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1 Introduction

The standard statistical analysis aims to estimate parameters of a distribution from samples. Associations
among variables can be inferred by estimating such parameters. However, a general association among
variables does not imply a causal relationship among the variables. Causal analysis needs to go one step
further. The aim of causal analysis is to infer probabilities under conditions that change. We induce
external interventions in order to change probabilities.
Causality is not only interesting but also an essential research topic to understand scientific phenomena
and even what happens in our everyday life. Thus causal inference is studied widely in all parts of
science. Approaches to causal inference are universally able to be applied across all types of scientific
disciplines. The structural causal model describes functional dependency relations among a set of
variables. The causal structure of the such model can be represented by a directed graph. The edges
in the graph depict the causal dependency between two variables in the set of variables. This intuitive
approach to describe the asymmetric relationship among variables was introduced by [1]. In the paper,
the directed graph is used to visualize causal structures. A straightforward approach to estimating a
causal relation in a set of variables consists of two steps. The graphical structure of data is firstly learned,
and the causal effects of each data pair are estimated by statistical methods. This approach enables us to
take the uncertainty of the causal effects of each data pair into account, however, not the uncertainty
which exists with respect to causal structure. Consequently, this approach leads to an overly optimistic
conclusion about the existence and strength of causal effects. Determination of cause and effect from a
set of interesting variables is tackled by using asymmetry in a graphical structure of the variables.
This thesis follows the main idea of the paper [2]. As conducted in the paper [2], the confidence
intervals for the total causal effect are constructed by using the simplest linear structural equation
models in order to infer a causal effect. We consider a simple model called the linear structural equation
model with normal errors. In the paper [3], the linear structural equation model with errors that are
homoscedastic is used to infer causal effects. Whereas observational data is employed in the paper [2],
in this thesis, we additionally access interventional data in the data set and construct a confidence set of
a valid hypothetical test for a total causal effect. Interventional data is described as data equipped with
intervened observation. Equipped with interventional data in the data set, one can access the conditional
probabilities of the set of variables. The following example is a well-known example of interventional
data. Suppose that we experiment to investigate the relationship between smoking and teeth color. An
interventional data set is obtained by forcing the experiment participants to smoke and checking the
yellowness of the participants’ teeth. In other words, we intervene the circumstance of the object we
observe so that we can restrict the influence of the cause or effect and figure out dependency and causal
relationship in data. Our primary interest is to assess the results of a method introduced in [4] by adding
interventional data in the data set in the two-variable case and three-variable case as well. By using
the method, we can construct a confidence interval of a valid split likelihood ratio test, applying linear
models with Gaussian errors, which have non-equal variance. We only focus on the split likelihood ratio
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1 Introduction

test among the other methods introduced in [2] due to the simplicity of constructing the test without
inferring a asymptotic distribution.
In Chapter 2, we will introduce the basic framework of the theory of the graphical model and causal effect
inference. The framework is provided by the ideas of [4, 3, 5]. We proceed with the thesis in Chapter 3
by presenting the main idea of linear regression. Accessing interventional data provides us conditional
distributions of a variable given other variables. It reduces the problems we have to simple linear
regression models since we assume that models follow linear structural equation models. Therefore,
we use the linear regression method from Chapter 3 to estimate parameters that arise in the LSEMs.
In Chapter 4, we will provide the main idea and methodology from [6] about the universal inference
approach. Chapter 4 introduces the concept of the split likelihood ratio test and the mathematical
background of this concept. In order to construct a confidence interval, we need to solve a inequality
at a fixed confidence level, calculating the so-called profile likelihood function. The definition of the
profile likelihood function is also given in this chapter. We continue in Chapter 4 by presenting the
calculation of the confidence set and related functions in two- and three-dimensional cases, such as the
profile likelihood function. In Chapter 5, we show the experimental result of simulation experiments to
compare the result from [2] and evaluate the calculation in Chapter 4.
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2 Graphical Model

In this chapter , we will introduce definitions and theorems about the graphical model, which help us
understand this thesis. Since we work with interventional data sets to improve outcomes designed in the
paper [2], the main methodology of modeling interventions in a system will also be introduced. The
definitions and properties in this chapter are initially introduced and provided by [7].

2.1 Graphical Structure

Definition 2.1.1. A directed graph is a pair G = (V,E) consisting of a finite set V and a set E ✓V ⇥V
The set V is the vertex set of G, and E is the edge set. we will only consider directed graphs that do not
contain any self-loops, so E \{(v,v) : v 2V}= f

The following terminology and notation are necessary to grasp the mathematical background in this
section. Let G = (V,E) be a directed graph.

· Vertices v,w 2V are adjacent if there is an edge between v and w, i.e., if (v,w) 2 E or (w,v) 2 E

· We will also write v! w 2 E to express that (v,w) 2 E

· The edge v! w 2 E points from v to w, vertex v is the tail of the edge, and w is the head of the edge.
We also say that v and w are the endpoints of the edge.

· G is complete if every pair of distinct vertices is adjacent.

Definition 2.1.2 (Subset, walks and paths).

· A subgraph of G = (V,E) is a graph G0 = (V 0,E 0) such that V 0 ✓V and E 0 ✓ E \ (V 0 ⇥V 0)

· The subgraph induced by A✓V is
GA = (A,E \ (A⇥A)).

· A walk in G = (V,E) is a sequence

P = (v1,e1,v2,e2, . . . ,vn�1,en1 ,vn)

with v1, . . .vn 2V and e1, . . . ,en 2 E such that

ei = (vi,vi+1) or ei = (vi+1,vi) for all i = 1, . . . ,n�1

· We say that v1 and vn are the endpoints of P and that P is a walk from v1 to vn
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2 Graphical Model

· Its length is the number of edges, here n�1

· If v1, . . . ,vn are all distinct, then P is a path.

· If ei = (vi,vi+1) 8i = 1, . . . ,n�1, then P is a directed walk or path

In the following, we define relations among vertices. Let v,w 2V .

· If v! w 2 E then v is a parent of w and w is a child of v. And,
pa(v) = {w 2V : w! v 2 E} is the set of parents of v,
ch(v) = {w 2V : v! w 2 E} is the set of children of v.

· If there is a directed path from v to W in G, then v is an ancestor of w and w is a descendant of v. And,
an(v) = {w 2V : 9w! . . .! v 2 G} is the set of ancestors of v,
de(v) = {w 2V : 9v! . . .! w 2 G} is the set of descendants of v.
We allow paths of length 0, so v 2 an(v) and v 2 de(v)

· For A✓V , define
an(A) = [v2A an(v)
de(A) = [v2A de(v)

Definition 2.1.3 (Directed Acyclic Graphs). Let G = (V,E) be a directed graph. A directed cycle in G
is a directed walk from a vertex v to itself.
A directed acyclic graph (DAG) is a directed graph that dose not contain any directed cycles. In a DAG :

an(v)\de(v) = {v}.

Otherwise, we have directed cycle in the graph.

We investigate causal effects in a directed graphic under a setup of graphical modeling. We introduce
the setup of graphical modeling. Given that X = (Xv : v 2V ) is random vector, PX is joint distribution
of X and G = (V,E) is a DAG. For a subset A✓V ,

XA = (Xv : v 2 A).

For A,B,C ✓V , we have the following shorthand

A?? B | C :() XA ?? XB | XC.

The main idea of the mathematical concept of causality is to describe the causal relationship between
certain random variables by means of a directed acyclic graph (DAG). The edge between vertices
represents the dependency. The directions of the edges correspond to the directions of cause to effect
in this framework. The direction between two vertices and the random structure of DAG is the main
interest of the work. Determining both is a statistical challenge that we focus on. In this chapter, we
introduced the definition of the DAG. We will assume that the structure of the graph, which describes
both the presence and the directions of dependencies, is acyclic type. In order to understand this idea,
one needs to understand the concept.of topological orderings and its relation to DAG [4].
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2 Graphical Model

Definition 2.1.4. Let G = (V,E) be a DAG. A topological ordering of G is a mapping s : V !
{1,2, . . . ,d} such that for all j,k 2V we have that k 2 de( j) implies s( j)< s(k).

In the book [8], a theorem is provided which shows that the existence of a topological ordering exactly
chracterizes the class of DAGs.

Theorem 2.1.1. Let G = (V,E) be a directed graph. Then G is acyclic if and only if there exists a
topological ordering s of G.

Proof. ( Suppose that G has a cycle C and the vertex j 2 C satisfies the property of topological
ordering, that is, s( j) < s(k) for all k 2 C. Now we choose i 2 C such that (i, j) 2 E. Then
j 2 de(i), therefore s(i)< s( j). However this contradicts the choice of i.

) Due to acyclic property of a DAG, DAG has a node without parents. To check this, we choose any
i 2 G and follow a path of edges backward from i. Let j be the first vertex which the path passes
through. This path is traversed between two visits of j. This is a cycle, and this contradicts that G
is a DAG.

The Markov property is a widely used assumption for graphical models. Once a distribution satisfies the
Markov property with respect to a graph, the graph encodes independence in the distribution. In the
following, we provide the definitions and examples of the Markov properties.

Definition 2.1.5 (Local Markov Property). The joint distribution pX satisfies the local Markov property
relative to the DAG G if

8v 2V : v??V \ (pa(v)[de(v))|pa(v)

Definition 2.1.6 (Pairwise Markov Property). The joint distribution PX satisfies the pairwise Markov
property relative to the DAG G if

8v,w not adjacent with w /2 de(v) : v?? w|(V \de(v))\{w}

Figure 2.1: The joint distribution with respect to the graph satisfies local M.P. if the condition (2.1) is
fulfilled in Example 2.1.1. If the condition (2.2) is fulfilled, the joint distribution satisfies
pairwise Markov property.
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2 Graphical Model

Example 2.1.1. Consider the graph in Fig.2.1. The local M.P. for the graph is satisfied if

X2 ?? X4|X1

X4 ?? X1|{X2,X3}
X5 ?? {X1,X2,X3}|X4.

(2.1)

The graph satisfies pairwise Markov property if

X2 ?? X3|X1

X4 ?? X1|{X2,X3}
X5 ?? X1|{X2,X3,X4}
X5 ?? X2|{X1,X3,X4}
X5 ?? X3|{X1,X2,X4}

(2.2)

There is one more Markov property, which is called the global Markov property. In fact, both local and
global Markov properties are equivalent. We will not prove it in this thesis. We will introduce, however,
the further definition and theorem.

Definition 2.1.7 (Global Markov Property). The joint distribution PX satisfies the global Markov
property relative to the DAG G if

A?? B|C, 8A,B,C ⇢V disjoint, A,B /2 /0,

such that C d-separates A and B. In other word, A and B are d-separate given C.

To understand this definition, we need to know the definition of d-separation and collider and non-collider
on paths.

Definition 2.1.8 (Collider and Non-collider on Paths). Let P = (v1,e1,v2, . . . ,vn�1,en�1,vn) be a path
in a DAG G = (V,E). A non-end point vertex vi, 2 i n�1, is a collider on the path if vi is the head
of both ei�1 and ei. The graphical structure of the collider is drawn as

vi�1! vi vi+1.

Otherwise, if vi is the tail of ei�1 or of ei, then vi is a non-collider on the path. The graphical structure of
the non-collider is drawn as

vi�1! vi! vi+1, or
vi�1 vi! vi+1,

vi�1 vi vi+1.

Definition 2.1.9 (d-Separation). Let v,w 2V , and C ⇢V \{v,w}. Then v and w are d-connected given
C if there exists a path P from v to w such that

i) every collider on P is in an(C), and

6



2 Graphical Model

ii) every non-collider on P is not in C.

Example 2.1.2. Consider the directed graphs in Fig.2.2. In the graph a) X2 d-separates X1, and X3, that
is, X2 is a collider and therefore the joint distribution satisfies the global Markov property. However, in
graphs b),c), and d), X2 is non-collider. Thus, the joint distributions do not satisfy the global Markov
property relative to the DAGs. In this case, we can conclude that these three DAGs are Markov
equivalent.

Figure 2.2: The example of the directed graphs which are Markov equivalent to each other.

Remark. As mentioned previously, the local Markov property and global Markov property are equivalent.
In other words, The joint distribution PX satisfies the local Markov property relative to a graph if and
only if PX satisfies the global Markov property relative to the graph. We do not provide proof of this
equivalence in the thesis. The detailed proof can be found in chapter 6 [3].

2.2 Density Factorization

We assume that G = (V,E) is a directed acyclic graph (DAG) where V is the vertices and E is the edges
of the graph G and PX is the joint distribution for X = (Xv,v 2 V ) with density f with respect to a
product measure µ =⌦v2V µv.

Definition 2.2.1. The distribution PX factorizes according to the DAG G if there exist non-negative
kernel functions (kv(xv,xpa(a)))v2V with

Z
kv(xv,xpa(v))dµv(xv) = 1 8v 2V, 8xpa(v)

such that
f (x) = ’

v2V
kv(xv,xpa(v)) [µ�a.s.]

The following proposition provides that conditional functions given the parents are the kernel functions.
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2 Graphical Model

Proposition 1. For all v 2V , the kernel function kv in the factorization are the conditional densities, i.e.,

kv(xv,xpa(v)) = f (xv|xpa(v)) [µ�a.s.].

Proof. We prove it by the mathematical induction on m = |V |.

m = 1 clearly, the claim is true.

m! m+1 Choose a terminal vertex t. Then for all v 6= t we know t /2 pa(v). Therefore,
Z

f (x)dµt(xt) = ’
v2V\{t}

kv(xv,xpa(v)) ·
Z

kt(xt ,xpa(t))dµt(xt)

where the first term is obtained by the factorization according to GV\{t} and kt(xt ,xpa(t)) = 1 since
t is a terminal vertex. By induction assumption,

kv(xv,xpa(v)) = f (xv|xpa(v)) a.s. for all v 6= t

Furthermore,

kt(xt ,xpa(t)) =
f (x)R

f (x)dµt(xt)
= f (xt |xV{t})

This yields that
f (xt |xV\{t}) = f (xt |xpa(t))

Theorem 2.2.1. Let PX have a density with respect to a product measure µ . Then PX factorizes
according to the DAG G if and only if PX satisfies the local Markov property for G.

Proof. First, we prove the claim that local M.P. implies factorization of the density. This is proven again
by the mathematical induction on m = |V |.

m = 1 Trivially, the claim is true.

m! m+1 We choose a terminal vertex t and consider the density

f (x) = f (xt |xV\{t}) f (xV\{t}).

The marginal distribution of XV\{t} satisfies the local M.P. for GV\{t}, since V \{t} is ancestral.
By the induction assumption, we have

f (XV\{t}) = ’
v2V\{t}

f (xv|xpaGV\{t}
(v))

= ’
v2V\{t}

f (xv|xpaG(v))
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2 Graphical Model

Additionally, the local M.P. for G yields

t ??V \ [paG(t)[{t}]|paG(t)) f (xt |xV\{t}) = f (xt |xpaG(t))

Hence, we conclude
f (x) = ’

v2V
f (xv|xpaG(v))

Now, we prove the opposite direction of the implication. This proof is also done by the mathematical
induction on m = |V |

m = 1 This is trivial.

m! m+1 We choose a terminal vertex t again. As in the Prop. 1,

f (xV\{t}) = ’
v2V\{t}

f (xv|xpa(v)) (2.3)

factors according to GV\{t}. Therefore,

f (xt |xV\{t})
f (x)

f (xV\{t})
= f (xt |xpa(t))

and we obtain that
t ??V \ [pa(t)[{t}]|pa(t). (2.4)

This is the statement about t, which is made by the local Markov property for G. We still have to
show that

v??V \ [pa(v)[de(v)]|pa(v), for all v 2V \{t}. (2.5)

By Eq.(2.3) and the induction hypothesis, XV\{t} satisfies local Markov property for GV\{t}. In
other words, for v 2V \{t},

v?? (V \{t})\ [paGV\{t}
(v)[deGV\{t}(v)]|paGV\{t}

(v) (2.6)

Since t is terminal vertex,

paGV\{t}
(v) = paG(v) = pa(v) for all v 6= t.

Hence, (2.5) is equal to (2.6) if

de(v) = deGV\{t}(v)[{t}.

The case that t /2 de(v) is still considered. We have to add t to (2.6). Let t /2 de(v). In other words,
v /2 pa(t). We know from (2.6) that

v?? (V \ [pa(v)[de(v)])\{t}|pa(v).

If we can argue that
v?? t|pa(v)[ (V \ [pa(v)[de(v)])\{t} (2.7)
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2 Graphical Model

and
pa(v)[ (V \ [pa(v)[de(v)])\{t}=V \ [de(v)[{t}]

the property of conditional independence gives Eq. (2.5), and the proof is done. However we
know from Eq. (2.4) that

t ??V \ [pa(v)[{t}]|pa(t)

that implies (2.7) by properties of conditional independence.

2.3 Causal Model

In many research fields, such as biology, sociology, and economics, the problem of learning the
dependency structure using certain measurements from observational data is a major challenge. In order
to start causal modeling, we need to understand a causal structure. This structure entails a probability
model.[9]. In this chapter, we will introduce a fundamental framework of causal effect inference.[5].
The definitions adopted from [4] which are originally provided by [9, 5]. This chapter begins with
an interesting experiment. Consider an example of an experiment to investigate vitamin supplements’
effect on health. To implement an observational study, we randomly select n experiment participants
and observe each participants:

X = "Vitamin supplement"
Y = "Health outcome"

Then, we have two mathematical models for the joint distribution of (X ,Y ). Firstly, X causes Y .
Secondly, Y causes X . Since both cases yield that X and Y may be arbitrarily dependent, these are
Markov equivalents. However, those models say intuitively something very different. Now, we carry out
a similar but different experiment. In this case, we randomly divide the participants into a treatment and
a control group. Therefore, the treatment group takes the prescribed amount of supplements, and the
control group takes no vitamin supplements. From both experiments, it is expected that this intervention
changes the distribution of the system compared to the behavior only with the observational outcome. In
detail, we will introduce the intervention’s main framework.
One interesting starting point for investigating causal relations is that the correlation does not directly
imply a causal relation. For example, consider variables X and Y again, and assume that there are
correlations between X and Y . Then, the correlation in an observational study may arise from the three
cases shown in Figure 2.3. Consider a observed random vector X = (X1, . . . ,Xm), and a directed acyclic
graph (DAG) G = (V,E) with V = {1, . . . ,m}. The function f denotes the joint density of X with respect
to a product measure. The Factorization according to G is as follows :

f (x) = ’
v2V

f (xv|xpa(v)).

In order to formalize the intuitive understanding of how G captures causal relations, we have to figure
out a model for the joint distribution of X when we intervene on a subvector XA of the vector X .
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2 Graphical Model

Figure 2.3: a) X has a causal effect on Y . b) Y has an effect on X . c) X and Y are both affected by an
unobserved/latent variable U

Definition 2.3.1 (Interventional Distribution). A full family of interventional distribution is a family

(PX
A,x⇤A

)A✓V,x⇤A2Rd

where each PX
A,x⇤A

is a joint distribution for the considered random vector X such that {XA = x⇤A} with
probability 1 when X ⇠ PX

A,x⇤A
.

The distribution PX
A,x⇤A

can be interpreted as the distribution PX
A,x⇤A

is the distribution of X under a inter-
vention do(XA = x⇤A). If A = /0, PX

A = PX
/0 = PX is usual joint distribution PX which is the observational

distribution. The following notation can be used alternatively.

P(X 2 · ;do(XA = x⇤A)) = PX
A,X⇤A

(·)

Remark. Interventions that fix values are also called perfect interventions.

Causal analysis in graphical models starts with the understanding that all causal effects are identifiable
whenever the model satisfies the causal Markov property. That is, the graph is DAG, and all the error
terms are independent. Models which do not satisfy the property, for example, a model with correlated
errors, allow identification only under certain conditions. These conditions can only be determined
from the structure of the graph. [5] In the following, we will introduce the definition of causal Markov
property and its relation to causal analysis.

Definition 2.3.2 (Causal Markov Property). A full family of interventional distributions for random
vector X satisfies the causal Markov property for the DAG G = (V,E) if for all A✓V,x⇤A 2 Rd :
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2 Graphical Model

i) P(x 2 · ;do(XA = x⇤A)) factorizes according to G, and thus satisfies the local/ global M.P for G

i) P(xv 2 · |Xpa(v) = xpa(v);do(XA = x⇤A)) = P(x 2 · |Xpa(v) = xpa(v)) for all v /2 A and xu = x⇤u for all
u 2 pa(v)\A.

Remark. i) Taking fixed values by intervention does not induce new dependencies

ii) A stochastic transition transforms Xpa(v) into Xv. Interventions don’t change the stochastic transition
mechanism for variables not intervened upon.

Proposition 2 (Truncated Factorization). A full family of intervention distribution satisfies the causal
Markov property if and only if the joint density of P(X 2 · ;do(XA = x⇤A)) factors as

f (x;do(XA = x⇤A)) = ’
v/2A

f (xv|xpa(v))’
v2A

{xv=x⇤v} (2.8)

We give here a example of the truncated factorization. Consider a graph in Figure 2.4. The observational
distribution of the graph factors as

f (x) = f (x1) f (x2|x1) f (x3|x1,x2).

However, interventional distribution under do(X2 = x⇤2) factors as

f (x;do(X2 = x⇤2)) = f (x1) f (x3|x1,x2 = x⇤2) if X2 = x⇤2

Figure 2.4: a) Observational distribution. b) Interventional distribution under do(X2 = x2⇤)

The graph intervened upon is called mutilated DAG. We define the mutilated DAG.

Definition 2.3.3. Let G = (V,E) be a DAG, and let A✓V . The subgraph Gdo(A) = (V,Edo(A)) with edge
set Edo(A) = E \{w! v : w 2V,v 2 A} is called the mutilated DAG (representing an intervention on A)

Figure 2.4 shows an example of a mutilated graph. The upper graph is a DAG, and the lower graph
is the DAG under do(X2 = x⇤2). Now, we give a practical example of applying the intervention. The
experiment is called a sanity check experiment.
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2 Graphical Model

Example 2.3.1 (Sanity check). In the experiment, the participants will be asked if they are smoking or
not. Furthermore, it is also observed how yellow the teeth of the participants are. S denotes observation
of smoking, and Y denotes observation of yellow teeth. Intuitively, we know that smoking causes yellow
teeth. That is, the smoking behavior of a participant affects their yellow teeth. There is a dependency
between S and Y . The observational distribution of this dependency factors as

f (Y,S) = f (Y |S) f (S).

Moreover, the distributions of mutilated DAGs under do(S = s) and do(Y = y) are

f (Y ;do(S = s)) = f (Y |s)
f (S;do(Y = y)) = f (S).

Suppose we intervene on the variable S smoking status and set it to 0 or 1. In that case, this intervention
changes the distribution of the system compared to the behavior only with the observational outcome. We
construct intervention distributions from a structure causal model (SCM). We obtain the distributions by
modifying the SCM and considering the new entailed distribution. Generally, intervention distributions
and observation distributions are different. [9]

2.4 Linear Structural Equation Model

Definition 2.4.1. Let X be a random vector. Structure equation models assume X solves a system of the
equation given by a DAG G:

Xv = gv(Xpa(v),ev) v = 1, . . . ,m. (2.9)

Since G is a DAG, the equation system admits a unique solution: the system is triangular when
considering a topological order.

Satisfying the local M.P. for a graph G yields many properties. The following proposition shows that an
assumption for error terms e1, . . . ,em implies the local M.P. for a graph G.

Proposition 3. If e1, . . . ,em are independent then the joint distribution of X , the solution to the Eq.(2.9),
satisfies the local M.P. for G

Proof. In order to prove this proposition, we use mathematical induction on m.

Base m = 1 X is trivially the solution for the Eq. (2.9)

Step m! m+1 Let t be a terminal vertex. Then XV\{t} solves the Eq.(2.9) with the equation for
v = t dropped. By induction assumption, XV\{t} satisfies local M.P. for GV\{t}. Since XV\{t} =
h(ev,v 6= t)et ?? et , the conditional distribution of Xt given XV\{t} = xV\{t} is the distribution of
gt(xpa(t),et). Hence,

t ??V \ [pa(t)[{t}]|pa(t).

To conclude that XV\{t} satisfies local M.P. for G (not only GV\{t}) we may argue as in proof of
Lemma 2.2.1
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Remark. There exist functions gv and independent random variables e1, . . . ,em such that the distribution
of the random vector X equals PX where X solves the Eq.(2.9) for every distribution which satisfies the
local M.P. for G.

These structural equations can be differently viewed for a causal interpretation as making an assignment:

Xv := gv(Xpa(v),ev) v = 1, . . . ,m. (2.10)

The interventional model for X under the intervention do(XA = x⇤A) is obtained by replacing the equations
for w 2 A by

Xw := x⇤w ,w 2 A.

X(do(XA = x⇤A)) denotes the new solution for the Eq.(2.10) under the intervention do(XA = x⇤A). The
new solution has the new distribution which consists of distribution of (ev)v/2A,(gv)v/2A,x⇤A.

Example 2.4.1. Consider the DAG again in Figure 2.4. Given parametrizing functions g = (g1,g2,g3)
and distributions Q = (Q1,Q2,Q3), where ei ⇠ Qi for i = 1,2,3, the structural equations with observa-
tional data are

X1 = g1(e1)

X2 = g2(X1,e2)

X3 = g3(X1,X2,e3)

where e1, . . . ,e4 are independent. Intervening on the variable X2, we have the graph G as in Figure 2.4
b). The equations for the interventional data are

X1 = g1(e1)

X2 = x⇤2
X3 = g3(X1,X2,e3)

Definition 2.4.2. Let X = (X1, . . . ,Xd) be a random vector. A structural causal model (SCM) or structural
equation model (SEM) C= (S,Q) for X consists of a collection of d structural assignments

Xj := f j(pa( j),e j), j = 1, . . . ,d, (2.11)

where pa( j)⇢ {X1, . . . ,Xd}\{Xj} are called parents of Xj, and a distribution Q over the noise variables
e = (e1, . . . ,ed)⇠Q. Hereby, we require Q to be a product distribution, that is, e1, . . . ,ed are independent.

Definition 2.4.3. A linear structural equation model (LSEM) for X is an SEM of the form

Xj = Â
i2pa( j)

b jiXi +b0 j + e j, i, j = 1,2, . . . ,d (2.12)

where b jk 2R for all j 2 {1, . . . ,d} and all k 2 pa( j) and e1, . . . ,ed are independent random variables
with mean zero.
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We define the matrix B = (b d
jk) j,k=1 such that b jk = 0 for all pairs ( j,k) 2 {1, . . . ,d}2 where k /2 pa( j),

and the random vector e = (e1, . . . ,e), we obtain equivalent model in the compact form

X = BX + e.

The dependence structure in this model is entirely encoded by the matrix B. Since E = {(k, j) 2
{1, . . . ,d}2 : b jk 6= 0}, the edge set E of the corresponding DAG G relies on the model (2.12) through
the matrix B. The value b jk = 0 implies the nonexistence of a causal relationship of Xk and Xj, while the
value b jk 6= 0 reflects the existence of the relationship. In the following, we will prove that the matrix
(Id�B) is invertible so that we can express X in a simple formulation

X = (Id�B)�1e. (2.13)

Suppose s is a topological ordering for G and S denotes the permutation matrix ( {s(i)= j})
d
i, j=1. This

yields that the (i, j)-th entry of the matrix ST BS is

[ST BS]i j =
d

Â
µ,n=1

{i=s(µ)}Bµn { j=s(n)} = Bs�1(i)s�1( j).

We know that for i  j s�1(i) /2 de(s�1( j)) and therefore Bs�1(i)s�1( j) = 0. This yields that the
acyclicity of the graph depicting the model (2.12) concludes that the matrix B is a permutation similar to
a strictly lower triangular matrix. This fact reflects that ST (Id�B)S = (Id�ST BS) is invertible and thus
(Id�B) is also invertible. Hence, we have the alternative representation of X (2.13). This formulation
shows that E[X ] = 0 and

Var[X ] = E[XXT ] = (Id�B)�1E[eeT ](Id�B)�T . (2.14)

By the assumption in Definition 2.4.2 the matrix E[eeT ] is determined by variance of ei

E[eeT ] =

0

B@
E[e1e1] · · · E[e1ed ]

...
. . .

...
E[ede1] · · · E[eded ]

1

CA=

0

BBBB@

Var[e1] 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 Var[ed ]

1

CCCCA

Theorem 2.4.1. Suppose that an LSEM (2.12) for a random vector X is given. Let s be a topological
ordering for X and let i, j 2 {1, . . . ,d}. Then

C ( j! i) =[(Id�B)�1)]i j

=di j +bi j +
d

Â
k1=1

s(1)>s(k1)>s( j)

bi,k1bk1, j +
d

Â
k1,k2=1

s(1)>s(k1)>s(k2)>s( j)

bi,k1bk1,k2bk2, j

+ · · ·+
d

Â
k1,k2,...,ks( j)�s(i)=1

s(1)>s(k1)>s(k2)>···>s(ks( j)�s(i)�1)>s( j)

bi,k1bk1,k2 · · ·bks( j)�s(i)�1, j.

(2.15)

15
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Proof. The proof is provided in [4]. In this proof, we will be concerned many times with sums of the
form

Â
(k1,...,kl)2B

bi,k1bk1,k2bk2,k3 · · ·bkl�1,kl akl ,

where the akl denote numbers or random variables and B is a specific index set contained is {1, . . . ,d}l .
Due to the acyclic structure of the LSEM, bk j,k j+1 = 0 if s(k j) s(k j+1) and hence

Â
(k1,...,kl)2B

bi,k1bk1,k2bk2,k3 · · ·bkl�1,kl akl

= Â
(k1,...,kl)2B

s(i)>s(k1)>···>s(kl)

bi,k1bk1,k2bk2,k3 · · ·bkl�1,kl akl
(2.16)

Especially, if d  l, then we have for all i, j 2 {1, . . . ,d}

d

Â
k1,...,kl=1

bi,k1bk1,k2bk2,k3 · · ·bkl�1,kl akl = 0

and we conclude that Bl = 0 for all d  l. Thus,

(Id+B+B2 + · · ·+Bd�1)(Id�B) = Id�Bd = Id.

This yields

(Id�B)�1 =
d�1

Â
k=0

Bk

and

[(Id�B)�1]i j =di j +bi j +
d

Â
k1=1

bi,k1bk1, j +
d

Â
k1,k2=1

bi,k1bk1,k2bk2, j

+ · · ·+
d

Â
k1,k2,...,kd�1=1

bi,k1bk1,k2 · · ·bkd�1, j.

(2.17)

The right hand side in Eq.(2.17) is equal to the last expression in Eq.(2.15) due to Eq.(2.16).
Now we fix i, j 2 {1, . . . ,d}. If i = j, then due to (2.16) every term except di j on the right hand side of
(2.17) vanishes. Since C (i! i) = 1 for all i, we have equality of the diagonal entries. Furthermore,
suppose that i 6= j and consider linear SEM obtained from the original linear SEM in Eq.(2.12) after we
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2 Graphical Model

intervene on the variable Xj := x. In the following, we show that

Xi =ei +bi jx+
d

Â
k1=1
k1 6= j

bi,k1ek1 +
d

Â
k1=1

bi,k1bk1, jx+
d

Â
k1,k2=1
k1,k2 6= j

bi,k1bk1,k2ek2+

+
d

Â
k1,k2=1

bi,k1bk1,k2bk2, jx

+ · · ·+
d

Â
k1,k2,...,kl�1=1
k1,k2,...,kl�1 6= j

bi,k1bk1,k2 ·bkl�2,kl�1ekl�1+

+
d

Â
k1,k2,...,kl�1=1

bi,k1bk1,k2 ·bkl�2,kl�1x+
d

Â
k1,k2,...,kl=1
k1,k2,...,kl 6= j

bi,k1bk1,k2 ·bkl�1,kl Xkl

(2.18)

We continue the proof by mathematical induction.

l = 1 Trivially, since we set Xj = x,

Xi = ei +
d

Â
k=1

bikXk = ei +bi jx+
d

Â
k=1
k 6= j

bikXk.

l! l +1 Suppose (2.18) holds for some l < d. Then

d

Â
k1,k2,...,kl=1
k1,k2,...,kl 6= j

bi,k1bk1,k2 · · ·bkl�1kl Xkl

=
d

Â
k1,k2,...,kl=1
k1,k2,...,kl 6= j

bi,k1bk1,k2 · · ·bkl�1kl

"
ekl +

d

Â
kl+1=1

Xkl+1

#

=
d

Â
k1,k2,...,kl=1
k1,k2,...,kl 6= j

bi,k1bk1,k2 · · ·bkl�1kl ekl +
d

Â
k1,k2,...,kl=1

bi,k1bk1,k2 · · ·bkl�1kl bkl , jx

+
d

Â
k1,k2,...,kl+1=1
k1,k2,...,kl+1 6= j

bi,k1bk1,k2 · · ·bkl�1kl bkl ,kl+1ekl+1

Plugging this into (2.18) gives exactly (2.18) with l +1 in place of l.

Now, we consider the Eq.(2.18) for the case l = d. Then the last term

d

Â
k1,k2,...,kd=1
k1,k2,...,kd 6= j

bi,k1bk1,k2 · · ·bkd�1kd Xkd = 0.

17
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Now, we take a expectation with respect to the interventional distribution, then

E[Xi;do(Xj = x)] = bi jx+
d

Â
k1=1

bi,k1bk1, jx+ · · ·+
d

Â
k1,k2,...,kd=1

bi,k1bk1,k2 · · ·bkd , jx. (2.19)

By differentiating with respect to the value x we can conclude that C (i! j) is equal to the expression
in Eq.(2.17) for i 6= j

2.5 Causal Effects

Many statistical studies are mainly aimed at predicting the effects of interventions. In the previous
chapter, we learned that interventions change the joint distribution of a causal model. In this section, we
introduce the concept of the total causal effect between two variables in a graph and the identifiability of
a graphical structure from a joint distribution.

Definition 2.5.1. Let G = (V,E) be a DAG with V = {1, . . . ,m} and X = (X1, . . . ,Xm) be a random
vector with factorizing density

f (x) = ’
v2V

f (xv|xpa(v)).

Assume that all conditional distributions are uniquely determined as

f (xA|xB) =
f (xA,xB)

f (xB)

and are positive. Assuming for the DAG G the full family of the interventional distributions P(X 2
· ;do(XA = x⇤A)) satisfies the causal Markov property with A✓V, x⇤A 2RA, we have densities such that

f (x;do(XA = x⇤A)) = ’
v/2A

f (xv|xpa(v) ’
v2A

{xv=x⇤v}

=
f (x)

’v2A f (xv|xpa(v)
)’

v2A
{xv=x⇤v}.

Let T,R✓V . The causal effect of XT on XR is the map

XT 7! P(XR 2 · ;do(XT = xT )), xT 2RT

Alternatively, we write the definition of the (total) causal effect of a variable on another variable

C (i! j) :=
d
dx

E[Xi;do(Xi = x⇤i )],

where i, j 2V .

Note that the notations P(·), and E[·] denote calculating probabilities and taking expectation with respect
to the distribution of an original SEM C. The notations P(·;do(Xk = x⇤k), and E[·;do(Xk = x⇤k)] will be
used to express calculating probabilities and taking expectation, modifying a SEM C̃ obtained from the
original SEM C by intervening on the variable Xk and setting this to x⇤k .

18
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Example 2.5.1. Here, we give two examples with specific derived quantities.

a) XT is binary, then
E[XR; do(XT = 1)]�E[XR; do(XT = 0)]

b) The structural equation is linear. Consider E[XR; do(XT = xT )] = b0 +bxT , then

∂
∂xT

E[XR; do(XT = xT )] = b

If a variable holds no parents, there exists a straightforward way to find the causal effect of the variable
on other variables in a DAG g with intervention. Let v 2V be a variable of the DAG G such that v has
no parents, i.e., pa(v) = /0. Then, the causal effect in this case is

f (xV\{w};do(Xw = x⇤w)) = ’
v6=w

f (xv|xpa(v))
���
xw=x⇤w

=
f (x⇤w,xV\{w})

f (x⇤w)
= f (xV\{w}|x⇤w)

This result conclude that the causal effect for do(xw = x⇤w) is determined by usual probabilistic con-
ditioning f (xV\{w}|x⇤w). Now, we consider the case of a variable equipped with parents in a DAG g.
The following theorem shows how one computes the causal effect of a variable with parents on other
variables in g.

Theorem 2.5.1. Let t 2V , and let R✓V \ [{t}[pa(t)]. Then,

f (xR;do(Xt = x⇤t )) =
Z

f (xR|x⇤t ,xpa(t)) f (xpa(t))dµpa(t)(xpa(t))

Proof. Let X be a random vector such that tt = x⇤t . Then, we have

f (X ;do(Xt = x⇤t ) =
f (X)

f (xt |xpa(t))
=

f (X)

f (xt ,xpa(t))
f (xpa(t))

= f (xV\[{t}[pa(t)]|xt ,xpa(t)) f (xpa(t)) (2.20)

Now, we compute the marginal density f (xR;do(Xt = x⇤t )). Let S =V \ [{t}[pa(t)[R]. Then

f (xR;do(Xt = x⇤t )) =
Z

f (xR,xS,xpa(t);do(Xt = x⇤t ))dµS[pa(t)(xS,xpa(t))

=
Z Z

f (xR,xS|x⇤t ,xpa(t)) f (xpa(t))dµS(xS)dµpa(t)(xpa(t))

=
Z

f (xR|x⇤t ,xpa(t)) f (xpa(t))dµpa(t)(xpa(t))

where the second equation follows from the above Eq.(2.20).

Remark. The result of this theorem shows that the causal effect of Xt on XR is uniquely calculated by the
marginal distribution of (XR,Xt ,Xpa(t)).
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In the previous chapter, we introduced the definition of SCM in which the effect X is determined by the
cause pa(X) using functions gx. In a bivariate case, X is computed from a cause Y by using a function g.
However, the joint distribution PX ,Y of two variables does not exactly tell us if an SCM induces it from
X causes Y , or Y causes X . That is, one may want to figure out that the structure is identifiable from
the joint distribution. The following proposition shows a model which is not identifiable from the joint
distribution.[5]

Proposition 4. For every joint distribution PX ,Y of two real-valued variables, there is an SCM

Y = gY (X ,NY ), X ?? NY ,

where fY is a measurable function and NY is a real-valued noise variable.

Proof. Define the conditional cumulative distribution function

FY |x(y) := P(Y  y|X = x).

Then define
fY (x,ny) := F�1

Y |x (ny),

where F�1
Y |x (ny) = inf{x2R : FY |x � nY}. Then, let NY be uniformly distributed on [0,1] and independent

of X .

The result of this proposition can be used for both cases, X to Y and Y to X . In other words, every
joint distribution PX ,Y admits SCMs for both directions. Now, we consider a more general case.
Suppose we observe the variables XT , XR, and XC for a set C ✓ V \ [T [R]. In this case, we wonder
whether the causal effect of XT on XR is identifiable. In other words, one may wonder if the distribution
P(XR 2 ·;do(XT = x⇤T ) uniquely determined by the marginal distribution of XT ,XR, and XC. We introduce
two criteria and theorems showing that the causal effects are identifiable under these criteria.

Definition 2.5.2. Let r,v 2V and r 6= t. A set C ✓V \{r, t} satisfies the back-door criterion with respect
to the ordered pair (t,r) if

i) C\deG(t) = /0

ii) C blocks all back-door paths from t to r, that is, there is no path from t to r that starts with an edge
of the form t w and that d-connects t and r given C.

Theorem 2.5.2. If C satisfies the back-door criterion with respect to (t,r)then

f (xr;do(Xt = x⇤t )) =
Z

f (xr|x,txC) f (xC)dµC(xC). (2.21)

If C = /0, then f (xr;do(xt = x⇤t )) = f (xr|x⇤t ).

Example 2.5.2.

Remark. The back-door criterion is sufficient but not necessary for the covariate adjustment formula in
Eq.(2.21). The necessary condition is provided in the following theorem [10].
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Figure 2.5: a) Observational distribution. b) Interventional distribution under do(X2 = x2⇤)

Theorem 2.5.3 (Adjustment criterion). the covariate adjustment formula in Eq.(2.21) holds for all
factorizing distribution f if and only if

i) for all v 2 de(t)\ an(r), v 6= t : C\de(v) = /0.

ii) every path from t to r that is d-connecting given C is a directed path from t to r.

We will prove this theorem later since we need to introduce a new definition before proving it. Here, we
introduce the second criterion to identify causal effects.

Definition 2.5.3. Let r, t 2V, r 6= t.A set C ✓V \{r, t} satisfies the front-door criterion with respect to
the (ordered) pair (t,r) if

i) every directed path from t to r contains a node in C.

ii) there is no unblocked back-door path from t to C, that is, no back door path from t to C is d-connecting
given /0.

iii) there does not exist a back-door path from C to r that is d-connecting given {t}.

Theorem 2.5.4. If C satisfies the front-door criterion with respect to (t,r) then

f (xr;do(Xt = x⇤t )) =
Z

f (xC|x⇤t )
Z

f (xr|xt ,xc) f (xt)dµt(xt)

�
dµC(xC).

Remark. Front-door criterion shows that the identification of causal effects is achieved through another
formula from covariate adjustment in the Eq.(2.21).

Now, we prove the Theorem 2.5.3. We need a new definition which is intervention graphs and variables.
The necessity of the definitions arises from expressing intervention distribution in a different way to use
in the proof of the Theorem 2.5.3. In Fig.2.6, there is an example of an intervention graph in which the
blue node indicates an intervention variable. Generally, an intervention graph and variable are defined as
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Figure 2.6: A example of intervention graph

follows. Suppose that we take an intervention on the variables (Xt)t2A. Let t 2V be a variable in a graph
G in Fig.2.6. A intervention variable Ft intervenes on the variable t. The variable Ft can take values in
R[{ /0}, where Ft = /0 states that there is no intervention.

Definition 2.5.4 (Intervention graph). The intervention graph is an augmented DAG with vertex set V
[{Fv : v 2 A} and edge set E [{Fv! v : v 2 A}. Furthermore, the new conditional densities for v 2 A:

f 0(xv|pa(v),Fv = fv) =

⇢
f (xv|xpa(v)) if fv = /0

{xv=x⇤v} if fv = x⇤v 2R.

Marginal distributions of FV are arbitrary and positive.

In the above set up, f denotes the joint density of X = (X1, . . . ,Xm). Moreover, f 0 denotes the joint
density of the random vector X and intervention variables (Fv : v2A), which is determined by conditional
distributions:

f 0(x, fA) = ’
v/2A

f (xv|xpa(v))’
v2A

f 0(xv|xpa(v), fv)

Interventional densities can also be expressed by the function f 0

f (x) = f 0(x|Fv = /0,v 2 A)

f (x;do(XA = x⇤A)) = f 0(x|FA = x⇤A)

f (x;do(XB = x⇤B)) = f 0(x|FB = x⇤B,Fv = /0,v 2 A\B) for B✓ A.

Recall the theorem and prove it,

Theorem 2.5.5. If C satisfies the back-door criterion with respect to (t,r)then

f (xr;do(Xt = x⇤t )) =
Z

f (xr|x⇤t ,xC) f (xC)dµC(xC).

If C = /0, then f (xr;do(xt = x⇤t )) = f (xr|x⇤t ).

22



2 Graphical Model

Proof. Let r 2V in the graph G. We use the intervention graph for A = {t}, then we have

f (xr;do(Xt = x⇤t )) = f 0(xr|Ft = x⇤t )

=
Z

f 0(xr,xC|Ft = x⇤t )dµC(xC)

=
Z

f 0(xr|xC,Ft = x⇤t ) f 0(xC|Ft = x⇤t )dµC(xC)

=
Z

f 0(xr|xC,x⇤t ,Ft = x⇤t ) f 0(xC|Ft = x⇤t )dµC(xC)

The proof is completed by showing that

f 0(xr|xC,x⇤t ,Ft = x⇤t ) = f (xr|xC,x⇤t ) (2.22)
f 0(xC|Ft = x⇤t ) = f (xC). (2.23)

Firstly, we show the Eq.(2.22). The sufficient condition for the Eq.(2.22) is r?? Ft |{t}[C. That is, Ft

is d-separated from r given C[ {t}. C satisfies the back-door criterion. In other words, C blocks all
back-door paths from t to r. Hence, there is no path on the form Ft ! t  . . . r d-connects given
C[{t}. Moreover, every path of the form Ft ! t! . . . is blocked by t. The condition r?? Ft |{t}[C
yields that

f 0(xr|xC,x⇤t ,Ft = x⇤t ) = f 0(xr|xC,x⇤t ,Ft = /0)
= f (xr|xC,x⇤t ).

The second equation in Eq.(2.23) holds if C?? Ft in intervention graph, since

f 0(xC|Ft = x⇤t ) = f 0(xC|Ft = /0) = f (xC).

It remains to argue that in the intervention graph C?? Ft holds. However, Ft ??C follows from the local
M.P. for the intervention graph. Indeed, Ft has no parents and C does not contain any descendants of Ft

as the assumption C[deG(t) = /0

Example 2.5.3. Let X = (X1, . . . ,Xd) be a random vector, and follows the LSEM

X = BX + e , X = (I�B)�1e

where B = (Bi j)i, j=1,...d . Suppose that we contemplate an intervention on the variable X_t = x_t^*. Then,

X = B̃X + ẽ

where

B̃vw =

⇢
bvw if v 6= t

0 if v = t,

and

ẽvw =

⇢
evw if v 6= t
x⇤t if v = t
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Hence,
X(do(Xt = x⇤t )) = (I� B̃)�1ẽ.

The total effects in the linear SCM can be computed by using the above expression. Let r 2V and r 6= t.
Then the total effect of Xt on Xr is equal to

E[Xr;do(Xt = x⇤t )] = E[
m

Â
w=1

((I� B̃)�1)rwẽw]

= E[((I� B̃)�1)rtx⇤t +
m

Â
w6=t

((I� B̃)�1)rwew]

= E[((I� B̃)�1)rtx⇤t ]

= E[((I�B)�1)rtx⇤t ]

We can compute the total causal effect of this case by differentiating the above result

[(Id�B)�1]rt = Â
paths from t to r

prodect of bvw for v! w on the path.

The exact result of the right-hand side is explained and displayed in Theorem 2.4.1. Let C ✓ V and
satisfies the back-door criterion. Then the adjustment formula in Eq.(2.21) holds. This formula in the
case of a linear SCM is

E[Xr;do(Xt = x⇤t )] =EXC [E[Xr|Xt = x⇤t ,XC]]

=EXC [at ⇤ x⇤t + Â
w2C

awXw] = const.+atx⇤t

In other words, if (2.21) holds, then total effect of Xt on Xr is the coefficient for Xt in the conditional
expectation E[Xr|Xt ,XC]. Estimating the coefficients is achieved by linear regression of Xr on (Xt ,XC)

Example 2.5.4 (Harmfulness of mother’s smoking during pregnancy to babies [7]). Now we consider a
specific example in the real world. A study is carried out to investigate the harmfulness of a mother’s
smoking during pregnancy to her baby. The study records the baby’s birth weight and the number of
cigarettes per day the mom smoked in the first trimester. The scientists argued that there is a causal effect
of smoking on the birth weight of babies, and both factors are negatively correlated, while cigarette
companies say that smoking does not harm babies. The companies viewed that unobserved factors can
lead to heavier smoking. To clarify this hidden relation, the scientists designed a clever idea to show that
smoking has a direct effect by using the tax rate on cigarettes. The graphical model which is considered
is displayed in Fig.2.7. Assume that the structural causal model is linear

X1 = b01 + e1

X2 = b02 +b21X1 +b24X4 + e2

X3 = b03 +b32X2 +b34X4 + e3

X4 = b04 + e4

where the errors e1,e2,e3,e4 are independent and b32 is the total effect of smoking on baby’s weight.
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The result of the above example will be very similar to our work to figure out the causal effect of
2-dimensional and 3-dimensional cases of the LSEM equipped with normally distributed independent
error terms. Therefore, we will use this idea again and formulate it formally in the later chapter.

Figure 2.7: The graph designed by scientists who argue that smoking during pregnancy harms the baby
and leads to low birth weight.
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3 Linear Regression

As mentioned in Example 2.5.4, the strength of causal coefficients of a linear SEM can be easily
estimated by the linear regression method. We will estimate the parameters for both 2,3-dimensional
cases by using linear regression. Therefore, this chapter introduces the main framework of linear
regression to help understand the thesis more comprehensively. The definitions and explanations about
linear regression methods in this chapter are initially provided by [11].

3.1 introduce

The main assumption of a linear regression model is that the regression function E[Y |X ] is linear in the
inputs X1, . . . ,Xd . Consider a linear SEM C for a graph G, then a variable Xv in graph G has the form of

Xv = Â
w2pa(v)

bvwXw + ev.

This model also satisfies exactly the assumption of a linear regression model, that is, the variable Xv

and the parents of this variable have a linear relation. Hence, we can apply the linear methods for
regression. Moreover, we assume that the error terms are normally distributed as done in the paper [2].
In the following parts of this chapter, we will introduce how one can estimate the parameter of the linear
regression model with normally distributed error terms.

3.2 Linear Regression Models and Least Squares

Assume that we have an input vector XT = (X1,X2, . . . ,Xd), and want to predict a real-valued output Y .
The linear regression model has the following form

f (X) = b0 +
p

Â
j=1

b jXj. (3.1)

The linear model assumes that the regression function E[Y |X ] is linear. The coefficients b j for j 2
{1, . . . ,d} are unknown parameters, and the variables Xj are in the form

i) quantitative inputs

ii) transformation of input such as log, square-root, etc.

iii) polynomial representation for example X2 = X2
1

iv) numeric or "dummy" coding of the levels of inputs.
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3 Linear Regression

v) interaction between variables, for example X1 = X2 ·X3.

Even though the source of the Xj is the log transformation of a variable or square of variables, the model
is linear in parameters. Typically, a set of training data (x1,y1) . . .(xN ,yN) is gathered, and the parameters
b are estimated by the training set. xi = (xi1,xi2, . . . ,xid)T is a vector of feature measurements for i-th
element of the set.

Definition 3.2.1. Let (x1,y1) . . .(xN ,yN) be a set of data. Consider the model in Eq.(3.1), then the
quantity RSS(b ) is called residual sum of squares and defined as

RSS(b ) =
N

Â
i=1

(yi� f (xi))
2

=
N

Â
i=1

(yi�b0�
p

Â
j=1

xi jb j)
2.

(3.2)

Remark. Alternatively, the residual sum of squares can be written in the matrix form

RSS(b ) = (y�Xb )T (y�Xb ). (3.3)

where X denote the N⇥ (d +1) matrix with each row an input vector, and y is N vector of outputs.

The most simplest and widely used estimation method is least method, where we choose the coefficients
b = (b0,b1, . . . ,bd) to minimize RSS(b ) in Eq.(3.2). The Figure 3.1 shows the geometry of least-squares
fitting in the Rd+1-dimensional space occupied by the pairs (X ,Y ). Now, we pose the question. How
do we minimize the RSS(b ) with respect to b? The Equation (3.3) is a quadratic function in the d +1
parameters. Taking the derivative with respect to b , we obtain

∂RSS
∂b

=�2XT (y�Xb )

∂ 2RSS
∂b∂b T = 2XT X

(3.4)

We assume that the matrix X has full column rank. This yield that XT X is positive definite. Now, we
equate the lower equation in (3.4) to 0 :

XT (y�X)b = 0.

This equation can be solved uniquely by

b̂ = (XT X)�1XT y. (3.5)

Hence, the fitted value at the training inputs X are

ŷ = Xb̂ = X(XT X)�1XT y (3.6)

Now, suppose that the error term e is normally distributed as

e ⇠N (0,s2)
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3 Linear Regression

where s is a positive value. Then, the likelihood function of y is equal to

L =
N

’
i=1

1p
2ps2

exp
✓

1
2s2 (yi�b0�

d

Â
j=1

xi jb j)
2
◆

Alternatively, one can write it down as

L = (2ps2)�N/2 exp
✓

1
2s2

N

Â
i=1

(yi�b0�
d

Â
j=1

xi jb j)
2
◆

One can see from the last term that the parameter b0, . . . ,bd , which maximize the likelihood L are the
same as the ones that minimize the residual sum of square RSS. Thus, the maximum likelihood estimator
of the parameter b is the same as (3.5). Now, we estimate the variance s of the error term e . Substituting
the maximum likelihood estimates b̂ into L, we obtain

L = (2ps2)�N/2 exp
✓

1
2s2

N

Â
i=1

(yi� b̂0�
d

Â
j=1

xi jb̂ j)
2
◆
.

Taking the logarithm, we obtain the log-likelihood function l = logL, which makes differentiation easier:

l µ�N
2

log(s2)� 1
2s2

N

Â
i=1

(yi� ŷi)
2

where ŷi = b̂0�Âd
j=1 xi jb̂ j. Taking the derivative with respect to s2, we obtain

d
ds2 l =� N

2s2 +
1

2s4

N

Â
i=1

(yi� ŷi)
2

Setting to zero and solving for s2 yields:

ŝ2
mle =

1
N

N

Â
i=1

(yi� ŷi)
2.
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3 Linear Regression

Figure 3.1: Linear least squares fitting with X 2R2. The main focus is to find the linear function f (X),
which minimizes the residual sum of squares. [11]
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4 Universial Inference

We will use the split ratio test (SRT) to understand confidence intervals of causal effects. In this section,
we introduce the main framework of universal inference, which is firstly introduced by [6] in order to help
to understand the following sections in the thesis. First of all, the mathematical background which we
work on is introduced, closely following the thesis [4]. The sample space X 6= /0 equipped with a certain
s -field F and the parameter space Q as well as the parametric statistical model P = {PQ : Q 2 Q}
composed of probability measures PQ : F ! [0,1]. Suppose that an i.i.d. sample Y1, . . . ,Yn ⇠ PQ⇤ is
given where Q⇤ 2 Q denotes the true value of the unknown parameter. In addition, it is assumed that
the model P is dominated by some s -finite measure µ : F ! [0,•], i.e., for every event A 2 F we
know that µ(A) = 0 implies PQ(A) = 0 for all q 2 Q. The measure µ will be either a counting measure
or the d-dimenstional Lebesgue measure, depending on the sample space X. If X is a counting set,
the measure µ is also a counting measure. If X is equal to Rd or a subset of Rd , the measure is the
d-dimensional Lebesgue measure. In the case of the d-dimensional Lebesgue measure, there exists for
every q 2Q a µ-density pq := dP

dµ for Pq , that is, a function pq : X! [0,•) such that for every A 2F

Pq (A) =
Z

A
pq dµ

by the following well-known theorem.

Theorem 4.0.1 (Radon-Nikodym theorem). Let (X,S ) be a measurable space on which two s -finite
measures are defined, µ and n . If n ⌧ µ (that is, if n is absolutely continuous with respect to µ), then
there exists a S-measurable function f : X! [0,•), such that for any measurable set A✓X,

nq (A) =
Z

A
pq dµ

In order to avoid having measurability issues, we will consider the parameter space as a measurable
space (Q,A ) and the function

Q⇥X! [0,•),(q ,x) 7! pq (x)

is A ⌦F/B([0,•))-measurable, where the product s -field on the product space Q⇥X is denoted
by A ⌦F and the Borel s -field on [0,•) is by B([0,•)). As mentioned above, we will use the SRT
method. Therefore we will not work with the whole data sample Y1, . . . ,Yn, but split the data set into
two groups and estimate each parameter by using both groups separately. Each index set of both groups
is denoted by D0,D1, which are subsets of the index set 1, . . . ,n. In addition we have the properties
such that D0\D1 = /0 and D0[D1 = {1, . . . ,n}. In the following, we will evaluate the likelihood based
on D0 and compute the maximum likelihood estimator under H0 or H0 calculated from D0. To avoid
mathematical ambiguity, we introduce here exactly both objects. The likelihood function evaluated
based on D0 is denoted by

L(0)(q) := ’
i2D0

pq (Yi)
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4 Universial Inference

Furthermore, we denote the maximal likelihood estimator under H0, which is computed on D0 by

q̂0 := argmax
q2Q0

L(0)(q)

Considering the above setup, we define the following objects.

Definition 4.0.1. Suppose that we have the above setup

(i) The split likelihood ratio statistic is defined as

Tn(q) :=
L(0)(q̂1)

L(0)(q)
.

(ii) Let a 2 (0,1). The universal confidence set of level 1 - a is defined as

Cn :=Cn(a) :=

(
q 2Q : Tn(q)

1
a

)

It is proven that the universal confidence set is valid finite sample confidence set for an unknown
parameter at level 1 - a [6]. In the following, we introduce the simple proof, which is also given by [4].
The proof is quite simple and only requires a simple tool from probability theory. First of all, we give
the simple tool from probability theory which is known as Markov’s inequality.

Theorem 4.0.2 (Markov’s Inequality). Let X be a real-valued random variable. Them for every b > 0

P(|X |� b ) 1
b

E(|X |)

Proof. This immediately follows from the inequality

E[|X |]� E[|X | {|X |�b}]� bP(|X |� b )

This theorem will be used to prove the following theorem.

Theorem 4.0.3. Let a 2 (0,1) and consider the set-up from above. Then Cn(a) is a finite sample valid
(1�a)-confidence set for q⇤, that is,

Pq⇤(q⇤ 2Cn(a))� 1�a.

Proof. Let y 2Q be fixed, let
R
. . .dyD0 denote integration with respect to all variables contained in D=

and let A := {pq ⇤>0}k. Then,

Eq ⇤

"
L(0)(y)

L(0)(q ⇤)

#
= Eq ⇤

"
’i2D0 py(Yi)

’i2D0 pq ⇤(Yi)

#

=
Z

A

’i2D0 py(yi)

’i2D0 pq ⇤(yi)
’
i2D0

pq ⇤(yi)dyD0

=
Z

A
’
i2D0

py(yi)dyD0  ’
i2D0

"Z

X
py(yi)dyi

#
= 1 (4.1)
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4 Universial Inference

Since q̂1 is a function only of the samples contained in D1, and since YD= and YD1 are independent,

Eq ⇤ [Tn(q ⇤)] = Eq ⇤


Eq ⇤ [Tn(q ⇤)|YD1 ]

�

=
Z

Xn�k
Eq ⇤

"
L(0)(T (yD1)

L(0)(q ⇤)

#

| {z }
1 by (??)

d(P⌦(n�k)
q ⇤ (yD1) 1.

Finally, Markov’s inequality gives us that

Pq ⇤(q ⇤ /2Cn) = Pq ⇤(Tn(q ⇤)>
1
a
) aEq ⇤ [Tn(q ⇤)] a.

In many cases, a certain part of the information encoded by the true parameter is taken into account
to construct confidence sets. For example, suppose that we have a parameter q = (q1, . . . ,qn), and we
only want to construct confidence set of qi whereas the other components q1, . . . ,qi�1,qi+1, . . . ,qn are
so-called nuisance parameter. More formally, we construct confidence sets of some function y = g(q)
where g : Q!Y. In this case, we can consider set

Bn := {y 2Y|Cn\g�1(g(q)) 6= /0}

where g�1 = {q 2Q|g(q) = y}, and it has the following property

Pq (g(q) 2 Bn) = Pq (Cn\g�1(g(q)) 6= /0)� Pq (q 2Cn)� 1�a

Thus, this yield that Bn is a (1�a)-confidence set for y = g(q). We can write down this set Bn in a
different way by using the so-called profile likelihood. We define the profile likelihood as follows

Definition 4.0.2. Consider the situation from above. If it is well-defined, the function

L(0)
† : Y!R, y 7! max

q2Q:g(q)=y
L(0)(q) (4.2)

is called the profile likelihood function.

Proposition 5. Consider the situation from above and suppose the profile likelihood function is well-
defined. Then

Bn =

(
y 2Y :

L(0)(q̂1)

L(0)(y)
 1

a

)

Proof. Let y 2Y. Then Cn\g�1(y) 6= /0 is equivalent to the fact that there exists some q 2 Q such
that g(q) = y and L(0)(q̂1)/L(0)(q) 1/a . The latter is equivalent to L(0)(q̂1)/L(0)(y) 1/a

Now, suppose that we carry out a hypothesis testing with a testing problem of the following form

H0 : q 2Q0 versus H1 : q 2Q1

where Q1,Q0 ⇢Q
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4 Universial Inference

Definition 4.0.3. Let a 2 (0,1). The split likelihood ratio test at level a is defined by the rule

Reject H0 if Un >
1
a
, where Un =

L(0)(q̂1)

L(0)(q̂0)

where q̂1 is a estimator estimated by using D1 and q̂0 is a estimator calculated by using D0. The following
theorem is the fundamental result that will be applied in the thesis.

Theorem 4.0.4. The split likelihood ratio test controls the type I error at lever a , that is,

sup
q02Q0

Pq0

 
Un >

1
a

!
 a.

Proof. We reject H0 if and only if Cn(a)\Q0 = /0. The type I error of this test is simply

sup
q02Q0

Pq0(Cn(a)\Q0 = /0) sup
q02Q0

(q0 /2Cn(a)) a

To simplify the calculation, we use a logarithmic version of Un

xn := l(0)(q̂1)� l(0)(q̂0) (4.3)

where l(q) := logL(0)(q). Equivalently to the previous test, one rejects H0 if log(Un)<� log(a).
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5 A confidence set for the causal effect in Linear
Structural Equation Models (LSEM) by using
interventional data set via split likelihood ratio
test

In this chapter, we focus on constructing a confidence set of valid hypothesis tests. We will repeat
explaining the concept of the linear structural equation model briefly and show how one can apply
this model to investigate the causal effect and construct confidence set for this in two- and three-
dimensional cases. Additionally, the boundaries and maximal width of the confidence set will be
calculated analytically in a two-dimensional case. In [2] and [4], a observational data set in the form of a
sample of independent copies of a random vector Y = (Y1, . . . ,Yd) is considered, where each component
has zero mean, without loss of generality. A further assumption is that the distribution of X underlies a
dependence structure given by the following linear structural equation model

Xj = Â
k2pa( j)

b jiXi + e j, j = 1, . . . ,d.

Furthermore, it is assumed that the errors are homoscedastic, i.e., for an unknown variance parameter
s2 2 (0,•), the variance of each error is

Var[e1] = · · ·=Var[ed ] = s2.

However, in this thesis, we work with a non-homoscedastic setup. Hence, we consider the following
model

Xj = Â
k2pa( j)

b jiXi + e j, j = 1, . . . ,d.

Var[e j] = s2
j 2 (0,•), j = 1, . . . ,d

Once we take a intervention on a variable Xt under do(Xt = x⇤t ), we obtain a modified LSEM C̃ from
the original LSEM C in the form of

Xj = Â
k2pa( j)

B̃ jiXi + ẽ j, j = 1, . . . ,d.

where

B̃vw =

⇢
bvw if v 6= t

0 if v = t,

34



5 A confidence set for the causal effect in Linear Structural Equation Models (LSEM) by using interventional data set via split likelihood ratio test

and

ẽvw =

⇢
evw if v 6= t
x⇤t if v = t

Example 5.0.1. Consider the LSEMs

X1 = e1

X2 = b21X1 + e2

X3 = b31X1 + e3

where e1,e2 are standard normally distributed. Then we have the model in the matrix form as

X = (Id�B)�1e, B =

0

@
0 0 0

b21 0 0
b31 0 0

1

A , e =

0

@
e1
e2
e3

1

A

Intervening on the variable do(X2 = x⇤2), we obtain modified LSEMs

X(do(X2 = x⇤2)) = (Id�B̃)�1ẽ

where

B̃ =

0

@
0 0 0
0 0 0

b31 0 0

1

A , ẽ =

0

@
e1
x⇤2
e3

1

A .

Figure 5.1 illustrates the graphical structure of this example.

Figure 5.1: The graphical structure of Example 5.0.1

5.1 Dataset

The thesis focuses mainly on investigating causal effects by using interventional data. Hence, data sets
that are used in the thesis contain observations of random vectors (X ( j)) j2{1,...,n} where there are causal
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5 A confidence set for the causal effect in Linear Structural Equation Models (LSEM) by using interventional data set via split likelihood ratio test

effects among variables which are elements of the vectors. The i-th element of the j-th random vector
is denoted by X ( j)

i , i 2 {1, . . . ,d}, j 2 {1, . . . ,n} where n is the sample size of the data set. Moreover,
there is one additional element in a vector for the interventional setup. This additional variable is called
the intervention indicator and is denoted by Fj. If Fj takes a value i 2 {1, . . . ,d}, then the j-th vector is
intervened on the variable X ( j)

i , that is, X ( j)
i take a fix value x⇤( j)

i . If Fj takes the value 0, then the j-th
vector X ( j) is not intervened. That is, it is observational. In other words, the data set can be divided into
disjoint subsets according to the level of F . The first subset N0 is an observational subset of the data set,
in which all vectors have the property F = 0. The subsets Ni, i 2 {1, . . . ,d} are interventional subsets,
where all vectors have the property F = i. N denotes the entire data set. Thus, the data set factors as

N = [n
i=0Ni

Furthermore, we define index sets D to indicate indices of vectors in the subsets. The index sets are
defined as

DF=i: Index set for the vectors in Ni.

DF 6=i: Index set for the vectors in [k 6=iNk.

ni: Sample size of the subset Ni.

Equivalently,
Ni = (X ( j)) j2DF=i

where

X ( j) =

0

BBBBBBBBB@

X ( j)
1

X ( j)
2
...

X ( j)
d�1

X ( j)
d
Fj

1

CCCCCCCCCA

, for j 2 {1,2, . . . ,n}

is a random vector in the data set. In the following, we introduce notations for the split data set. In order
to conduct the split likelihood ratio test introduced in Chapter 4, the data set needs to be split. The first
split data set is denoted by N(0), and N(1) denotes the second one. Again, the N(0),N(1) factors as

N(0) = [n
i=0N(0)

i

N(1) = [n
i=0N(1)

i ,

depending on the intervention indicator F value in a random vector. Moreover, we introduce notations
of index sets and sample sizes of the index set

DF=i
0 : Index set for the vectors in N(0)

i .

DF 6=i
0 : Index set for the vectors in [k 6=iN

(0)
k .

DF=i
1 : Index set for the vectors in N(1)

i .
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DF 6=i
1 : Index set for the vectors in [k 6=iN

(1)
k .

n0,i: Sample size of the subset N(0)
i .

n1,i: Sample size of the subset N(1)
i .

5.2 Estimating Parameters in Linear Structural Equation Models

In the following, we will show how one can estimate parameters explicitly in a two-dimensional
case without using directly the method introduced in Chapter 3. The linear structural equation model
(LSEM) is considered for 2 dimension. There are two different directions of dependency

(M2.1) (M2.2)
X1 := b01 + e1 X1 := b01 +b12X2 + e1

X2 := b02 +b21X1 + e2 X2 := b02 + e2.

There is additionally the case where there is no dependency between two variables. This case is
equivalent to either b21 = 0 or b12 = 0 from (M2.1) or (M2.2). We assume that X1 causes X2. That is,
without loss of generality, we only consider (M2.1) where the data follows the LSEMs

X1 = b01 + e1,

X2 = b02 +b21X1 + e2
(5.1)

where e1, e2 are normally distributed independent error terms which have zero mean and variance of s1
and s2, respectively. The parameter b21 is an unknown parameter that represents a direct causal effect
between two variables. We assume in the thesis that the errors are not necessary to be homoscedastic,i.e.,
each variance of ei, i 2 {1,2} is not required to be the same. From Proposition 1, we know that the joint
distribution of the observational data factors as

f (X1,X2) = f (X2|X1) f (X1) (5.2)

Since X2 is the sum of X1 and independent normally distributed error term e2, X2 given that X1 has taken
on the value x is clearly normally distributed such that

X2|X1 = x1 ⇠N (b02 +b21x1,s2) (5.3)

Now, we consider the two systems of LSEMs in which the interventions on a variable are taken. The
model intervening on X1 has the form of

X1 = x⇤1,

X2 = b02 +b21 · x⇤1 + e2.
(5.4)

The interventional distribution under do(X1 = x⇤1) factors according to Eq. (2.8) as

f (X ;do(X1 = x⇤1)) = ’
v 6=1

f (Xv|Xpa(v))’
v=1

{Xv=x⇤v} = f (X2|X1 = x⇤1) (5.5)
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The model under intervention do(X2 = x⇤2) is in the form of

X1 = b01 + e1

X2 = x⇤2
(5.6)

The interventional distribution under do(X1 = x⇤1) factors as

f (X ;do(X2 = x⇤2)) = f (X1|X2 = x⇤2) = f (X1) (5.7)

Typically, we work with independent identical distributed set of observations (x(1)1 ,x(1)2 ,F1) . . .(x
(n)
1 ,x(n)2 ,Fn).

Note that the joint densities in (5.2) (5.5) (5.7) consist of two following density functions of observations

f (X (i)
2 = x(i)2 |X (i)

1 = x(i)1 ) =
1q

2ps2
2

exp
✓

1
2s2

2
(x(i)2 � (b01 +b21x(i)1 ))2

◆
(5.8)

f (X (i)
1 = x(i)1 ) =

1q
2ps2

1

exp
✓

1
2s2

1
(x(i)1 �b02)

2
◆
. (5.9)

Now, we figure out the likelihood function of the data set that contains both observational and interven-
tional data. Assuming that the data set contains n samples which are i.i.d, then the likelihood function
is

Ln(b ,s) =
n

’
i=1

f (x(i)1 ,x(i)2 ,Fi|b ,s) (5.10)

where the function f is the joint distribution of X (i)
1 and X (i)

2 and b = (b01,b01,b21) , s = (s1,s2)
are the parameter vectors of X1 and X2. As mentioned before, our data set consists of three subsets.
Therefore one can split the likelihood function separately, depending on the value of Fi, which is the
interventional indicator. The likelihood function in (5.10) factors as

Ln(b ,s) =
n

’
i=1

f (x(i)1 ,x(i)2 |b ,s) (Fi=0) f (x(i)1 ,x(i)2 |b ,s) (Fi=1) f (x(i)1 ,x(i)2 |b ,s) (Fi=2) (5.11)

The density function of observational model can factors as in Eq.(5.2) and the density functions of both
interventional model are equal to the Eq.(5.5) and Eq.(5.7). Thus, the first term in the Eq.(5.11) is equal
to

f (x(i)1 ,x(i)2 |b ,s) (Fi=0) = ( f (x(i)2 |x(i)1 ,b ,s) f (x(i)1 |b ,s)) (Fi=0)

Furthermore, the second and third terms are

f (x(i)1 ,x(i)2 |b ,s) (Fi=1) = f (x(i)2 |x(i)1 ,b ,s) (Fi=1)

f (x(i)1 ,x(i)2 |b ,s) (Fi=0) = f (x(i)1 |b ,s) (Fi=2)

Substituting the above results in Eq.(5.11), we obtain the likelihood function of our data set
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Ln(b ,s) =
n

’
i=1

( f (x(i)2 |x(i)1 ,b ,s) f (x(i)1 |b ,s)) (Fi=0) f (x(i)2 |x(i)1 ,b ,s) (Fi=1) f (x(i)1 |b ,s) (Fi=2)

=
n

’
i=1

f (x(i)2 |x(i)1 ,b02,b21,s2)
(Fi=0,1) · f (x(i)1 |b01,s1)

(Fi=0,2).

=
n

’
i=1

f (x(i)2 |x(i)1 ,b02,b21,s2)
(Fi 6=2) · f (x(i)1 |b01,s1)

(Fi 6=1). (5.12)

Now we determine exactly the likelihood function of the LSEM with the interventional and observational
data where the variables are normally distributed. We substitute those terms in Eq.(3) and obtain the
likelihood function of the model

Ln(b ,s) =
n

’
i=1

✓
(

1q
2ps2

1

exp� 1
2s2

1
(X (i)

1 �b01)
2)

◆ (Fi 6=1)

·
✓
(

1q
2ps2

2

exp� 1
2s2

2
(X (i)

2 �b02�b21 · x⇤(i)1 )2)

◆ (Fi 6=2)

.

In order to estimate parameters b and s , the maximum likelihood method is used due to the simplicity
of our likelihood function. The maximum likelihood method estimates the parameters which maximize
the likelihood function. In order to simplify the calculation, the log-likelihood function is used.

ln(b ,s) =
n

Â
i=1

(Fi 6= 1) · (� 1
2

log(2ps2
1 )�

1
2s2

1
(x(i)1 �b01)

2)

+ (Fi 6= 2) · (� 1
2

log(2ps2
2 )�

1
2s2

2
(x(i)2 �b02�b21 · x(i)1 )2).

(5.13)

The following lemma shows how the parameters b ,s are estimated.

Lemma 5.2.1. Consider the LSEMs in (5.1), (5.4), (5.6). Let x = (x(1)1 ,x(1)2 ) . . .(x(d)1 ,x(d)2 ) be a set of
observations which follow one of the LSEMs above. Then, the log-likelihood function is

ln(b ,s) =
n

Â
i=1

(Fi 6= 1) · (� 1
2

log(2ps2
1 )�

1
2s2

1
(x(i)1 �b01)

2)

+ (Fi 6= 2) · (� 1
2

log(2ps2
2 )�

1
2s2

2
(x(i)2 �b02�b21 · x(i)1 )2).

The maximal likelihood estimators for b are

argmax
b01

ln(b ,s) = x̄Fi 6=1
1

argmax
b02

ln(b ,s) = x̄F 6=2
2 � b̂21

✓
n0 +n2

n0 +n1

◆
x̄F 6=2

1

argmax
b21

ln(b ,s) =
Âi2DFi 6=2(x̄F 6=2

2 � x(i)2 )x(i)1

Âi2DFi 6=2(

✓
n0+n2
n0+n1

x̄F 6=2
1

◆2

� (x(i)1 )2)

.
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where n0 is the number of samples with observational data, and n1 is the number of samples with
interventional data under do(Xi = x1) and

x̄F 6= j
i =

1
n�n j

Â
k2DF 6= j

x(k)i , i, j = 1,2.

Proof. Taking the derivative with respect to b01, we obtain the equation

∂ ln(b01,s)

∂b01
=

n

Â
i=1

(Fi 6= 1) ·
✓

x(i)1 �b01

s2
1

◆

Substituting the maximizer b̂01 in the above equation, we equate this to 0. This equation is solved by

b̂01 =
1

n0 +n2
Â

i2DFi 6=1

x(i)1 .

The derivative of the log-likelihood function with respect to b02 is

∂ ln(b02,b21,s)

∂b02
=

n

Â
i=1

(Fi 6= 2)
✓

x(i)2 �b02�b21 · x(i)1
s2

2

◆
.

Equating this derivative to zero gives the maximizer b̂02

n

Â
i=1

(Fi 6= 2) ·
✓

x(i)2 � b̂02� b̂21 · x(i)1
s2

2

◆
= 0

Â
i2DFi 6=2

b̂02 = Â
i2DFi 6=2

(x(i)2 � b̂21x(i)1 )

b̂02 =
1

n0 +n1
Â

i2DFi 6=2

(x(i)2 � b̂21x⇤(i)1 )

b̂02 =
1

n0 +n1
Â

i2DFi 6=2

x(i)2 � b̂21
1

n0 +n1
Â

i2DFi 6=2

x(i)1

b̂02 = x̄F 6=2
2 � b̂21

✓
n0 +n2

n0 +n1

◆
x̄F 6=2

1

The number of entire samples is equal to n = n0 + n1 + n2. Now, we differentiate the log-likelihood
function with respect to b21 and equate to 0

∂ ln(b̂02, b̂21,s)

∂b21
=

n

Â
i=1

(Fi 6= 2) ·
✓

x(i)2 � b̂02� b̂21 · x(i)1
s2

2

◆
· x(i)1 = 0
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which is solved by

Â
i2DFi 6=2

✓
x(i)2 x(i)1 � b̂02x(i)1 � b̂21(x

(i)
1 )2

s2
2

◆
= 0

0 = Â
i2DFi 6=2

✓
x(i)2 x(i)1 �

⇣
x̄F 6=2

2 � b̂21

✓
n0 +n2

n0 +n1

◆
x̄F 6=2

1

⌘
x(i)1 � b̂21(x

(i)
1 )2

◆

0 = Â
i2DFi 6=2

x(i)2 x(i)1 � x̄F 6=2
2 x(i)1 +

✓
n0 +n2

n0 +n1

◆
b̂21x̄F 6=2

1 x(i)1 � b̂21(x
(i)
1 )2

0 = Â
i2DFi 6=2

(x(i)2 � x̄F 6=2
2 )x(i)1 + b̂21( Â

i2DFi 6=2

�(x(i)1 )2 +

✓
(n0 +n2)2

n0 +n1

◆
(x̄F 6=2

1 )2)

0 = Â
i2DFi 6=2

(x(i)2 � x̄F 6=2
2 )x(i)1 + b̂21( Â

i2DFi 6=2

(

✓
n0 +n2

n0 +n1
x̄F 6=2

1

◆2

� (x(i)1 )2))

b̂21 =
Âi2DFi 6=2(x̄F 6=2

2 � x(i)2 )x(i)1

Âi2DFi 6=2(

✓
n0+n2
n0+n1

x̄F 6=2
1

◆2

� (x(i)1 )2)

Proposition 6. Consider the log-likelihood function (5.13). Then,

argmax
s1>0

ln(b02,b21,s1,s2) =
Âi2DFi 6=1(x(i)1 �b01)2

n0 +n2

argmax
s2>0

ln(b02,b21,s1,s2) =
Âi2DFi 6=2(x(i)2 �b02�b21x⇤(i)1 )2

n0 +n1
.

Proof. We take the derivative of the log-likelihood function ln with respect to s1

∂ ln(b02,b21,s1,s2)

∂s1
= Â

i2DFi 6=1

∂
∂s1

⇣
� 1

2
log(2ps2

1 )�
1

2s2
1
(x(i)1 �b01)

2
⌘

= Â
i2DFi 6=1

� 1
s1

+
1

s3
1
(x(i)1 �b01)

2

=�n0 +n2

s1
+ Â

i2DFi 6=1

1
s3

1
(x(i)1 �b01)

2.

Equating this to zero, we obtain the maximizer ŝ1

0 =�n0 +n2

ŝ1
+ Â

i2DFi 6=1

1
ŝ1

3 (x
(i)
1 �b01)

2

ŝ1 =
Âi2DFi 6=1(x(i)1 �b01)2

n0 +n2
.
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Analogously, we can compute ŝ2

ŝ2 =
Âi2DFi 6=2(x(i)2 �b02�b21x⇤(i)1 )2

n0 +n1
.

Remark. Estimating the parameters b02 ,b21, and s2 is equivalent to estimating the parameter of a linear
regression model Y = b02 +b21X + e where e ⇠N (0,s2). In our case, Y and X are corresponding to
X (i)

2 and X (i)
1 for i 2 DF 6=2. Estimating the parameter b01,s1 is equivalent to estimating parameters of

the model X (i)
1 = e for i 2 DF 6=1 where e ⇠N (b01,s2). Thus we can rewrite the previous results of the

estimators in the matrix form as follows:

b̂01 = (XT
0,F 6=1X0,F 6=1)X0,F 6=1X1,F 6=1

where XT
0,F 6=1 = (1,1, . . . ,1,1) which has the length of n0 +n2 and and

XT
1,DF 6=1 =

⇣
x(i1)1 . . . x

(in0+n2�1)
1 x

(in0+n2 )
1

⌘
for ik 2 DF 6=1,

b̂2 :=
✓

b02
b21

◆
= (XT

01,F 6=2X01,F 6=2)X01,F 6=2X(2,F 6=2)

where

XT
01,DF 6=2 =

 
1 . . . 1 1

x(i1)1 . . . x
(in0+n1�1)
1 x

(in0+n1 )
1

!
for ik 2 DF 6=2

and
XT

2,DF 6=2 =
⇣

x(i1)2 . . . x
(in0+n1�1)
2 x

(in0+n1 )
2

⌘
for ik 2 DF 6=2

5.3 Construction of a Confidence Set in Two-dimensional Case

In the following, we assume, without loss of generality, that b01 = b02 = 0. Solving a non-zero case is
achieved by centralizing or standardizing the variables. Consider the linear structural equation model
(2.12) and a data set that consists of both observational and interventional data. Then we have three
models.

i) Model with observational data

X1 = e1

X2 = b21X1 + e2

ii) Model with interventional data under do(X1 = x⇤1)

X1 = x⇤1
X2 = b21x⇤1 + e2.
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iii) Model with interventional data under do(X2 = x⇤2)

X1 = e1

X2 = x⇤2

where ei ⇠N (0,si), i = 1,2. Consider the following observations of random vectors x(1), . . . ,x(n),
where

x(i) =

0

B@
x(i)1

x(i)2
Fi

1

CA ,

and i is a element of the index set D = {1,2, . . .n� 1,n} which consists of three groups, that is,
D = DF=0[DF=1[DF=2 and DF=0\DF=1\DF=2 = /0. The samples x(i)1 ,x(i)2 , i 2DF=0 follow the first
model (i). Analogously, the samples x(i)1 ,x(i)2 , i 2 DF=1 follow the second model (ii) and the samples for
i 2 DF=2 follow the model (iii). The empirical covariance matrix is defined as SF=k = 1

nk
ÂFi=k X (i)X (i)T

for k = 0,1,2 and SF 6=k = 1
n�nk

ÂFi=k X (i)X (i)T for k = 0,1,2. The joint distribution and log-likelihood
function of each model are

i) Model with observational data

f (x(i)1 ,x(i)2 |b21,s1,s2) = f (x(i)2 |x(i)1 ,b21,s2) · f (x(i)1 |s1)

=
1q

2ps2
2

· e
� 1

2s2
2
(x(i)2 �b21·x

(i)
1 )2 1q

2ps2
1

· e
� 1

2s2
1
(x(i)1 )2

ln0(b21,s1,s2|x(i), i 2 DF=0) = Â
i2DF=0

⇣
� 1

2
log(2ps2)�

1
2s2

(x(i)2 �b21x(i)1 )2

� 1
2

log(2ps1)�
1

2s1
(x(i)1 )2

⌘

ii) Model with interventional data under do(X (i)
1 = x(i)1 )

f (x(i)1 ,x(i)2 |b21,s1,s2) = f (x(i)2 |x(i)1 ,b21,s2)

=
1q

2ps2
2

· e
� 1

2s2
2
(x(i)2 �b21·x

(i)
1 )2

ln1(b21,s1,s2|x(i), i 2 DF=1) = Â
i2DF=1

�1
2

log(2ps2)�
1

2s2
(x(i)2 �b21x(i)1 )2

iii) Model with interventional data under do(X (i)
2 = x(i)2 )

f (x(i)1 ,x(i)2 |b21,s1,s2) = f (x(i)1 |s1)

=
1q

2ps2
1

· e
� 1

2s2
1
(x(i)1 )2

ln2(b21,s1,s2|x(i), i 2 DF=2) = Â
i2DF=2

�1
2

log(2ps1)�
1

2s1
(x(i)1 )2
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To calculate the profile likelihood function evaluated by the data set with D0, we assume that the
parameter of the causal effect b21 takes a fixed value Y. The log-likelihood function of this case is

l(0)(Y,s1,s2) =
n0,0 +n0,1

2
log(2ps2)�

1
2s2

Â
i2DFi 6=2

0

(x(i)2 �Yx(i)1 )2 + l̃(0)(s1) (5.14)

where l̃(0)(s1) denotes a part of likelihood function which does not depend on Y:

l̃(0)(s1) =
n0,0 +n0,2

2
log(2ps1)�

1
2s1

Â
i2DFi 6=1

0

(x(i)1 )2

In order to determine the profile likelihood function, we first assumed that C (1! 2) takes a fixed value
Y and under this constraint maximize with respect to the parameters s1 and s2.

Lemma 5.3.1. Consider the profile likelihood in (5.14). Then, the maximal likelihood estimators
calculated by the data set D0 are

argmax
s2

1>0
ln(Ys1,s2|x(1), . . . ,x(n)) = ŜF 6=1

0,11

argmax
s2

2>0
ln(Y,s1,s2|x(1), . . . ,x(n)) = ŜF 6=2

0,11 Y2�2ŜF 6=2
0,12 Y+ ŜF 6=2

0,22

where the matrix ŜF 6=i
0 is the empirical covariance matrix based on the data with D0 such that

ŜF 6=i
0 =

 
ŜF 6=i

0,11 ŜF 6=i
0,12

ŜF 6=i
0,21 ŜF 6=i

0,22

!
=

1
n0,0 +n0,l

Â
k2DF 6=i

0

x(k)x(k)
T
, l, i = 1,2, and l 6= i

Proof. From the Proposition (6), we know that

ŝ1
2 := argmax

s2
1>0

ln(b02,b21,s1,s2) =
ÂFi 6=1(x

(i)
1 �b01)2

n0 +n2

ŝ2
2 := argmax

s2
2>0

ln(b02,b21,s1,s2) =
ÂFi 6=2(x

(i)
2 �b02�b21x(i)1 )2

n0 +n1
.

Since we assumed that the b01 and b02 are zero and we set b21 to Y, we obtain

argmax
s2

1>0
ln(Y,s1,s2) =

Âi2DF 6=1
0

(x(i)1 )2

n0,0 +n0,2

= ŜF 6=1
0,11
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and

argmax
s2

2>0
ln(Y,s1,s2) =

Âi2DF 6=2
0

(x(i)2 �Yx⇤(i)1 )2

n0,0 +n0,1

=
Âi2DF 6=1

0
(x(i)2 )2 +Y2(x(i)1 )2�2yx(i)1 x(i)2

n0,0 +n0,1

= ŜF 6=2
0,11 Y2�2ŜF 6=2

0,12 Y+ ŜF 6=2
0,22

Case 1: Y 6= 0
We determined logarithmic version of the profile likelihood function l(0)† (Y) based on the data set
D0 = DF=0

0 [DF=1
0 [DF=2

0 from above result. Substituting the maximal likelihood estimators of
remaining parameters s1,s2 in Eq.(5.14), we obtain

l(0)† (Y) :=max
s1,s2

l(0)(y,s1,s2) = l(0)(y, ŝ1, ŝ2)

=� n0,0 +n0,1

2
log(2pŝ2)�

1
2ŝ2

Â
i2DF 6=2

0

(x(i)2 �Yx(i)1 )2 + l̃(0)(ŝ1)

=� n0,0 +n0,1

2
log(2p(ŜF 6=2

0,11 Y2�2ŜF 6=2
0,12 Y+ ŜF 6=2

0,22 ))

� n0,0 +n0,1

2Âi2DF 6=2
0

(x(i)2 �Yx(i)1 )2 Â
i2DF 6=2

0

(x(i)2 �Yx(i)1 )2 + l̃(0)(ŝ1)

=� n0,0 +n0,1

2
log(2p(ŜF 6=2

0,11 Y2�2ŜF 6=2
0,12 Y+ ŜF 6=2

0,22 ))�
n0,0 +n0,1

2
+ l̃(0)(ŝ1) (5.15)

where SF 6=2
0 and SF 6=1

0 are the empirical covariance matrices calculated based on the data set with
the index set D0.

Case 2: Y = 0
Suppose that C (1! 2) = Y = 0. In (M2.2), the direct causal effect C (1! 2) is always zero.
Therefore, (M2.1) with Y = 0 is a special case of (M2.2). Since all parameter involved in
(M2.2) are independent on the constraint C (1! 2), we obtain the profile likelihood function by
maximizing the likelihood function of (M2.2). The log-likelihood of (M2.2) is

l(0)2!1(b12,s1,s2) = Â
i2D0

(Fi 6= 2) · (� 1
2

log(2ps2
2 )�

1
2s2

2
(x(i)2 )2)

+ (Fi 6= 1) · (� 1
2

log(2ps2
1 )�

1
2s2

1
(x(i)1 �b12 · x(i)2 )2).

(5.16)

The maximum likelihood estimators of this model are

b̂12 =argmax
b12

Â
i2DF 6=1

0

(x(i)1 �b12 · x(i)2 )2 =
SF 6=1

0,12

SF 6=1
0,22

,
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ŝ2
2 =argmax

s2
2

Â
i2DF 6=2

0

(� 1
2

log(2ps2
2 )�

1
2s2

2
(x(i)2 )2) = SF 6=2

0,22 ,

and

ŝ2
1 =argmax

s2
1

Â
i2DF 6=1

0

(� 1
2

log(2ps2
1 )�

1
2s2

1
(x(i)1 �b12 · x(i)2 )2) = SF 6=1

0,11 �
(SF 6=1

0,12 )
2

SF 6=1
0,22

where SF 6=i
0 is empirical covariance matrix based on the data with the index set DF 6=i

0 for i = 1,2.
Therefore, the profile likelihood in this case is

l(0)† (Y) := max
b21,s1,s2

l(0)n0,2!1(b12,s1,s2)

=� n0,0 +n0,1

2
log(2pSF 6=2

0,22 )�
n0,0 +n0,1

2

� n0,0 +n0,2

2
log(2p(SF 6=1

0,11 �
(SF 6=1

0,12 )
2

SF 6=1
0,22

))� n0,0 +n0,2

2
.

(5.17)

Now, we determine the boundaries of the confidence interval of the split likelihood function by using the
profile likelihood function in Equation (5.15). The logarithmic version of the split likelihood ratio xn

from the Equation (4.3) is therefore

xn =l(0)(q̂1)� l(0)† (Y)

=l(0)(q̂1)+
n0,0 +n0,1

2
log(2p(ŜF 6=2

0,11 Y2�2ŜF 6=2
0,12 Y+ ŜF 6=2

0,22 ))+
n0,0 +n0,1

2
� l̃n(ŝ1)

where the likelihood function l(0)(q̂1) is the likelihood function evaluated by the data with the index
setD0, given the maximum likelihood estimator calculated by the data with the index set D1

q̂1 =

0

@
b̂1,12
ŝ1,1
ŝ1,2

1

A .

According to Theorem 4.0.4, the set

Cn :=

(
Y 2 R : xn  log(

1
a
)

)

is 1�a confidence interval set for C (1! 2). Rearranging the inequality xn  log( 1
a ) in the case Y 6= 0,

we get
ŜF 6=2

0,11 Y2�2ŜF 6=2
0,12 Y+ ŜF 6=2

0,22 �B 0 (5.18)

where
B =

1
2p

exp
⇣ 2

n0,0 +n0,1
(l̃(ŝ1)� l0(q̂1)�

n0,0 +n0,1

2
+ log(

1
a
))
⌘
.
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The left-hand side is a function of Y and a parabola opening to the top. The solution of this inequality is
all Y in between the two zeros of this parabola if they exist. Using a well-known formula for the roots
of a general quadratic polynomial gives that the inequality (5.18) is equivalent to

Y 2
(

[L(ŜF 6=2
0 ),U(ŜF 6=2

0 )] if G� 0
/0 if G < 0

where
G = (ŜF 6=2

0,12 )
2� ŜF 6=2

0,11 (Ŝ
F 6=2
0,22 �B)

and

L(ŜF 6=2
0 ) =

(ŜF 6=2
0,12 )

2�
p

G

ŜF 6=2
0,11

,

U(ŜF 6=2
0 ) =

(ŜF 6=2
0,12 )

2 +
p

G

ŜF 6=2
0,11

.

Rearranging the inequality xn > log(1/a) in the case Y = 0 delivers

H =l(0)(q̂1)+
n0,0 +n0,1

2
log(2pSF 6=2

0,22 )+
n0,0 +n0,1

2

+
n0,0 +n0,2

2
log(2p(SF 6=1

0,11 �
(SF 6=1

0,12 )
2

SF 6=1
0,22

))+
n0,0 +n0,2

2
� 0.

Totally, we rewrite the description of a 1�a confidence set for C (1! 2) in detail as follows

Bn =

8
>>><

>>>:

([L(ŜF 6=2
0 ),U(ŜF 6=2

0 )]\ (R \{0}))[{0}, if G� 0 and H  0,
{0}, if G < 0 and H  0,
L(ŜF 6=2

0 ),U(ŜF 6=2
0 )]\ (R \{0}), if G� 0 and H > 0,

/0, if G < 0 and H > 0.

Now, we write down the test problem we consider in detail.

H0 : The data follows a LSEM and the causal effect C (1! 2) = Y versus
H1: H0 does not hold.

In order to construct a test with a valid finite-sample bound on the type I error for this problem, we
calculate the split likelihood ratio test statistic. Again, it is necessary to distinguish two cases. In the
case Y 6= 0, the logarithmic version of this test statistic is determined by

xn = l0(q̂1)+
n0,0 +n0,1

2
log(2p(ŜF 6=2

0,11 Y2�2ŜF 6=2
0,12 Y+ ŜF 6=2

0,22 ))+
n0,0 +n0,1

2
� l̃(ŝ1)

whereas in the case Y = 0,

xn =l(0)(q̂1)+
n0,0 +n0,1

2
log(2pSF 6=2

0,22 )+
n0,0 +n0,1

2

+
n0,0 +n0,2

2
log(2p(SF 6=1

0,11 �
(SF 6=1

0,12 )
2

SF 6=1
0,22

))+
n0,0 +n0,2

2
.

The split likelihood ratio test rejects H0 if and only if xn > log(1/a).
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5.4 Construction of a Confidence Set in Three-dimensional Case

Here, the three-dimensional case is considered. This case consists of a more complex structure than the
two-dimensional case. There exist six directions of dependency

(M3.1) (M3.2) (M3.3)
X1 := e1 X1 := e1 X1 := b12X2 + e1

X2 := b21X1 + e2 X2 := b21X1 +b23X3 + e2 X2 := e2

X3 := b31X1 +b32X2 + e3 X3 := b31X1 + e3 X3 := b31X1 +b32X2 + e3

(M3.4) (M3.5) (M3.6)
X1 := b13X3 + e1 X1 := b12X2 +b13X3 + e1 X1 := b12X2 +b13X3 + e1

X2 := b21X1 +b23X3 + e2 X2 := e2 X2 := b23X3 + e2

X3 := e3 X3 := b32X2 + e3 X3 := e3.

In all models, it is also allowed that the dependency takes the value 0. Without loss of generality, we
observe the first model (M3.1). Fig.(5.2). displays the graph of this model. Calculations of the other
models are derived by reindexing variables and errors appropriately according to the LSEMs of each
model.

i) LSEM of Observational data
X1 = e1

X2 = b21X1 + e2

X3 = b31X1 +b32X2 + e3.

(5.19)

ii) LSEM of interventional data under do(X1 = x⇤1)

X1 = x⇤1
X2 = b21x⇤1 + e2

X3 = b31X1 +b32X2 + e3.

(5.20)

iii) LSEM of interventional data under do(X2 = x⇤2)

X1 = e1

X2 = x⇤2
X3 = b31X1 +b32x⇤2 + e3.

(5.21)

iv) LSEM of interventional data under do(X3 = x⇤3)

X1 = e1

X2 = b21X1 + e2

X3 = x⇤3.

(5.22)
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Figure 5.2: M3.1

As implemented in the two-dimensional case, we determine the density factorization. By Proposition 1,
The density of the observational data which follow the LSEM in (5.20) factors as

f (X1,X2,X3) =
3

Â
i=1

f (Xi|Xpa(i)) = f (X1) f (X2|X1) f (X3|X1,X2)

The interventional densities under do(Xi = xi) for i 2 {1,2,3} factor as

f (X1,X2,X3;do(Xi = xi)) =

8
<

:

f (X2|X1 = x1) f (X3|X1 = x1,X2) for i = 1
f (X1) f (X3|X1,X2 = x2) for i = 2

f (X1) f (X2|X1) for i = 3

Again, we consider the observations of random vector x = ((x(1)1 ,x(1)2 ,x(1)3 ,F1) . . .(x
(n)
1 ,x(n)2 ,x(n)3 ,Fn)),

where Fi take one of the values 0,1,2,3. Let D be a index set {1,2, . . . ,n}. Depending on the value
of Fi = j, the index i of x(i) = (x(i)1 ,x(i)2 ,x(i)3 ,Fi) is contained in the subset D j. Hence, the index set D
consists of 4 groups such that D = D0\D1\D2\D3. In the following, we show how the likelihood
function of our model factors. It follows exactly the same factorization rules as the two-dimensional
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case:

L(b ,s) =
n

’
i=1

f (x(i)1 ,x(i)2 ,x(i)3 |b ,s)

=
n

’
i=1

f (x(i)1 ,x(i)2 ,x(i)3 |b ,s) (Fi=0) f (x(i)1 ,x(i)2 ,x(i)3 |b ,s) (Fi=1)

· f (x(i)1 ,x(i)2 ,x(i)3 |b ,s) (Fi=2) f (x(i)1 ,x(i)2 ,x(i)3 |b ,s) (Fi=3)

=
n

’
i=1

✓
f (x(i)1 ) f (x(i)2 |x(i)1 ) f (X3|x(i)1 ,x(i)2 )

◆ (Fi=0)✓
f (x(i)2 |x(i)1 ) f (x(i)3 |x(i)1 ,x(i)2 )

◆ (Fi=1)

·
✓

f (x(i)1 ) f (x(i)3 |x(i)1 ,x(i)2 )

◆ (Fi=2)✓
f (x(i)1 ) f (x(i)2 |x(i)1 )

◆ (Fi=3)

=
n

’
i=1

f (x(i)1 |s1)
(Fi=0,2,3) f (x(i)2 |x(i)1 ,b21,s2)

(Fi=0,1,3)

· f (x(i)3 |x(i)1 ,x(i)2 ,b31,b32,s3)
(Fi=0,1,2)

=
n

’
i=1

f (x(i)1 |s1)
(Fi 6=1) f (x(i)2 |x(i)1 ,b21,s2)

(Fi 6=2)

· f (x(i)3 |x(i)1 ,x(i)2 ,b31,b32,s3)
(Fi 6=3) (5.23)

Since we assume that all error are normally distributed, we have the terms that arise in (5.23) as

f (x(i)1 |s1) =
1q

2ps2
1

exp
✓

1
2s2

1
(x(i)1 )2

◆

f (x(i)2 |x(i)1 ,b21,s2) =
1q

2ps2
2

exp
✓

1
2s2

2
(x(i)2 �b21x(i)1 )2

◆

f (x(i)3 |x(i)1 ,x(i)1 ,b31,b32,s1) =
1q

2ps2
3

exp
✓

1
2s2

3
(x(i)3 �b31x(i)1 �b32x(i)2 )2

◆
.

Substituting the terms in (5.23), we obtain the likelihood function of the entire data

Ln(b ,s) =
n

’
i=1

 
1q

2ps2
1

exp
✓

1
2s2

1
(x(i)1 )2

◆! (Fi 6=1)

·
 

1q
2ps2

2

exp
✓

1
2s2

2
(x(i)2 �b21x(i)1 )2

◆! (Fi 6=2)

·
 

1q
2ps2

3

exp
✓

1
2s2

3
(x(i)3 �b31x(i)1 �b32x(i)2 )2

◆! (Fi 6=3)

.
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Taking logarithm to the likelihood function, we obtain the log-likelihood function

ln(b ,s) =
n

Â
i=1

(Fi 6= 1)
✓
� 1

2
log(2ps2

1 )�
1

2s2
1
(x(i)1 )2

◆

+ (Fi 6= 2)
✓
� 1

2
log(2ps2

2 )�
1

2s2
2
(x(i)2 �b21x(i)1 )2

◆

+ (Fi 6= 3)
✓
� 1

2
log(2ps2

3 )�
1

2s2
3
(x(i)3 �b31x(i)1 �b32x(i)2 )2

◆
.

(5.24)

Taking the derivative with respect to si for i = 1,2,3 similarly to the two-dimensional case, the maximal
likelihood estimators for the parameters are determined. The maximal likelihood estimators are in the
following

ŝ1 :=
1

n0 +n2 +n3
Â

Fi 6=1
(x(i)1 )

ŝ2 :=
1

n0 +n1 +n3
Â

Fi 6=2
(x(i)2 � x(i)1 b21)

ŝ3 :=
1

n0 +n1 +n2
Â

Fi 6=3
(x(i)3 � x(i)1 b31� x(i)2 b32)

(5.25)

where n0 is the number of samples of the observational data, and n j is the number of samples of the
interventional data under do(X (i)

j = x(i)j ). Using this result, we calculate the profile likelihood functions
for the total causal effects C (1! 2),C (1! 3),C (2! 3). The total causal effect of X1 on X2 and X2
on X3 is directly the parameters b21 and b32, since

C (1! 2) =
d

dx1
E[X2;(X1 = x1)]

=
d

dx1
b21x1 = b21

and

C (2! 3) =
d

dx2
E[X3;(X2 = x2)]

=
d

dx2
(b31 E[X1]+b32x2) = b32.

For the total causal effect C (1! 3), estimating the parameters is more complicated since the fixed
value Y is a function of the parameter. The total causal effect of X1 on X3 is

C (1! 3) =
d

dx1
E[X3;(X1 = x1)]

=
d

dx1
(b31x1 +b32 E[X2;(X1 = x1)])

=
d

dx1
(b31x1 +b32b21x1) = b31 +b32b21.
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Assuming that the causal effect C (1! 2) or C (2! 3) takes a fixed value Y such that b21 = Y or
b32 = Y, the profile likelihood function is determined by maximizing the likelihood function l(0)n based
on the split data set with the index set D0 with respect to the remaining parameters such as s1,s2, and
b31. The maximal likelihood estimator of s1,s2, and s3 are listed in (5.25). In order to apply this
calculation for every model, we define three cases. Each case represents the calculation of the profile
likelihood function for each causal effect arising in the model (M3.1). Table 5.1 shows which causal
effect of the given models from (M3.1) to (M3.6) belongs to one of the three cases. For the other models,
the calculations can analogously be applied according to Table 5.1 by setting the corresponding values
to the indices i, j,k in the following LSEMs. All our three-dimensional models have the form of

Xi := ei

Xj := b jiXi + e j

Xk := bkiXi +bk jXj + ek

for i, j,k 2 {1,2,3} and i 6= j 6= k. For this model, the three total causal effects C (i! j), C ( j! k), and
C (i! k) can be considered to proceed a valid hypothetical test. For example, if i = 1, j = 2,k = 3, we
have the mode (M3.1). If i = 2, j = 1,k = 3, we have the model (M3.3). Thus, the following calculations
of the cases are valid for all possible three-dimensional models from (M3.1) to (M3.6) as listed in Tabel
5.1. In the following, the calculation of profile likelihood functions of the three cases is given.

Model Case I Case II Case III
M3.1 C (1! 2) C (2! 3) C (1! 3)
M3.2 C (1! 3) C (3! 2) C (1! 2)
M3.3 C (2! 1) C (1! 3) C (2! 3)
M3.4 C (3! 1) C (1! 2) C (3! 2)
M3.5 C (2! 3) C (3! 1) C (2! 1)
M3.6 C (3! 2) C (2! 1) C (3! 1)

Table 5.1: Sorting which causal effect of the models belongs to one of the three cases.

Case I : First, we consider the case b21 = Y, then the maximal likelihood estimators of b31,b32 are
calculated by differentiating the last term of the log-likelihood function in (5.24) with respect to
b31, and b32. Applying the maximal likelihood method introduced in Chapter 3, we estimate b31,
b32 as follows

b̂3 :=

 
b̂31

b̂32

!
= (XT

12,DF 6=3
0

X12,DF 6=3
0

)�1XT
12,DF 6=3

0
X3,DF 6=3

0
. (5.26)

where

Xjl,DF 6=m
0

=

0

@ x(i1)j . . . x
(in0,0+n0, j+n0,l�1)

j x
(in0,0+n0, j+n0,l )

j

x(i1)l . . . x
(in0,0+n0, j+n0,l�1)

l x
(in0,0+n0, j+n0,l )

l

1

A for ik 2DF 6=m
0 and j, l,m2 {1,2,3}, j 6= l 6=m
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and

Xj,DF 6=m
0

=
⇣

x(i1)j . . . x
(in0,0+n0, j+n0,l�1)

j x
(in0,0+n0, j+n0,l )

j

⌘
for ik 2DF 6=m

0 and j, l,m2 {1,2,3}, j 6= l 6=m.

Substituting all above ML estimators and the fixed value Y for b21 in (5.24), we obtain the profile
likelihood function

l(0)† (Y) := l(b̂ , ŝ ,Y) = Â
i2DFi 6=1

0

✓
� 1

2
log(2pŝ2

1 )�
1

2ŝ2
1
(x(i)1 )2

◆

+ Â
i2DFi 6=2

0

✓
� 1

2
log(2pŝ2

2 )�
1

2ŝ2
2
(x(i)2 � b̂21x(i)1 )2

◆

+ Â
i2DFi 6=3

0

✓
� 1

2
log(2pŝ2

3 )�
1

2ŝ2
3
(x(i)3 � b̂31x(i)1 � b̂32x(i)2 )2

◆

=� n0,0 +n0,2 +n0,3

2
log
⇣

2pŜF 6=1
0,11

⌘
� n0,0 +n0,2 +n0,3

2

� n0,0 +n0,1 +n0,3

2
log
⇣

2p(Y2ŜF 6=2
0,11 �2YŜF 6=2

0,12 + ŜF 6=2
0,22 )

⌘
� n0,0 +n0,1 +n0,3

2

� n0,0 +n0,1 +n0,2

2
log
⇣

2p(ŜF 6=3
0,33 + ŜF 6=3

0,22 b̂ 2
32 + ŜF 6=3

0,11 b̂ 2
31

+2ŜF 6=3
0,12 b̂31b̂32�2ŜF 6=3

0,23 b̂32�2ŜF 6=3
0,13 b̂31)

⌘
� n0,0 +n0,1 +n0,2

2

where b̂32 and b̂31 are explicitly given in (5.26) and

ŜF 6=i
0 =

0

B@
ŜF 6=i

0,11 ŜF 6=i
0,12 ŜF 6=i

0,13
ŜF 6=i

0,21 ŜF 6=i
0,22 ŜF 6=i

0,23
ŜF 6=i

0,31 ŜF 6=i
0,32 ŜF 6=i

0,33

1

CA=
1

n0,0 +n0, j +n0,k
Â

l2DF 6=i
0

(X (l))T X (l), i, j,k2 {1,2,3} and i 6= j 6= k

is the empirical covariance matrix.

Case II : Now, we consider the second case where the total causal effect C (2! 3) takes a fixed value
Y. The variances of the error terms can be estimated as in (5.25). b21 and b31 are estimated by
using the maximal likelihood method in Chapter 3 for both following linear models

X2 = b21X1 + e2

X3�YX2 = b31X1 + e3.

The estimated parameters b̂21 and b̂31 are given by

b̂21 = (XT
1,DF 6=2

0
X1,DF 6=2

0
)�1XT

1,DF 6=2
0

X2,DF 6=2
0

,

and
b̂31(Y) := b̂31 = (XT

1,DF 6=3
0

X1,DF 6=3
0

)�1XT
1,DF 6=3

0
X3�2Y,DF 6=3

0
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where

Xj�Yl,DF 6=m
0

=
⇣

x(i1)j �Yx(i1)l . . . x
(in0,0+n0, j+n0,l�1)

j �Yx
(in0,0+n0, j+n0,l�1)

l x
(in0,0+n0, j+n0,l )

j �Yx
(in0,0+n0, j+n0,l )

l

⌘

for ik 2 DF 6=m
0 and j, l,m 2 {1,2,3}, j 6= l 6= m.

Substituting b̂21, b̂31, ŝ1, ŝ2, ŝ3 and Y into Eq.(5.24), the profile likelihood function is obtained as
follows

l†(Y) =� n0,0 +n0,2 +n0,3

2
log
⇣

2pŜF 6=1
0,11

⌘
� n0,0 +n0,2 +n0,3

2

� n0,0 +n0,1 +n0,3

2
log
⇣

2p(b̂ 2
21ŜF 6=2

0,11 �2b̂21ŜF 6=2
0,12 + ŜF 6=2

0,22 )
⌘
� n0,0 +n0,1 +n0,3

2

� n0,0 +n0,1 +n0,2

2
log
⇣

2p(ŜF 6=3
0,33 + ŜF 6=3

0,22 Y2 + ŜF 6=3
0,11 b̂31(Y)2

+2ŜF 6=3
0,12 Yb̂31(Y)�2ŜF 6=3

0,23 Y�2ŜF 6=3
0,13 b̂31(Y))

⌘
� n0,0 +n0,1 +n0,2

2
.

Case III : The last case is the total causal effect of X1 on X3. Assuming that the total causal effect
C (1! 3) takes a fixed value Y, that is, C (1! 3) = b31 +b32b21 = Y, we have to solve the
following optimization problem in order to estimate the parameters

max
b ,s

l(0)(b ,s)

s.t. b31 +b32b21 = Y
(5.27)

where

b =

0

@
b21
b31
b32

1

A

and

s =

✓
s1
s2

◆

and the function l(0)(b ,s) is the log-likelihood function based on the data set with D0 given in
(5.24). To solve the optimization problem, we take a derivative with respect to each parameter.
Solving the constraint function for b31, we have b31 = Y�b21b32. Thus, we have the objective
function l(0)(b ,s) as

l(0)(b ,s) = Â
i2DFi 6=1

0

✓
� 1

2
log(2ps2

1 )�
1

2s2
1
(x(i)1 )2

◆

+ Â
i2DFi 6=2

0

✓
� 1

2
log(2ps2

2 )�
1

2s2
2
(x(i)2 �b21x(i)1 )2

◆

+ Â
i2DFi 6=3

0

✓
� 1

2
log(2ps2

3 )�
1

2s2
3
(x(i)3 � (Y�b21b32)x

(i)
1 �b32x(i)2 )2

◆
.
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By maximizing this function, the optimization problem is solved. Taking the derivative with
respect to s1,s2, and s3 and equating the results to zero, then we have

s2
1 =

1
n0,0 +n0,2 +n0,3

Â
i2DFi 6=1

0

(x(i)1 )2

s2
2 =

1
n0,0 +n0,1 +n0,3

Â
i2DFi 6=2

0

(x(i)2 � x(i)1 b21)
2

s2
3 =

1
n0,0 +n0,1 +n0,2

Â
i2DFi 6=3

0

(x(i)3 � x(i)1 (Y�b21b32)� x(i)2 b32)
2

(5.28)

Now we take derivative of ln(b ,s) with respect to b21 and b32:

∂
∂b32

l(0)(b ,s) =
∂

∂b32
Â

i2DFi 6=3
0

✓
� 1

2
log(2ps2

3 )�
1

2s2
3
(x(i)3 � (Y�b21b32)x

(i)
1 �b32x(i)2 )2

◆

=� 1
s2

3
Â

i2DFi 6=3
0

⇣
x(i)3 � (Y�b21b32)x

(i)
1 �b32x(i)2

⌘⇣
b21x(i)1 � x(i)2

⌘
.

(5.29)
and

∂
∂b21

l(0)(b ,s) =
∂

∂b32
Â

i2DFi 6=2
0

✓
� 1

2
log(2ps2

2 )�
1

2s2
2
(x(i)2 �b21x(i)1 )2

◆

+ Â
i2DFi 6=3

0

✓
� 1

2
log(2ps2

3 )�
1

2s2
3
(x(i)3 � (Y�b21b32)x

(i)
1 �b32x(i)2 )2

◆

=� 1
s2

2
Â

i2DFi 6=2
0

⇣
x(i)2 �b21x(i)1

⌘
x(i)1

� 1
s2

3
Â

i2DFi 6=3
0

⇣
x(i)3 � (Y�b21b32)x

(i)
1 �b32x(i)2

⌘
b32x(i)1 .

(5.30)

We equate the results in (5.29) and (5.30) to 0 as

Â
i2DFi 6=3

0

⇣
x(i)3 � (Y�b21b32)x

(i)
1 �b32x(i)2

⌘⇣
b21x(i)1 � x(i)2

⌘
= 0 (5.31)

s2
3 Â

i2DFi 6=2
0

⇣
x(i)2 �b21x(i)1

⌘
x(i)1 +s2

2 Â
i2DFi 6=3

0

⇣
x(i)3 � (Y�b21b32)x

(i)
1 �b32x(i)2

⌘
b32x(i)1 = 0. (5.32)

s1 is directly determined by the equation in (5.28). The remaining parameters s2,s3,b32 and b21
are calculated by solving the system of equations (5.28),(5.31),(5.32). Substituting s1 and s2
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from (5.28) in Eq.(5.32), we obtain

1
n0,0 +n0,1 +n0,2

Â
i2DFi 6=3

0

(x(i)3 � x(i)1 (Y�b21b32)� x(i)2 b32)
2 Â

i2DFi 6=2
0

⇣
x(i)2 �b21x(i)1

⌘
x(i)1

+
1

n0,0 +n0,1 +n0,3
Â

i2DFi 6=2
0

(x(i)2 �b21x(i)1 )2 Â
i2DFi 6=3

0

⇣
x(i)3 � (Y�b21b32)x

(i)
1 �b32x(i)2

⌘
b32x(i)1 = 0

(5.33)
Rearrange (5.31) for b32,we obtain

0 = Â
i2DFi 6=3

0

⇣
x(i)3 � (Y�b21b32)x

(i)
1 �b32x(i)2

⌘⇣
b21x(i)1 � x(i)2

⌘

0 = b21ŜF 6=3
13 � ŜF 6=3

23 �Y(b21ŜF 6=3
11 � ŜF 6=3

12 )+b32(b 2
21ŜF 6=3

11 �2b21ŜF 6=3
12 + ŜF 6=3

22 )

b ⇤32(b21) := b32 =
Y(b21ŜF 6=3

11 � ŜF 6=3
12 )�b21ŜF 6=3

13 + ŜF 6=3
23

b 2
21ŜF 6=3

11 �2b21ŜF 6=3
12 + ŜF 6=3

22

(5.34)

Substituting b32 from (5.34) in Eq.(5.33), we obtain a higher degree polynomial equation

P(b21) =
1

n0,0 +n0,1 +n0,2
Â

i2DFi 6=3
0

(x(i)3 � x(i)1 (Y�b21b ⇤32(b21))� x(i)2 b ⇤32(b21))
2 Â

i2DFi 6=2
0

⇣
x(i)2 �b21x(i)1

⌘
x(i)1

+
1

n0,0 +n0,1 +n0,3
Â

i2DFi 6=2
0

(x(i)2 �b21x(i)1 )2 Â
i2DFi 6=3

0

⇣
x(i)3 � (Y�b21b ⇤32(b21))x

(i)
1 �b ⇤32(b21)x

(i)
2

⌘
b ⇤32(b21)x

(i)
1 = 0.

b ⇤21 denotes the solution of the polynomial equation P(b21) = 0. Solving this equation, that is,
finding the roots of the polynomial, is achieved by using a numerical method(e.g. POLYROOT
in R). Once b ⇤21 is obtained by solving the polynomial equation P(b21) = 0, the other parameters
such as b32,s2 and s3 can be easily found by substituting the solution b ⇤21 in (5.34),(5.28).

Previously, we assumed Y 6= 0 and calculated the profile likelihood function. Now, we assume Y = 0
and compute the profile likelihood functions of each case. For the possible causal effects in the model
(M3.1), it is straightforward to see

C (1! 2) =

8
>>>>>>><

>>>>>>>:

b21 in (M3.1)
b23b31 +b21 in (M3.2)

0 in (M3.3)
b21 in (M3.4)

0 in (M3.5)
0 in (M3.6)

(5.35)

and

C (2! 3) =

8
>>>>>>><

>>>>>>>:

b32 in (M3.1)
0 in (M3.2)

b31b12 +b32 in (M3.3)
0 in (M3.4)

b32 in (M3.5)
0 in (M3.6)

(5.36)
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and

C (1! 3) =

8
>>>>>>><

>>>>>>>:

b32b21 +b31 in (M3.1)
b31 in (M3.2)
b31 in (M3.3)

0 in (M3.4)
0 in (M3.5)
0 in (M3.6).

(5.37)

Case I : Suppose that C (1! 2) = 0. According to (5.35) and Table 5.1, the data came from one of the
models (M3.1), (M3.3). However, (M3.1) is a special case of (M3.3). Thus, the profile likelihood
function for C (1! 2) = Y = 0 is the maximum of the likelihood function of the model (M3.3),
since all parameter involved in (M3.3) are independent of the constraint C (1! 2). Hence, the
profile likelihood function is

l(0)† (Y) =� n0,0 +n0,1 +n0,3

2
log
⇣
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0,22
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0,12 + ŜF 6=1
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32 + ŜF 6=3

0,11 b̂ 2
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� n0,0 +n0,1 +n0,2

2
where

 
b̂31

b̂32

!
= (XT

12,DF 6=3
0

X12,DF 6=3
0

)�1XT
12,DF 6=3

0
X3,DF 6=3

0

and
⇣

b̂12

⌘
= (XT

2,DF 6=1
0

X2,DF 6=1
0

)�1XT
2,DF 6=1

0
X1,DF 6=1

0
.

Case II : Now, we assume C (2! 3) = 0. According to (5.36) and Table 5.1, the data came from one of
the models (M3.1), (M3.2). Analogously in Case I, (M3.1) is a special case of (M3.2). Therefore
the profile likelihood function is given as

l(0)† (Y) =� n0,0 +n0,2 +n0,3

2
log
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0,33 b̂ 2
23 + ŜF 6=2
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0,23 b̂23�2ŜF 6=2
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0
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and
⇣

b̂31

⌘
= (XT

1,DF 6=3
0

X1,DF 6=3
0

)�1XT
1,DF 6=3

0
X3,DF 6=3

0
.

Case III : Assuming C (1! 3) = 0, according to (5.36) and Table 5.1 the data came from the model
(M3.1), (M3.4), (M3.5) or (M3.6). Since the likelihood functions of the models do not depend
on b32,b21, and b31, the profile likelihood function for C (1! 3) = Y is the maximum of the
likelihood functions of the models (M3.4), (M3.5) or (M3.6). The maximum of likelihood
functions of the models are
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0,33 b̂ 2
23 + ŜF 6=2
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0,23 b̂23�2ŜF 6=2
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0,13 b̂13�2ŜF 6=1
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Thus, the profile likelihood functions for C (1! 3) = 0 is

l(0)† (Y) = max{l(0)M3.4, l
(0)
M3.5, l

(0)
M3.6}.

Now suppose ŜF 6= j
1 is the maximal likelihood estimator of the covariance matrix computed based on

xi, i 2 DF 6= j
1 , that is,
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Moreover, the maximal likelihood estimator of b21,b32,b31 based xi, i 2 DF 6= j
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The maximal likelihood estimator of s1,s2, and s3 are
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As in the 2-dimensional case, l(0)(S) denote log likelihood function of the samples xi 2 D0, given that
the covariance matrix of each sample is S. The log likelihood function given Ŝ1 is
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2ŝ2(1)
3
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Now consider hypothesis testing for Case I in the model (M3.1). the problem we focus on is

H0 : The data follows a linear structural equation model and C (1! 2) vs.
H1 : H0 does not hold.

For all values of Y which satisfy the inequality l(0)(Ŝ1)� l(0)† (Y) log( 1
a ), H0 is accepted. However,

it is not simple to solve the inequality l(0)(Ŝ1)� l(0)† (Y)  log( 1
a ) in order to compute analytically a

confidence set for each case. Thus, we use the strategy for computing the confidence set, which is to
guess a reasonable interval [l,u] such that for a reasonable step size e , all values in the range

Ŷ = l, l + e, . . .u� e,u

are included in the confidence set, that is, if the inequality l(0)(Ŝ1)� l(0)† (Ŷ)  log( 1
a ) hold true.

Moreover, we add the value zero if zero is accepted.
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a) M3.1 b) M3.2

c) M3.3 d) M3.4

e) M3.5 f) M3.6

Figure 5.3: Graphs of the models from (M3.1) to (M3.6)
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6 Simulations

In this chapter, we investigate the results of the simulation study. We focus on the model’s performance
in a non-homoscedastic environment and compare the result with the results from [2]. The simulation is
carried out both in two- and three-dimensional versions. In order to implement all simulations in this
chapter, the programming language R is used.

6.1 Two-Dimensional Case

We analyze the performance of the bivariate case first. Our first interest is whether the algorithm
introduced in the thesis performs well in the non-homoscedastic environment. If one can access only
the observational data, the non-homoscedastic model is not identifiable [3]. Thus, we will show that
the method using interventional data also works with the different variances of both error terms e1 and
e2. Our second interest is analyzing the confidence set and its maximal width, changing the ratio of
the observational data in the whole data set, that is, n0/n. From this analysis, we want to determine if
the ratio of either the observational or interventional data impacts the maximal width of the confidence
interval of a valid split likelihood ratio test and its empirical coverage.
We generated pseudo-random numbers following the model (1! 2) with standard normal errors to
compare the result from [2]. The errors with different values of the variances are also considered later. We
select values of b21 2 {0,0.2,0.5,0.8,1.0,1.2} and sample sizes n 2 {100,200,300,400,500,600}and
ratios of observational data set n0/n 2 {0,0.2,0.4,0.6,0.8} for the simulation. We generate both
interventional data set under do(Xi = xi) for i = 1,2 with same size, that is, n1 = n2. Ten thousand
independent data sets are simulated, and the confidence set is constructed for a = 0.05. The empirical
coverage probabilities for all sample sizes and values of b21 and all ratios of the observational data
set are reported in Table 6.1. All cases achieve the desired coverage frequency of 0.95. As we know,
the split likelihood ratio test is a very conservative method. From the result of the experiment in this
thesis, it can also be demonstrated that the split likelihood ratio test is a conservative method since
we obtained the values of 1.00 overall for the empirical coverage probabilities. We also checked the
coverage probabilities of the calculated confidence set for other settings in terms of other parameters,
such as different values of standard error of error terms or b21. In every case, we achieved an overall
coverage probability of 1. For example, the constructed confidence set has a very narrow average width
if the variance of the error term e1 is relatively high than e2. Even in this case, the coverage probability
is at least 0.9993.
Fig.6.1 shows the average width of the smallest interval containing the constructed confidence set against
the sample size. Note that the confidence set is usually an interval. However, a confidence set can also
contain a disconnected element zero. The split likelihood ratio test is a conservative method that yields
a vast confidence interval [2]. For the values b21 2 {0,0.2}, the data containing observational data in
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C (1! 2) n\ Ratio 0 0.2 0.4 0.6 0.8

b21 = 0

100 1.00 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00
300 1.00 1.00 1.00 1.00 1.00
400 1.00 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 1.00
600 1.00 1.00 1.00 1.00 1.00

b21 = 0.2

100 1.00 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00
300 1.00 1.00 1.00 1.00 1.00
400 1.00 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 1.00
600 1.00 1.00 1.00 1.00 1.00

b21 = 0.4

100 1.00 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00
300 1.00 1.00 1.00 1.00 1.00
400 1.00 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 1.00
600 1.00 1.00 1.00 1.00 1.00

b21 = 0.5

100 1.00 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00
300 1.00 1.00 1.00 1.00 1.00
400 1.00 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 1.00
600 1.00 1.00 1.00 1.00 1.00

b21 = 0.8

100 1.00 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00
300 1.00 1.00 1.00 1.00 1.00
400 1.00 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 1.00
600 1.00 1.00 1.00 1.00 1.00

b21 = 1.0

100 1.00 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00
300 1.00 1.00 1.00 1.00 1.00
400 1.00 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 1.00
600 1.00 1.00 1.00 1.00 1.00

Table 6.1: Empirical coverage of 95%-confidence intervals for the total causal effect of X1 and
X2,selecting standard normal errors (10000 independent data sets).
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a) Total causal effect b21 = 0 b) Total causal effect b21 = 0.2

c) Total causal effect b21 = 0.5 d) Total causal effect b21 = 0.8

e) Total causal effect b21 = 1.0 f) Total causal effect b21 = 1.2

Figure 6.1: Average maximum width of 95%-confidence intervals for the causal effect of X1 on X2.
s1 = 1, s1 = 1 (10000 replications).

the ratio of 0.8 yields the best result. In other words, the confidence set constructed by the data has the
smallest average width. For the values b21 2 {0.5,0.8}, the average width calculated by the data with
the ratio of 0.8 becomes wider than the width computed based on the data with the ratio 0.6, increasing
the sample size of the data set. For the values b21 2 {1,1.2}, the average width of the data with the
ratio of 0.6 returns least conservative result. Moreover, for some sample sizes, the average width of
the confidence set of the data containing observational data in a ratio of 0.6 is even wider than the data
containing observational data in a ratio of 0.2. This result changes dramatically if the variances of each
error term are not equal. We will discuss it later in this chapter. In compare to the method implemented
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by [2], for the value b21 = 0.5 the method in this paper provides more conservative result for all ratios
of observational data.

a) Sample size n = 100 b) Sample size n = 200

c) Sample size n = 300 d) Sample size n = 400

e) Sample size n = 500 f) Sample size n = 600

Figure 6.2: Percentage of times zero contained in the 95%-confidence intervals for the causal effect of
X1 on X2 for different sample sizes. s1 = 1, s2 = 1 (10000 replications).

Fig. 6.2 shows the percentage of times zero contained against total causal effects from 0 to 1.2 for ratios
of the observational data set n0/n and sample sizes n. All cases with different ratios of observational
data exclude the possibility of no causal effect with increasing sample size. The data set containing
observational data in the ratio of 0.4 indicates the lowest percentage of times zero contained. Compared
to the result from [2], the percentage for the total causal effect of 0.5 is higher. Almost 50 percent
of replications contain zero in the calculated confidence set. This yield wider average width of the
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calculated confidence set, which is observed in Fig.6.1. For all sample sizes, the confidence set of the
data without observational data contains mostly the case of Y = 0 for the total causal effects around zero.
In contrast, for total causal effects b21 > 0.6, the confidence set of the data with the ratio of 0.8 contains
most often zero in itself. For sample sizes n� 300, the percentages of the data with ratios of 0,0.8 have
a similar downward trend, and the percentages of the data with ratios of 0.2,0.4 and 0.6 decrease also in
a similar trend. The confidence set of the data containing observational data in the ratio of 0.4 contains
the value zero least often.

a) Total causal effect b21 = 0 b) Total causal effect b21 = 0.2

c) Total causal effect b21 = 0.5 d) Total causal effect b21 = 0.8

e) Total causal effect b21 = 1.0 f) Total causal effect b21 = 1.2

Figure 6.3: Average maximum width of 95%-confidence intervals for the causal effect of X1 on X2.
s1 = 0.5, s2 = 1 (10000 replications).

Now, we analyze the performance of the method in a non-homoscedastic environment. We generate
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samples of two random vectors X1 and X2 again. The random variables follow the model (M2.1), that
is, X1 causes X2. The error term e2 has again the value of s2 = 1 for the standard error. However, we
now select the error terms e1 such that its standard error equals 0.5. We fix again confidence level
1�a = 0.95. As expected that the coverage probability exceeds the level, we skip to add the table of
the coverage probabilities for this case of s1 = 0.5 and s2 = 1 since here we also have the exact same
result as the simulation with standard normal errors. As mentioned above, the coverage probabilities are
1 for all ratios, sample sizes, and strengths of causal effects. However, we observed in this experiment
remarkable differences in average widths and percentages of times zero contained from the previous
experiment.
As seen in Fig.6.1, the data with a higher ratio of observational data yields a narrower width tendentially.
However, if we set the variance of e1 to a lower value, as selected in this experiment, decreasing the
ratio of observational data yields a more conservative result. Comparing Fig.6.1 and Fig.6.3 the average
widths without observational data in both experiments are almost identical. Meanwhile, the average
width of confidence set for s1 = 1 decreases and the average width of confidence set for s1 = 0.5
increases, if data contain more observational data. Thus we can demonstrate from the figures in Fig.
6.3 that consisting of increased ratio of observational data results in large confidence set for the value
s1 = 0.5,s2 = 1. Fig.6.4 shows percentage of times zero contained of the simulation for the variances
of s1 = 0.5,s2 = 1. The result of this experiment is very different from the result of the experiment
with standard normal errors. The percentage of times zero contained increases if the data set contains
interventional data in a bigger ratio of observational data. Every cases of data sets has a percentage of 1
for the value b21 = 0. Moreover, the confidence sets constructed based on the data without observational
data have the lowest percentage among the rest.
The next part of this chapter analyzes the simulation result for error terms of random variables with
standard errors of s1 = 1.5, s2 = 1. Again, Fig.6.5 depicts the average width of calculated confidence
sets against sample sizes. The result of this simulation shows a similar downward trend of average widths
as the experiment with standard normal errors. For the low values b21 = 0 and b21 = 0.2, the average
widths become narrow, when the ratio of observational data go up to. Moreover, we see in Fig.6.5 that
for the value b21 = 0.5 the data set containing observational data in the ratio of 0.8 results wider average
widths than the data with the ratio of 0.6 for bigger sample sizes such as n > 200. However, for the
values b21 2 {0.8,1.0,1.2} the relative small sample sizes such as n = 100,200 provide conservative
confidence sets for the data with the ratio of 0.8. Except data containing observational data in the ratio
of 0.8, the average widths for all total causal effects b21 2 {0,0.2,0.5,0.8,1,1.2} move in a similar
declining trends. In addition, the data containing observational data return a better result in terms of the
average width of computed confidence sets compared to the data without observational data. Fig.6.6
shows the percentage of times zero contained against total causal effects, selecting s1 = 1.5,s2 = 1 for
the variances of the error terms. As we have seen from Fig. 6.2, the confidence set computed based
on the data set containing observational data in the ratio of 0.4 contains least often zero case in itself.
The percentages in this experiment have a similar downward trend as the previous experiment with the
standard normal errors. However, as we can see in the figures, the differences between the percentages
from each ratio are larger than in the previous experiment with the standard normal errors. From the
results of the experiments in this section, we see that contribution of interventional data in the average
width of a confidence interval and the percentage of times zero contained is highly dependent on the
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6 Simulations

a) Sample size n = 100 b) Sample size n = 200

c) Sample size n = 300 d) Sample size n = 400

e) Sample size n = 500 f) Sample size n = 600

Figure 6.4: Percentage of times zero contained in the 95%-confidence intervals for the causal effect of
X1 on X2 for different sample sizes. s1 = 0.5, s1 = 1 (10000 replications).

strength of direct causal effects among variables and variances of the errors.

6.2 Three-Dimensional Case

The analysis proceeds in this section similarly. We will generate samples of three random variables
which follow the mode (M3.1). As the 2-dimensional case, our main interest is to learn the effect of
interventional data and how it influences the confidence set of a valid hypothetical test. Thus we will
compare the average maximal width of the confidence set of data sets containing interventional data
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6 Simulations

a) Total causal effect b21 = 0 b) Total causal effect b21 = 0.2

c) Total causal effect b21 = 0.5 d) Total causal effect b21 = 0.8

e) Total causal effect b21 = 1.0 f) Total causal effect b21 = 1.2

Figure 6.5: Average maximum width of 95%-confidence intervals for the causal effect of X1 on X2.s1 =
1.5, s1 = 1(10000 replications).

in different ratios. Again, we fix confidence level 1�a = 0.95. Possible values Y of all total causal
effects, that is, C (1! 2),C (2! 3) and C (1! 3) are tested in the interval [0,1] with step size 0.1.
Due to the high computational expanse, we simulated 1000 independent data sets with longer step sizes
than 2-dimensional cases. We used the R-package Rsolnp to solve the optimization problem in Case III.
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6 Simulations

a) Sample size n = 100 b) Sample size n = 200

c) Sample size n = 300 d) Sample size n = 400

e) Sample size n = 500 f) Sample size n = 600

Figure 6.6: Percentage of times zero contained in the 95%-confidence intervals for the causal effect of
X1 on X2 for different sample sizes. s1 = 1.5, s1 = 1 (10000 replications).

We consider the model (M3.1) and compute the confidence set of Cases I, II, and III

X1 := e1

X2 := b21X1 + e2

X3 := b32X2 +b31X1 + e3

where e1,e2, and e3 are standard normal errors. We choose b21 = 0.5,b32 = 0.5,b31 = 0.25 in order
to assum C (1! 2) = C (2! 3) = C (1! 3) = 0.5. We calculated the average widths from n 2

70



6 Simulations

{100,200,300,400,500,600} independently simulated data sets containing interventional data in the
ratios of 0.1, 0.2, 0.3. Figure 6.7 shows the average width of confidence sets calculated by simulated
data sets against sample size for the three ratios of interventional data in the data set.
The coverage probabilities in all cases are 1. In three dimensional case, we can therefore demonstrate
that the method yields a very conservative result. In Case II and Case III, the confidence sets based on
the data set containing interventional data in a ratio of 0.1 have the smallest width among the three ratios.
In Case I, the average width of the confidence set based on the data set containing interventional data in
the ratio of 0.1 is distinctly wider than other data sets in a different ratio.

a) Case I b) Case II

c) Case III

Figure 6.7: Average maximum width of 95%-confidence intervals for the causal effects. s1 = 1, s2 =
1,s3 = 1(1000 replications).

Secondly, We consider the model (M3.1) and compute confidence set of Case I, II, and III

X1 := e1

X2 := b21X1 + e2

X3 := b32X2 +b31X1 + e3

where the errors are e1 ⇠N (0,0.52),e2 ⇠N (0,0.72), e3 ⇠N (0,12). For non-homoscedastic errors,
our method yields a very conservative result, as the coverage probabilities have the value 1. In Figure 6.8,
the average maximal width of each Case from I to III against sample size is depicted for the three ratios
of interventional data in the data set. In contrast with the previous experiment with standard normal
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6 Simulations

errors, the average width of the confidence interval based on the data set containing interventional data
in the ratio of 0.1 is the widest in both Case I and Case II. In Case III, the average width of the data
set with the ratio of 0.1 is narrowest for a small sample size such as n = 100 or 200. However, for the
sample sizes n > 300, this average width is the widest among the three ratios.

a) Case I b) Case II

c) Case III

Figure 6.8: Average maximum width of 95%-confidence intervals for the causal effects. s1 = 1, s2 =
1,s3 = 1.5(1000 replications).
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7 Summary and conclusion

The main focus of this thesis is to calculate a confidence set of a valid hypothesis for total causal effects
among two variables in linear structural equation models and evaluate the result of the method.
In Chapter 2, the basic mathematical backgrounds of the graphical model are introduced. A directed
graph represents the causal structure underlying a model. Moreover, we consider models represented by
a directed acyclic graph (DAG). At the beginning of the chapter, the graphical structure is introduced.
We continue by discussing the causal model and linear structure equation. At the end of the chapter, the
definition of total causal effect and identifiability of the structure of a causal model is provided.
In Chapter 3, we discuss the main idea of the linear regression model. In order to estimate the
parameters which arise in distributions of the interesting variables, we apply the linear regression
method. Maximizing a likelihood function in related parameters allows us to estimate the parameters.
The maximal likelihood method is introduced. In the linear regression model, it is assumed that the
variables are associated with each other by linear relations, and error terms are normally distributed. In
our causal analysis, we also assumed that the variables in our data set follow linear equation structure
models. Under conditions in some of our cases, the problems we have are equivalent to the problem of a
linear regression model. Hence, the method from this chapter is applied in Chapter 5 to estimate the
parameter in LSEMs. This led to calculating and determining a confidence interval for the causal effect
between two variables.
Chapter 4 begins by discussing the universal inference concepts, especially the split likelihood ratio
test. The solutions for a confidence interval are based on the theory of universal inference[6] and
likelihood ratio tests of order constraints[12]. To determine the confidence set, we fix a significant level
of a 2 (0,1) and suppose that a total causal effect between two variables takes a fixed value. Then, we
derive confidence set from a hypothetical test’s acceptance region for the total causal effect.
Chapter 5 begins by applying models and methods introduced in the previous chapter. Firstly, we provide
the LSEMs in d-dimensional cases by equipping them with the interventional data in the data set. The
interventions to observations change the structure of LSEMs. After that, we move to specific cases.
To estimate a valid interval of causal effects, we need to calculate maximal likelihood estimators of
parameters in LSEMs. Maximizing the log-likelihood functions of the random vectors with respect to the
parameter, we obtain the maximal likelihood estimators. The calculation is simplified by accessing the
interventional data since it provides access to conditional density functions. This yields that parameter
estimation is simply achieved by solving a linear regression problem. In the three-dimensional case,
we classify the parameter and profile likelihood function calculation into 3 cases. In the first two cases,
confidence intervals are computed similarly to the two-dimensional case. However, in Case III, we use
the numerical method to solve the problem we have due to the complexity of the problem.
Our main interest is to evaluate how the interventional data in generated sample impact the result of
maximal average width and how often zero cases are obtained in the confidence interval. In Chapter
6, we carry out simulation experiments and show the result of simulation experiments in two- and
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7 Summary and conclusion

three-dimensional cases. Our approach yields overly conservative results with a coverage probability of
the true parameter. The probabilities for all cases are equal to 1. In our experiment, we select that the
error term e2 is standard normally distributed and fix this value for e2. After that, we change the value
of standard error s1 of e1 and check the change of results. From the results, we demonstrate that for a
low variance of the error term e1 such as s1 = 0.5, the results become more conservative, increasing
the ratio of observational data. However, for increased variance such as s1 = 1.5, the average maximal
width of the confidence interval is wider if we increase the ratio of the interventional data set. For the
three-dimensional case, we carried out two simulation experiments for the values s1 = s2 = s3 = 1
and s1 = 0.5,s2 = 0.7,s3 = 1. The analysis of the coverage probability reports that the method in
the three-dimensional case also yields a very conservative result. From the result of both two- and
three-dimensional cases, we demonstrate that the influences of the amount of interventional data in a
data set highly depend on the parameter of linear structural equation models and the variances of the
error terms. Depending on the parameters in the models, more interventional data in the data set yields a
more conservative result in some cases. In contrast, containing more interventional data results in a less
conservative confidence set in other cases, as shown in Chapter 6.
Furthermore, the study in this thesis can be extended to higher dimensional cases. In other words, the
calculation and modeling could be generalized to models of any finite dimension. Due to the simplicity
of the calculation of confidence set for a split likelihood ratio test, we focused on determining confidence
intervals in terms of the split likelihood ratio test. One could also study how the other methods introduced
in [2] are applied to interventional data. One could select error distributions that are not normal and
noise functions that are not linear.
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