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1. Introduction and challenges

Digitization and the integration of smart factory concepts 
are fundamentally restructuring the production landscape
[7,17], striving to make every step agile, efficient, and 
environmentally sustainable [34]. Focusing on the physical 
production from the forming of coils in the press shop, the 
gluing and welding of parts in the body shop to the painting of 
the entire body, two main challenges become apparent:

1. Production processes largely depend on extensive 
expert knowledge accumulated over decades to be 
effectively configured and optimized [15,19].

2. There is an increased necessity for standardization of 
data availability and continuity [12,16].

The combination of expert knowledge and user-friendly 
data access is essential to overcome these challenges. 
Organizations can better leverage decades of expertise within 
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digital systems by developing a unified and explainable data 
framework to facilitate decision-making and process 
optimization [12,13]. Such a framework makes data a practical, 
easily accessible tool for all employees in production. Using a 
self-service model that represents the data in a standardized 
format, no extensive data science knowledge is required to use 
the data [26]. Specifically, this paper seeks to develop and 
illustrate a “Framework for Spatiotemporal Production Data 
Acquisition” (from here on referred to as “PathSense”) that 
could enable easier data usability and enhance operational 
efficiency in manufacturing processes.

2. State of the art in managing production data

Implementing a robust data pipeline is the key to 
PathSense's success. This pipeline must address overarching 
architectural and technological requirements while naturally 
accumulating human expertise [28]. Simplified, a data pipeline 
in manufacturing processes involves four essential elements, as 
shown in Figure 1. The first element is the process of physical 
interaction and industrial value generation. The second element 
are the sensors that measure relevant process data and process 
parameters during production. These two elements are highly 
interdependent and require extensive knowledge on the part of 
the production expert to define meaningful sensors and process 
parameters [14]. The third element, evaluation, collects the 
data, consolidates it, and analyses it to gain valuable insights.
Again, Expert knowledge is necessary to label complex data 
sets with insights into complex process understanding. Lastly, 
the results of the evaluation support the fourth element, 
utilization. This could be for documentation or decision-
making purposes, which may be manual or automated [10,27]. 
For instance, determining whether a part should proceed to 
post-processing. Though not covered in this paper, this last 
element could also play a role in process regulation.

Ensuring that these steps are linked via interchangeable 
system interfaces is equally essential to maximize flexibility, 
as these four elements often crosscut all architectural levels, 
starting at the shop floor and extending to digital applications 
hosted in the cloud [3,22,23].

2.1. Challenges and opportunities integrating IT and OT in 
cyber-physical production systems

The transition towards PathSense requires integrating 
various data sources in the production layer, contributing 
distinct complexities to the digital representation of 
processes [8], as illustrated in Figure 2. These sources 
encompass meta-information about product design and 
material properties, operational data from industrial 
controllers, such as details about motion systems and 
programmable logic controller (PLC) variables, and diverse 

sensor readings. Sensor data varies widely, from low-rate 
metrics like material flow rates to high-rate data captured by 
advanced technologies such as high-resolution cameras, 
microphones, or contour scanners. Environmental data are also 
collected through sensors networked across each station. The 
value of this data is judged based on its impact on product 
quality, process stability, and defect detection capabilities.

The Reference Architecture Model Industry 4.0 (RAMI 4.0) 
is designed to manage these complexities. Although RAMI 4.0 
offers a valuable framework, tailoring it to meet specific 
manufacturing needs remains the responsibility of the 
manufacturers. Figure 2 depicts a simplified application of 
RAMI 4.0 across a cyber-physical factory. [35]

A significant challenge in realizing the vision of PathSense
is that operational technologies (OT) often trail behind modern 
information technologies (IT) in terms of data availability, 
flexibility, and industry-wide standardization. Production 
facilities typically consist of various technologies from 
multiple manufacturers, operating on different, sometimes 
outdated protocols and processing data in isolated silos [29].

Quality monitoring systems often come bundled with 
proprietary analysis tools from sensor manufacturers, which, 
while convenient for straightforward applications, limit deeper 
analytical capabilities as they typically deliver simplistic 
results such as "OK/NOK" (all correct / not all correct). This 
constrains the ability to integrate data from various sensor 
systems, underscoring the need for robust interfaces between 
sensors and evaluation systems [33], as shown in Figure 1. 
Such interfaces allow sourcing these components from diverse 
suppliers, thus reducing vendor lock-ins and enhancing 
flexibility by decoupling sensor procurement from analytic 
services.

2.2. Network technologies on the production shop floor

Contrasting with the deeply integrated nature of modern IT 
systems, in which data is ubiquitous, services are abundant, and 
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easy integration is promised through ‘Application 
Programming Interfaces’ (APIs), OT systems must continue to 
evolve while retaining their original robustness and reliability.
At the same time, they must become more flexible [29]. The 
existing data control infrastructure in production, which 
utilizes PLCs and industrial sensors, employs a range of 
protocols and bus systems, from traditional technologies like 
Modbus to modern industrial Ethernet-based protocols like 
PROFINET [9].

Incorporating modern IT principles, newer OT network 
protocols such as OPC UA (Open Platform Communications 
Unified Architecture) and MQTT (Message Queuing 
Telemetry Transport) are gaining traction. OPC UA performs
as an industrial M2M (machine-to-machine) communication 
protocol. OPC UA offers secure and reliable data exchange in 
industrial automation, supporting real-time data transfer, 
alarms, and conditions monitoring, among other features [36].
OPC UA is currently limited for high-frequency data 
acquisition, which restricts its use for some highly dynamic 
processes. Meanwhile, MQTT facilitates efficient and reliable 
data transfer in constrained environments, making it ideal for 
broadcasting data from industrial sensors to a central broker for 
real-time monitoring and integration. Given the durability
expected of cost-efficient production lines, older standards 
such as RFC1006 are unlikely to be phased out soon. However, 
employing hybrid approaches that use multiple protocols is 
becoming typical in the IT/OT convergence phase as industries 
strive to incorporate modern data management principles [11].

2.3. Connecting industrial components to the cloud

Modern data applications are used increasingly in data-
driven manufacturing, leveraging cloud infrastructure for big 
data analytics and collecting and storing data from multiple 
machines in cloud-based data centers [31]. Connectors are the 
essential mechanisms for linking production equipment with 
modern data applications. Connectors transform OT data into 
IT-compatible formats, enhancing data integrity and enabling 
advanced analytics and decision-making. Additionally, 
connectors enhance security by managing access controls, 
securing data transmissions, and protecting sensitive data.

Another aspect to consider is managing the data throughput 
from the edge to the cloud. High-frequency sensors provide 
critical insights into process stability and quality, and 
augmenting this data with further analytics can be highly 
beneficial. Despite these advantages, there is a pressing need to 
manage the volume of the data uploaded to the cloud, as data-
intensive sensors pose significant infrastructural challenges 
due to the high network bandwidth they require. Edge devices 
or locally positioned data centers near the shop floor are 
integrated physically into the plant, especially those equipped 
with graphics processing units (GPUs) that enhance parallel 
processing capabilities, offering a practical solution for 
machine learning (ML) analytics. These devices process 
substantial data volumes locally, significantly reducing the 
amount of data transmitted to the cloud and minimizing data 
transmission and storage costs. This local processing also 
reduces latencies, addressing the limitations associated with 
cloud-only strategies [25]. These systems are remotely and 

centrally managed through container-based deployments using 
cloud services, creating a strategic balance between local 
processing capabilities and cloud-based oversight proper for 
large-scale implementations [1,18].

For example, Video data can be processed on-site using 
Artificial Intelligence (AI) models deployed and managed from 
a central AI platform. Key features extracted from these videos 
can then be integrated with data from other sensor types within 
the data pipeline. It is critical, however, to carefully consider 
this initial processing step. Reducing the volume of data 
handled can affect the accuracy and relevance of the analyses, 
so it must be precisely aligned with the specific analytical 
requirements.

Connecting manufacturing data globally through streaming 
services like Kafka to cloud architectures and utilizing modern 
private cloud solutions from providers like Azure or AWS 
enables the deployment of multiple containerized services on a 
single data stream. This stateless configuration supports 
demand-based scaling of computational resources and 
centralized orchestration, efficiently accommodating process 
changes and software updates [24]. By orchestrating well-
structured cloud architecture, applications in the application 
layer are enabled, creating value for the production system.

However, this global connectivity introduces significant 
cybersecurity risks. Implementing stringent security protocols 
and continuous monitoring is essential to protect data and 
prevent unauthorized access, ensuring the secure adoption of 
these technologies [30].

2.4. Enhancing industrial production processes through 
advanced spatial visualization techniques

As process data from various sensor systems becomes 
increasingly complex, mainly when representing different data 
domains, its logical interpretation typically relies on the 
expertise of production process specialists. Thus, integrating 
human experts into the data management pipeline is 
imperative. Complex continuous processes, such as welding or 
painting, exemplify where this expert integration is crucial. 
Drawing on cognitive psychology and neuroscience insights, 
visualizing data in ways that align with human spatial cognition 
significantly enhances user understanding, particularly for 
those without a data science background [6]. Research has 
shown that spatial cognition is crucial in everyday functions 
and scientific performance, influenced by genetic and 
experiential factors [32].

Effective spatial data visualization has enhanced cognitive 
processing, facilitating a better understanding of complex 
information and supporting informed decision-making in 
challenging environments. In the realm of educational sciences, 
the significance of visual/spatial thinking in scientific
education is emphasized as essential for problem-solving and 
grasping complex concepts [20,21]. Despite these advantages, 
today's production data landscapes, originating from various 
systems and sensors, often present inconsistent data 
representations and visualizations, typically in abstract graphs 
and tables. This necessitates considerable mental effort from 
users to logically integrate the data, either mentally or through 



Georgij Safronov  et al. / Procedia CIRP 130 (2024) 1644–1652 1647

third-party tools and manual data handling, requiring advanced 
data management skills and substantial time.

2.5. Conclusion and research gap

The core principle of PathSense is to automatically combine 
data points from different systems and sensors and visually 
present them to the relevant production experts, leveraging 
humans' natural spatial cognition in three-dimensional space. 
This approach equips production experts with tools for self-
service, enhancing their ability to directly interact with the data.
A reliable and standardized data pipeline and a capable 
architectural framework are imperative for a successful 
PathSense implementation. 

Despite the existing capabilities, a research gap exists in 
developing a framework that fully aligns with cutting-edge IT 
and OT standards for widespread standardization while 
focusing on spatiotemporal data matching. While PathSense 
effectively aggregates data for individual use cases, the 
challenge lies in creating a universally adaptable framework 
that maintains high standards of adaptability across a wide 
range of technologies, from handling minimal data points to 
managing large-scale data streams like video or audio. 
Moreover, the necessity for interchangeable preprocessing 
methods to optimize cloud and edge computing resources 
underscores the need for an innovative approach. This 
framework must be built from the ground up, tailored explicitly
for OT environments while encapsulating modern IT design 
principles and operational excellence across diverse 
manufacturing processes.

3. Methodology of a spatiotemporal data framework

By providing production experts with the capabilities to 
annotate the data with their extensive knowledge, such as 
marking the exact locations of detected defects in a 
manufactured part, PathSense opens opportunities for 
advanced analytics, including AI, to move beyond the 
conventional data silo analytics currently prevalent in 
production. This approach aims to boost productivity and 
deepen engagement with data, thus enhancing operational 
efficiency and reducing errors.

PathSense’s methodology is designed around multiple 
functional functions, like tracing industry robots' Tool Center 
Point (TCP) for spatial correlation and synchronizing all data 
through time mapping, as illustrated in Figure 3. In the 
visualized concept, the data from a path-based process is 
recorded with the respective position in the cartesian space 𝐺𝐺, 
mapping through time stamp correlation to other sensor data 
like the current 𝐼𝐼 and voltage 𝑈𝑈. Also visualized is using more 
complex sensor systems, like the recorded sound 𝑆𝑆 and videos 
𝑉𝑉. Both are mapped equivalently by the time 𝑡𝑡. In theory, by 
such a data representation, the related process expert can better 
understand correlations of the different sensors by attaching 
them correlating to the respective positions of the process path 
�⃗�𝑝(𝑡𝑡).

The methodology maps all collected data from the 
production process, such as currents, voltages, acoustics, and 
video feeds, according to their specific spatial positions and 

temporal moments. The framework simplifies data 
management and enhances alignment with human spatial 
cognition by attaching data along the process spatial path with 
the appropriate timestamps.

Unlike systems requiring real-time data interactions, 
PathSense focuses on a digital shadow model where time 
delays are negligible, and data integration occurs through later 
spatiotemporal matching. This approach allows for 
comprehensive data analysis without the immediate pressures 
of real-time processing [2].

3.1. Flexible data acquisition

Data acquisition within PathSense utilizes OPC UA and 
MQTT, the chosen protocols for gathering data from PLCs, 
industry sensors, and “Internet of Things” (IoT) devices. While 
possible, integration of legacy systems through RFC1006 is 
often not cost-effective due to the intensive manual labor 
required for implementation and maintenance. OPC UA file 
transfer could replace MQTT for specific applications.

OPC UA's support for the Publish-Subscribe (Pub-Sub) 
model distinguishes it from traditional Client/Server 
frameworks. This model enables efficient, event-driven data 
distribution, allowing direct connections to the server or 
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employing middleware that facilitates publishing and 
subscribing across various applications [37]. This system 
reduces unnecessary network traffic and system load by 
minimizing continuous queries for controller or sensor variable 
changes.

PathSense incorporates a middle-layer data agent that acts 
as a dynamic intermediary between data sources and the time 
series database for analytics, providing flexibility to the system 
by eliminating custom connectors for each data stream from 
various industrial sensors. This agent enhances system 
adaptability, enabling seamless integration of new sensors, 
modification of data streams, or database swaps without 
extensive overhauls.

Time series databases are designed to efficiently manage 
time-stamped data, which devices typically generate at regular 
intervals. This design enhances data ingestion speeds and 
optimizes data compression, both essential for managing the 
large data volumes produced in industrial environments. 
Additionally, these databases offer specialized functions for 
time-based queries, aggregation, and down-sampling, 
significantly improving real-time monitoring and historical 
analysis of production processes [4].

PathSense, while incorporating principles of digital twins, 
functions more similarly to a digital shadow. It selectively 
gathers essential data for quality monitoring, using a one-way 
flow of information from physical systems to digital services. 
This focus on necessary metrics for quality control aligns more 
with a digital shadow's characteristics than a digital twin's 
bi-directional capabilities.

3.2. Localized feature extraction

The framework utilizes a localized, sensor-specific data 
feature extraction pipeline to manage data-heavy sensors 
effectively while minimizing network strain. This pipeline can 
be implemented near the data source through encapsulated 
services or dedicated hardware, ensuring that cloud 
management capabilities and access to raw data are maintained. 
This approach is crucial for avoiding a black-box 
implementation like in traditional quality monitoring systems, 
where visibility into data processing and analysis is limited. 
The pipeline extracts key signal features at set intervals, 
focusing on attributes like the relative brightness of a video 
frame or time-domain audio coefficients, such as root mean 
square (RMS) analysis. Unlike frequency-domain coefficients, 
RMS values retain time-related information, making them 
more practical for tagging with recording timestamps.

These features are then tagged with their recording 
timestamps, allowing for precise tracking and analysis. 
Separating data preprocessing from storage enhances the 
framework's agility and scalability, ensuring that data handling 
is efficient and transparent. For instance, video data can be 
processed locally using AI models deployed and managed from 
a central AI platform in the application layer. Important 
features extracted from these videos can then be integrated with 
data from other types of sensors in the data pipeline. However, 
this initial processing must be methodically reviewed to ensure 
alignment with the specific analytical requirements. Reducing 
the volume of data managed can affect the accuracy and 

relevance of the analysis, underscoring the need for a carefully 
balanced approach to data reduction and processing needs.

3.3. Extracting and matching positional and temporal data

To harness spatial relationships effectively, all data points 
are assigned specific positions in three-dimensional space. 
Positional data is either acquired through external tracking or 
directly from the movement controllers of industrial robots, the 
latter offering a more cost-effective and direct method. Such 
data includes timestamps that facilitate the integration of 
temporally independent sensor data with specific robot 
positions, enhancing the accuracy of the data fusion process.

Time synchronization, crucial for aligning data across 
devices, is managed through Network Time Protocol (NTP), 
ensuring all system clocks are aligned by dictating a mandatory 
time server application to every system participant as a 
synchronization target. This setup supports the integration of 
sensors with diverse sampling rates by allowing for data 
interpolation or duplication as needed for consistent data 
analysis.

The framework provides various methods for data fusion to 
accommodate different sensor outputs and analytical needs. 
For instance, data from low-frequency sensors can be aligned 
with high-accuracy positional data through interpolation or 
carrying forward the last valid values. This flexibility is crucial 
for detailed and accurate data analysis, supporting 
sophisticated manufacturing processes.

3.4. Spatial discretization of data into volumetric database

After data is acquired, combined, and synchronized in the 
time series database, it is transferred and organized into four-
dimensional point clouds ( 𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡 ) in a spatiotemporal 
volumetric database. Additional metadata and unique tags 
associated with each dataset and sensor differentiate and 
identify each point cloud. As an essential element of PathSense, 
the additional spatiotemporal volumetric database enables 
efficient data fusion and query operations, maintaining the 
integrity of the original time series data structures.

A specialized query language tailored for this data structure 
facilitates effective spatial querying and transforms point 
clouds into voxel data (volumetric pixels representing values 
within a three-dimensional space) [5], as seen in Figure 4. An 
indexing structure enhances the speed of voxel value queries, 
which is particularly beneficial for streaming query results into 
machine learning applications where transfer efficiency is 
essential. This querying capability allows the aggregation of

Fig. 4: Simplified voxel matching of the tool path with data aggregation
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sensor values within a voxel, streamlining data evaluation by 
providing only the necessary data for further analysis. Possible 
data aggregations include calculating minimum, maximum, 
average values, and standard deviations across all sensor 
samples within a spatial voxel. The system also supports other 
mathematical operations on the data, enhancing analytical 
flexibility.

Dataset tags play a dual role in querying. They identify the 
data sets being analyzed and influence the query results. 
Specific requirements can dictate that only data points from the 
same dataset be aggregated, even when different datasets are 
queried. Additionally, comparing datasets that share some tags 
but differ in others is possible, such as comparing identical 
components with different serial numbers to identify 
deviations. Strategically selected tags, combined with 
timestamps at each spatial point, enable the establishment of 
physical connections between data points. This capability is 
crucial for understanding dynamic movements within the 
manufacturing process, such as robot trajectories. 

3.5. Adaptation and abstraction

The deployment of PathSense services is ideally managed 
through Docker and Kubernetes systems that support the 
containerization and mass deployments of services. The 
system's architecture is outlined in a Docker Compose file, 
which allows for quick and scalable setup of framework 
instances. 

In the forthcoming scientific investigation detailed in the 
next chapter, the methodology's versatility is showcased 
through the implementation of Telegraf and InfluxDB as 
primary instruments for data management within a laboratory 
framework. These technologies and a proprietary 
spatiotemporal volumetric database with enhanced 
visualization capabilities demonstrate and validate the data 
acquisition and analysis principles in a simplified controlled 
environment. This experiment serves as a proof of concept for 
the foundational capabilities of PathSense's approach.

It is important to note, however, that the system's 
architecture is fundamentally designed to accommodate a 
variety of tools, extending beyond the confines of the current 
setup. The modularity enables the integration of alternate 
solutions such as Kafka, which could replace or complement 
elements like Telegraf, depending on the specific requirements 
of different systems.

This flexibility in tool selection affirms the abstract nature 
of the framework, ensuring that regardless of the specific 
technologies employed, the essential middle agent's role in a 
time series-based data collection for maintaining the 
spatiotemporal integrity of data remains unaltered. Such 
adaptability accentuates the framework's applicability across 
various operational scenarios, reinforcing its potential for 
widespread adoption in diverse data management applications.

3.6. Encapsulation of the PathSense framework

PathSense encapsulates a comprehensive approach to 
managing and analyzing production data within a 
spatiotemporal context. By leveraging advanced data 

acquisition techniques, localized processing, and flexible data 
integration strategies, the framework is well-suited to meet the 
evolving demands of modern industrial environments, driving 
efficiency and innovation in manufacturing operations.

As depicted in Figure 5, the overall system implementation
offers flexible deployment options tailored based on specific 
process requirements, accommodating configurations on the 
edge, in the cloud, or a hybrid model. This mixed deployment 
model combines the benefits of localized and cloud-based 
services, enhancing data processing and system responsiveness 
for diverse operational demands. 

4. Experimental implementation of the framework

To validate the functionality of the developed framework 
within a laboratory environment, an experimental cell was 
established to emulate a typical path-based manufacturing 
process. This cell can also be utilized for Wire Arc Additive 
Manufacturing (WAAM). This setup provides a controlled 
environment to test the framework's capability to monitor and 
analyze production processes and possible occurring defects.

4.1. Hardware configuration

The cell consists of a six-axis KUKA KR 70 R2100 
industrial robot coupled with a Fronius TPS 400i welding
source, integrated with a WF 60i Robacta Drive CMT torch and 
enabled by the underlying EtherCAT fieldbus (Ethernet for 
Control Automation Technology). PROFINET could also 
achieve the same result. The robot's controller is a KR C5 unit 
with the KUKA.DeviceConnector Advanced 2.1 software 
package which offers an OPC UA interface for controlling and 
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monitoring user-defined variables. The advanced welding
source governs the welding parameters and possesses an OPC
UA Server for subscribing to its internal status variables, such 
as welding current, voltage, and wire feed speed.

Attached to the welding torch, a Xiris WeldMic microphone 
is installed to capture acoustic data from the welding process. 
This microphone interfaces with the workstation through a 
USB connection. The workstation hosts the containerized 
software stack for the microphone, simulating the localized 
feature extraction. The workstation also serves as a shared NTP 
time server to synchronize all connected devices mandatory, 
ensuring unified data timestamping according to the PathSense 
Framework.

4.2. Software and data flow

Telegraf, functioning as the central data acquisition agent, 
establishes connections to data streams from the cell's 
equipment, as shown in Figure 6. Utilizing OPC UA and 
MQTT listener plugins, Telegraf subscribes to variable 
changes under the Pub-Sub model. As data flows from the 
cell’s machinery through Telegraf, it is systematically relayed 
to the InfluxDB container, which acts as the intermediate time 
series database. InfluxDB is optimized explicitly for handling 
time-stamped data, a common feature in industrial settings, and 
supports rapid data ingestion and efficient data compression. 
These features are critical for managing the large data volumes 
produced by the welding process. The database facilitates 
powerful time-based querying, aggregation, and historical data 
analysis functionalities.

In addition to storing data in InfluxDB, the framework 
integrates a proprietary spatiotemporal volumetric database 
developed by nebumind GmbH that enhances data analysis 
capabilities by enabling complex queries and storage of 
volumetric data. This combination of data handling 
technologies and visualization illustrates the flexibility of the 
framework to adapt and integrate various data management 
tools, ensuring robust data processing and storage solutions that 
can be tailored to specific industrial applications.

4.3. Testing the data pipeline and discussing the results

For the welding experiments, the setup involved fabricating 
a cylinder using the WAAM process. The base material used 
was an unalloyed structural steel (type S235) and a G3Si1 steel 
wire with a 1.2 mm diameter, which served as the welding 
filler. Shielding was provided by Argon gas mixed with 10% 
CO2, and before welding, the base plate was preheated. The 
cylinder was constructed to have a diameter of 100 mm and a 
layer height of 1 mm, with the welding robot moving upwards 
by 1 mm after completing each layer, following a spirally 
ascending path.

The TCP position and welding parameters, such as wire feed 
speed, gas flow, welding current, and voltage, were monitored 
and recorded during the welding process. These parameters 
were acquired from the welding power source via the OPC UA 
interface. To ensure accurate time synchronization NTP was 
used across all data sources. A welding microphone, triggered 
by a robot-defined variable, captured acoustic data during the 

process. The microphone was activated and deactivated via a 
Python script on the workstation, which also subscribed to the 
OPC UA signal. This script ensured that each audio recording 
was timestamped to correspond precisely with other welding 
data, facilitating a comprehensive and synchronized dataset for 
analysis.
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Fig. 6: Experimental PathSence demonstration cell
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The welding cell's activities, including the robot's motion 
and welding parameters, are monitored to implement and test 
the developed framework. The data captured by the robot, 
welding source, and the WeldMic microphone are ingested into 
the framework via Telegraf, processed and matched, and stored 
in a temporal database. Here, InfluxDB was used. Then, the 
results are handed over to the space-time volumetric database 
for spatiotemporal visualization. The principle of this 
laboratory test is to demonstrate the practicability and 
expedience of the framework in real manufacturing.

As depicted in Figure 7, the data pipeline of PathSense, as 
presented in the State of the Art, effectively captures, 
aggregates, and processes sensor data to create a digital shadow 
of the manufacturing process. It visualizes the RMS of the 
audio signal recorded during the WAAM process, which is one 
of the better ways to measure the average power or amplitude 
in the audio data. Additionally, the visualization shows a 
decreasing trend in RMS values correlating with the height of 
the cylinder during the welding process, which was also 
audibly perceived as a reduction in sound intensity. This 
streamlined visualization facilitates intuitive analysis by 
employees and can be integrated into AI systems for advanced 
evaluations. The three elements outlined are sensor data 
collection from the process, data aggregation, and 
visualization. This highlights the transformation of raw sensor 
inputs into actionable insights, underpinning the critical role of 
a digital shadow in enhancing decision-making in 
manufacturing environments.

This structured data acquisition and analysis approach 
underpins the framework's capacity to handle complex 
industrial processes, providing detailed insights into the 
operational dynamics of the welding cell and demonstrating the 
framework’s applicability in real-world manufacturing 
scenarios.

5. Conclusion and outlook

The research presented in this paper establishes a 
foundational approach for the "Framework for Spatiotemporal
Production Data Acquisition," referred to as PathSense. 

Through the strategic integration of operational technologies 
and information technologies, this framework enables a 
dynamic, responsive production environment that efficiently 
harnesses digital shadows. PathSense effectively facilitates the 
transition from traditional data silos to a unified data 
ecosystem, where quality monitoring and operational 
efficiency are significantly enhanced.

The experimental implementation of PathSense has 
demonstrated the potential to transform manufacturing 
operations by providing a robust, scalable data architecture that 
integrates distinct data sources across the production landscape 
of a specific production process. By leveraging spatial and 
temporal data, the framework offers enhanced insights that 
drive informed decision-making processes, thereby fostering a 
deeper engagement with digital tools among shop floor 
personnel.

The PathSense team is fully committed to further refining 
the integration of diverse data streams, expanding the system's 
capabilities to handle increasingly complex data types, and 
successfully implementing the framework in real-world 
production on the shop floor. Adopting advanced AI and 
machine learning algorithms will be crucial in automating data 
analysis. The sensor fusion of different data modalities for 
complex production data will be the main research topic for 
industrializing the framework's capabilities. Utilizing the 
visualization capabilities will also be a significant research area 
in cooperation with users from different plants. The goal is to 
enhance quality monitoring analytics and proactive data 
interaction while preserving the scalability inside the 
production system.

In conclusion, while the results mark a significant milestone, 
they represent just the initial steps toward realizing the full 
potential of digital integration in manufacturing. The 
PathSense framework enables innovations in production data 
management, promising a future where digital fluency and 
operational efficiency are linked.

REAL MANUFACTURED CYLINDER

EVALUATIONSENSORSPROCESS

SPATIOTEMPORAL DATA CAPTURED DIGITAL SHADOW FOR EVALUATION

Fig. 7: Experimental results of the PathSense data pipeline visualizing RMS
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