on the specific usage and requirements of the
user, querying only a particular property may be sufficient. To address this need,
three additional query functions have been introduced:QDMI_query_yyy_property
_exists, QDMI_query_yyy_property_type, and QDMI_query_yyy_property_z, wh-

ere yyy can be either qubits or gates, and z can be ¢, i, d, or f, as explained:

1. QDMI_query_yyy_property_exists: This function checks whether a specific
property exists for a given qubit or gate. It helps determine the availability of
specific characteristics before attempting to access or manipulate them. This
function serves another critical purpose: while there are specific properties that
every backend is expected to provide, some properties may only be available on
specific backends. For example, only superconducting backends may provide the
coupling_mapping of qubits. Therefore, it is more practical for a user to check
if a property exists (or if a particular backend provides that property) before
attempting to retrieve it. This practical approach ensures compatibility and avoids
errors when working with different quantum devices. Listing 3.12 shows one of
such functions.

int QDMI_query_qubit_property_exists(QDMI_Device dev, QDMI_Qubit qubit,
QDMI_Qubit_property prop, int* scope)

2 {
3 *scope = 1;
if (prop->name == QDMI_T1_TIME)
~ {
6 if (qubit->t1 == QDMI_PROPERTY_NOT_DEFINED) {
7 // If the property isn’t defined/retrieved
8 return QDMI_PROPERTY_NOTEXIST;
9 }
10 else{
11 // 1If the property is defined/retrieved
12 return QDMI_SUCCESS;
3 }
14 T
5 // Similarly, for other properties...
16 }

Listing 3.12: Checking if a backend provides that property

2. QDMI_query_yyy_property_type: This function retrieves the data type of a
specified property. Knowing the type (e.g., integer, double, float, or string) is
essential for correctly processing and interpreting property values. This function
ensures type safety and prevents invalid type casting, thereby maintaining the
integrity and reliability of data handling within the system. Listing 3.13 shows
one of such functions.

I int QDMI_query_qubit_property_type(QDMI_Device dev, QDMI_Qubit qubit,

QDMI_Qubit_property prop)
2 {

23

3. Quantum Device Management Interface (QDMI)

if (prop->name == QDMI_T1_TIME)

1 {

5 prop->type = QDMI_DOUBLE;

6 }

7 // Similarly for other properties with QDMI_DOUBLE and other data types...
8 return QDMI_SUCCESS;

9 }

Listing 3.13: Checking the type of a property

3. QDMI_query_yyy_property_z: This function fetches the value of a specified
property. The suffix z indicates the expected return type:

- ¢ for character or string values.

- i for integer values.

- d for double-precision floating-point values.
- f for single-precision floating-point values.

Listing 3.14 shows one of such functions.

I int QDMI_query_qubit_property_d(QDMI_Device dev, QDMI_Qubit qubit,
QDMI_Qubit_property prop, double *value)

// Ideally should be called after QDMI_query_qubit_property_exists
| if (prop->name == QDMI_T1_TIME)

5 *value = qubit->t1;

6 else if (prop->name == QDMI_T2_TIME)

7 *value = qubit->t2;

8 else if (prop->name == QDMI_READOUT_ERROR)

9 *value = qubit->readout_error;

10 else if(prop->name == QDMI_READOUT_LENGTH)

11 *value = qubit->readout_length;

13 return QDMI_SUCCESS;
Listing 3.14: Querying a particular property

These functions provide a flexible, safe, and efficient way to access specific proper-
ties of qubits and gates, allowing users to obtain only the necessary information
without the overhead of querying all properties. This targeted querying capability
is precious in critical performance and resource management scenarios.

3.4. Results

3.4.1. OpenClose

The QDMIOpenClose test is designed to verify the fundamental connectivity and basic
functionality of a QDMI device. This test ensures that the QDMI library can successfully
initialize a session, interact with the quantum device to retrieve basic information,

24

3.4. Results

and properly finalize the session. The complete code can be seen in Listing A.1. The
following code snippet illustrates some of the important details of this test.

// Initialization of Structures
QInfo info;

3 QDMI_Session session = NULL;

QDMI_Library 1lib;

5 QDMI_Device device;

int err;
// Session Initialization
err = QDMI_session_init(info, &session);

CHECK_ERR(err, "QDMI_session_init");

// Loading IBM Backend Library

3 1ib =find_library_by_name("/home/diogenes/bin/lib/libackend_ibm.so");

// Querying Device Information

v int num_qubits;

err = QDMI_query_qubits_num(device,&num_qubits);

Listing 3.15: QDMIOpenClose Test

The test begins by initializing essential structures, including QInfo, QDMI_Session,
QDMI_Library, QDMI_Device, and QDMI_Job. Memory is allocated for the job and device
objects. If the allocation fails for either object, an error message is displayed, and the
test terminates.

Next, the QDMI_session_init function initializes a QDMI session using the QInfo
object. This function handles internal startup routines and loads the necessary libraries
to prepare the session.

Further, the find_library_by_name function searches for the IBM backend library. If
the library cannot be located, an error message is printed, and the test exits.

Subsequently, the test queries the device to retrieve relevant information, such as the
number of qubits available, using QDMI_query_qubits_num. It also checks the status of
the device with QDMI_device_status to ensure it is operational.

Finally, the QDMI_session_finalize function closes the active QDMI session, ensuring
all resources are properly released. The QInfo_free function is called to free the QInfo
object. The test concludes by freeing the allocated memory for the device object ensuring
there are no memory leaks.

The console output of the test is as follows:

[Backend] Initializing IBM via QDMI
[Backend] IBM query device status
[QDMIOpenClosel] Found 5 qubits.

[QDMIOpenClose] Closed connection to the device.

[DEBUG]: Test Finished

Listing 3.16: Result of QDMIOpenClose Test

25

3. Quantum Device Management Interface (QDMI)

3.4.2. Quantum Resource Manager (QRM) Integration

QRM is a critical component of MQSS, acting as a comprehensive resource manager
that interacts with the QDMI to efficiently manage quantum computing resources.
QRM’s core functionality includes querying available quantum backends, submitting
jobs to quantum devices, and integrating components such as pass selection heuristics,
generators, schedulers, compiler passes, and submitters. The entry point for QRM to
select and apply LLVM passes to a Quantum Circuit described in Quantum Intermediate
Representation (QIR) is the qresourcemanager_d daemon.

Listing 3.17 shows the integration of qresourcemanager_d with IBM’s QDMI imple-
mentation. When gresourcemanager_d runs with IBM’s integrated QDMI implementa-
tion, it performs several vital operations. The console output provides a detailed log of
these processes, showcasing the interaction between QRM and QDMI.

Initially, gresourcemanager_d listens on the queue_manager and initializes the IBM
backend via QDMI, fetching the necessary configuration files. Upon receiving a Quan-
tumTask, the generator runner invokes the appropriate generator, such as 1ibgenerator
_cutter.so, to generate sub-circuits, which are then passed to the scheduler runner.

[gresourcemanager_d]..Listening on queue queue_manager

[Backend] Initializing IBM via QDMI

[Backend] Fetching config file

[qresourcemanager_d]..Received a QuantumTask

[FoMaC] Available device found: /libbackend_ibm.so

[Scheduler] 1 available device(s)

[Backend] Returning available qubits

[FoMaC] Coupling mapping of qubit[O]:
Coupling mapping of qubit[1]:
Coupling mapping of qubit[2]:
Coupling mapping of qubit[3]:
Coupling mapping of qubit[4]:

Applying pass: QirCommuteRxCnotPass

Applying pass:

Reversible gate found: __quantum__qis__cx__body
Reversible gate found: __quantum__qis__x__body

Runner] Applying pass: QirXGateAndHadamardSwitchPass
Runner] Applying pass: QirYGateAndHadamardSwitchPass
Runner] Applying pass: QirZGateAndHadamardSwitchPass
Runner] Applying pass: QirSToSDaggerPass
Runner] Applying pass: QirSDaggerToSPass
Runner] Applying pass: QirReverseCnotPass
Reversing Cnot
Applying pass: QirSwapAndCnotReplacementPass
Applying pass: QirFunctionReplacementPass
Function has 'replaceWith’ attribute:
__quantum__qis__cz__body
Function is a replacement
__quantum__qis__cz_to_hcnoth__body
[Pass Runner] Applying pass: QirReplaceConstantBranchesPass

26

3.4. Results

[Pass Runner] Applying pass: QirRemoveNonEntrypointFunctionsPass
[Backend] QDMI_control_pack_qir

[Backend] QDMI_control_submit
[qresourcemanager_d]..Adapted QIR sent to the Quantum Daemon

Listing 3.17: QDMI Integrated with Quantum Resource Manager

The scheduler runner invokes the round-robin scheduler, identifies available devices,
and selects the appropriate target device for the job. In this example, the scheduler
finds and chooses the IBM backend. QDMI then returns the available qubits and their
coupling mappings, which are crucial for the subsequent steps in the quantum task
execution.

Next, the selector runner invokes the manual selector, which returns a list of compiler
passes to be applied to the quantum circuit. The pass runner inserts necessary flags
and applies a series of passes, each optimizing the QIR in various ways. These passes
include gate transformations, gate commutations, redundant gate cancellations, and
function replacements. This process generates warnings for unsupported gates, and
reversible gates are identified.

Once all the required passes are applied, the QIR is adapted sent for submission.
This integration showcases the seamless interaction between QRM and QDMI, enabling
efficient management and optimization of quantum tasks on IBM’s quantum backend.

The entire results and the complete console output can be seen in Listing A.2.

27

4. sys-sage

This chapter delves into the core structure and the significant extensions made to the
sys-sage library during this thesis. This chapter aims to provide a comprehensive under-
standing of sys-sage, including its goals, internal representation, and the modifications
implemented to accommodate various quantum systems.

Section 4.1 section elaborates on the goals of sys-sage, its core structure, and the
internal representation of HPC systems.

In Section 4.2, we explore the extensions made during this thesis. This includes
detailed explanations of how QCs, qubits, and quantum gates are represented within
sys-sage.

Section 4.3 presents the results of API calls and example usages with the QDMI
implementations for the IBM backend.

Finally, Section 4.4 discusses the proposed extensions and considerations for neutral-
atom and trapped-ion systems.

4.1. What is sys-sage?

sys-sage [VS24] is a user-side library focused on collecting, storing, and providing
arbitrary hardware-relevant information within an HPC system. sys-sage bridges the
gap between various applications, tools, and benchmarks that describe the increasingly
complex modern HPC systems. It manages both static and dynamic data contexts,
available at different stages of an application’s lifecycle.

It enables acquiring, storing, updating, and querying all relevant information about
the hardware and software configuration of an HPC node/system, including its dynamic
hardware topology, current state, capabilities, and other related information. All these
elements are logically connected. sys-sage addresses its limitations for modern systems
and workloads by building upon and generalizing the concepts of hwloc [Bro+10]. It
integrates data from existing sources like hwloc, provides additional dynamic infor-
mation, and connects different topology-related pieces of information in its internal
representation.

4.1.1. Internal Representation

In sys-sage, the HPC system is represented using a comprehensive structure that includes
Components, their hierarchical physical structure known as the Component Tree, and
Data Paths. This structure allows for a detailed and multifaceted representation of the
system’s architecture and its dynamic characteristics.

29

4. sys-sage

Components are fundamental units within the HPC system, each representing distinct
hardware or software elements. The Component Tree captures the hierarchical organiza-
tion of these Components. This tree structure illustrates the static physical composition
of the system, detailing how various Components, such as processors, memory units,
and storage devices, are arranged and interconnected.

In addition to the Component Tree, sys-sage utilizes Data Paths to provide a more nu-
anced view of the system. Data Paths encapsulate additional attributes and relationships
between Components that extend beyond the hierarchical structure of the Component
Tree. These paths form a Data-path Graph, which captures information orthogonal to the
Component Tree. While the Component Tree focuses on the static, physical organization
of the system, the Data-path Graph provides insights into dynamic and supplementary
relationships, such as performance metrics and communication pathways.

The Component Tree and the Data-path Graph in sys-sage are necessarily not static
representations. They are designed to be modifiable at runtime, allowing sys-sage
to dynamically adapt to changes within the HPC system. This dynamic adaptability
ensures that sys-sage captures the evolving characteristics and performance metrics in
real-time, giving users an informed view of the system’s current state.

Within sys-sage, Components can describe a range of hardware attributes, providing
a granular understanding of the system’s hardware characteristics. For instance, they
can detail each cache level’s capacity, associativity, and hit rate derived from hardware
counters. Similarly, Components can represent the number of registers and the current
operating frequency of a CPU core, offering a detailed description of the system’s
hardware characteristics.

Data Paths, conversely, convey information about the relationships and interactions be-
tween Components. For example, they can provide data on cache-to-core latency across
different cache levels, offering insights into the efficiency and speed of data retrieval.
Additionally, Data Paths can illustrate the percentage of crosssNUMA (Non-Uniform
Memory Access) accesses for different NUMA regions, highlighting the communica-
tion overhead and performance implications of memory access patterns in multi-node
systems.

sys-sage offers a robust and flexible tool for modeling and analyzing HPC systems
by integrating the Component Tree with the Data-path Graph. This integrated ap-
proach provides a comprehensive understanding of the system’s physical composition
and dynamic behavior, instilling confidence in sys-sage’s ability to facilitate effective
performance monitoring and optimization.

¢ Components and Component Tree:

An HPC system is a complex entity comprising multiple physical and logical ele-
ments called Components. These components, with their hierarchical relationships,
are elegantly captured in the Component Tree.

This tree structure provides a comfortable and easily navigable representation
for the users. As the backbone of sys-sage, the Component Tree seamlessly links

30

4.1. What is sys-sage?

and references all additional static and dynamic information. Inspired by hwloc’s
method of representing CPU data, sys-sage extends this approach to encompass a
more comprehensive array of components, ensuring that all on-node resources,
including both hardware and system-related elements, are captured rather than
being limited to CPU resources. This comprehensive approach provides a sense of
security to our users.

Multiple Component Types, derived from various parts of computer systems,
represent specific attributes and functionalities. These Component Types are
implemented in a class hierarchy, with each type inheriting basic attributes and
API calls from the generic Component type. This hierarchical structure ensures that
each Component contains essential information such as:

— Its position in the Component Tree, with links to parent and child Components
for easy navigation.

— Basic attributes such as id and name.

— A wildcard map, attrib, allows users to add arbitrary information or data.
This key-value store uses the key to denote the attribute name and the value
to point to the data.

Figure 4.1 illustrates an example of a component tree, where different components
are represented in various colors. The tree follows a hierarchical structure, with
each component depicted as a parent or a child, showcasing their relationships
within the system.

Figure 4.1.: Component Tree showing different Component Types in different colors

¢ Data Paths and Data-path Graph

A Data Path is a construct that carries dynamic information about the relationship
between two arbitrary Components. The aggregation of all Data Paths forms a
Data-path Graph. Each Data Path connects a source and a target Component
and can be either oriented (differentiating source and target) or bidirectional.
Multiple Data Paths can connect the same pair of Components, representing

31

4. sys-sage

various dependencies or relationships. The attribute dp_type differentiates the
types of information conveyed by these Data Paths.

Like Components, Data Paths possess default properties, such as bandwidth and
latency, and include a wildcard map attrib for storing additional data. This
feature enhances the flexibility and adaptability of Data Paths, as it can store any
information not covered by the default properties.

Data Paths convey a wide range of information, including but not limited to data
transfer, performance, power consumption, or even application-specific data. They
can model any property regarding the connection or relationship between two
Components.

Data Paths are closely associated with the Components they connect. Each Com-
ponent maintains references to all Data Paths linked to it, while each Data Path
includes references to its source and target Components.

Data Paths provide a highly flexible mechanism for expressing dynamic relation-
ships between Components. This flexibility contrasts with approaches like hwloc,
where separate distance matrices represent distance information. These matrices
are limited to latency and bandwidth information, are not user-friendly, and lack
versatility. Data Paths in sys-sage, however, offer a more comprehensive and
adaptable solution for modeling complex relationships in HPC systems.

As shown in Figure 4.2, a data path is depicted with arrows of different colors.
An arrow represents an interaction between two components or an exchange of
some form of information which may encompass bandwidth and latency, cache
partitioning, or data transfer energy.

FH
%

%

Figure 4.2.: Data-path Graph with Data Paths carrying different information in different

colors.

32

4.1. What is sys-sage?

4.1.2. Example Usage

The sys-sage repository contains several examples that were crucial in the early stages
of this thesis, illustrating the usage of API calls and the topological representation of
HPC systems. These examples provided a clear visualization of the topology of existing
HPC systems and helped in the extensions for quantum systems. Here, we demonstrate
the "basic_usage" example, which demonstrates several existing API calls and presents
an HPC system’s topology.

sys-sage uses parsers to load information from various sources. One notable API call,
parseHwlocOutput, is used to parse hwloc output XML files. This function requires two
parameters: a pointer to a Node component and the path to the XML file. Once invoked,
parseHwlocOutput constructs the topology autonomously without needing additional
inputs or calls from the user.

string topoPath;
// Store path to the XML file in topoPath

//create root Topology and one node
Topology* topo = new Topology();
Node* n = new Node(topo, 1);

cout << "-- Parsing Hwloc output from file " << topoPath << endl;

if (parseHwlocOutput(n, topoPath) != 0) { //adds topology to the next node
usage (argv[0]);
return 1;

Listing 4.1: Parsing hwloc output files (XML)

When the call returns successfully (and the topology has been created), various
attributes and information can be queried), various attributes and information can be
queried.

cout << "Total num HW threads: " << topo->GetNumThreads() << endl;

Listing 4.2: Querying Number of threads

Finally, the complete topology can be visualized /printed on the console window.

cout << Moo Printing the whole tree -----------—-—-———- " << endl;
topo->PrintSubtree() ;

3 cout << Memmmmmeee e " << endl;
2

Listing 4.3: Querying information from the Topology

The complete retrieved topology is as shown in Listing A.3. A snippet of the topology
is as follows:

Parsing Hwloc output from file ./example_data/skylake_hwloc.xml

End parseHwlocOutput
Total num HW threads: 24

33

4. sys-sage

Topology (name sys—sage Topology) id @ — children: 1 level:
Node (name Node) id 1 — children: 2 level: 1
Chip (name socket) id @ — children: 1 level: 2
Cache (name Cache) id 7 — children: 2 level: 3
NUMA (name Numa) id © — children: 6 level: 4
Cache (name Cache) id 6 — children: 1 level: 5
Cache (name Cache) id 5 — children: 1 level: 6
Core (name Core) id O — children: 1 level: 7
HW_thread (name HW_thread) id © — children:
Cache (name Cache) id 11 — children: 1 level: 5
Cache (name Cache) id 10 — children: 1 level: 6
Core (name Core) id 1 — children: 1 level: 7
HW_thread (name HW_thread) id 1 — children:
Cache (name Cache) id 15 — children: 1 level: 5
Cache (name Cache) id 14 — children: 1 level: 6
Core (name Core) id 2 children: 1 level: 7
HW_thread (name HW_thread) id 2 children:
Cache (name Cache) id 19 children: 1 level: 5
Cache (name Cache) id 18 — children: 1 level: 6
Core (name Core) id 8 — children: 1 level: 7
HW_thread (name HW_thread) id 3 — children:
Cache (name Cache) id 23 — children: 1 level: 5
Cache (name Cache) id 22 — children: 1 level: 6
Core (name Core) id 9 — children: 1 level: 7
HW_thread (name HW_thread) id 4 — children:
Cache (name Cache) id 27 — children: 1 level: 5
Cache (name Cache) id 26 — children: 1 level: 6
Core (name Core) id 10 — children: 1 level: 7
HW_thread (name HW_thread) id 5 — children:

Listing 4.4: Sample Topology of a HPC system

In a similar fashion, DataPaths can also be queried and visualized.

Printing all DataPaths
DataPaths regarding Component (NUMA) id ©
DataPath src: (NUMA) id 0, target: (NUMA) i : latency:
DataPath src: (NUMA) id 0, target: (NUMA) i : latency:
DataPath src: (NUMA) id 0, target: (NUMA) i : latency:

(
(
(
DataPath src: (NUMA) id 1, target: (NUMA) i : latency:

DataPaths regarding Component (NUMA) id 1
DataPath src: (NUMA) id 1, target: i : latency:

DataPath src: (NUMA) id 1, target: i : latency:
DataPath src: (NUMA) id 0, target: i : latency:
DataPath src: (NUMA) id 1, target: i : latency:

Listing 4.5: Visualizing DataPaths Between Two Nodes

34

4.2. Extension for Superconducting-qubit based systems

4.2. Extension for Superconducting-qubit based systems

The preceding sections of this study have outlined the fundamental architecture of
the sys-sage library, which aims for an accurate and user-friendly representation of
heterogeneous HPC systems. This thesis intends to build on this foundational work and
presents an experimental attempt to encapsulate and elucidate the complex topology
inherent in quantum computing systems. This advancement attempts to develop a
universal query interface, a feature that allows users to interact with different quantum
computing platforms using a single set of commands. This interface offers broad
compatibility across a spectrum of quantum computing platforms, including but not
limited to systems based on superconducting qubits, neutral atoms, and trapped ion
technologies.

sys-sage uses the QDMI library by leveraging QDMI Query calls to obtain essential
information about quantum systems. Unlike QDMI, which does not have data structures
to retain properties or details about the backends, sys-sage addresses this by caching
the information and presenting it in a technology-agnostic manner. sys-sage specializes
in integrating different sources of partial information in heterogeneous HPC systems,
focusing on their dynamic aspects. We envision to extend the same concepts for
quantum systems. This functionality can be used by many tools within the MQSS,
such as compiler passes, other Figures of Merits and Constraints (FoMaC) libraries, and
QMAP, among others (See Chapter 5).

Like its use in HPC systems, sys-sage is adept at collecting and representing static
and dynamic information about quantum systems.

1. Static Information: This includes immutable details such as the number of qubits
in a backend and the coupling map for superconducting qubit-based systems.

2. Dynamic Information: This covers variable data such as the coupling maps for
neutral atom-based systems and decoherence times, which can change over time or with
different operational conditions.

As sys-sage caches the information after retrieving it from QDMI, it is also possible to
refresh the properties and get their updated values later.

This section introduces an extension to sys-sage specifically for superconducting-
qubit-based QC systems. We focus on superconducting-qubit systems first because,
currently, QDMI implementations exist only for these systems. This choice enables
thorough testing and integration of the new features. Moreover, this extension serves as
a foundational model, facilitating the representation of quantum systems based on other
technologies as a natural progression.

As discussed in Section 4.1.1, sys-sage utilizes the concepts of Components and
DataPaths to represent the internal structure of HPC systems. Building upon these
foundational concepts, we extend their application to represent quantum systems.

35

WO e

[$)]

WO =

'S

4. sys-sage

4.2.1. sys-sage Macros

The following macros have been defined to represent quantum backends, qubits, and
quantum gate types within sys-sage. These macros are used to categorize and handle
different quantum and classical hardware architecture elements.

#define SYS_SAGE_COMPONENT_QUANTUM_BACKEND 2048 /*#*< class QuantumBackend */
#define SYS_SAGE_COMPONENT_QUBIT 4096 /**< class Qubit */

// Size of QuantumGate

#define SYS_SAGE_1Q_QUANTUM_GATE 1 /**< Quantum Gate of size 1-Qubit. */

#define SYS_SAGE_2Q_QUANTUM_GATE 2 /**< Quantum Gate of size 2-Qubits. */

#define SYS_SAGE_MQ_QUANTUM_GATE 4 /**< Quantum Gate of size M-Qubits (where M >2). */
#define SYS_SAGE_NO_TYPE_QUANTUM_GATE O /**< Quantum Gate of size O or invalid size. */

// Type of QuantumGate

#define SYS_SAGE_QUANTUMGATE_TYPE_ID 32 /**< Identity Gate */
#define SYS_SAGE_QUANTUMGATE_TYPE_RZ 64 /**< RZ Gate */
#define SYS_SAGE_QUANTUMGATE_TYPE_CNOT 128 /**< CNOT Gate */
#define SYS_SAGE_QUANTUMGATE_TYPE_SX 256 /**< SX Gate */

5 #define SYS_SAGE_QUANTUMGATE_TYPE_X 512 /**%< X Gate */

#define SYS_SAGE_QUANTUMGATE_TYPE_TOFFOLI 1024 /**< Toffoli Gate */
#define SYS_SAGE_QUANTUMGATE_TYPE_UNKNOWN 2048 /**< Unknown Gate */

Listing 4.6: sys-sage Macros for quantum Backends, Qubits, and Quantum Gates

4.2.2. Quantum Backend

In the proposed HPC-QC architectures, QCs act as accelerators attached to HPC systems,
making them an integral part of the overall computing environment. Despite being
components like any other in the system, QCs stand out due to their unique characteris-
tics and operational principles, which differ significantly from traditional computers.
Regarding their topology, each quantum computer has a distinct set of physical and
logical properties that must be accurately represented to ensure logical storage and
retrieval and effective integration with HPC systems.

To address this need and align with the concept of HPC-QC integration, it is natural
to consider QCs as a specific type of sys-sage Component. Thus, we introduce a new
C++ class derived from the Component class to represent a quantum system. This new
class, called QuantumBackend, encapsulates quantum computers” unique attributes and
functionalities. Importantly, this approach ensures that the distinctive nature of quantum
computing is acknowledged and leveraged while maintaining a strong coherence with
the established HPC infrastructure, providing reassurance about the proposed changes.

QuantumBackend is declared as follows:
class QuantumBackend : public Component
{

// Declaration of members

s
Listing 4.7: Declaration of QuantumBackend

36

4.2. Extension for Superconducting-qubit based systems

The complete declaration of all the members is as shown in listing A.4. Some of the
important members of the class are as follows:

Constructors

® QuantumBackend(Component *parent, int _id = 0, string _name = "QuantumBackend")

— Purpose: Initializes a QuantumBackend object and inserts it into the Compo-
nent Tree as a child of the specified parent component.

— Parameters:
+ parent: The parent Component in the Component Tree.

+ _id: The unique identifier for the QuantumBackend, with a default value
of 0.

+ _name: The name of the QuantumBackend, with a default value of "Quan-
tumBackend".

— Sets:
* componentType to SYS_SAGE_COMPONENT_QUANTUM_BACKEND.

® QuantumBackend(int _id = 0, string _name = "QuantumBackend")

— Purpose: Initializes a QuantumBackend object without automatically inserting
it into the Component Tree.

— Parameters:

+ _id: The unique identifier for the QuantumBackend, with a default value
of 0.

* _name: The name of the QuantumBackend, with a default value of "Quan-
tumBackend".

— Sets:
+ componentType to SYS_SAGE_COMPONENT_QUANTUM_BACKEND.

Members

e int GetNumberofQubits() const
— Purpose: Retrieves the number of qubits in the quantum backend.

— Returns: The number of qubits as an integer.

® void addGate(QuantumGate *gate)
— Purpose: Adds a QuantumGate to the quantum backend.
— Parameters:

+ gate: A pointer to the QuantumGate to be added.

37

4. sys-sage

® std::vector<QuantumGate*> GetGatesBySize(size_t _gate_size) const
— Purpose: Retrieves all gates of a specific size.
— Parameters:

+ _gate_size: The size of the gates to be retrieved.

Returns: A vector of pointers to QuantumGate objects of the specified size.

e std::vector<QuantumGate*> GetAllGateTypes() const
— Purpose: Retrieves all gates in the quantum backend.

— Returns: A vector of pointers to all QuantumGate objects.

® int GetNumberofGates() const
— Purpose: Retrieves the total number of gates in the quantum backend.

- Returns: The number of gates as an integer.

® std::set<std::pair<std::uintl6_t, std::uintl6_t» GetAllCouplingMaps ()

Purpose: Retrieves the coupling map for all qubits in the quantum backend.

Returns: A set of pairs, each representing a coupling between two qubits.

Details: This function iterates over all qubits, retrieves their coupling maps,
and stores the couplings as pairs in a set to ensure uniqueness.

e (DMI_Device GetQDMIDevice()
— Purpose: Retrieves the QDMI_Device associated with the quantum backend.

— Returns: The QDMI_Device object.

® void RefreshTopology()

— Purpose: Refreshes the topology of the quantum backend, updating the
internal representation of the qubits and gates. This function calls the
RefreshProperties() method of every child Qubit and updates the proper-
ties. This is meant to update the dynamic properties when the user requests
them.

The complete documentation, including the private members of this class, can be seen
in Appendix A 4.

4.2.3. Qubit

Qubits are the fundamental units of quantum information. We introduce a new C++
class derived from the Component class to represent qubits accurately. This new C++
class, called Qubit, encapsulates the unique attributes and functionalities of qubits. It is
beneficial to represent qubits as another type of component as they are hierarchically

38

4.2. Extension for Superconducting-qubit based systems

associated with quantum computers and form their architecture. At the same time, they
have certain unique properties that should be treated and represented differently.
Qubit is declared as follows:

1 class Qubit: public Component
2 {
3 // Declaration of members

s 15
Listing 4.8: Declaration of Qubit

The complete declaration of all the members is as shown in listing A.5. Some of the
important members of the class are as follows:

Constructors

® Qubit(Component *parent, int _id = 0, string _name = "Qubit")

— Purpose: Initializes a Qubit object and inserts it into the Component Tree as
a child of the specified parent component.

— Parameters:
+ parent: The parent Component in the Component Tree.
+ _id: The unique identifier for the Qubit, with a default value of 0.
* _name: The name of the Qubit, with a default value of "Qubit".
— Sets:
* componentType to SYS_SAGE_COMPONENT_QUBIT.

e Qubit(int _id = 0, string _name = "Qubit")

— Purpose: Initializes a Qubit object without automatically inserting it into the
Component Tree.

— Parameters:
+ _id: The unique identifier for the Qubit, with a default value of 0.
* _name: The name of the Qubit, with a default value of "Qubit".

— Sets:
* componentType to SYS_SAGE_COMPONENT_QUBIT.

Members

® void SetProperties(double t1, double t2, double readout_error,
double readout_length)
— Purpose: Sets the physical properties of the qubit.

— Parameters:

39

4. sys-sage

+ t1: The relaxation time of the qubit.
+ t2: The dephasing time of the qubit.
+ readout_error: The readout error rate of the qubit.

+ readout_length: The readout length of the qubit.

® const std::vector<int>& GetCouplingMapping() const
— Purpose: Retrieves the coupling mapping of the qubit.

— Returns: A constant reference to a vector representing the coupling mapping.

® void RefreshProperties()

— Purpose: Refreshes the properties of the qubit, updating the internal represen-
tation of the qubit’s properties. This function updates the dynamic properties
when the user requests them.

® std::vector<int> _coupling_mapping

— Purpose: Stores the coupling mapping for the qubit.

e std::string _calibration_time

— Purpose: Stores the last calibration time of the qubit.

Figure 4.3 shows the representation of a single quantum system in sys-sage. The
qubits are represented as children of the quantum backend.

Quantum
Backend

=

Qubit 1 Qubit 2 Qubit 3 Qubit 4 Qubit 5

Figure 4.3.: Representation of a Single Quantum System in sys-sage

Similarly, when multiple quantum systems are available, the representation would be
as shown in Figure 4.4

4.2.4. Relations and Quantum Gate

To accurately model the interactions between system components, we have introduced a
more versatile representation of these interactions through a Relation. Unlike previ-
ous implementations that primarily focused on DataPaths — pathways that represent
information transfer between components—our new approach broadens the scope to
encompass a wider range of interactions, particularly in quantum systems where the no-
tion of traditional data flow does not always apply. In classical HPC systems, DataPath

40

4.2. Extension for Superconducting-qubit based systems

‘ Topology

Quantum (Quantum
Backend 1 Backend 2

Figure 4.4.: Representation of Multiple Quantum Systems in sys-sage

Qubit 1 ‘ Qubit 2 ‘

Qubit 3 ‘

is a valuable abstraction for representing interactions such as data transfer between
processors, memory units, and other components. These pathways are often character-
ized by metrics like bandwidth, latency, and energy consumption, and they inherently
involve a source and a target—however, the dynamics change when we move into the
realm of quantum computing. Quantum systems do not always have a clear-cut source
and target in the same way classical systems do. Instead, they operate with quantum
gates that perform operations on one or multiple qubits, and interactions between qubits
are often defined by a coupling map—a representation of which qubits can interact with
each other.

To address these nuances, we propose a new C++ class called Relation, designed
to capture the general concept of interaction between two components, regardless of
whether those components are part of an HPC system or a quantum computing system.
This class serves as a foundation, with specialized classes derived from it to handle the
specific needs of different computing paradigms.

The Relation class is not just a solution to the challenges of quantum computing. It
is a versatile abstraction designed with flexibility in mind, offering a general interface
for setting and retrieving various properties, such as the type and ID of the interaction
and the components involved. This broad applicability allows for a unified representa-
tion of interactions across different computing domains, facilitating easier integration,
simulation, and analysis of hybrid systems that combine both classical and quantum
elements.

Listing 4.9 shows the basic structure of Relation:

class Relation {

2 public:
3 void SetType(int _type);

4 int GetType();
5 void SetId(int
6 int GetId();

7 void SetName(std::string _name);

8 std: :string GetName() ;

9 virtual “Relation() = default;

10 virtual void Print() = 0;

virtual void DeleteRelation() = 0;

id);

1
12 private:

41

N

4. sys-sage

int id;

int type;

std::string name;

std::vector <Component *> components;

Listing 4.9: Declaration of Relation

As shown in Listing 4.10, the DataPath class is now derived from Relation, preserving
its utility for classical systems while allowing it to fit within a broader framework.

class DataPath : public Relation
{

3 // Declaration of members

)

s
Listing 4.10: DataPath as a Child class of Relation

Quantum gates are fundamental operations that manipulate qubits in quantum
computing. Each gate has unique properties and operational characteristics that must
be accurately represented. A new class called QuantumGate, derived from Relation, is
introduced to represent quantum gates” operations on qubits.

QuantumGate is declared as follows:

class QuantumGate : public Relation

{

3 // Declaration of members

¥
Listing 4.11: Declaration of QuantumGate

Appendix A.6 shows the complete declarations of all the members. Some of the
important members of the class are as follows:

Constructors

* QuantumGate()

— Purpose: Default constructor for QuantumGate.

® QuantumGate(size_t _gate_size)
— Purpose: Initializes a QuantumGate object with a specified gate size.
— Parameters:

+ _gate_size: The number of qubits involved in the quantum gate.

Members

® void SetGateProperties(std::string _name, double _fidelity, std::string
_unitary)

— Purpose: Sets the properties of the quantum gate.

42

4.2. Extension for Superconducting-qubit based systems

— Parameters:
+ _name: The name of the quantum gate.
+ _fidelity: The fidelity of the quantum gate.

+ _unitary: The unitary matrix representation of the quantum gate.

® void SetGateCouplingMap(std::vector<std::vector<Qubit*» _coupling mapping)
— Purpose: Sets the coupling map for the quantum gate.
— Parameters:
+ _coupling_mapping: A vector of vectors representing the coupling map-
ping of qubits.
® std::vector<std::vector<Qubit*»coupling_mapping

— Purpose: Stores the coupling mapping for the quantum gate.

® std::vector<Component*> qubits

— Purpose: Stores the qubits involved in the quantum gate.

It is essential to recognize that gate properties can vary depending on the specific
qubit pair they act upon. For instance, the fidelity of a CNOT gate operation between
qubits 1 and 2 might differ from that of the same CNOT gate operation between qubits
2 and 3. This variability is particularly common in superconducting qubit systems,
while systems based on neutral atoms or trapped ions tend to exhibit more consistent

properties across all qubit pairs.

The QuantumGate class has been meticulously designed to represent both scenarios
accurately and efficiently. Figure 4.5 illustrates how different gate types can be visually
distinguished by color, especially when gate properties vary between qubit pairs. For
example, blue-colored gates might represent 2-qubit CNOT gates, while green-colored
gates could represent 1-qubit Identity gates. If the CNOT gate between qubits 1 and
2 has properties different from those of qubits 2 and 3, these gates can be stored
separately within the system, each with its own unique ID and name. In this case,
the std: :vector<Component#*> qubits will contain the qubits involved in each specific
gate operation. This approach is particularly beneficial for handling the intricacies of
superconducting qubits.

Conversely, if gate properties remain consistent regardless of the qubits they act on,
the std: :vector<Component*> qubits can remain empty, indicating no specific relation
exists between the qubits concerning that quantum gate. This scenario applies more
to systems based on neutral atoms or trapped ions, where uniform gate properties are

common.

In either situation, the QuantumBackend class can store and provide all possible gates
based on their size (i.e., the number of qubits involved) and type (e.g., CNOT, RZ).

43

4. sys-sage

Quantum
Backend

=

Qubit 1 Qubit 2 Qubit 3 Qubit 4 Qubit 5

NSO NSNS

Figure 4.5.: Gates of Different Types in Different Colours

4.2.5. QdmiParser Interface

The QdmiParser interface in sys-sage plays a crucial role in facilitating the interaction
between users and the QDMI library to create and maintain the topology of a quantum
backend. This interface ensures that the internal representation of the quantum system
is both accurate and current. The steps involved in this interaction are outlined below:

Topology Creation and Updating Process

1.

Topology Creation Request:
¢ Step 1: User Initiates Topology Creation:

— The user begins the process by invoking the QdmiParser to create a
new quantum backend topology. This is the initial step where the user
requests the formation of a structured representation of the quantum
backend.

¢ Step 2: QdmiParser Communicates with QDMI Implementation:

— The QdmiParser then communicates with the QDMI implementation to
gather necessary information about the quantum devices, qubits, and
their connections. This involves setting up a session and invoking QDMI
functions to collect data on available hardware components and their
configurations.

¢ Step 3: Provision of Created Topology:

— After successfully gathering and organizing the static information, the
QdmiParser constructs the topology and provides this information to the
user. The static information includes details such as the number of qubits,
their initial states, and the available gates.

Updating Dynamic Information:

¢ Step 4: User Requests Updated Information:

44

4.2. Extension for Superconducting-qubit based systems

— At any later point, the user may need to update certain dynamic proper-
ties of the quantum backend, such as gate fidelities or qubit coherence
times. The user makes a request to QdmiParser for the latest values of
these properties.

Step 5: Request for Dynamic Information via QdmiParser:

— sys-sage utilizes the QdmiParser to send a request to the QDMI library
for the required dynamic information. This involves querying the current
state of specific properties of the quantum backend components.

Step 6: QdmiParser Retrieves Updated Information:

— The QdmiParser communicates with the QDMI library to obtain the latest
data on the requested properties. This ensures that the most recent and
accurate information is retrieved from the QDMI.

Step 7: Updating the Internal Representation:

— The retrieved dynamic information is used by QdmiParser to update the
internal representation of the topology within sys-sage. This step ensures
that the system’s internal model reflects the most current state of the
quantum backend.

Step 8: User Accesses Updated Information:

— The user can now access the updated information from sys-sage’s inter-
nal representation. This allows the user to make decisions or perform
operations based on the latest state of the quantum backend, ensuring
high accuracy and reliability in quantum computing tasks.

Figure 4.6 summarizes the above steps.

®

create
of qu

opology
tum systems

Stati inﬁ?fs nahic info Topology(:)
7
- /
7 9
QdmiParser @

What is the gate

v w fidelity right now?
sys-sage Internal representation Here it is!
__/
. / ©

Figure 4.6.: Flow of Information from QDMI to QdmiParser and the creation of topology

45

4. sys-sage

The members” complete declaration is as shown in Appendix A.7. Some of the
important members of the class are as follows:

Constructor

¢ QdmiParser: :QdmiParser ()

— Purpose: Initializes the QdmiParser object and initiates a QDMI session.

Methods

* Session Initiation:
— int QdmiParser::initiateSession()
+ Purpose: Initiates a session with the QDMI library.
+ Returns: An integer representing the success or failure of the session
initiation.
* Retrieve Available Backends:
— std::vector<QDMI_Device> QdmiParser::get_available_backends ()
+ Purpose: Retrieves a list of all available QDMI devices.
+ Returns: A vector of QDMI_Device objects representing the available
devices.
¢ Get Qubit Properties:
— void QdmiParser::getQubitProperties(QDMI_Device dev, QDMI_Qubit qubit)
+ Purpose: Retrieves various properties of a specific qubit.
+ Parameters:
- QDMI_Device dev: The device containing the qubit.
- QDMI_Qubit qubit: The qubit for which properties are retrieved.

* Create All Quantum Computer Topologies:
— void QdmiParser::createAl1QcTopo(Topology *topo)
+ Purpose: Creates the topology for all available quantum computers.
+ Parameters:
- Topology *topo: The topology object to be populated.
— Topology QdmiParser::createAl1QcTopo ()

+ Purpose: Creates and returns the topology for all available quantum
computers.

+ Returns: A Topology object representing all available quantum comput-
ers.

46

4.3. Results

¢ Create Quantum Computer Topology:

— void QdmiParser: :createQcTopo(QuantumBackend *backend, QDMI_Device
dev)

+ Purpose: Creates the topology for a specific quantum computer.
+ Parameters:

- QuantumBackend *backend: The backend for which the topology is
created.

- QDMI_Device dev: The device containing the quantum computer.
— QuantumBackend QdmiParser::createQcTopo(QDMI_Device dev,
int device_index, std::string device_name)

+ Purpose: Creates and returns the topology for a specific quantum com-
puter.

+ Parameters:
- QDMI_Device dev: The device containing the quantum computer.
- int device_index: The index of the device.
- std::string device_name: The name of the device.

+ Returns: A QuantumBackend object representing the quantum computer.

4.3. Results

This section delves into several key sys-sage API calls that are instrumental in creating
and accessing the topology of a Quantum Backend within the sys-sage. Subsection 4.3.1
shows some of these API calls which enable users to establish the initial configuration of
the quantum backend and dynamically update its properties as needed. By leveraging
these API calls, users can gain detailed insights into the structure and operational
parameters of their quantum systems.

Furthermore, the command-line outputs generated by these API calls are showcased in
Section 4.3.2. These outputs provide a tangible demonstration of how the APIs function,
illustrating the retrieved information and the overall topology configuration process. The
examples include the creation of the quantum backend topology, querying qubit proper-
ties, and retrieving supported quantum gate types, thereby offering a comprehensive
overview of sys-sage’s capabilities in managing quantum system topologies.

Finally, 4.3.3 discusses some of the performance and timing analysis of creating and
retrieving the topology of qunatum backends using sys-sage.

4.3.1. Example Usage

Using the QdmiParser, the topology for all quantum backends can be created. This pro-
cess involves initializing a Topology object and invoking the createAl1QcTopo method

47

N

N -

w

4

4. sys-sage

to populate it with the configuration of the quantum backends.

// Create an instance of the interface
QdmiParser qdmi;

// Use QdmiParser to create the topology of either all the backends or one of the
backends

// Method 1: Topology of all the available Quantum Backends
Topology* qc_topo = new Topology();
qdmi . createAl1QcTopo(qc_topo); // or Topology createAllQcTopo();

// Method 2: Query the total available backends and create the topology of one of them

auto quantum_backends = qdmi.get_available_backends();

QuantumBackend* qc = new QuantumBackend(0, "IBM");

qdmi.createQcTopo(qc, quantum_backends[0]); // or QuantumBackend createQcTopo(QDMI_Device
dev, int device_index = 0, std::string device_name="");

Listing 4.12: Creating Quantum Backend Topology

Subsequently, the complete configuration of the backend can be printed, showcasing
the hierarchical structure of the quantum system:
gc_topo->PrintSubtree() ;

Listing 4.13: Printing the generated topology

When the topology is ready, various properties can be retrieved or queried. For
example, the coupling mappings of all the qubits can be retrieved as follows:
QuantumBackend* qc = dynamic_cast<QuantumBackend*>(qc_topo->GetChild(0));

int total_qubits = gc->CountAllSubcomponents() ;
for (int i = 0; i < total_qubits; i++)

{
Qubit* q = dynamic_cast<Qubit*>(qc->GetChild(i));
std::cout << "Qubit " << i << " has coupling map { ";
auto coupling map = g->GetCouplingMapping();
for (long unsigned j = 0; j < coupling map.size(); j++)
{
std::cout << coupling map[j] << " ";
}
std::cout << "}\n";
}

Listing 4.14: Retrieving the Coupling Mappings of all the qubits

Similarly, qubit properties can be retrieved as such:

for (int i = 0; i < total_qubits; i++)
{
Qubit* q = dynamic_cast<Qubit*>(qc->GetChild(i));
std::cout << "Qubit " << i << " has following properties: \n";

std::cout << " Ti1: " << g->GetT1() << "\n";

std::cout << " T2: " << g->GetT2() << "\n";

std::cout << " Readout Error: " << g->GetReadoutError() << "\n";
std::cout << " Readout Length: " << g->GetReadoutLength() << "\n";

48

4.3. Results

Listing 4.15: Retrieving properties of the qubits

Finally, any information related to the supported gate types can also be retrieved as
follows:

auto _1q_gates = qc->GetGatesBySize (SYS_SAGE_1Q_QUANTUM_GATE) ;

2 auto _2q_gates = qc->GetGatesBySize (SYS_SAGE_2Q_QUANTUM_GATE) ;

if(_1q_gates.size())
{
int size = _1q_gates.size();
std::cout << "Total " << size << " 1-Qubit gate(s)\n";
for (int i = 0; i < size; ++i)
{
std::cout << "Gate name:" << _1q_gates[i]->GetName() << ", ";
std::cout << "Gate size:" << _1q_gates[i]->GetGateSize() << ", ";
std::cout << "Gate fidelity:" << _1q_gates[i]->GetFidelity() << "\n";
}
}

// Similarly for other gate sizes...

Listing 4.16: Retrieving properties of the supported gate types

4.3.2. Outputs

The retrieved topology of the IBM quantum backend is demonstrated in Listing 4.17.
sys-sage successfully interfaces with the QDMI library to display the configuration
of the IBM Backend. The topology is presented hierarchically, where the Quantum
Backend is depicted as the parent with five qubits as its children. Additionally, the
listing showcases the retrieved coupling maps, qubit properties, and gate properties,
offering a comprehensive view of the backend’s structure and capabilities.

[Backend] Initializing IBM via QDMI
[sys—sage] Initiated QDMI session
[sys—sage] QDMI_core_device_count returned 1.
[Backend] Returning available qubits
[sys—sagel Found 6 supported gates.
Printing the configuration of IBM Backend
Topology (name sys—sage Topology) id @ — children: 1 level: 0
Quantum Backend (name QuantumBackend) id © — children: 5 level:

Qubit (name Qubit) id © — children: 0 level: 2

Qubit (name Qubit) id 1 — children: 0 level:
Qubit (name Qubit) id 2 — children: 0 level:
Qubit (name Qubit) id 3 — children: 0 level:

(name Qubit) id 4 — children: 0 level:

Printing Qubit Coupling Mappings for IBM Backend
Qubit 0 has coupling map { 1 }
Qubit 1 has coupling map { 0 2 }
Qubit 2 has coupling map { 1 3 }

49

4. sys-sage

Qubit 3 has coupling map { 2 4 }
Qubit 4 has coupling map { 3 }
Printing Supported Gate Types for IBM Backend
Total 4 1-Qubit gate(s)
Gate name:id, Gate size:1, Gate fidelity:1
Gate name:rz, Gate size:1, Gate fidelity:1
Gate name:sx, Gate size:1, Gate fidelity:1
Gate name:x, Gate size:1, Gate fidelity:1l
Total 1 2--Qubit gate(s)
Gate name:cx, Gate size:2, Gate fidelity:1
Total 1 gate(s) with no type
Gate name:reset, Gate size:0, Gate fidelity:1
Printing Qubit Properties for IBM Backend

Qubit 0 has following properties:

T1l: 63.4878302170839

T2: 112.232455355998

Readout Error: 0.0101

Readout Length: 3022.22222222222

1 has following properties:

T1l: 73.093518301544

T2: 126.83382141649

Readout Error: 0.0117

Readout Length: 3022.22222222222

2 has following properties:

T1l: 32.91818023388

T2: 59.8064388345423

Readout Error: 0.0243

Readout Length: 3022.22222222222

3 has following properties:

T1l: 49.5108456296743

T2: 20.5513082711555

Readout Error: 0.0153

Readout Length: 3022.22222222222

4 has following properties:

T1l: 111.440953419233

T2: 168.762538283892

Readout Error: 0.0219

Readout Length: 3022.22222222222

Listing 4.17: Visualizing Topology of IBM’s Quantum Backend

4.3.3. Performance Analysis of Topology Generation in sys-Sage

In this section, we analyze the time required to generate the topology of various quantum
backends using the sys-sage library. Two of these backends are IBM’s Athens (5 qubits)®
and Cairo (27 qubits)’. The remaining backends are hypothetical, created by replicating

Shttps://docs.quantum. ibm. com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.
FakeAthens

"https://docs.quantum. ibm. com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.
FakeCairo

50

https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeAthens
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeAthens
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeCairo
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeCairo

N

4.3. Results

the configurations of Athens and Cairo to simulate systems with larger numbers of
qubits. In total, we examine 7 backends, with qubit counts ranging from 5 to 10,000.

Hotspot analysis and profiling of the application revealed that the majority of the
time spent creating the topology is due to retrieving information from QDMI, with
sys-sage itself contributing minimal overhead. Three key functions have been identified
for performance investigation:

1. Fetching the information about all qubits of a backend (setQubits): This function
retrieves the necessary qubit data from QDMI to facilitate topology creation.

2. Fetching the information about all gatesets of a backend (setGateSets): This
function consolidates all the information retrieved from QDMI to construct the complete
topology.

3. Creating the topology (createAllqgctopo): This getter function returns the coupling
maps of all qubits. It is a critical function for performance monitoring as its overhead is
expected to grow with the number of qubits, making it a significant focus in the analysis.

To accurately measure the relative performance and timing of the functions involved
in this study, the std: : chrono library was employed for high-resolution timing. Listing
4.18 shows the code snippet illustrating the approach used for createAl1QcTopo.

auto start = std::chrono::high_resolution_clock::now();
qdmi.createAl1QcTopo (gc_topo) ;

3 auto end = std::chrono::high_resolution_clock::now();

std: :chrono: :duration<double, std::milli> duration = end - start;

5 std::cout << "Time taken: " << duration.count() << " milliseconds" << std::endl;

Listing 4.18: Measuring Runtimes of Critical Functions

Here, std: :chrono: :high_resolution_clock precisely measures the time elapsed
during the execution of the function createA11QcTopo (). The process involves recording
the start time immediately before the function call and the end time immediately after.
The difference between these timestamps, calculated using std::chrono: :duration,
represents the duration of the function execution in milliseconds.

To ensure the reliability of the timing data, each function was tested 20 times across
different backends. This repeated measurement helps account for variations in execution
time due to factors like system load or resource availability. The average, minimum, and
maximum timings from these tests are presented in Table 4.1.

The results indicate that the time required to generate the topology (createA11QcTopo)
increases with the number of qubits in the backend. Topology creation is significantly
faster for backends with fewer qubits compared to those with a more significant number
of qubits. This increase is expected due to the greater complexity of managing more
qubits and their interactions.

setQubits function makes multiple QDMI calls to retrieve all necessary qubit in-
formation. The timing difference between setQubits and createAl1lQcTopo indicates
that sys-sage adds only minimal overhead to QDMI during topology generation. This
overhead becomes negligible as the number of qubits increases, particularly beyond 500
qubits.

51

4. sys-sage

createAllQctopo setQubits GetAllCouplingMaps
No. of Qubits (Runtime in ms.) (Runtime in ms.) (Runtime in ms.)

Min Avg Max Min Avg Max Min Avg Max
5 qubits 0.0956 | 0.141 | 0.2207 | 0.0281 | 0.048 | 0.0817 | 0.0027 | 0.00437 | 0.0077
27 qubits 0.2017 | 0.4223 | 0.7652 | 0.1082 0.25 0.5 0.0097 | 0.01829 | 0.0356
100 qubits 0.524 0.725 | 1.0856 | 0.439 0.60 0.9109 | 0.025 0.039 | 0.0785
500 qubits 3.5943 | 4.197 | 5.0786 | 3.3698 | 3.930 | 4.7706 | 0.1298 | 0.1425 | 0.1765
1000 qubits | 11.0729 | 12.379 | 14.949 | 10.7167 | 11.953 | 14.5571 | 0.5094 | 0.563 | 0.7034
5000 qubits 190.01 | 196.039 | 201.731 | 188.165 | 194.412 | 200.043 | 19.4882 | 22.088 | 26.9954
10000 qubits | 765.443 | 836.402 | 970.473 | 760.246 | 831.651 | 966.85 | 88.7008 | 101.718 | 120.75

Table 4.1.: Minimum, Maximum, and Average Runtimes (in ms) for Various Functions
on Different Quantum Backends

For retrieving the coupling maps using GetAl1CouplingMaps, the function takes less
than a millisecond to gather information for backends with fewer than 1,000 qubits.
However, the retrieval time increases linearly with the number of qubits as the amount
of data that needs to be copied and processed grows. Despite this, further optimization
could reduce this timing even more.

Figure 4.7 shows the variations in the timings of these functions as line plots. The
x-axis represents number of qubits and the y-axis is runtime in milliseconds on log-scale.

103 { —e— createQcAllTopo
setQubits
—e— GetAllCouplingMaps
102 5
101_
m
E
S—
Q
E 100
[
10714
10724

T T T T T
5 7 100 500 1000 5000 10000
Number of Qubits

Figure 4.7.: Performance of sys-sage against Number of Qubits

52

1

5

4.4. Representation of Neutral Atoms (NA) and TI systems

4.4. Representation of Neutral Atoms (NA) and TI systems

Quantum systems based on superconducting qubits differ significantly in their physical
characteristics from those based on Neutral Atoms (NA) and Trapped Ions (TI). For
superconducting qubit systems, many properties remain static over time, allowing for a
stable and fixed representation of qubit connectivity and other parameters. However,
several properties can be dynamic in NA and TI systems, changing frequently based on
the experimental conditions or specific operations being performed.

In superconducting qubit systems, the concept of coupling mappings is crucial as it
defines the physical connectivity between qubits, which is generally fixed. Due to their
inherent flexibility, these mappings are less relevant for NA and TI systems. In NA and
TI-based quantum systems, qubits are represented by neutral atoms or ions that can
be dynamically positioned, trapped, and shuttled according to the requirements of the
quantum circuit. This mobility introduces a level of dynamism that is not present in
superconducting qubit systems.

To illustrate the flexibility and extensibility of sys-sage, we have developed a new
class, AtomSite, which is designed to represent quantum backends based on NA and
TI technologies. The AtomSite class inherits from the QuantumBackend class, leveraging
the foundational features provided by the parent class while introducing additional
properties and mappings specific to NA and TI systems.
class AtomSite : public QuantumBackend {
public:

struct SiteProperties {

int nRows;

int nColumns;

int nAods;

int nAodIntermediateLevels;

int nAodCoordinates;

double interQubitDistance;

double interactionRadius;

double blockingFactor;

} properties;

std: :map<std::string, double> shuttlingTimes;
std: :map<std::string, double> shuttlingAverageFidelities;

Listing 4.19: Class Definition for AtomSite

Properties Structure

The SiteProperties structure encapsulates various characteristics of the atom sites:
* int nRows: Number of rows in the atomic array.
* int nColumns: Number of columns in the atomic array.

* int nAods: Number of acousto-optic deflectors (AODs).

53

4. sys-sage

e int nAodIntermediateLevels: Number of intermediate levels in AODs.
* int nAodCoordinates: Number of coordinates managed by AODs.

® double interQubitDistance: Distance between qubits in the array.

® double interactionRadius: Radius within which qubits interact.

* double blockingFactor: Factor indicating the blocking effect between qubits.

Shuttling Times and Fidelities

In addition to the properties structure, the AtomSite class maintains two maps:

® std::map<std::string, double> shuttlingTimes: This map stores the times re-
quired for shuttling operations between different sites (e.g. moving, aod_moving,
etc.).

e std::map<std::string, double> shuttlingAverageFidelities: Records the av-
erage fidelities of the shuttling operations.

Although the AtomSite class has not been tested due to the lack of a correspond-
ing QDMI implementation, it demonstrates that extending sys-sage to support other
quantum technologies is a straightforward process. By following the established design
patterns, developers can seamlessly integrate additional quantum backend types into
the sys-sage, ensuring broad applicability and future-proofing the system for emerging
quantum technologies.

54

5. sys-sage Integration within MQSS

The sys-sage library offers significant advantages in caching data provided by the QDMI
library and delivering this data to users via API calls. By acting as an intermediary,
sys-sage mitigates the need for libraries to make numerous QDMI calls (typically
implemented through C-based functions). Instead, these libraries can utilize a higher-
level C++ interface to efficiently fetch all required properties. This approach enhances
memory safety, reduces the number of function calls, and results in a cleaner, more
maintainable implementation.

In this chapter, we explore three primary use cases of sys-sage within the context
of MQSS. These use cases illustrate how sys-sage can be effectively integrated into
various components to optimize performance and streamline interactions with quantum
backends. The identified use cases are:

1. Figures of Merits and Constraints (FoMaC): The primary objective of the FoMaC
is to create an abstraction layer that integrates various quantum technologies.
sys-sage is an experimental addition to MQSS that enhances this integration in
two ways: as a standalone library within FoMaC, providing a unified interface to
manage quantum backend properties, and as a third-party library that streamlines
access to quantum hardware information. This dual functionality of sys-sage may
improve the efficiency and effectiveness of all the tools that require seamless access
to detailed backend properties.

2. Compiler Passes: Platform-dependent compiler passes require the physical prop-
erties of the quantum backends. Here, sys-sage can efficiently manage and provide
quantum backend properties to different compiler passes within MQSS. This in-
tegration ensures the compiler can access accurate and up-to-date information,
facilitating better optimization and code generation for quantum circuits.

3. MQT QMAP: sys-sage is a reliable and consistent aid in integrating with MQT
QMAP, offering a reliable and consistent interface for accessing quantum backend
properties. This integration supports the mapping of quantum circuits onto
physical hardware, ensuring that the mappings are optimized based on the latest
backend characteristics.

Each of these use cases will be discussed in detail in the subsequent sections of
this chapter. Section 5.1 examines the application of sys-sage within FoMac, focusing
on its effectiveness in providing a clean and efficient method for retrieving quantum
backend information. Section 5.2 delves into sys-sage use within the passes repository,

55

5. sys-sage Integration within MQSS

highlighting its contributions to enhancing the compilation process. Finally, Section
5.3 explores sys-sage integration with MQT QMAP, showcasing its role in optimizing
quantum circuit mappings.

5.1. Figures of Merits and Constraints (FoMaC)

FoMaC retrieves information from quantum devices using the QDMI and computes
and caches complex queries to enhance functionality. In this context, sys-sage is an
experimental addition to MQSS that can be utilized in two distinct ways.

Firstly, sys-sage can function as a standalone FoMaC library within MQSS. By serving
as an independent repository of quantum backend properties, sys-sage can provide a
unified interface through which other tools can access and manage detailed information
about quantum backends. For instance, this integration may allow the tools to efficiently
query and retrieve essential data required for the mapping and scheduling of quantum
circuits, thus enhancing the overall efficiency and effectiveness of the mapping process.

Alternatively, sys-sage can be a third-party library that other FoMaC libraries/imple-
mentations can leverage. In this capacity, sys-sage facilitates the abstraction of complex
backend details, enabling various FoMaC libraries to interact with quantum hardware
without dealing directly with the intricacies of QDMI. This approach streamlines the
process of obtaining backend properties and performing any post-analysis.

While sys-sage offers significant potential for enhancing FoMaC, it’s important to
note that its integration may have challenges or limitations. For instance, compatibility
issues with existing tools or the need for additional integration resources could be
potential hurdles. However, by providing these two flexible modes of integration, sys-
sage significantly contributes to the advancement of quantum computing technologies
within the MQSS, offering a versatile solution for managing and utilizing quantum
backend properties. This experimental work demonstrates the potential of sys-sage
to enhance FoMaC'’s capabilities, whether as a core component or as a supplementary
third-party tool.

In this section, we discuss the enhancements made to the ‘fomac.cpp’ file, part of
the FoMaC repository, by replacing traditional QDMI calls with sys-sage calls. This
replacement aims to streamline the process of retrieving available quantum devices,
making the implementation more efficient and maintainable.

5.1.1. Original Implementation

The original version of the ‘fomac.cpp’ file uses direct QDMI calls to fetch available
quantum devices. The function FOMAC_available_devices() is responsible for retriev-
ing these devices and involves multiple steps to interact with the QDMI library, as
shown below:

extern "C" std::vector<QDMI_Device> FOMAC_available_devices()

{

int count;

56

5.1. Figures of Merits and Constraints (FoMaC)

1 QDMI_core_device_count (NULL, &count);

5 if (count == 0){

6 std::cout << " [FoMaCl........ocoo.... QDMI_core_device_count from QDMI returned
0." << std::endl;

7 return std::vector<QDMI_Device>();

10 std::vector<(DMI_Device> registeredDevices;

11 QInfo info;

12 QInfo_create(&info);

13

14 for(int i = 0; i < count; i++){

15 QDMI_Device device;
16 QDMI_core_open_device(NULL, i , &info, &device);
17 registeredDevices.push_back(device) ;

20 return registeredDevices;

Listing 5.1: Original Implementation of FOMAC,vailablegevices()

In this implementation, the function first retrieves the number of available devices
using QDMI_core_device_count (). It then iterates through each device, opening it with
QDMI_core_open_device() and adding it to the registeredDevices vector.

5.1.2. Implementation with sys-sage

This version leverages sys-sage to simplify and improve the process of fetching available
quantum devices. By using sys-sage, we reduce the number of direct QDMI calls and
achieve a cleaner, more maintainable codebase. The updated function is shown below:

| extern "C" std::vector<QDMI_Device> FOMAC_available_devices()

2 {

3 // QdmiParser: sys-sage’s interface to qdmi (for retrieving the static topology)

4 QdmiParser qdmi;

5 const auto quantum_backends = qdmi.get_available_backends(); // Returns a list of all
the backends

6 std::cout << " [FoMaC]............. Total "<< quantum_backends.size() << " devices
found.\n";

8 std: :vector<QDMI_Device> registeredDevices;

9 for (const auto& device : quantum_backends) {

10 registeredDevices.emplace_back(device);

11 ¥

12

13 return registeredDevices;

14 }

Listing 5.2: Modified Implementation with sys-sage

In this improved implementation, the QdmiParser class from sys-sage is used to
retrieve the list of available quantum backends through the get_available_backends ()

57

5. sys-sage Integration within MQSS

method. This method returns a list of all available backends, significantly simplifying
the process compared to the original version. The retrieved backends are then stored in
the registeredDevices vector.

5.1.3. Output

FoMaC_available_devices is executed within the test suite FoMacTest to verify its
functionality. The console output is as follows:

[Backend] Initializing IBM via QDMI
[sys—sage] Initiated QDMI session

[sys—sage] QDMI_core_device_count returned 1.
[FoMaC] Total 1 devices found.

Listing 5.3: Output of FoMaCTest

The console output from running FoMaC_available_devices indicates a sequence of
steps beginning with the initialization of the IBM backend through the QDMI, as shown
by [Backend]............. Initializing IBM via QDMI. A successful initiation of a
QDMI session is confirmed by [sys-sagel............... Initiated QDMI session,
establishing the necessary connection between the test framework and the QDMI library.
The call to QDMI_core_device_count function returns a value of 1, as indicated by
[sys-sagel............... QDMI_core_device_count returned 1, revealing that one
quantum device is available. Finally, [FoMaC]............. Total 1 devices found
summarizes the test outcome, confirming that the QDMI library correctly identified one
available device, enabling further operations or tests with this device.

5.1.4. Advantages of using sys-sage

Replacing direct QDMI calls with sys-sage offers several advantages:

¢ Cleaner Implementation: The use of a higher-level C++ interface provided by sys-
sage results in cleaner and more maintainable code. By abstracting the complexities
of QDMI interactions, the code becomes easier to read and manage.

¢ Enhanced Memory Safety: sys-sage, being a C++ library, provides better memory
safety compared to direct C-based QDMI calls. This reduces the risk of memory-
related issues, such as leaks or buffer overflows.

* Reduced Number of Function Calls: By consolidating multiple QDMI calls
into a single sys-sage call, the number of function calls is reduced. This can
potentially improve performance by minimizing the overhead associated with
frequent function invocations.

¢ Centralized Data Management: sys-sage acts as a centralized repository for
quantum backend properties, allowing for efficient data caching and retrieval. This
centralized approach ensures that all necessary information is readily available

58

5.2. Compiler Passes

without repeated queries to the QDMI library. Further, the QdmiParser object
can be used to create the topology of the quantum devices and fetch any other
information in a simpler manner.

Overall, the integration of sys-sage into the FoMaC repository demonstrates the
potential for more efficient and effective management of quantum backend properties,
paving the way for further enhancements and optimizations in the future.

5.2. Compiler Passes

The passes repository is dedicated to developing custom LLVM-compliant passes to
optimize quantum circuits represented in the Quantum Intermediate Representation
(QIR). Utilizing the robust infrastructure provided by LLVM, these passes are specifically
designed to enhance the performance and efficiency of quantum computations. The
suite of optimization tools within the passes repository addresses the unique challenges
of QIR-based quantum circuits, enabling more effective quantum processing.

Compiler passes are integral to MQSS, as they enable platform-dependent optimiza-
tions by leveraging the physical properties of quantum backends. sys-sage can play a
crucial role in this context by efficiently managing and providing quantum backend
properties to various compiler passes. By acting as an intermediary and providing
streamlined API calls, sys-sage ensures the compiler can access accurate and up-to-date
information about the quantum hardware without bothering about the underlying
low-level QDMI implementation. This integration contributes to better optimization
and improves code generation for quantum circuits, ultimately enhancing the overall
performance of quantum applications.

To investigate this integration, we examine the modifications made to ArchitectureFactory.cpp,

a key component of the passes repository.

The createArchitecture() method creates an object to the Architecture object of
the QMAP library. This is further used for the target-specific compilation passes and
even mapping the quantum circuits.

5.2.1. Original Implementation

The original version of the code relied heavily on direct QDMI calls to query and manage
the properties of quantum backends. Here is the original implementation:

namespace mgt {

3 Architecture createArchitecture(QDMI_Device dev) {

int num_qubits = 0;

int err = QDMI_query_qubits_num(dev, &num_qubits);
if (err !'= QDMI_SUCCESS)

throw std::runtime_error("Could not get number of qubits via QDMI");
if (num_qubits == 0)

59

5. sys-sage Integration within MQSS

throw std::runtime_error ("Number of qubits cannot be zero");

QDMI_Qubit qubits;

// create a coupling map
err = QDMI_query_all_qubits(dev, &qubits);

if (err !'= QDMI_SUCCESS || qubits == NULL)
throw std::runtime_error("Could not get qubits via QDMI");

CouplingMap cm{};
for (int i = 0; i < num_qubits; i++)

{

if (qubits[i].coupling mapping != NULL && qubits[i].size_coupling_mapping)

{

for (int j =

0; j < qubits[i].size_coupling_mapping; j++)

cm.emplace(i, qubits[i].coupling mapping[jl);

free(qubits) ;

return {static_cast<std::uint16_t>(num_qubits), cm};

}

} // namespace mqt

Listing 5.4: Original Version of ArchitectureFactory.cpp

5.2.2. Implementation with sys-sage

In the modified version, sys-sage is used to streamline the retrieval of quantum back-

end properties, resulting in cleaner and more maintainable code. Here is the revised

implementation:

namespace mqt {

Architecture createArchitecture(QDMI_Device dev) {

// QdmiParser:

sys-sage’s interface to qdmi (for retrieving the static topology)

QdmiParser qdmi;

// An instance to QuantumBackend for storing the topology
QuantumBackend* qc = new QuantumBackend(0, "IBM_Backend");

// Create the

topology

qdmi.createQcTopo(qc, dev);

std::uintl6_t

CouplingMap cm

delete qc;

num_qubits = qc->GetNumberofQubits();
= qc->GetAllCouplingMaps();

return {num_qubits, cm};

60

5.3. QMAP

Listing 5.5: Modified Version of ArchitectureFactory.cpp

5.2.3. Advantages of the Replacement

The updated implementation using sys-sage offers several advantages:

Enhanced Code Maintainability: By abstracting the complexity of direct QDMI
calls, the new version of the code is more readable and easier to maintain. The use
of sys-sage’s higher-level C++ interface simplifies the interaction with quantum
backend properties.

Improved Memory Safety: The new approach reduces the risk of memory-related
errors. The sys-sage library handles the memory management of quantum backend
properties, ensuring a more robust implementation.

Efficient Data Management: sys-sage efficiently caches and manages the data
provided by QDMI, leading to a more efficient and streamlined data retrieval
process.

Cleaner Implementation: By utilizing sys-sage, the code achieves a cleaner and
more modular structure. This separation of concerns enhances the overall design
and allows for easier future extensions and modifications.

Reduced Number of Function Calls: By consolidating multiple QDMI calls
into a single sys-sage call, the number of function calls is reduced. This can
potentially improve performance by minimizing the overhead associated with
frequent function invocations.

The integration of sys-sage within the passes repository exemplifies how leveraging
this library can significantly improve the management and retrieval of quantum backend
properties, ultimately leading to more effective compiler optimizations.

5.3.

QMAP

QMAP is an open-source Munich Quantum Toolkit (MQT) tool that maps quantum
circuits to specific quantum computing architectures [WB23]. The primary challenge
it addresses is ensuring that the gates in a quantum circuit align with the topology of
the target architecture, facilitating effective execution while minimizing additional gate
counts and maintaining fidelity. QMAP provides automated and user-friendly methods
for addressing the quantum circuit mapping problem, thereby aiding developers in
implementing quantum algorithms on actual quantum machines.

61

5. sys-sage Integration within MQSS

Integrating sys-sage with QMAP

To store the architecture properties of a quantum backend, QMAP employs class
Architecture that encapsulates all architecture-related information. Initially, we con-
sidered replacing the Architecture class with sys-sage. However, this approach risked
making sys-sage overly specific to QMAP, compromising its universality. For instance,
QMAP utilizes specific typedefs like Edge, CouplingMap, and QubitSubset tailored to its
circuit mappers, which may not be necessary for other tools. Integrating these custom
data types into the core structure of sys-sage would be redundant, as not all tools require
such specific return types or parameters.

Instead of replacing the Architecture class entirely, we opted for a more flexible
solution. QMAP supports multiple input methods for importing quantum backend
properties, including text files, JSON files, and QDMI. By leveraging sys-sage to import
all backend properties, QMAP can reduce the number of required calls, streamlining
the process as shown in the example with the passes repository.

We propose creating an external interface within sys-sage to handle tool-specific
calls. For instance, QMAP can include a header file (for example, mqt-sys-sage.h)
containing functions that utilize sys-sage’s interface to provide properties compatible
with QMAP’s data structures. This approach allows for seamless extension to other
libraries or tools without altering sys-sage’s internal representation.

Example Integration Code

Listing A.8 contains the example of functions in mqt-sys-sage.h that act as an external
interface to QMAP. For example, one of these functions, GetAllCouplingMaps, is as
shown in Listing 5.6.

1 using Edge = std::pair<std::uintl6_t, std::uintl6_t>;
2 using CouplingMap = std::set<Edge>;

3 using QubitSubset = std::set<std::uintl6_t>;

4

5 CouplingMap GetAllCouplingMaps(QuantumBackend backend) {

6 CouplingMap result;

7 for(auto i = 0; i < num_qubits; ++i) {

8 Qubit* q = dynamic_cast<Qubit*>(GetChild(i));

9 auto coupling map = q->GetCouplingMapping();

10 for (size_t j = 0; j < coupling map.size(); ++j) {
1 result.emplace(i, coupling_mapl[jl);

12 T

13 }

14 return result;

Listing 5.6: External Interface for QMAP

GetAllCouplingMaps takes an object of type QuantumBackend (which contains the
topology of a quantum backend) and returns a CouplingMap that can be used by QMAP.

62

5.3. QMAP

As shown in Listing 5.5, this function can be used to create an object of the Architecture
class, which internally stores the topology of the quantum backend.

This integration ensures that QMAP can efficiently utilize sys-sage to retrieve backend
properties, reducing complexity and enhancing compatibility with other tools and
libraries.

63

6. Conclusion and Future Research Outlook

In this thesis, we have explored and extended the capabilities of sys-sage to enhance
its functionality for quantum systems. The primary objective was to create a unified
interface that seamlessly integrated various quantum technologies. By providing a
higher-level representation of quantum technologies through static and dynamic topolo-
gies, our work aims to facilitate better management and interaction with quantum
systems.

Additionaly, the core structure of QDMI has been thoroughly discussed, and a
significant proposal has been put forward — the QDMI implementation for the IBM
backends. This implementation, which has been seamlessly integrated with sys-sage
and other MQSS tools, serves the crucial function of retrieving and providing platform-
specific properties. Its successful integration with the QRM further underscores its
potential impact.

The extensions made to the sys-sage library to accommodate the representation of
quantum systems have focused on universality and compatibility with various tools and
libraries. The proposed API calls for creating and interacting with these representations
were thoroughly detailed, offering insights into how users can leverage sys-sage for
various quantum computing tasks, explicitly creating the topology of the systems.
Extensions include new C++ classes derived from Component, such as QuantumBackend
and Qubit. A newer abstraction for representing the interaction of HPC and QC
components, called Relation, has been introduced. DataPath for HPC systems and
QuantumGate for QC systems are derived from the Relation class. These abstractions
and extensions will help efficiently and accurately represent HPC-QC systems.

The extensions have been meticulously tested with dummy IBM backends, and their
integration, compatibility, and performance have been investigated. The integration is
promising, and it can be concluded that sys-sage can accurately represent quantum
computers’ topology and platform characteristics.

Further, the performance implications of the topology generation and retrieval have
also been investigated. It has been observed that sys-sage adds only minimal overhead
to QDMI during topology generation. This overhead becomes negligible as the number
of qubits increases, particularly beyond 500 qubits. Also, one of the most important
getter functions, GetAllCouplingMaps, takes less than a millisecond to provide the
coupling maps of all the qubits for backends with less than 1000 qubits. . Despite this,
further optimization could improve the performance of such functions.

One of the key areas of investigation in this thesis has been the potential for integrating
sys-sage with other tools within the MQSS ecosystem, including FoMaC, passes, and
QMAP. While investigating the possibilities of integration, sys-sage has been able to

65

6. Conclusion and Future Research Outlook

reduce the number of native QDMI calls and provide all the information with higher-
level C++ based API calls. This integration could significantly enhance quantum
computing tools” overall functionality and interoperability, fostering a more cohesive
environment for quantum research and development.

6.1. Future Work

Continued efforts could focus on expanding sys-sage integration with additional quan-
tum computing tools and platforms, potentially incorporating more diverse quantum
technologies. Specifically, the integration with quantum computers based on neutral
atoms and trapped ions systems should be further tested as soon as their QDMI imple-
mentations are available.

This thesis represents an experimental work investigating whether sys-sage, a library
traditionally centered on HPC, can be effectively used for QC systems. While this
investigation has been conducted with existing tools, there is ample opportunity for
future efforts to focus on checking its compatibility and finding more use cases with
other tools within or outside MQSS. For instance, one promising future opportunity is
the integration of sys-sage with the Munich Quantum Portal, a web-based portal for
accessing and managing quantum resources.

Additionally, future research could explore optimization techniques to enhance the
performance and efficiency of sys-sage in handling complex quantum system represen-
tations. As time progresses, the number of physical qubits will surely increase. Ensuring
that the internal representation can support retrieving and providing ample information
with the best performance will become critical.

Further, sys-sage’s current role focuses on retrieving information, storing it internally,
and providing it via API calls. sys-sage acts as a caching database, which uses QDMI to
store the physical characteristics of backends. Future efforts can also focus on enhanced
post-processing, analyses, and correlation of the retrieved information. For example, it
could be possible to analyze the available coupling maps and identify the best pair of
qubits for a particular operation.

Finally, efforts can be put into testing and investigating sys-sage for unified HPC-QC
systems. A user could retrieve the topology of the classical and quantum systems and use
that information to schedule tasks accordingly. This potential for unification promises
efficient resource usage and opens up new possibilities for the optimal utilization of
quantum computing power, instilling hope for the future of quantum computing.

66

w

3l

®

©

A. Appendix

A.1. QDMIOpenClose Test

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <qdmi.h>
#include "qdmi_internal.h"

int QDMI_session_init(QInfo info, QDMI_Session *session);
int QDMI_session_finalize(QDMI_Session session);

) QDMI_Library find_library_by_name(const char *libname) ;

#define CHECK_ERR(a, b) \
{ \
if (a !'= QDMI_SUCCESS) \
{ \
printf("\n[Error]: %i at %s", a, b); \
return 1; \
} \
}

int main(int argc, char **argv)

{

// Initialization of Structures
QInfo info;

QDMI_Session session = NULL;
QDMI_Library lib;

QDMI_Device device;

int err;

device = malloc(sizeof (struct QDMI_Device_impl_d));
if (device == NULL)
{
printf ("\n[ERROR] : Device could not be created");
exit (EXIT_FAILURE);

err = QInfo_create(&info);
CHECK_ERR (err, "QInfo_create");

// Session Initialization
err = QDMI_session_init(info, &session);

67

A. Appendix

CHECK_ERR(err, "QDMI_session_init");

// Loading IBM Backend Library
1lib = find_library_by_name("/home/diogenes/bin/lib/libbackend_ibm.so");
if (!1ib)
{
printf ("\n[ERROR]: Library could not be found");
exit (EXIT_FAILURE) ;
}

device->library = *1ib;

// Querying Device Information

int num_qubits;

err = (QDMI_query_qubits_num(device, &num_qubits);
CHECK_ERR(err, "QDMI_query_qubits_num");

int status = 0;
err = QDMI_device_status(device, device->library.info, &status);
CHECK_ERR(err, "QDMI_device_status");

printf (" [QDMIOpenClose] Found %d qubits.\n", num_qubits);

// Session Finalization

err = QDMI_session_finalize(session);

CHECK_ERR(err, "QDMI_session_finalize");

printf (" [QDMIOpenClose] Closed connection to the device.\n");

err = QInfo_free(info);
CHECK_ERR(err, "QInfo_free");

// Cleanup
free(device);

printf ("\n[DEBUG]: Test Finished\n\n");
return 0;

Listing A.1: QDMIOpenClose Test

A.2. QDMI Integrated with Quantum Resource Manager

[qresourcemanager_d]..Listening on queue queue_manager
[Backend] Initializing IBM via QDMI
[Backend] Fetching config file
[qresourcemanager_d]..Received a QuantumTask

[Generator Runner]....Invoking generator: libgenerator_cutter.so
[Generator] Returning generated sub—circuits to the Generator
Runner

[Scheduler Runner]....Invoking scheduler: libscheduler_round_robin.so

68

A.2. QDMI Integrated with Quantum Resource Manager

Available device found: /libbackend_ibm.so
[Scheduler] 1 available device(s)
[Scheduler] Choosing /libbackend_ibm.so as target device for job
with ID 0
[Backend] Returning available qubits
[FoMaC] Coupling mapping of qubit[O]:
[FoMaC] Coupling mapping of qubit[1]:
[FoMaC] Coupling mapping of qubit[2]:
[FoMaC] Coupling mapping of qubit[3]:
[FoMaC] Coupling mapping of qubit[4]: 3}
[Selector Runner] Invoking selector: libselector_manual.so
[Selector] Returning list of passes to the Selector Runner
[Pass Runner] Flag inserted: "lrz_supports_qgir" = true
[Pass Runner] Applying pass: QirQMapPass
[Backend] Returning available qubits
Warning: gate not supported: __quantum__rt _initialize
Warning: gate not supported:
__quantum__rt__tuple_record_output
Warning: gate not supported:
__quantum__rt__result_record_output
Warning: gate not supported:
__quantum__rt__result_record_output
[Pass Runner] Applying pass: QirDivisionByZeroPass
[Pass Runner] Applying pass: QirXCnotXReductionPass
[Pass Runner] Applying pass: QirCommuteCnotRxPass
[Pass Runner] Applying pass: QirCommuteRxCnotPass
[Pass Runner] Applying pass: QirCommuteCnotXPass
[Pass Runner] Applying pass: QirCommuteXCnotPass
[Pass Runner] Applying pass: QirCommuteCnotZPass
[Pass Runner] Applying pass: QirCommuteZCnotPass
[Pass Runner] Applying pass: QirAnnotateUnsupportedGatesPass
[Pass Runner] Applying pass: QirPlaceIrreversibleGatesInMetadataPass
Reversible gate found: __quantum__qis__h__body
Reversible gate found: __quantum__qis__cx__body
Reversible gate found: __quantum__qis__x__body
Reversible gate found: __quantum__qis__z__body
Reversible gate found: __quantum__qis__y__body
Reversible gate found: __quantum__qis__s__body
Reversible gate found: __quantum__qis__cz__body
Reversible gate found: __quantum__qis__mz__body
Runner] Applying pass: QirCNotToHCZHDecompositionPass
Runner] Applying pass: QirSwapToCnotsDecompositionPass
Runner] Applying pass: QirCZToHCnotHDecompositionPass
Runner] Applying pass: QirFunctionAnnotatorPass
Runner] Applying pass: QirRedundantGatesCancellationPass
Redundant gate pair found: __quantum__qgis__cx__body
Redundant gate pair found: __quantum__qgis__cx__body
Redundant gate pair found: __quantum__qis__mz__body
Redundant gate pair found: __quantum__qis__mz__body
Applying pass: QirGroupingPass
Applying pass: QirDeferMeasurementPass

69

A. Appendix

[Pass Runner] Applying pass:
QirRemoveBasicBlocksWithSingleNonConditionalBranchInstsPass
[Pass Runner] Applying pass: QirQubitRemapPass
[Pass Runner] Applying pass: QirResourceAnnotationPass
[Pass Runner] Applying pass: QirHadamardAndXGateSwitchPass
[Pass Runner] Applying pass: QirHadamardAndYGateSwitchPass
[Pass Runner] Applying pass: QirHadamardAndZGateSwitchPass
[Pass Runner] Applying pass: QirXGateAndHadamardSwitchPass
[Pass Runner] Applying pass: QirYGateAndHadamardSwitchPass
[Pass Runner] Applying pass: QirZGateAndHadamardSwitchPass
[Pass Runner] Applying pass: QirSToSDaggerPass
[Pass Runner] Applying pass: QirSDaggerToSPass
[Pass Runner] Applying pass: QirReverseCnotPass
Reversing Cnot
[Pass Runner] Applying pass: QirSwapAndCnotReplacementPass
[Pass Runner] Applying pass: QirFunctionReplacementPass
Function has 'replaceWith’ attribute:
__quantum__qis__cz__body
Function is a replacement
__quantum__qis__cz_to_hcnoth__body
[Pass Runner] Applying pass: QirReplaceConstantBranchesPass
[Pass Runner] Applying pass: QirRemoveNonEntrypointFunctionsPass
[Backend] QDMI_control_pack_qgir
[Backend] QDMI_control_submit

[Scheduler Runner]....Invoking scheduler: libscheduler_round_robin.so

[FoMaC] Available device found: /libbackend_ibm.so
[Scheduler] 1 available device(s)
[Scheduler] Choosing /libbackend_ibm.so as target device for job
with ID 1
[Backend] Returning available qubits
[FoMaC] Coupling mapping of qubit[O]:
[FoMaC] Coupling mapping of qubit[1]:
Coupling mapping of qubit[2]:
Coupling mapping of qubit[3]:
Coupling mapping of qubit[4]: { 3 }
Invoking selector: libselector_manual.so
Returning list of passes to the Selector Runner
Flag inserted: "lrz_supports_qgir" = true
Applying pass: QirQMapPass
Returning available qubits
Warning: gate not supported: __quantum__rt__initialize
Warning: gate not supported:
__quantum__rt__tuple_record_output
Warning: gate not supported:
__quantum__rt__result_record_output
Warning: gate not supported:
__quantum__rt__result_record_output
[Pass Runner] Applying pass: QirDivisionByZeroPass
[Pass Runner] Applying pass: QirXCnotXReductionPass
[Pass Runner] Applying pass: QirCommuteCnotRxPass
[Pass Runner] Applying pass: QirCommuteRxCnotPass

70

A.2. QDMI Integrated with Quantum Resource Manager

Runner] Applying pass: QirCommuteCnotXPass
Runner] Applying pass: QirCommuteXCnotPass
Runner] Applying pass: QirCommuteCnotZPass
Runner] Applying pass: QirCommuteZCnotPass
Runner] Applying pass: QirAnnotateUnsupportedGatesPass
Runner] Applying pass: QirPlacelrreversibleGatesInMetadataPass
Reversible gate found: __quantum__qis__h__body
Reversible gate found: __quantum__qgis__cx__body
Reversible gate found: __quantum__qgis__x__body
Reversible gate found: __quantum__qis__z__body
Reversible gate found: __quantum__qgis__y__body
Reversible gate found: __quantum__qgis__s__body
Reversible gate found: __quantum__qgis__cz__body
Reversible gate found: __quantum__qgis__mz__body
Runner] Applying pass: QirCNotToHCZHDecompositionPass
Runner] Applying pass: QirSwapToCnotsDecompositionPass
Runner] Applying pass: QirCZToHCnotHDecompositionPass
Runner] Applying pass: QirFunctionAnnotatorPass
Runner] Applying pass: QirRedundantGatesCancellationPass
Redundant gate pair found: __quantum__qgis__cx__body
Redundant gate pair found: __quantum__qgis__cx__body
Redundant gate pair found: __quantum__qis__mz__body
Redundant gate pair found: __quantum__qgis__mz__body
Applying pass: QirGroupingPass
[Pass Runner] Applying pass: QirDeferMeasurementPass
[Pass Runner] Applying pass:
QirRemoveBasicBlocksWithSingleNonConditionalBranchInstsPass
[Pass Runner] Applying pass: QirQubitRemapPass
[Pass Runner] Applying pass: QirResourceAnnotationPass
[Pass Runner] Applying pass: QirHadamardAndXGateSwitchPass
[Pass Runner] Applying pass: QirHadamardAndYGateSwitchPass
[Pass Runner] Applying pass: QirHadamardAndZGateSwitchPass
[Pass Runner] Applying pass: QirXGateAndHadamardSwitchPass
[Pass Runner] Applying pass: QirYGateAndHadamardSwitchPass
[Pass Runner] Applying pass: QirZGateAndHadamardSwitchPass
[Pass Runner] Applying pass: QirSToSDaggerPass
[Pass Runner] Applying pass: QirSDaggerToSPass
[Pass Runner] Applying pass: QirReverseCnotPass
Reversing Cnot
[Pass Runner] Applying pass: QirSwapAndCnotReplacementPass
[Pass Runner] Applying pass: QirFunctionReplacementPass
Function has ’'replaceWith’ attribute:
__quantum__qgis__cz__body
Function is a replacement
__quantum__qis__cz_to_hcnoth__body
[Pass Runner] Applying pass: QirReplaceConstantBranchesPass
[Pass Runner] Applying pass: QirRemoveNonEntrypointFunctionsPass
[Backend] QDMI_control_pack_qir
[Backend] QDMI_control_submit
[qresourcemanager_d]..Adapted QIR sent to the Quantum Daemon

Listing A.2: QDMI Integrated with Quantum Resource Manager

71

A. Appendix

A.3. Sample Topology of a HPC system

—— Parsing Hwloc output from file ./example_data/skylake_hwloc.xml
—— End parseHwlocOutput
Total num HW threads: 24
Printing the whole tree
Topology (name sys—sage Topology) id © — children: 1 level:
Node (name Node) id 1 — children: 2 level: 1
Chip (name socket) id @ — children: 1 level: 2
Cache (name Cache) id 7 — children: 2 level: 3
NUMA (name Numa) id © — children: 6 level: 4
Cache (name Cache) id 6 — children: 1 level: 5
Cache (name Cache) id 5 — children: 1 level: 6
Core (name Core) id © — children: 1 level: 7
HW_thread (name HW_thread) id © — children:
Cache (name Cache) id 11 — children: 1 level: 5
Cache (name Cache) id 10 — children: 1 level: 6
Core (name Core) id 1 — children: 1 level: 7
HW_thread (name HW_thread) id 1 — children:
Cache (name Cache) id 15 — children: 1 level: 5
Cache (name Cache) id 14 — children: 1 level: 6
Core (name Core) id 2 — children: 1 level: 7
HW_thread (name HW_thread) id 2 — children:
Cache (name Cache) id 19 — children: 1 level: 5
Cache (name Cache) id 18 — children: 1 level: 6
Core (name Core) id 8 — children: 1 level: 7
HW_thread (name HW_thread) id 3 — children:
Cache (name Cache) id 23 — children: 1 level: 5
Cache (name Cache) id 22 — children: 1 level: 6
Core (name Core) id 9 — children: 1 level: 7
HW_thread (name HW_thread) id 4 — children:
Cache (name Cache) id 27 — children: 1 level: 5
Cache (name Cache) id 26 — children: 1 level: 6
Core (name Core) id 10 — children: 1 level: 7
HW_thread (name HW_thread) id 5 — children:
NUMA (name Numa) id 1 — children: 6 level: 4
Cache (name Cache) id 31 — children: 1 level: 5
Cache (name Cache) id 30 — children: 1 level: 6
Core (name Core) id 3 — children: 1 level: 7
HW_thread (name HW_thread) id 6 — children:
Cache (name Cache) id 35 — children: 1 level: 5
Cache (name Cache) id 34 — children: 1 level: 6
Core (name Core) id 4 — children: 1 level: 7
HW_thread (name HW_thread) id 7 — children:
Cache (name Cache) id 39 — children: 1 level: 5
Cache (name Cache) id 38 — children: 1 level: 6
Core (name Core) id 5 — children: 1 level: 7
HW_thread (name HW_thread) id 8 — children:
Cache (name Cache) id 43 — children: 1 level: 5
Cache (name Cache) id 42 — children: 1 level: 6
Core (name Core) id 11 — children: 1 level: 7

72

A.3. Sample Topology of a HPC system

HW_thread (name HW_thread) id 9 — children:

Cache (name Cache) id 47 — children: 1 level: 5
Cache (name Cache) id 46 — children: 1 level: 6
Core (name Core) id 12 — children: 1 level: 7

HW_thread (name HW_thread) id 10 — children:

Cache (name Cache) id 51 — children: 1 level: 5
Cache (name Cache) id 50 — children: 1 level: 6
Core (name Core) id 13 — children: 1 level: 7

HW_thread (name HW_thread) id 11 — children:

Chip (name socket) id 1 — children: 1 level: 2
Cache (name Cache) id 57 — children: 2 level: 3
NUMA (name Numa) id 2 — children: 6 level: 4
Cache (name Cache) id 56 — children: 1 level: 5
Cache (name Cache) id 55 — children: 1 level: 6
Core (name Core) id ® — children: 1 level: 7

HW_thread (name HW_thread) id 12 — children:

Cache (name Cache) id 61 — children: 1 level: 5
Cache (name Cache) id 60 — children: 1 level: 6
Core (name Core) id 1 — children: 1 level: 7

HW_thread (name HW_thread) id 13 — children:

Cache (name Cache) id 65 — children: 1 level: 5
Cache (name Cache) id 64 — children: 1 level: 6
Core (name Core) id 2 — children: 1 level: 7

HW_thread (name HW_thread) id 14 — children:

Cache (name Cache) id 69 — children: 1 level: 5
Cache (name Cache) id 68 — children: 1 level: 6
Core (name Core) id 8 — children: 1 level: 7

HW_thread (name HW_thread) id 15 — children:

Cache (name Cache) id 73 — children: 1 level: 5
Cache (name Cache) id 72 — children: 1 level: 6
Core (name Core) id 9 — children: 1 level: 7

HW_thread (name HW_thread) id 16 — children:

Cache (name Cache) id 77 — children: 1 level: 5
Cache (name Cache) id 76 — children: 1 level: 6
Core (name Core) id 10 — children: 1 level: 7

HW_thread (name HW_thread) id 17 — children:

NUMA (name Numa) id 3 — children: 6 level: 4
Cache (name Cache) id 81 — children: 1 level: 5
Cache (name Cache) id 80 — children: 1 level: 6
Core (name Core) id 3 — children: 1 level: 7

HW_thread (name HW_thread) id 18 — children:

Cache (name Cache) id 85 — children: 1 level: 5
Cache (name Cache) id 84 — children: 1 level: 6
Core (name Core) id 4 — children: 1 level: 7

HW_thread (name HW_thread) id 19 — children:

Cache (name Cache) id 89 — children: 1 level: 5
Cache (name Cache) id 88 — children: 1 level: 6
Core (name Core) id 5 — children: 1 level: 7

HW_thread (name HW_thread) id 20 — children:

Cache (name Cache) id 93 — children: 1 level: 5
Cache (name Cache) id 92 — children: 1 level: 6
Core (name Core) id 11 — children: 1 level: 7

0 level: 8

73

A. Appendix

HW_thread (name HW_thread) id 21 — children: 0 level: 8
Cache (name Cache) id 97 — children: 1 level: 5
Cache (name Cache) id 96 — children: 1 level: 6
Core (name Core) id 12 — children: 1 level: 7
HW_thread (name HW_thread) id 22 — children: 0 level: 8

Cache (name Cache) id 101 — children: 1 level: 5
Cache (name Cache) id 100 — children: 1 level: 6
Core (name Core) id 13 — children: 1 level: 7
HW_thread (name HW_thread) id 23 — children: 0 level: 8

Listing A.3: Sample Topology of a HPC system

A.4. class QuantumBackend
A.4.1. Declaration

1 class QuantumBackend : public Component {

2 public:

3 QuantumBackend(int _id = 0, string _name = "QuantumBackend");

4 QuantumBackend (Component * parent, int _id = 0, string _name = "QuantumBackend");
5 void SetNumberofQubits(int _num_qubits);

6 void SetQDMIDevice(QDMI_Device dev);

7 QDMI_Device GetQDMIDevice() ;

8 int GetNumberofQubits () const;

9 void addGate(QuantumGate *gate);

10 std: :vector<QuantumGate*> GetGatesBySize(size_t _gate_size) const;

11 std: :vector<QuantumGate*> GetGatesByType(size_t _gate_type) const;

12 std: :vector<QuantumGate*> GetAllGateTypes() const;

13 int GetNumberofGates() const;

14 std::vector<Qubit *> GetAllQubits();

15 std::set<std::pair<std::uintl6_t, std::uint16_t> > GetAllCouplingMaps() ;

16 void RefreshTopology(std::set<int> qubit_indices); // qubit_indices: indices of the
qubits that need to be refreshed

18 ~“QuantumBackend() override = default;

20 private:
21 int num_qubits;

2 int num_gates;

23 QDMI_Device device; // For refreshing the topology
24 std::vector <QuantumGate*> gate_types;

25 };

Listing A.4: class QuantumBackend

A.4.2. Constructors

® QuantumBackend(Component #*parent, int _id = 0, string _name = "QuantumBackend")

74

AA4. class QuantumBackend

— Purpose: Initializes a QuantumBackend object and inserts it into the Compo-
nent Tree as a child of the specified parent component.

— Parameters:
+ parent: The parent Component in the Component Tree.

+ _id: The unique identifier for the QuantumBackend, with a default value
of 0.

+ _name: The name of the QuantumBackend, with a default value of "Quan-
tumBackend".

— Sets:
*+ componentType to SYS_SAGE_COMPONENT_QUANTUM_BACKEND.

¢ QuantumBackend(int _id = 0, string _name = "QuantumBackend")

— Purpose: Initializes a QuantumBackend object without automatically inserting
it into the Component Tree.

— Parameters:

+ _id: The unique identifier for the QuantumBackend, with a default value
of 0.

+ _name: The name of the QuantumBackend, with a default value of "Quan-
tumBackend".

— Sets:
* componentType to SYS_SAGE_COMPONENT_QUANTUM_BACKEND.

A.4.3. Public Members

® void SetNumberofQubits(int _num_qubits)
— Purpose: Sets the number of qubits in the quantum backend.
- Parameters:

+ _num_qubits: The number of qubits.

e int GetNumberofQubits() const
— Purpose: Retrieves the number of qubits in the quantum backend.

— Returns: The number of qubits as an integer.

® void addGate(QuantumGate *gate)
— Purpose: Adds a QuantumGate to the quantum backend.
— Parameters:

+ gate: A pointer to the QuantumGate to be added.

75

A. Appendix

® std::vector<QuantumGatex> GetGatesBySize(size_t _gate_size) const

Purpose: Retrieves all gates of a specific size.
— Parameters:
+ _gate_size: The size of the gates to be retrieved.

— Returns: A vector of pointers to QuantumGate objects of the specified size.

® std::vector<QuantumGatex> GetGatesByType(size_t _gate_type) const

— Purpose: Retrieves all gates of a specific type.
— Parameters:
+ _gate_type: The type of gate to be retrieved.

— Returns: A vector of pointers to QuantumGate objects of the specified type.

e std::vector<QuantumGate*> GetAllGateTypes() const

— Purpose: Retrieves all gates in the quantum backend.

- Returns: A vector of pointers to all QuantumGate objects.

e int GetNumberofGates() const

— Purpose: Retrieves the total number of gates in the quantum backend.

— Returns: The number of gates as an integer.

e std::vector<Qubit *> GetAllQubits()

— Purpose: Retrieves all qubits associated with the quantum backend.
— Returns: A vector of pointers to Qubit objects.

— Details: This function fetches all child components of type SYS_SAGE_COMPONENT_QUBIT,
dynamically casts them to Qubit pointers, and returns them in a vector.

® std::set<std::pair<std::uintl6_t, std::uintl6_t» GetAllCouplingMaps ()

— Purpose: Retrieves the coupling map for all qubits in the quantum backend.
— Returns: A set of pairs, each representing a coupling between two qubits.

— Details: This function iterates over all qubits, retrieves their coupling maps,
and stores the couplings as pairs in a set to ensure uniqueness.

e void SetQDMIDevice(QDMI_Device dev)

— Purpose: Sets the QDMI_Device associated with the quantum backend.
— Parameters:

+ dev: The QDMI_Device to be associated with the quantum backend.

e QDMI_Device GetQDMIDevice()

— Purpose: Retrieves the QDMI_Device associated with the quantum backend.

76

A.5. class Qubit

— Returns: The QDMI_Device object.

® void RefreshTopology()

— Purpose: Refreshes the topology of the quantum backend, updating the
internal representation of the qubits and gates. This function calls the
RefreshProperties() method of every child Qubit and updates the proper-
ties. This is meant to update the dynamic properties when the user requests
them.

A.4.4. Private Members

®* int num_qubits
— Purpose: This private member stores the number of qubits in the quantum
backend.
* int num_gates
— Purpose: This private member stores the number of gates in the quantum
backend.
® std::vector<QuantumGate*> gate_types
— Purpose: This private member stores a vector of pointers to QuantumGate
objects, representing the different gate types in the quantum backend.
® (DMI_Device device

— Purpose: This private member stores the handle to the corresponding QDMI_Device
which the topology actually corresponds to. This member is meant to refresh
the topology and all the dynamic information.

A.5. class Qubit
A.5.1. Declaration

1 class Qubit : public Component {

2 public:
3 Qubit(int _id = O, string _name = "Qubit");
4 Qubit (Component * parent, int _id = O, string _name = "Qubit");

5 void SetCouplingMapping(const std::vector <int> &coupling mapping, const int &
size_coupling_mapping) ;

6 void SetProperties(double tl, double t2, double readout_error, double readout_length)

7 const std::vector <int> &GetCouplingMapping() const;

8 const double GetT1() const;

9 const double GetT2() const;

10 const double GetReadoutError() const;

11 const double GetReadoutLength() const;

77

A. Appendix

const double GetFrequency() const;
void RefreshProperties();
~“Qubit() override = default;

s private:

std::vector <int> _coupling_mapping;
int _size_coupling_mapping;

double fidelity;

double _t1;

double _t2;

double _readout_error;

double _readout_length;

double _fequency;

std::string _calibration_time;

Listing A.5: class Qubit

A.5.2. Constructors

¢ Qubit(Component *parent, int _id = 0, string _name = "Qubit")

— Purpose: Initializes a Qubit object and inserts it into the Component Tree as
a child of the specified parent component.

— Parameters:
+ parent: The parent Component in the Component Tree.
+ _id: The unique identifier for the Qubit, with a default value of 0.
+ _name: The name of the Qubit, with a default value of "Qubit".
— Sets:
* componentType to SYS_SAGE_COMPONENT_QUBIT.

e Qubit(int _id = 0, string _name = "Qubit")

— Purpose: Initializes a Qubit object without automatically inserting it into the
Component Tree.

— Parameters:
+ _id: The unique identifier for the Qubit, with a default value of 0.
+ _name: The name of the Qubit, with a default value of "Qubit".

— Sets:
* componentType to SYS_SAGE_COMPONENT_QUBIT.

A.5.3. Public Members

® void SetCouplingMapping(const std::vector<int> \&coupling mapping, const
int \&size_coupling_mapping)

78

A.5. class Qubit

— Purpose: Sets the coupling mapping for the qubit.
— Parameters:
+ coupling_mapping: A vector representing the coupling mapping.
+ size_coupling_mapping: The size of the coupling mapping.
® void SetProperties(double t1, double t2, double readout_error, double readout_length)
— Purpose: Sets the physical properties of the qubit.
— Parameters:
+ t1: The relaxation time of the qubit.
+ t2: The dephasing time of the qubit.
+ readout_error: The readout error rate of the qubit.

+ readout_length: The readout length of the qubit.

const std::vector<int>\& GetCouplingMapping() const
— Purpose: Retrieves the coupling mapping of the qubit.

- Returns: A constant reference to a vector representing the coupling mapping.

® const double GetT1() const
— Purpose: Retrieves the relaxation time of the qubit.

— Returns: The relaxation time as a double.

® const double GetT2() const
— Purpose: Retrieves the dephasing time of the qubit.

— Returns: The dephasing time as a double.

¢ const double GetReadoutError() const
— Purpose: Retrieves the readout error rate of the qubit.

— Returns: The readout error rate as a double.

e const double GetReadoutLength() const
— Purpose: Retrieves the readout length of the qubit.

— Returns: The readout length as a double.

® const double GetFrequency() const
— Purpose: Retrieves the operational frequency of the qubit.

- Returns: The frequency as a double.

® void RefreshProperties()
— Purpose: Refreshes the properties of the qubit, updating the internal rep-
resentation of the qubit’s properties. This function is meant to update the
dynamic properties when the user requests them.

79

A. Appendix

A.5.4. Private Members

® std::vector<int> _coupling_mapping

— Purpose: Stores the coupling mapping for the qubit.

e int _size_coupling mapping

— Purpose: Stores the size of the coupling mapping.

® double _t1

— Purpose: Stores the relaxation time of the qubit.

® double _t2
— Purpose: Stores the dephasing time of the qubit.

® double _readout_error

— Purpose: Stores the readout error rate of the qubit.

¢ double _readout_length
— Purpose: Stores the readout length of the qubit.

¢ double _frequency

— Purpose: Stores the operational frequency of the qubit.

® std::string _calibration_time

— Purpose: Stores the last calibration time of the qubit.

A.6. class QuantumGate
A.6.1. Declaration

I class QuantumGate : public Relation {

o

3 public:

4 QuantumGate() ;

5 QuantumGate (size_t _gate_size);

6 QuantumGate(size_t _gate_size, std::string _name, double _fidelity, std::string
_unitary);

7 QuantumGate(size_t _gate_size, const std::vector<Qubit *> & _qubits);

8 QuantumGate(size_t _gate_size, const std::vector<Qubit *> & _qubits, std::string
_name, double _fidelity, std::string _unitary);

9 void SetGateProperties(std::string _name, double _fidelity, std::string _unitary);

10 void SetGateCouplingMap(std::vector<std::vector<Qubit*>> _coupling_mapping) ;

11 void SetAdditionalProperties();

12 double GetFidelity() const;

13 size_t GetGateSize() const;

14 std::string GetUnitary() const;

80

A.6. class QuantumGate

15 void Print() override;
16 void DeleteRelation() override;

18 private:

19

20 size_t gate_size;

21 int gate_length;

22 std::string unitary;

23 double fidelity;

24 std::vector<std::vector<Qubit*>> coupling_mapping;
25 std: :vector<Qubit*> qubits; // Remove from here.

26 std::map<std::string, double> additional_properties;

Listing A.6: class QuantumGate

A.6.2. Constructors

¢ QuantumGate()

— Purpose: Default constructor for QuantumGate.

® QuantumGate(size_t _gate_size)
— Purpose: Initializes a QuantumGate object with a specified gate size.
— Parameters:

+ _gate_size: The number of qubits involved in the quantum gate.

A.6.3. Public Members
® void SetGateProperties(std::string _name, double _fidelity, std::string
_unitary)
— Purpose: Sets the properties of the quantum gate.
- Parameters:
+ _name: The name of the quantum gate.
+ _fidelity: The fidelity of the quantum gate.

+ _unitary: The unitary matrix representation of the quantum gate.

® void SetGateCouplingMap(std::vector<std::vector<Qubit*» _coupling_mapping)
— Purpose: Sets the coupling map for the quantum gate.
— Parameters:
+ _coupling_mapping: A vector of vectors representing the coupling map-

ping of qubits.

® void SetAdditionalProperties()

81

A. Appendix

— Purpose: Sets additional properties for the quantum gate.

void SetGateType()
— Purpose: Sets the type of the quantum gate.

int GetGateType() const
— Purpose: Retrieves the type of the quantum gate.

— Returns: The type of the quantum gate as an integer.

double GetFidelity() const
— Purpose: Retrieves the fidelity of the quantum gate.

— Returns: The fidelity of the quantum gate as a double.

size_t GetGateSize() const
— Purpose: Retrieves the size of the quantum gate.

— Returns: The number of qubits involved in the quantum gate.

std: :string GetUnitary() const
— Purpose: Retrieves the unitary matrix representation of the quantum gate.

— Returns: The unitary matrix as a string.

std::string GetName() const
— Purpose: Retrieves the name of the quantum gate.

- Returns: The name of the quantum gate as a string.

A.6.4. Private Members

* int type

— Purpose: Denotes the type of the quantum gate, helping to distinguish
between different gates (e.g., ID, RZ, etc.).

std::string name

— Purpose: Stores the name of the quantum gate.
size_t gate_size

— Purpose: Stores the number of qubits involved in the quantum gate.
int gate_length

— Purpose: Stores the time needed to execute the gate operation.
std::string unitary

— Purpose: Stores the unitary matrix representation of the quantum gate.

82

A.7. QdmiParser Interface

® double fidelity

— Purpose: Stores the fidelity of the quantum gate.

® std::vector<std::vector<Qubit*» coupling_mapping

— Purpose: Stores the coupling mapping for the quantum gate.

® std::vector<Component*> qubits

— Purpose: Stores the qubits involved in the quantum gate.

® std::map<std::string, double> additional_properties

— Purpose: Stores additional properties of the quantum gate.

A.7. QdmiParser Interface

A.7.1. Declaration

1 class QdmiParser

2 {

3 public:

4

QdmiParser();

std: :vector<QDMI_Device>get_available_backends() ;
int get_num_qubits(QDMI_Device dev);

void createAllQcTopo(Topology *topo) ;

Topology createAllQcTopo();

void createQcTopo(QuantumBackend *backend,QDMI_Device dev);
QuantumBackend createQcTopo(QDMI_Device dev,int device_index = 0, std::
stringdevice_name="");

static void refreshQubitProperties(QDMI_Devicedev, Qubit *q)
{ //Refresh Qubit properties

QDMI_Qubit qubits;

int err

err = QDMI_query_all_qubits(dev, &qubits)

if (err !'= QDMI_SUCCESS || qubits == NULL){

std::cout << " [sys-sagel............... Could not obtain available qubits via
QDMI\n"
return;

int qubit_index = gq->GetId()

// Refreshing Qubit coupling map

int coupling_map_size;

std::vector<int> coupling_mapping;

coupling_map_size =(&qubits[qubit_index])>size_coupling_mapping;
coupling_mapping.resize(coupling_map_size) ;

std: :copy(qubits[qubit_index] .coupling_mappng, qubits[qubit_index].coupling mapping
coupling_map_size,coupling_mapping.begin());

+

83

A. Appendix

q->SetCouplingMapping(coupling_mapping,coupling_map_size); // Set all the qubit
properties

int scope;

// Declare prop as a vector

std: :vector<int> prop{QDMI_T1_TIME,QDMI_T2_TIME, QDMI_READOUT_ERROR,
QDMI_READOUT_LENGTH};

std: :array<std::string, 4> properties{"T1","T2", "readout_error", "readout_length"};

double value;
for (size_t i = 0; i < 4; ++i)

{
// QDMI_Qubit_property prop_index;
QDMI_Qubit_property prop_index = new(QDMI_Qubit_property_impl_t);
prop_index->name = propl[il;
int err =QDMI_query_qubit_property_exists(dev,&qubits[qubit_index], prop_index,&
scope) ;
if (err)
{
std::cout << " [syssagel............... Queried property doesn’t exist: "
<< i<<"\n";
continue;
}
err =QDMI_query_qubit_property_type(dev,&qubits[qubit_index], prop_index);
if (prop_index->type == QDMI_DOUBLE){
err =QDMI_query_qubit_property_d(dev,&qubits[qubit_index],
prop_index,&value) ;
if (err){
std::cout << " [syssagel............... Unable to query property: "
<< i <<"\n";
continue;
}
delete prop_index;
q->SetProperties(qubits[qubit_index].t1,
qubits[qubit_index].t2,
qubits[qubit_index] .readout_error,
qubits[qubit_index] .readout_length) ;
}
private:

int initiateSession();

static QInfo info;

static QDMI_Session session;

void getCouplingMapping(QDMI_Device dev,QDMI_Qubit qubit, std::vector<int>&
coupling_mapping, int &coupling map_size) ;

void getQubitProperties(QDMI_Device dev,QDMI_Qubit qubit);

void setQubits(QuantumBackend *backend,QDMI_Device dev);

void setGateSets(QuantumBackend *backend,QDMI_Device dev);

Listing A.7: QdmiParser

84

A.7. QdmiParser Interface

A.7.2. Constructor

e (dmiParser: :QdmiParser ()

— Purpose: Initializes the QdmiParser object and initiates a QDMI session.

A.7.3. Methods

* Session Initiation:
— int QdmiParser::initiateSession()
+ Purpose: Initiates a session with the QDMI library.
+ Returns: An integer representing the success or failure of the session
initiation.
* Retrieve Available Backends:
— std::vector<QDMI_Device> QdmiParser::get_available_backends ()
+ Purpose: Retrieves a list of all available QDMI devices.

+ Returns: A vector of QDMI_Device objects representing the available
devices.

¢ Get Number of Qubits:
— int QdmiParser::get_num_qubits(QDMI_Device dev)
+ Purpose: Retrieves the number of qubits for a given QDMI device.
+ Parameters:

- QDMI_Device dev: The device from which to retrieve the number of
qubits.

+ Returns: An integer representing the number of qubits.
* Get Coupling Mapping:

— void QdmiParser: :getCouplingMapping(QDMI_Device dev, QDMI_Qubit qubit,
std: :vector<int> &coupling mapping, int &coupling map_size)

+ Purpose: Retrieves the coupling mapping for a specific qubit.
+ Parameters:
- QDMI_Device dev: The device containing the qubit.

- QDMI_Qubit qubit: The qubit for which the coupling mapping is
retrieved.

- std::vector<int> \&coupling_mapping: The vector to store the cou-
pling mapping.

- int \&coupling_map_size: The size of the coupling mapping.

85

A. Appendix

* Get Qubit Properties:
— void QdmiParser: :getQubitProperties(QDMI_Device dev, QDMI_Qubit qubit)
+ Purpose: Retrieves various properties of a specific qubit.
+ Parameters:
- QDMI_Device dev: The device containing the qubit.
- QDMI_Qubit qubit: The qubit for which properties are retrieved.

e Set Qubits:
— void QdmiParser::setQubits(QuantumBackend *backend, QDMI_Device dev)
+ Purpose: Sets the qubits for a specific quantum backend.
+ Parameters:
- QuantumBackend *backend: The backend to which the qubits are set.

- QDMI_Device dev: The device containing the qubits.

¢ Set Gate Sets:
— void QdmiParser::setGateSets(QuantumBackend *backend, QDMI_Device dev)
+ Purpose: Sets the gate sets for a specific quantum backend.
+ Parameters:

- QuantumBackend *backend: The backend to which the gate sets are
set.

- QDMI_Device dev: The device containing the gate sets.

¢ Create All Quantum Computer Topologies:
— void QdmiParser::createAl1QcTopo(Topology *topo)
+ Purpose: Creates the topology for all available quantum computers.
+ Parameters:
- Topology *topo: The topology object to be populated.
— Topology QdmiParser::createAl1QcTopo ()

+ Purpose: Creates and returns the topology for all available quantum
computers.

+ Returns: A Topology object representing all available quantum comput-
ers.
¢ Create Quantum Computer Topology:

— void QdmiParser::createQcTopo(QuantumBackend *backend, QDMI_Device
dev)

+ Purpose: Creates the topology for a specific quantum computer.

86

N e

A.8. QMAP Integration

+ Parameters:

- QuantumBackend *backend: The backend for which the topology is
created.

- QDMI_Device dev: The device containing the quantum computer.

— QuantumBackend QdmiParser::createQcTopo(QDMI_Device dev, int device_index,

std::string device_name)

+ Purpose: Creates and returns the topology for a specific quantum com-
puter.

+ Parameters:
- QDMI_Device dev: The device containing the quantum computer.
- int device_index: The index of the device.
- std::string device_name: The name of the device.

+ Returns: A QuantumBackend object representing the quantum computer.

A.8. QMAP Integration

#include "sys-sage.hpp"
#include <mgt-gmap>
#include <set>

using Edge = std::pair<std::uintl6_t, std::uintl6_t>;
std: :set<Edge>;
std: :set<std::uintl6_t>;

using CouplingMap
using QubitSubset

CouplingMap GetAllCouplingMaps(QuantumBackend backend) {
CouplingMap result;
for(auto i = 0; i < num_qubits; ++i) {
Qubit* q = dynamic_cast<Qubit*>(GetChild(i));
auto coupling map = gq->GetCouplingMapping();
for (size_t j = 0; j < coupling map.size(); ++j) {
result.emplace(i, coupling_map[jl);
}
}

return result;

CouplingMap GetFullyConnectedMap(const std::uint16_t nQubits) {
CouplingMap result{};
for (std::uintl6_t q = 0; q < nQubits; ++q) {
for (std::uintl6_t p = q + 1; p < nQubits; ++p) {
result.emplace(q, p);
result.emplace(p, q);

87

A. Appendix

return result;

void GetReducedCouplingMap(const QubitSubset& qubitChoice, CouplingMap& reducedMap) {
reducedMap.clear();
auto couplingMap = GetAllCouplingMaps() ;
for (const auto& [q0, ql] : couplingMap) {
if (qubitChoice.find(q0) != qubitChoice.end() & qubitChoice.find(ql) !=
qubitChoice.end()) {
reducedMap.emplace(q0, ql);

> QubitSubset GetQubitSet() {

QubitSubset qubitSet;
for (Component* qubit : children) {
if (Qubit* q = dynamic_cast<Qubit*>(qubit)) {
qubitSet.insert(q->GetId());

}

return qubitSet;

Listing A.8: External Interface for QMAP

88

List of Figures

2.1.
2.2.

3.1.

4.1.
42.

4.3.
44.
4.5.
4.6.
4.7.

Possible Coupling Map of a 7-qubit Quantum Computer 5
Munich Quantum Software Stack, 9
Compilation flow of Quantum Circuits 12

Component Tree showing different Component Types in different colors 31
Data-path Graph with Data Paths carrying different information in differ-

entcolors. 32
Representation of a Single Quantum System in sys-sage 40
Representation of Multiple Quantum Systems in sys-sage 41
Gates of Different Types in Different Colours 44
Flow of Information from QDMI to QdmiParser and the creation of topology 45
Performance of sys-sage against Number of Qubits 52

89

List of Tables

4.1. Minimum, Maximum, and Average Runtimes (in ms) for Various Func-
tions on Different Quantum Backends

91

Listings

3.1.
3.2.
3.3.
34.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12.
3.13.
3.14.
3.15.
3.16.
3.17.

4.1.
4.2.
4.3.
44.
4.5.
4.6.
47.
4.8.
4.9.
4.10.
4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.

Definition of QDMI_Device 13
Definition of QDMI_Gate 14
Definition of QDMI_Qubit 14
Definition of QDMI_Device_property 15
Definition of QDMI_Gate_property 15
Definition of QDMI_Qubit_property 15
Definition of QDMI_Qubit_property 16
Minimalistic implementation of QDMI_control_submit 20
Helper Function for Setting Gate Properties. 21
Getting all the informationof aQubit 22
Getting all the information of all the Qubits 22
Checking if a backend provides that property 23
Checking the type of a property 23
Querying a particular property L L L 24
QDMIOpenClose Test 25
Result of QDMIOpenClose Test 25
QDMI Integrated with Quantum Resource Manager 26
Parsing hwloc output files(XML) 33
Querying Number of threads 33
Querying information from the Topology 33
Sample Topology of a HPC system 33
Visualizing DataPaths Between TwoNodes 34
sys-sage Macros for quantum Backends, Qubits, and Quantum Gates . . 36
Declaration of QuantumBackend 36
Declaration of Qubit e 39
Declaration of Relation 41
DataPath as a Child class of Relation. 42
Declaration of QuantumGate 42
Creating Quantum Backend Topology 48
Printing the generated topology 48
Retrieving the Coupling Mappings of all the qubits 48
Retrieving properties of the qubits 48
Retrieving properties of the supported gate types 49
Visualizing Topology of IBM’s Quantum Backend 49
Measuring Runtimes of Critical Functions. 51

93

Listings

4.19.

5.1.
5.2.
5.3.
54.
5.5.
5.6.

Al
A2.
A3.
Ad4.
Ab5.
A6.
Al7.
AS8.

Class Definition for AtomSite 53
Original Implementation of FOMAC,vailablegevices() 56
Modified Implementation with sys-sage 57
Output of FoMaCTest 58
Original Version of ArchitectureFactory.cpp. 59
Modified Version of ArchitectureFactory.cpp 60
External Interface for QMAP 62
QDMIOpenClose Test 67
QDMI Integrated with Quantum Resource Manager. 68
Sample Topology of a HPC system 72
class QuantumBackend 74
classQubit 77
class QuantumGate 80
QdmiParser e 83
External Interface for QMAP 87

94

Bibliography

[Bar+95]

[Bro+10]

[Els+23]

[Ezr23]

[HRBOS]

[Hum+21]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P.
Shor, T. Sleator, J. A. Smolin, and H. Weinfurter. “Elementary gates for
quantum computation.” en. In: Physical Review A 52.5 (Nov. 1995), pp. 3457-
3467. 1ssn: 1050-2947, 1094-1622. por: 10.1103/PhysRevA .52 . 3457. URL:
https://1link.aps.org/doi/10.1103/PhysRevA .52 . 3457 (visited on
05/22/2024).

E. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,
S. Thibault, and R. Namyst. “hwloc: A Generic Framework for Managing
Hardware Affinities in HPC Applications.” In: 2010 18th Euromicro Confer-
ence on Parallel, Distributed and Network-based Processing. Pisa: IEEE, Feb. 2010,
pp- 180-186. 1sBN: 978-1-4244-5672-7. po1: 10.1109/PDP.2010.67. URL: http:
//ieeexplore.ieee.org/document/5452445/ (visited on 06/26/2024).

A. Elsharkawy, X.-T. M. To, P. Seitz, Y. Chen, Y. Stade, M. Geiger, Q. Huang,
X. Guo, M. A. Ansari, C. B. Mendl, D. Kranzlmuiiller, and M. Schulz. “In-
tegration of Quantum Accelerators with High Performance Computing
— A Review of Quantum Programming Tools.” In: (2023). Publisher: [ob-
ject Object] Version Number: 2. por: 10.48550/ARXIV.2309.06167. URL:
https://arxiv.org/abs/2309.06167 (visited on 05/17/2024).

O. Ezratty. “Perspective on superconducting qubit quantum computing.”
en. In: The European Physical Journal A 59.5 (May 2023), p. 94. 1ssN: 1434-601X.
por: 10.1140/epja/s10050-023-01006-7. URL: https://link.springer.
com/10.1140/epja/s10050-023-01006-7 (visited on 05/17/2024).

H. Haffner, C. Roos, and R. Blatt. “Quantum computing with trapped ions.”
en. In: Physics Reports 469.4 (Dec. 2008), pp. 155-203. 1ssN: 03701573. por:
10.1016/j . physrep.2008.09.003. URL: https://linkinghub.elsevier.
com/retrieve/pii/S0370157308003463 (visited on 05/22/2024).

T. S. Humble, A. McCaskey, D. I. Lyakh, M. Gowrishankar, A. Frisch,
and T. Monz. “Quantum Computers for High-Performance Computing.”
In: IEEE Micro 41.5 (Sept. 2021), pp. 15-23. 1ssn: 0272-1732, 1937-4143.
DOIL: 10.1109/MM. 2021 . 3099140. URL: https://ieeexplore. ieee.org/
document/9537178/ (visited on 05/17/2024).

95

https://doi.org/10.1103/PhysRevA.52.3457
https://link.aps.org/doi/10.1103/PhysRevA.52.3457
https://doi.org/10.1109/PDP.2010.67
http://ieeexplore.ieee.org/document/5452445/
http://ieeexplore.ieee.org/document/5452445/
https://doi.org/10.48550/ARXIV.2309.06167
https://arxiv.org/abs/2309.06167
https://doi.org/10.1140/epja/s10050-023-01006-7
https://link.springer.com/10.1140/epja/s10050-023-01006-7
https://link.springer.com/10.1140/epja/s10050-023-01006-7
https://doi.org/10.1016/j.physrep.2008.09.003
https://linkinghub.elsevier.com/retrieve/pii/S0370157308003463
https://linkinghub.elsevier.com/retrieve/pii/S0370157308003463
https://doi.org/10.1109/MM.2021.3099140
https://ieeexplore.ieee.org/document/9537178/
https://ieeexplore.ieee.org/document/9537178/

Bibliography

[Kja+20] M. Kjaergaard, M. E. Schwartz,]J. Braumdiller, P. Krantz, J. I.-]. Wang, S.
Gustavsson, and W. D. Oliver. “Superconducting Qubits: Current State
of Play.” en. In: Annual Review of Condensed Matter Physics 11.1 (Mar.
2020), pp. 369-395. 1ssN: 1947-5454, 1947-5462. po1: 10 . 1146/ annurev -
conmatphys-031119-050605. URL: https://www.annualreviews.org/doi/
10.1146/annurev-conmatphys-031119-050605 (visited on 05/22/2024).

[Lad+10] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L.
O’Brien. “Quantum computers.” en. In: Nature 464.7285 (Mar. 2010), pp. 45—
53. 1ssN: 0028-0836, 1476-4687. por: 10 . 1038 /nature08812. URL: https :
//www.nature.com/articles/nature08812 (visited on 05/22/2024).

[LP17] V. Lahtinen and J. Pachos. “A Short Introduction to Topological Quantum
Computation.” In: SciPost Physics 3.3 (Sept. 2017), p. 021. 1ssN: 2542-4653.
DOIL: 10.21468/SciPostPhys.3.3.021. URL: https://scipost.org/10.
21468/SciPostPhys.3.3.021 (visited on 05/22/2024).

[McK+18] D. C. McKay, T. Alexander, L. Bello, M. J. Biercuk, L. Bishop, J. Chen,
J. M. Chow, A. D. Cércoles, D. Egger, S. Filipp, J. Gomez, M. Hush, A.
Javadi-Abhari, D. Moreda, P. Nation, B. Paulovicks, E. Winston, C. J. Wood,
J. Wootton, and J. M. Gambetta. “Qiskit Backend Specifications for Open-
QASM and OpenPulse Experiments.” In: (2018). Publisher: [object Ob-
ject] Version Number: 1. por: 10.48550/ARXIV. 1809 .03452. URL: https:
//arxiv.org/abs/1809.03452 (visited on 05/17/2024).

[NC12] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Informa-
tion: 10th Anniversary Edition. 1st ed. Cambridge University Press, June 2012.
IsBN: 978-1-107-00217-3 978-0-511-97666-7. DOI: 10.1017/CB09780511976667.
URL: https://www.cambridge.org/core/product/identifier/9780511976667/
type/book (visited on 05/22/2024).

[Prel8] J. Preskill. “Quantum Computing in the NISQ era and beyond.” en. In:
Quantum 2 (Aug. 2018), p. 79. 1ssN: 2521-327X. por: 10.22331/q-2018-08-
06-79. URL: https://quantum- journal . org/papers/q-2018-08-06-79/
(visited on 05/22/2024).

[Sch+23] M. Schulz, L. Schulz, M. Ruefenacht, and R. Wille. “Towards the Munich
Quantum Software Stack: Enabling Efficient Access and Tool Support for
Quantum Computers.” In: 2023 IEEE International Conference on Quantum
Computing and Engineering (QCE). Bellevue, WA, USA: IEEE, Sept. 2023,
pp- 399-400. 1sBN: 9798350343236. por: 10.1109/QCE57702 . 2023 . 10301.
URL: https://ieeexplore . ieee . org/document /10313717/ (visited on
05/17/2024).

[Sei+23] P. Seitz, A. Elsharkawy, X.-T. M. To, and M. Schulz. “Toward a Unified Hy-
brid HPCQC Toolchain.” In: 2023 IEEE International Conference on Quantum
Computing and Engineering (QCE). Bellevue, WA, USA: IEEE, Sept. 2023,
pp- 96-102. 1sBN: 9798350343236. po1: 10 . 1109 /QCE57702 . 2023 . 10191.

96

https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031119-050605
https://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1038/nature08812
https://www.nature.com/articles/nature08812
https://www.nature.com/articles/nature08812
https://doi.org/10.21468/SciPostPhys.3.3.021
https://scipost.org/10.21468/SciPostPhys.3.3.021
https://scipost.org/10.21468/SciPostPhys.3.3.021
https://doi.org/10.48550/ARXIV.1809.03452
https://arxiv.org/abs/1809.03452
https://arxiv.org/abs/1809.03452
https://doi.org/10.1017/CBO9780511976667
https://www.cambridge.org/core/product/identifier/9780511976667/type/book
https://www.cambridge.org/core/product/identifier/9780511976667/type/book
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://quantum-journal.org/papers/q-2018-08-06-79/
https://doi.org/10.1109/QCE57702.2023.10301
https://ieeexplore.ieee.org/document/10313717/
https://doi.org/10.1109/QCE57702.2023.10191

Bibliography

[VS24]

[WB23]

[Win+23]

URL: https://ieeexplore. ieee . org/document / 10313648/ (visited on
05/17/2024).

S. Vanecek and M. Schulz. “sys-sage: A Unified Representation of Dynamic
Topologies & Attributes on HPC Systems.” en. In: Proceedings of the 38th
ACM International Conference on Supercomputing. Kyoto Japan: ACM, May
2024, pp. 363-375. 1sBN: 9798400706103. por: 10.1145/3650200 . 3656627.
URL: https://dl.acm.org/doi/10.1145/3650200 .3656627 (visited on
06/26/2024).

R. Wille and L. Burgholzer. “MQT QMAP: Efficient Quantum Circuit Map-
ping.” en. In: Proceedings of the 2023 International Symposium on Physical
Design. Virtual Event USA: ACM, Mar. 2023, pp. 198-204. 1sBN: 978-1-4503-
9978-4. por: 10.1145/3569052.3578928. URL: https://dl.acm.org/doi/10.
1145/3569052.3578928 (visited on 05/17/2024).

K. Wintersperger, F. Dommert, T. Ehmer, A. Hoursanov, J. Klepsch, W.
Mauerer, G. Reuber, T. Strohm, M. Yin, and S. Luber. “Neutral atom
quantum computing hardware: performance and end-user perspective.”
en. In: EP] Quantum Technology 10.1 (Dec. 2023), p. 32. 1ssN: 2662-4400,
2196-0763. por: 10 . 1140/ epjqt /s40507 - 023- 00190 - 1. URL: https://
epjquantumtechnology . springeropen . com/articles/10.1140/epjqt/
540507-023-00190-1 (visited on 05/17/2024).

97

https://ieeexplore.ieee.org/document/10313648/
https://doi.org/10.1145/3650200.3656627
https://dl.acm.org/doi/10.1145/3650200.3656627
https://doi.org/10.1145/3569052.3578928
https://dl.acm.org/doi/10.1145/3569052.3578928
https://dl.acm.org/doi/10.1145/3569052.3578928
https://doi.org/10.1140/epjqt/s40507-023-00190-1
https://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-023-00190-1
https://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-023-00190-1
https://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-023-00190-1

	Acknowledgments
	Abstract
	Abbreviations
	Contents
	Introduction
	Background and Related Works
	Quantum Computing
	Qubits
	Quantum Technologies
	Quantum Gates

	High Performance Computing-Quantum Computing (HPC-QC) integration
	Munich Quantum Software Stack (MQSS)

	Quantum Device Management Interface (QDMI)
	What is Quantum Device Management Interface (QDMI)?
	Core Architecture of QDMI
	Fundamental Data Types and Definitions in QDMI
	QDMI Constants and Macros
	QDMI Calls

	IBM Implementation
	Implementation Details
	QDMI Query Calls

	Results
	OpenClose
	Quantum Resource Manager (QRM) Integration

	sys-sage
	What is sys-sage?
	Internal Representation
	Example Usage

	Extension for Superconducting-qubit based systems
	sys-sage Macros
	Quantum Backend
	Qubit
	Relations and Quantum Gate
	QdmiParser Interface

	Results
	Example Usage
	Outputs
	Performance Analysis of Topology Generation in sys-Sage

	Representation of Neutral Atoms (NA) and TI systems

	sys-sage Integration within MQSS
	Figures of Merits and Constraints (FoMaC)
	Original Implementation
	Implementation with sys-sage
	Output
	Advantages of using sys-sage

	Compiler Passes
	Original Implementation
	Implementation with sys-sage
	Advantages of the Replacement

	QMAP

	Conclusion and Future Research Outlook
	Future Work

	Appendix
	QDMIOpenClose Test
	QDMI Integrated with Quantum Resource Manager
	Sample Topology of a HPC system
	class QuantumBackend
	Declaration
	Constructors
	Public Members
	Private Members

	class Qubit
	Declaration
	Constructors
	Public Members
	Private Members

	class QuantumGate
	Declaration
	Constructors
	Public Members
	Private Members

	QdmiParser Interface
	Declaration
	Constructor
	Methods

	QMAP Integration

	List of Figures
	List of Tables
	Listings
	Bibliography

