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Abstract

This thesis explores the feasibility and limitations of initializing and reading out
Kerr-cat qubits in systems with varying levels of Kerr nonlinearity (K) and pho-
ton loss rate (κ). Kerr-cat qubits, which use superpositions of coherent states
(Schrödinger cat states), show promise for quantum computing due to their
resilience to dephasing errors. This work investigates the quality of the initial-
ization by simulating this process and analyzing the resulting Wigner function
to identify unique quantum behavior. The primary challenge addressed is the
need for high K and low Q, which is not achievable in all systems.
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1 Introduction

Quantum computers perform computation on qubits, the quantum analogs to
classical bits. Qubits can exist in a superposition of the computational basis
states 0 and 1, such that we have a two-dimensional space of states (Bloch
sphere). Quantum computers hold the potential for significant computational
speedups for specific types of problems compared to classical computers.

Quantum systems can never be perfectly isolated; there is always some in-
teraction with an environment with uncontrolled degrees of freedom. Therefore,
over time, information about the qubit state is lost to that environment. The
time during which a qubit can maintain its quantum state is called lifetime or
coherence time. Decoherence is caused by relaxation and dephasing. Relaxation
causes the excited state to decay to the ground state and dephasing disrupts
the phase relation between those two states.

There are multiple ways to realize qubit systems. As an example, elec-
trons can be used as a quantum qubit system with the spin-up and spin-down
states as basis states. For quantum computing hardware, one popular approach
is superconducting qubits, which utilize macroscopic-sized circuits. With this
method, the quantum mechanical states can be represented by discrete Cooper-
pair charge states in a specific type of superconducting circuit. A primary goal
for making qubits is to have long coherence times. Eventually, we would like to
perform many operations on a qubit before encountering an error. At a certain
level of error suppression, we can use quantum error-correcting codes to make
a quantum computer fault-tolerant.

It has been shown that there are more effective quantum error-correcting
codes for ”biased noise” (certain types of errors are suppressed, others in-
creased). This gives rise to a particular type of superconducting qubit, the
Kerr-cat qubit, which uses Schrödinger cat states, superpositions of coherent
states. For the Kerr-cat qubit, dephasing is strongly suppressed. This is because
the |±X⟩ states of the Kerr-cat qubit are coherent states, which are eigenstates
of the photon loss operator. However, their superpositions decay from photon
loss, which leads to an increase in the bit-flip time. Still, it has been shown in
[Gri+20] that the bit-flip rate increases linearly, whereas the phase-flip rate is
suppressed exponentially in the photon number of the cat state.

Kerr-cat qubits have been made with high Kerr nonlinearity K and low pho-
ton loss rate κ. However, we might not have either available for some systems,
so in this work, we will investigate the possibility of making Kerr-cat qubits
for a broad range of values of K and quality factors Q (Q is related to κ with
Q = ω

κ with ω the resonator frequency). Thus, this research explores the scope
of quantum systems used to make a qubit, especially for systems that only offer
low K, but better qubit control or coherence. Critically, we need to investigate
if those systems still show unique qubit behavior, which can be measured as
negativity in the Wigner function.

For quantum computing to have a useful qubit, we need to have knowledge of
its state after computation. To gain information about a qubit state, we perform
a quantum measurement, where the qubit state is projected onto a specific
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basis. Superconducting qubits can be read out by observing and integrating
the output field. For the Kerr-cat qubit, a readout procedure (Cat-quadrature
readout) has been proposed [Gri+20] in which the qubit state is projected onto
the basis of the coherent states (along the X-axis). This is a Quantum Non-
Demolition readout (QND), meaning that the state is not destroyed during the
measurement. Clearly, the state has to be read out before there is significant
decoherence. Because we read out along the x-axis, this restricting time is the
dephasing time. Again, the characteristic system parameters K and Q will
influence the possibility of carrying out this readout, which we will investigate
in this work.

In section 2, we go over the Kerr-cat Hamiltonian and discuss its energy
eigenstates. Furthermore, we look at the Kerr-cat Hamiltonian in classical co-
ordinates for some intuition. In section 3, we will explain how to simulate the
initialization process of mapping the vacuum state in the nonlinear resonator to
the even cat state by turning on the squeezing drive. Based on that, we examine
how our system’s characterizing parameters influence the initialization quality.
Also, we discuss the approximations made and the validity of the results. In
section 4, we will simulate the dephasing of the Kerr-cat qubit and calculate the
Signal-to-noise ratio for the Cat-quadrature readout procedure. To conclude, in
section 5, we discuss and comment on the implications of the obtained findings.
In section A of the appendix, the underlying theory of coherent states, the basis
states of the KCQ, is discussed. After that, in section B of the appendix, the
theory of the methods used in the analysis of the Kerr-cat qubit is explained.
Firstly (section B.1), there is the Wigner function, a quasi-probability distri-
bution function used in quantum mechanics to represent the quantum state in
phase space, combining position and momentum information. Secondly (section
B.2, B.3 and B.4), the theory of open quantum systems is explained. In the last
section of the appendix (section C), the Python code for the relevant results is
presented.
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2 Kerr-cat qubit

The Kerr-nonlinear resonator (KNR) Hamiltonian can be implemented using
coherent microwave drives and 3- or 4-wave mixing (derivation for 3-wave mixing
shown in [Gri+20]). It is given by:

Ĥcat/ℏ = −Kâ†2â2 + ϵ2
(
â†2 + â2

)
(1)

= −K

(
â†2 − ϵ2

K

)(
â2 − ϵ2

K

)
+
ϵ2

2

K
(2)

In the expression of the Hamiltonian in equation (2), we can clearly see that
the coherent states |α⟩ and |−α⟩ are degenerate energy eigenstates of the KNR

Hamiltonian to eigenvalue ϵ2
2

K . That is also reasonable when considering the
potential of the KNR in classical phase-space coordinates. As we see in figure
1 in the bottom plot, that potential has two stable extrema at α = ±

√
ϵ2
K .

Figure 1: KNR in classical coordinates
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In Supplementary Information section III of [Gri+20], they further show
that in the by ±α displaced frame, the Hamiltonian can be expressed as:

Ĥ ′/ℏ = −4Kα2â′†â′ ∓ 2αK(â′†2â′ + â′†â′2)−Kâ′†2â′2 (3)

In the large α limit, the first term in the sum dominates, and we effectively have
a harmonic oscillator potential. In this limit, the energy gap between the |0⟩
and |1⟩ states in the displaced frame is Egap = 4Kα2. Those states correspond
to the states D(±α) |0⟩ and D(±α) |1⟩ in the original frame. However, for our
application, we will not work within this limit. We can still have the approxi-
mation of the excited states |ψ±

e ⟩ ≈ (D(α)±D(−α)) |1⟩ (corresponding to even
and odd parity). Those excited states in our case have different energy levels,
but we can use 4Kα as an estimate for the energy gap. For the exact energy
gap, we would numerically diagonalize the Hamiltonian.
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3 State initialization

By slowly ramping up the squeezing drive ϵ2, we can map the ”Fock qubit” onto
the Kerr-cat qubit as shown in figure 2.

Figure 2: From [Gri+20]: a, Bloch sphere of the encoded Kerr-cat qubit,
Wigner functions are shown for coherent states |±X⟩ = |α⟩ and their (here
non-normalized) superpositions |C±

α ⟩ = (|α⟩ ± |−α⟩)/
√
2 and

|C±i
α ⟩ = (|α⟩ ± i |−α⟩)/

√
2. b, Bloch sphere of the Fock qubit with Wigner

function shown for the same states for comparison.

From the Adiabatic theorem ([SN20]: section 5.6 Hamiltonians with Ex-
treme Time Dependence, paragraph Adiabatic Approximation) we know that
the lowest degenerate eigenstates of the Fock qubit |0⟩ and |1⟩ are mapped to
the lowest degenerate eigenstates of the Kerr-cat qubit. To suppress leakage
into higher excited states, we need the ramp-up time to be much longer than
1

2K .
Furthermore, during the whole time of the initialization of the Kerr-cat

qubit, i.e., the squeezing drive ramp-up duration, the Hamiltonian commutes
with the parity operator P̂ because â†2 and â2 do (calculation shown for â2):

P̂ â2P̂−1 = P̂ (ââ)P̂−1 = (P̂ âP̂−1)(P̂ âP̂−1) = (−â)(−â) = â2 (4)

Because H commutes with P at all times, also the time evolution operator
U(t) = exp(−i

ℏ
∫ t

0
H(t′) dt′) does and we get for the state |ψ(t)⟩ at time t of the

initialization process:

P |ψ(t)⟩ = PU(t) |ψ(0)⟩ = U(t)P |ψ(0)⟩ = U(t)p |ψ(0)⟩ = p |ψ(t)⟩ (5)

if |ψ(0)⟩ is a parity eigenstate with eigenvalue p. Therefore, parity eigenstates
remain eigenstates with the same eigenvalue during the initialization. That
proves that the positive parity eigenstate |0⟩ is mapped to the even Cat state
and the negative parity eigenstate |1⟩ to the odd Cat state and their superpo-
sitions accordingly.
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For our research, we want to show that we can create a quantum state as a
state of the Kerr-cat qubit without having a Fock qubit in the first place, but
just the vacuum state |0⟩.

Realization of the mapping We will ramp up the squeezing drive such
that ϵ2 follows a tanh evolution over time. Also, we would like to initialize
the qubit as fast as possible without breaking the non-adiabatic limit. That is
because there is a shorter period of photon loss, which causes bit-flips on the
Y- and Z-axis of the Kerr-cat qubit. Because the adiabatic limit (ramp-up time
much longer than 1

2K ) is dependent on K, it is reasonable to choose a timescale
dependent on K for the evolution of the Hamiltonian. That is why we want to
implement the Hamiltonian in equation (1) with a time-dependent ϵ2(t):

ϵ2(t) = e2,final ·

[
1

2
tanh

((
t− 4pt

K

)
· K
pt

)
+

1

2

]
(6)

where pt is a dimensionless parameter that characterizes the duration of the
ramp-up.

Figure 3: Adiabatic ramp-up of the squeezing drive over time of initialization
τ ≫ 1

2K

This ramp-up is illustrated in figure 3, and we will consider the τ ≈ 6 ·pt/K.
In this time interval, the squeezing drive is increased from around 0.03% to 98%
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of the final value. We can start the initialization process at a slightly earlier
or later time in the tanh ramp-up (without changing the initialization process)
because at the beginning of the initialization, the state is approximately the
vacuum state, which is not subject to photon loss.

For this thesis, pt = 2, but in my code one can easily adjust that parameter.
That way, we have a fast ramp-up while still ensuring adiabaticity as τ ≈ 12

K ≫
1

2K .

Wigner negativity of initialized state Eventually, we would like to use
the initialized state as a Kerr-cat qubit, which means that we must be able to
see the fringes in the Wigner function. Otherwise, the initialized state is just
a statistical mixture of the two coherent states and essentially does not have
quantum behavior (see section B.1.2). For a statistical mixture, we can not
distinguish the ±Y and ±Z states of the KCQ. To measure Wigner negativity
despite the error we make in the measurement, we would like to see for which
characterizing values of Kerr nonlinearity K and quality factor Q (related to κa
by κa = ω

Q ) we can get a particular maximal value for the Wigner negativity in
the simulation. The higher this Wigner negativity is, the more likely we are to
detect this negativity in the experiment. That would show that we initialized a
state with unique quantum behavior and would be the first step of eventually
using it as a Kerr-cat qubit.

For the initialization with specific values of K and Q, we maximize over the
ϵ2,final because we can adjust it by pumping the system in the experiment.

Modeling of the initialization process We model this process with the
Lindblad master equation, where the dominant quantum jump operator is pho-
ton loss:

ρ̇(t) = − i

ℏ
[Hcat,init(t), ρ(t)] + κa(1 + nth)D[â]ρ(t) + κanthD[â†]ρ(t) (7)

where D[Ô]ρ̂ = Ôρ̂Ô†− 1
2 (Ô

†Ôρ̂+ ρ̂ÔÔ†) and nth is the equilibrium occupation
number of the |1⟩ state in contact with a thermal bath and is negligible in our
case.

Dependence of Wigner negativity on product K ·Q Let us assume we
found a solution to equation (7) for parameters K and Q with ϵ2 set, such
that ρ(t) at the end of the initialization has maximum Wigner negativity. We
will show in the following that if there is K̃ and Q̃ such that K · Q = K̃ · Q̃,
optimizing final Wigner negativity leads us to the same result as before. Final
Wigner negativity is therefore only dependent on the product K ·Q.

Proof. Let ρ0 be the solution for equation (7):

dρ0(t)

dt
= F (ρ0(t), t) (8)
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where F (ρ0(t), t) represents the right side of equation (7) and the time depen-
dence is caused by the time-dependent Hamiltonian.
Because of the invariant product, we write:

K̃ = γK and κ̃a =
ω

Q̃
= γκa (9)

We can now pick ϵ̃2 = γϵ2 and the new differential equation becomes:

dρ̃f(t)

dt
= γF (ρ̃(t), γt) (10)

because the argument in the time-dependent Hamiltonian is linearly propor-
tional to K.

Then ρ̃(t) = ρ0(γt) is a solution to this equation because it has the same
initial state and:

dρ0(γt)

dt
=
dρ0(γt)

d(γt)
· γ = γF (ρ0(γt), γt) (11)

Now, as the new time for initialization τ̃ = τ
γ , the end state of initialization

and, hence, the Wigner negativity is the same as before. It is easy to show that
another ϵ̃2 will not initialize a state with greater negativity.

Physically, the initialization evolution is accelerated by a factor of γ. But,
the initialization time is shrunk to a factor of 1

γ , which initializes the same state.

3.1 Qutip simulation

For the simulations in qutip we solve the Lindblad master equation numerically
with qutip.mesolve with the jump operator

√
κaâ. For simplicity, we always ini-

tialize a |α⟩ with real α and then take the values of the Wigner function W (z)
for Re(z) = 0. Intuitively, this gives a profile of the fringes in the Wigner func-
tion, from which we take the minimum value. For given K and Q, we optimize
this value over all ϵ2,final to get the optimal value for given Kerr nonlinearity
K and quality factor Q.

We truncate the expansion of the cat state in Fock states for the numerical
simulations at the 30th Fock state. Still, those simulations are computationally
intensive because we are solving differential equations for each density matrix
element. However, assuming a perfectly adiabatic process can simplify this
problem.

3.2 Calculation for adiabatic evolution

Again, we use the qutip convention of the Wigner function.
There are two processes that, as we will see, independently influence Wigner

negativity: photon loss and increase of α due to the squeezing drive ramp-up.
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Increase of α due to the squeezing drive ramp-up From equation (58) in
qutip convention, we get maximum negativity for Re(z) = 0 and 4√

2
Im(z)α = π.

We can express the maximum Wigner negativity n(α) of the even |α⟩ cat state
(neglecting the exponentially in α2 suppressed Gaussian parts of the Wigner
function) as:

n(α) =
1

π(1 + e−2α2)
e−2( π

4α )2 (12)

From now, we will refer to maximum negativity in the Wigner function as simply
Wigner negativity. To find a differential equation governing the time evolution,
we evaluate how Wigner negativity changes in an infinitesimal increment dα.
We neglect the exponentially suppressed part of the normalization e−2α2

.

n(α+ dα) = n(α) · e
−2( π

4(α+dα)
)2

e−2( π
4α )2

= n(α) · e
−2( π

4α )2·(1−2 dα
α +O(dα2))

e−2( π
4α )2

= n(α) · exp( π
2

4α3
dα+O(dα2)) = n(α) · (1 + π2

4α3
dα+O(dα2))

(13)

This is equivalent to:
dn

dα
=

π2

4α3
n (14)

Using

α2 =
ϵ2
K

=
ϵ2,final
K

·

[
1

2
tanh

((
t− 4pt

K

)
· K
pt

)
+

1

2

]
(15)

we get a differential equation in t:

dn

dt
= n · π

2ϵ2,final
16ptα4

[
1− tanh2

(
(t− 4pt

K
) · K
pt

)]
(16)

Photon loss In this section, we will examine how the state’s Wigner negativ-
ity evolves in a time step dt due to photon loss. We can write the state’s density
matrix at all times as

ρa =
1

2(1 + e−2|α2|)

(
|α⟩ ⟨α|+ b |−α⟩ ⟨α|+ b |α⟩ ⟨−α|+ |−α⟩ ⟨−α|

)
(17)

This is true because the vacuum state in the beginning can be written in this
way with α = 0 and b = 0, the squeezing drive ramp-up increases the value of α,
and the process of photon loss only decreases the value of b as we will see in this
paragraph (we can look at these processes independently). With the Lindblad
master equation, we have:

dρa
dt

= − i

ℏ
[H, ρa] + κaâρaâ

† − 1

2
â†âρa −

1

2
ρaâ

†â

= κaα
2
(
|α⟩ ⟨α| − b |−α⟩ ⟨α| − b |α⟩ ⟨−α|+ |−α⟩ ⟨−α| − ρa

)
= −2κaα

2b
(
|α⟩ ⟨−α|+ |−α⟩ ⟨α|

)
(18)
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From here, we can realize that only the parameter b changes for the process of
photon loss. Then with:

dρa
dt

= ḃ
(
|α⟩ ⟨−α|+ |−α⟩ ⟨α|

)
(19)

we have:
ḃ = −2κaα

2b (20)

The fringes in the Wigner function are caused solely by the off-diagonal elements
in the basis of the coherent states and are directly proportional to b. Hence, we
get a differential equation for Wigner negativity due to photon loss:

dn

dt
= −2κaα

2n

= −n ϵ2
K

[
tanh

(
(t− 4pt

K
) · K
pt

)
+ 1
]
· κa (21)

Complete differential equation We can clearly see that the change of α due
to the slowly evolving Hamiltonian and photon loss are independent processes
in the increment dt. We can add their effects in that time interval.

The time evolution of Wigner negativity for adiabatic evolution state is
determined by:

dn

dt
= n· π

2ϵ2,final
16ptα4

[
1−tanh2

(
t− 4pt

K
)·K
pt

)]
−n ϵ2

K

[
tanh

(
(t− 4pt

K
)·K
pt

)
+1
]
·κa
(22)

Starting point of numerical integration At the beginning of the initial-
ization simulation, the state’s photon number is small, and therefore, photon
loss is exponentially suppressed. At time 3 ∗ pt/K, the squeezing drive is only
ramped up to 0.12 · ϵ2,final. In our range of photon numbers (n̄ < 10), photon
loss is still negligible before this time. This way, we can start the numerical
integration at that point in time and calculate the negativity until that time
only through the increase in α. We calculate Wigner negativity neg(t) at that
time:

neg(
3pt
K

) =
1

π
e
−2( π

4α(
3pt
K

)
)2

=
1

π
e
− π2K

4ϵ2,final(tanh(−1)+1) ≈ 1

π
e
− π2K

4·0.24ϵ2,final (23)

We cannot set the starting value at an earlier point in time because the Wigner
negativity values are minimal, which leads to a numerical error when performing
the integration.

Additional note Because the processes of photon loss and increasing Wigner
negativity of the |α⟩ state are independent, we do not have to include the latter
effect into the differential equation, but calculate it with equation (12). This
would be a more elegant way of calculating the negativity but does not signifi-
cantly change the results. The modification to the code that generates figure 4
is shown in appendix C.3.
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3.3 Results

In figure 4, the optimizedWigner negativity of the end state is presented for both
methods of simulating the initialization process. Wigner negativity is plotted
against the characterizing parameter K · Q. Both methods give very similar
results; at most, there is a difference of about 15% between them.

Figure 4: Maximum negativity in the Wigner function of the initialized state
given a system with characterizing values K and Q (code shown in appendix
C.1 and C.2)

In the following paragraph, we discuss the validity of the simulation and
analyze the errors made. To begin with, for the state initialization, we note
that for the qutip simulation there are errors because we only take the maximal
negativity on the Re(a) = 0 axis of the Wigner function graph, the error of
Fock state truncation and the numerical error. We get a last error for both
ways of the simulation from the assumption that the system only experiences
the dominant loss process, photon loss. All those errors are extremely small, and
we can assume these qutip simulation results to be exact. For the calculation
with the assumption of an adiabatic process, we simplify the Wigner function
as discussed in 3.2. This approximation causes an error of ≈ 20% for α = 1
and is exponentially suppressed in α2. This error could be corrected in a future
investigation. Another error arises from the inaccurate starting point of the
numerical integration, which is negligible. The last error originates from the
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non-adiabaticity but is hard to quantify. However, we see that both graphs in
figure 4 match up very well, suggesting that adiabaticity is a valid assumption
within the error margin we attempt.

The final photon number for the initialization with the highest Wigner neg-
ativity is given in figure 5. Again, the results from both methods of simulating
the process are shown. They match up very well in general. However, the sim-
plification in the Wigner function we make for the calculation is not true for
small values of the final photon number. That is why the results for small values
of K · Q are wrong in the calculation and do not align with the results of the
qutip simulation.

Furthermore, we can see small jumps in the graph for the qutip simulation.
This is due to some numerical approximations and the non-adiabaticity. Also,
all the errors in the Wigner negativity obviously influence the error in the photon
number. Those imperfections do not matter much because for a photon number
close to the optimal one, we expect to initialize a state with almost the same
Wigner negativity.

Figure 5: Photon number of the initialized state for which maximum negativity
is achieved

To make a more comprehensive plot, figure 6 has height lines for certain
values of end state Wigner negativity on an underlying grid of K and Q. That
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way, we can see the effect of each parameter independently.

Figure 6: Maximum negativity in the Wigner function of the initialized state
given a system with characterizing values K and Q; visualization as a three-
dimensional plot with Wigner negativity as height values on a two-dimensional
K-Q grid (only lines of equal Wigner negativity are shown)
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4 Cat-quadrature (CQ) readout

To read out the state of the Kerr-cat qubit, we could first think of mapping the
KCQ back to the Fock qubit by slowly turning off the squeezing drive. How-
ever, this readout destroys the state for subsequent operations on the qubit.
Readout procedures, in which the qubit is not destroyed, are called quantum
non-demolition (QND) readouts. One such method is the ”cat-quadrature read-
out” (CR), proposed in [Gri+20]. The idea is to generate a swap interaction
between the Kerr nonlinear resonator and a readout cavity, which, for long
times, swaps the states of the two systems back and forth. With this, we cause
the KCQ to get projected onto the |±α⟩ states and cause a coherent drive on the
readout cavity. The state in the readout cavity will approximately transform to
the state of the KNR, and we can measure the state by observing the emitted
cavity field. If we choose the leakage from the cavity to be much greater than
the coupling strength, we can avoid unwanted back reaction on the KCQ.
By applying an additional drive to our system together with 3-wave or 4-wave
mixing, we can implement this relevant swap term that adds to the Hamiltonian:

Ĥcr/ℏ = igcr(âb̂
† − â†b̂) (24)

When the KCQ is in the coherent |±α⟩ state, this interaction effectively
induces a coherent drive on the cavity. Then:

Ĥcr/ℏ ≈ ±igcrα(b̂† − b̂) (25)

4.1 Measurement

In order to assign a value to the measurement outcome, we integrate the signal
bout over the measurement time τ . For the current analysis, we do not use a
filter to improve the readout signal, and the measurement operator reads:

M̂(τ) =
√
κb

∫ τ

0

dt
(
bout + b†out

)
(26)

where κb is the photon loss rate of the readout cavity.

4.1.1 Signal-to-Noise ratio (SNR) calculation

We can solve the dynamics of the readout cavity with the quantum Langevin
equation.

∂tb̂ =
i

ℏ
[Ĥcr, b̂]−

κb
2
b̂−

√
κb b̂in ≈ ±gcrα− κ

2
b̂−

√
κb b̂in (27)

Taking expectation values on both sides, we conclude with the readout cavity
initially being in the vacuum state:

∂t⟨b̂⟩ =: ∂tβ = ±gcrα− κb
2
β =⇒ β±(t) = ±2gcrα

κb
[1− e−

κbt

2 ] (28)
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With this, we can now compute the average signal of this measurement.
Note that from the input-output relation, we get ⟨bout⟩ = ⟨b⟩.

⟨M⟩+X − ⟨M⟩−X =

[
√
κb

∫ τ

0

dt ⟨bout⟩+ ⟨b†out⟩

]+X

−X

= κb

∫ τ

0

dt
(
β+(t) + β+(t)

† − β−(t) + β−(t)
†
)

= 8gcrα

∫ τ

0

dt (1− e−
κbt

2 )

= 8gcrατ [1− 2

κbτ
(1− e−

κbτ

2 )] (29)

The fundamental quantum noise is ⟨M̂2
N (τ)⟩ = ⟨(M̂ − ⟨M̂⟩)2⟩ = κbτ .

We finally get a signal-to-noise ratio (SNR) in terms of integration time τ
of:

SNR ≡

√√√√ |⟨M̂⟩+X − ⟨M̂⟩−X |2

⟨M̂N
+X(τ)⟩+ ⟨M̂N

−X(τ)⟩
= 4

√
2gcrα

√
κbτ

κb
[1− 2

κbτ
(1− e−

κbτ

2 )] (30)

For visualization, the SNR values are shown versus readout integration time for
sample values in figure 7.
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Figure 7: SNR plotted for sample values of α =
√
2, gcr = 1 · 105 Hz and

κb = 1 · 106 Hz

4.2 Kerr-cat qubit dephasing time

The integration time available for the readout is restricted by the KCQ dephas-
ing time, during which the two different possible post-measurement states decay
and thus can not be distinguished anymore.

We can phenomenological describe this decay again with the master equa-
tion:

ρ̇(t) = − i

ℏ
[HKCQ(t), ρ(t)] + κaD[â]ρ(t) + κanthD[â†]ρ(t) + κeffD[â†â] (31)

Those processes cause out-of-manifold leakage out of the KCQ Bloch sphere.
For the measurement, the x-expectation is relevant as this value is integrated
over time. The time evolution of the dephasing of the |α⟩ state is simulated us-
ing qutip.mcsolve, which is a numerical technique to solve the master equation.
The x-expectation value at each time step is returned.

We do not have a perfect exponential decay, but it is a good estimate. There-
fore, we fit an exponential decay of the x expectation value to get the dephasing
time.

To get an idea of the order of magnitude of the dephasing times for certain
K and Q and to test the simulation, we use the parameters nth = 0.08 and
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κeff = 230Hz from [Gri+20] to plot dephasing time values on a K-Q grid.
These results are shown in figure 8.

Figure 8: Dephasing time of the KCQ (decay time of the initialized |±α⟩ state)
for initialized state with system parameters K and Q (initialized state with
maximum Wigner negativity was chosen)

It is, however, more beneficial for further analysis to plot the dephasing
decay constant (inverse of decay time) for one main reason. We have two noise
processes that mainly cause the dephasing. Those are a†a and a† noise. Both
approximately cause an exponential decay of the x-expectation value, and we
can simulate them independently. Then, when both effects happen, the decay
constants of the individual simulations add up. Also, the decay constants should
be linearly proportional to the noise rate. Obviously, those statements are
made with assumptions of perfect exponential decay of the x-expectation value
and that the noise processes do not interfere with each other. In fact, in the
simulations, we can observe this linear increase of the decay constants when
increasing the noise rate. The addition of decay constant for the superposition
of the two noise processes can also be seen. To what extent we can make this
assumption needs further investigation.

In figures 9 and 10 the dephasing decay constants are plotted on a K-Q as
before for the dephasing time.
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Figure 9: Decay constant for the dephasing of the KCQ for initialized state with
system parameters K and Q (initialized state with maximum Wigner negativity
was chosen), nth = 0.08 and κeff = 0
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Figure 10: Decay constant for the dephasing of the KCQ for initialized state with
system parameters K and Q (initialized state with maximum Wigner negativity
was chosen), nth = 0 and κeff = 230 Hz

In the following, we simulate both noise processes at the same time (same
simulation as in figure 8), and we can already see that we get the resulting
dephasing decay constants roughly from adding up the two graph for the indi-
vidual noise processes. The color scales are the same for figure 9 and 11. For
figure 10, the color scale is adjusted such that the discernibility of the lines is
increased.
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Figure 11: Decay constant for the dephasing of the KCQ for initialized state with
system parameters K and Q (initialized state with maximum Wigner negativity
was chosen), nth = 0.08 and κeff = 230 Hz (code is shown in appendix C.4)
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5 Conclusion

In this thesis, we explored the scope of quantum systems used to make a Kerr-
cat qubit depending on their Kerr nonlinearity K and photon loss rate κ. We
investigated if those systems still show unique qubit behavior, which can be
measured as negativity in the Wigner function. Additional, we studied the re-
alizability of the CQ readout in this parameter regime.

To start with, we found one very accurate way and another more computa-
tionally efficient way of simulating Wigner negativity of an initialized Kerr-cat
qubit. Considering the feasibility of the initialization, as shown in section 3.3,
we would most probably need a value of at least K · Q = 5 · 1010 − 1 · 1011
Hz to measure negativity in the Wigner function to prove that we can at least
initialize a state with characteristic, unique quantum behavior.

Considering the CQ readout, we calculated a formula of SNR per integration
(30) for a particular set of parameters. For reasonable parameters of gcr and
κb, we can achieve a signal-to-noise ratio in the order of a microsecond.

Additionally, we can simulate the dephasing process of the Kerr-cat qubit
for different noise processes. Using the parameters from [Gri+20] as in figure 8,
we can see that this readout can be carried out achieving a SNR of 1 − 2 in a
fraction of 1

50 of the dephasing time if Q > 200.000. This shows that there is a
large range in K and Q, such that the initialized Kerr-cat qubit would be useful
in the sense that we can read out its state reliably. It is important to note that
we will not achieve this exact SNR due to external noise effects (for example
electronic noise).

One important takeaway is that we can strongly increase the dephasing time
if we cool down the qubit more than as it was done in [Gri+20] because in our
case the dephasing time is mainly limited by â† noise (for parameters as in
[Gri+20]) which is related to the environment’s temperature.

In conclusion, this thesis proposes values for K and Q, where further in-
vestigation of Kerr-cat qubits is sensible. Additionally, it provides a detailed
analysis of the initialization and the CQ readout procedure both dependent on
K and Q. The simulations can be utilized for visualization as well as for further
research.
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Appendix

A Theory of coherent states

Because of the Correspondence principle, we expect the existence of quantum
states that resemble the classical motion in the harmonic oscillator. The clos-
est resemblance is given by coherent states, which are displaced vacuum states.
Their Gaussian probability distribution in position and momentum has the min-
imum uncertainty due to Heisenberg’s uncertainty principle.

For clarity, we will denote coherent states as |α⟩C and Fock states as |n⟩F
in this section.

For α = x+ ip the coherent states |α⟩C is:

|α⟩C = D(α) |0⟩F = eαâ
†−α∗â |0⟩F = e−

|α|2
2 eαâ

†
e−α∗â |0⟩F

= e−
|α|2
2

∞∑
n=0

αn

n!
â† |0⟩F = e−

|α|2
2

∞∑
n=0

αn

√
n!

|n⟩F (32)

For further review, refer to section 3.1.3 of [HR06].
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B Methods

This section discussing the methods used for the analyses in my thesis is oriented
by [HR06] and [Ste07]. Those are highly recommended for further review.

B.1 Wigner distribution

The Wigner distribution is an essential tool for analyzing quantum states and
capturing the non-classical behavior. A classical state can be represented as
a point in phase space by its position and conjugate momentum. Statistical
uncertainty and lack of knowledge are accounted for by substituting points in
phase space with a probability distribution. Describing a state in phase space
is helpful because the state’s evolution is determined completely by Hamilton’s
equations of motion if the state’s representation in phase space is given at a
particular time. A quantum extension of this representation is the Wigner
quasiprobability distribution. Because Heisenberg’s uncertainty relation forbids
the simultaneous measurement of both position x and momentum p, there is no
quantum phase space probability distribution in the same sense as in classical
physics. For classical states, the statistical average of an observable o(x, p) is
given by:

ō =

∫
f(x, p)o(x, p) dx dp (33)

for the state´s probability distribution f . This is a property the Wigner distri-
bution will also have.

The Wigner distribution is expressed in terms of the density matrix:

W (α) =
1

π2

∫
d2λCS(λ) exp(αλ

⋆ − α⋆λ) (34)

where CS(λ) is the symmetric order characteristic function.

CS(λ) = ⟨D(λ)⟩ = Tr[ρeλâ
†−λ⋆â] (35)

For this theory section, we will stick to this widely used definition/convention
because it is more intuitive, but at the end of subsection B.1.3, we will go over
the convention that is used in this work and in the Python library qutip that is
used for simulations in this work.

There is another equivalent form for the Wigner distribution, which is given
by:

W (x, p) =
1

π

∫ ∞

−∞
dx′ e−2ipx′

⟨x+
x′

2
| ρ |x− x′

2
⟩ (36)

B.1.1 Properties

Average operator value As stated before, the Wigner distribution should
conserve the property of a classical phase space probability distribution that
averages of operators can be computed by integration as in (33).

28



First, the quantum operator O(a, a†) (expressed as a function of â and â†) is
written as an integral with the complex function that corresponds to the given
operator:

O(â, â†) =

∫
d2α o(α, α⋆)δ(α− â) (37)

Note that one complex function o(α, α⋆) can naively correspond to more than
one operator. This expression is only true if O(â, â†) is in symmetric order
(operator expression is symmetric with respect to operators â and â†). With
the definition of the Wigner distribution ((34) and (35)) it can be compactly
written as:

W (α) =
1

π2
Tr
[
ρ

∫
d2λ eλ

∗(α−â)−λ(α∗−â†)
]

(38)

With the Dirac δ-distribution as the Fourier transform of the constant function,
we have:

W (α) = Tr
[
ρδ(α− â)

]
(39)

We can understand the Wigner function as an extension and combination
of the probability distribution in position and momentum space as we get for
the probability distribution in position space P (x) and similarly for momentum
space:

P (x) = ⟨x| ρ̂ |x⟩ = Tr[ρ̂ |x⟩ ⟨x|] = Tr[ρ̂

∫
dx′δ(x′ − x) |x′⟩ ⟨x′|] = Tr[ρ̂δ(x̂− x)]

(40)
Finally, we can get for the average operator value:

⟨O⟩ = Tr[ρO] =

∫
d2α o(α, α∗) Tr[ρ δ(α− â)] =

∫
d2α o(α, α∗)W (α) (41)

Relation to position and momentum distribution As an extension for
the probability distribution in one quadrature, those can be recovered from the
Wigner distribution by:

P (x) = ⟨x|ρ|x⟩ =
∫
dpW (x, p) (42)

P (p) = ⟨p|ρ|p⟩ =
∫
dxW (x, p) (43)

29



Overlap of two Wigner distributions∫ ∞

−∞
dx

∫ ∞

−∞
dp W1(x, p)W2(x, p)

=
1

π2

∫ ∞

−∞
dx

∫ ∞

−∞
dp

∫ ∞

−∞
dx′

∫ ∞

−∞
dx′′

e−2ip(x′+x′′) ⟨x+
x′

2
|ρ1|x− x′

2
⟩ ⟨x+

x′′

2
|ρ2|x− x′′

2
⟩

=
1

π

∫ ∞

−∞
dx

∫ ∞

−∞
dx′

∫ ∞

−∞
dx′′

δ(x′ + x′′) ⟨x+
x′

2
|ρ1|x− x′

2
⟩ ⟨x+

x′′

2
|ρ2|x− x′′

2
⟩

=
1

π

∫ ∞

−∞
dx

∫ ∞

−∞
dx′ ⟨x+

x′

2
|ρ1|x− x′

2
⟩ ⟨x+

x′

2
|ρ2|x− x′

2
⟩

=
1

π

∫ ∞

−∞
dx∗

∫ ∞

−∞
dx∗′ ⟨x∗|ρ1|x∗′⟩ ⟨x∗′|ρ2|x∗⟩

=
1

π

∫ ∞

−∞
dx∗ ⟨x∗|ρ1ρ2|x∗⟩

=
1

π
Tr[ρ1ρ2] (44)

If at least one of the two corresponding states is pure, we can relate this overlap
to the fidelity of the two states.

B.1.2 Negativity in the Wigner distribution

As discussed earlier, if the Wigner distribution is non-negative everywhere, the
corresponding state is essentially classical in the sense that the state has classical
statistical interpretation in both momentum and position at the same time.

(Hudson’s Theorem). The Wigner distribution W (x, p) of a pure state is
everywhere positive if and only if the position wave function ψ is the exponential
of a quadratic polynomial.

Proof. This proof was first done in [Hud74].
We define a Gaussian position wave function with e−

c
2 as the normalization

factor:
ψa,b(x) = e−

1
2 (ax

2+2bx+c) with Re(a) > 0 (45)

Similar to the calculations for the Wigner distribution of a coherent state in
section B.1.3, we can show that the Wigner function of ψa,b is a two-dimensional
Gaussian function and hence, everywhere non-negative. In the following, we will
prove that the Wigner distribution is only non-negative if ϕ is the exponential
of a quadratic polynomial. Therefore, we will assume Wϕ to be non-negative.
Then we know, that the overlap of it with the Gaussian Wigner distribution
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W1,z of the state ψ1,z is strictly positive and through equation (44) we know
that: ∫ ∞

−∞
dx

∫ ∞

−∞
dp Wϕ(x, p)W1,z(x, p) =

1

π
| ⟨ϕ|ψ1,z⟩ |2 > 0 (46)

We define F : C → C:

F (z) =

∫
dx ϕ̄(x) e−

1
2x

2−zx = e
c
2 ⟨ϕ|ψ1,z⟩ (47)

First, we realize that F is entire, and we define a new entire function g(z) =
F ′(z)
F (z) , which is possible because F (z) has no zeros. Then G(z) as the anti-

derivative of g(z) is also entire and:

F (z)

eG(z)
= F (z) · −1

e2G(z)
· eG(z) · g(z) + F ′(z) · e−G(z) = 0 (48)

Now, we can choose G(0) such that F (0) = eG(0) and we there exists an entire
function G(z) with:

F (z) = eG(z) (49)

Also, using Schwarz’s inequality we get:

|F (z)|2 ≤ ||ϕ||2 ·
∫ ∞

−∞
dx e−x2−(z̄+z)x

= ||ϕ||2 ·
∫ ∞

−∞
dx e−(x+(Re z))2e(Re z)2 = ||ϕ||2

√
πe(Re z)2

(50)

Finally, expressing G(z) in equation (49) as a power series lets us conclude that
G(z) is a polynomial of up to second order.

=⇒ F (z) = eax
2+bx+k (51)

With z̃ = iz we interpret

F (z̃) = e−az̃2+ibz̃+k =

∫
dx ϕ̄(x) e−

1
2x

2−iz̃x (52)

as a Fourier transform of

F ∗(x) = ϕ̄(x) e−
1
2x

2

(53)

Fourier transforms are Gaussian if and only if the considered function is also
Gaussian and therefore ϕ̄(x) e−

1
2x

2

and ϕ̄(x) are Gaussian, which is what we
wanted to show.
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B.1.3 Wigner distribution of coherent and Cat states

Let us look at a coherent state ρ = |β⟩ ⟨β|: Using equations (34) and (35) we
can compute the Wigner function by:

W |β⟩⟨β|(α) =
1

π2

∫
d2λ Tr(|β⟩ ⟨β| eλâ

†−λ⋆â) eαλ
⋆−α⋆λ

=
1

π2

∫
d2λ e−λ2/2 ⟨β| eλâ

†
e−λ⋆â |β⟩ eαλ

⋆−α⋆λ

=
1

π2

∫
d2λ e−λ2/2 eλ(β

∗−α⋆)e−λ⋆(β−α)

λ=λ′+iλ′′, x=β−α
==============

1

π2

∫
d2λ e−(λ′2+λ′′2)/2 eλx

∗−λ∗x

x=x′+ix′′

========
1

π

∫
dλ′e−λ′2/2 e2iλ

′x′′
· 1
π

∫
dλ′′e−λ′′2/2 e2iλ

′′x′

=

√
2

π
e−2x′′2

·
√

2

π
e−2x′2

=
2

π
e−2|β−α|2 (54)

Superpositions of coherent states are called Cat states:

|Ψϕ
cat⟩ =

1√
Nϕ

(
|β⟩+ eiϕ |−β⟩

)
(55)

with correct normalization:

Nϕ = 2(1 + cos(ϕ)e−2|β|2) (56)

W cat,ϕ(α) =
1

π2Nϕ

∫
d2λ eαλ

∗−α∗λ
(
⟨β|D(λ) |β⟩+ ⟨−β|D(λ) |−β⟩

+ eiϕ ⟨β|D(λ) |−β⟩+ e−iϕ ⟨−β|D(λ) |β⟩
) (57)

Similar computation as in the example of coherent states leads to:

W cat,ϕ(α) =
1

π
(
1 + cos(ϕ)e−2|β|2

)×[
e−2|α−β|2 + e−2|α+β|2 + 2e−2|α|2 cos

(
4(α′′β′ − α′β′′) + ϕ

)]
(58)

As mentioned in the beginning of this section, in the Python library qutip, a
different convention for the Wigner function is used. Compared to the conven-
tion used is the previous section, the graph of the Wigner function is stretched
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by a factor of
√
2 in x and p direction and shrunk to 1/2 of the function value.

That way, the area under the graph remains constant. For the Wigner function
with the qutip convention Wqutip, we can formally write:

Wqutip(α) =
1

2
W
( α√

2

)
(59)

Because qutip is used for the simulations in this work, their convention will be
used.

(a) Wigner function of the coherent state
|α = 1⟩

(b) Wigner function of the even cat state
(ϕ = 0) for α = 2

Figure 12: Plots of Wigner functions for a coherent and a cat state; qutip
convention is used for both plots

B.2 Lindblad master equation

We are describing an open system A coupled to an environment E in thermal
equilibrium. The state of system A ρA can be recovered from tracing out the
environment in the density matrix ρAE of the whole system A + E that un-
dergoes a unitary transformation. The goal is to find a first-order differential
equation for ρA to conveniently describe the dynamics of A without monitoring
the environment.

B.2.1 Markov approximation

Having a differential equation means that we can define our evolution in arbi-
trarily fine steps.

τ
dρA(t)

dt
= ρA(t+ τ)− ρA(t) for τ → 0 (60)

Then the Hamiltonian for system and environment would lead to a density
matrix of the following general form:

ρAE(t) = ρA(t)⊗ [ρ̄E + δρE(t)] + δρAE(t) (61)
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δρE(t) is some fluctuation around the steady-state value of ρE because of the
interaction with A. Also, the Hamiltonian generally causes entanglement of A
and E, which is described by the term δρAE(t)

However, because of energy-time uncertainty, there is a correlation time of
the environment of the order of τc = 1

∆ω with energy levels of the environ-
ment spanning over the range of ∆E = ℏ∆ω. If the steps in the differential
equation are much longer than the environment correlation time, environment
fluctuations average out and we can reduce the total density matrix to:

ρAE(t) = ρA(t)⊗ ρE (62)

For this approximation of fixed minimal step length to be valid, the environ-
ment cannot significantly change the system’s state during that correlation time.
Therefore, we have the inequality:

τc ≪ τ ≪ Tr (63)

where Tr is the characteristic time of the evolution of ρA. The Markov condition
that τc ≪ Tr is satisfied in cavity quantum electrodynamics and our case of
realizing a Kerr-cat qubit.

B.2.2 Derivation and interpretation of the Lindblad equation

We can now write:
dρA(t)

dt
=

Lτ [ρA(t)]− ρA(t)

τ
(64)

where Lτ [ρA(t)] is the operator for linear evolution of ρA(t) in time τ . That
is why we will now neglect all terms of order O(τ2). We will use the Kraus
representation for this channel, and because we want the channel to implement
an infinitesimal change, we have exactly one operator of the order of unity.

Lτ [ρA(t)] =

NK−1∑
µ=0

Mµ(τ)ρA(t)M
†
µ(τ) (65)

with
M0 = 1− iKτ (66)

If we split K into hermitian and non-hermitian part (K = H
ℏ − iJ), we get:

M0(τ)ρAM
†
0 (τ) = ρA − iτ

ℏ
[H, ρA]− τ(JρA + ρAJ) (67)

The other Kraus operators are of order τ (Mµ(τ) =
√
τLµ). Normalization of

the Kraus operators leads to:

NK−1∑
µ=0

M†
µ(τ)Mµ(τ) = I− 2Jτ +

∑
µ̸=0

τL†
µLµ = I (68)
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=⇒ J =
1

2

∑
µ ̸=0

L†
µLµ (69)

Finally, we get the Lindblad master equation:

dρA
dt

= − i

ℏ
[HA, ρ] +

∑
µ ̸=0

(
LµρAL

†
µ − 1

2
L†
µLµρA − 1

2
ρAL

†
µLµ

)
(70)

The hermitian HA can be identified as the system’s Hamiltonian. To interpret
the Kraus operators, we realize that we can model the evolution of system A
equivalently as the unitary evolution of system and environment A+ E and as
the unitary evolution UAB of system and environment simulator A+B.

UAB |ϕ(A)⟩ ⊗ |0(B)⟩ =M0(|ϕ(A)⟩)⊗ |0(B)⟩+
∑
µ̸=0

Mµ(|ϕ(A)⟩)⊗ |µ(B)⟩

=
[
I− i

ℏ
HAτ − Jτ

]
(|ϕ(A)⟩)⊗ |0(B)⟩+

√
τ
∑
µ̸=0

Lµ(|ϕ(A)⟩)⊗ |µ(B)⟩
(71)

If we were now to read out the environment we would find it with a probability
pµ in the state |µ(B)⟩. It is important to note that with a high probability, the
environment simulator stays in the same state as before the transformation. In
this case, the system’s state evolves under an effective Hamiltonian HA − iℏJ .
The other Kraus operators with µ ̸= 0 change the environment’s state and,
therefore, correspond to leakage into the environment.

B.3 Input-Output Formalism

In the Schrödinger picture, we study the evolution of open quantum systems
with the Lindblad master equation. In the Heisenberg picture, we can analyze
input and output fields using input-output formalism. We consider a cavity
with resonance frequency ωc that is coupled to an external environment, such
that the Hamiltonian decomposes into:

H = Hcav +Hext +Hint (72)

with

Hcav/ℏ = ωca
†a (73)

Hext/ℏ =

∫ ∞

0

dω′ ω′b†(ω′)b(ω′) (74)

Hint/ℏ =
1

2π

∫ ∞

0

dω′
√
κ(ω′)

(
ab†(ω′) + a†b(ω′)

)
(75)

By making the rotating wave approximation, we can omit the terms a†b†(ω′)
and ab(ω′). We expect only bath modes with ω′ ≈ ωc to contribute (b(ω′) ≈
0 for ω′ ̸≈ ωc) and hence, we can extend the lower bounds in both integrals to
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−∞.

With this Hamiltonian, the Heisenberg equations of motion state:

∂ta = − i

ℏ
[a,Hcav]−

i

ℏ
[a,Hint]

= −iωca(t)−
i√
2π

∫ ∞

−∞
dω′

√
κ(ω′)b(ω′) (76)

∂tb(ω
′) = − i

ℏ
[b,Hext]−

i

ℏ
[b,Hint]

= −iω′b(ω′)− i

√
κ(ω′)

2π
a(t) (77)

Transforming equation (77) to the rotating frame at frequency ω′ and integration
leads to:

b(ω′, t) = b(ω′, t0)e
−iω′(t−t0) − i

√
κ(ω′)

2π

∫ t

t0

dt′ a(t′)e−iω′(t−t′) (78)

Inserting this expression for the bath modes into equation (76), we get to the
final exact expression:

∂ta = −iωca(t) − i√
2π

∫ ∞

−∞
dω′

√
κ(ω′)b(ω′, t0)e

−iω′(t−t0)

− 1

2π

∫ ∞

−∞
dω′ κ(ω′)

∫ t

t0

dt′ a(t′)e−iω′(t−t′) (79)

To make progress and simplify the terms, we can assume κ(ω′) to be constant
over all frequencies. This approximation can be made because there is usually
only a small range of frequencies that contribute similarly, for example, the
frequencies of the resonance linewidth for the interaction with an optical cavity.
Then, the equation results in what is known as the quantum Langevin equation:

∂ta = −iωca(t)−
κ

2
a(t)−

√
κain(t) (80)

with

ain(t) :=
i√
2π

∫ ∞

−∞
dω′ b(ω′, t0)e

−iω′(t−t0) (81)

ain(t) describes how past bath modes couple to the system at time t and

interpret it as a noise contribution with ⟨ain(t)⟩ = 0 and [ain(t), a
†
in(t

′)] = δ(t−t′)
We can also find a time-reversed quantum Langevin equation, which describes
the evolution of the system via the outcoming field:

∂ta = −iωca(t) +
κ

2
a(t)−

√
κaout(t) (82)
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with

aout(t) :=
i√
2π

∫ ∞

−∞
dω′ b(ω′, t1)e

−iω′(t−t1) with t1 > t (83)

This can be interpreted as the future bath modes coupling to the system at time
t.

Furthermore, there is the fundamental input-output relation between input
and output fields:

aout(t)− ain(t) =
√
κ a(t) (84)

B.4 Quantum Stochastic Calculus

Quantum Stochastic Calculus (QSC) is a mathematically rigorous description of
open quantum systems that treats a system’s interaction with an environment
as a continuous stochastic process with quantum jumps. The detailed discussion
of this topic can be found in [ZG97]. With this theory, we can recover both the
Lindblad master equation as well as the quantum Langevin equation.

We assume the same Hamiltonian as in section B.3. By making the rotating-
wave approximation and the Markov approximation, we can write the interac-
tion part of the Hamiltonian (absorbing constant in c) as:

Hint(t) = i
(
b(t)†a− b(t)a†

)
with b(t) =

1√
2π

∫ ∞

−∞
dω b(ω)e−i(ω−ωc)t (85)

The time evolution operator is given by the Schrödinger equation:

d

dt
U(t) = −i(H +Hint(t))U(t) (86)

We define analogous to the classical Wiener process stochastic increments
dB(t) and dB(t)† that represent a random change following a normal distribu-
tion:

B(t) :=

∫ t

0

ds b(s), B(t)† :=

∫ t

0

ds b(s)† (87)

and with that:

dB(t) = B(t+ dt)−B(t), dB(t)† = B(t+ dt)† −B(t)† (88)

We usually consider the environment in the vacuum |0⟩ state, such that
⟨b(t)⟩ = ⟨0| b(t) |0⟩ = 0, ⟨b(t)†⟩ = 0, ⟨b†(t)b(t′)⟩ = 0 and ⟨b(t)b(t′)†⟩ = δ(t− t0).

Importantly, that gives us:

⟨dB(t)dB(t)†⟩ = dt (89)

which means that differentials must be expanded to second order.
Here, we will not get into the details of Ito and Stratonovich integration,

but the idea now is to substitute dB(t) for b(t) in equation (85) and to solve
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equation (86), which has now become a Stochastic Differential Equation.

Finally, we derive the equation of motion stochastic density operator, which
generates the master equation:

dρ̂(t) = −i
(
Heffρ̂(t)− ρ̂(t)H†

eff

)
dt+ dB(t)†aρ̂(t)a†dB(t)

+ dB(t)†aρ̂(t) + ρ̂(t)dB(t)a† (90)

with

Heff = Hsystem − i

2
a†a (91)

From tracing out the bath environment, we recover the Lindblad master equa-
tion.

We can similarly derive the Ito quantum Langevin equation from knowledge
of the time evolution operator. For an arbitrary operator X(t) in the Heisenberg
picture:

dX(t) = −i
[
X,Hsys dt+ idB(t)a† − idB(t)†a

]
+

(
a†Xa− 1

2
Xa†a− 1

2
a†aX

)
dt

(92)
We can derive the quantum Langevin equation in the standard form by setting
X = a.

B.4.1 Output processes

Output processes can be formalized in QSC with

Bout(t) := Û(t)†B(t)Û(t) (93)

such that the output field can be written as:

bout(t) :=
dBout(t)

dt
≡ lim

h→0+

Bout(t+ h)−Bout(t)

h
(94)

We can finally derive an equation that fully describes the output process:

dBout(t) = Bout(t+ dt)−Bout(t) = dB(t) + c(t) dt (95)
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C Code

All my codes with documentation can be found on GitHub. The most important
ones are listed additionally in this section.

C.1 Code: Negativity in terms of K*Q qutip simulation

This code generates the red line in figure 4. To use the function in different
plots (figure 4 and 6) we use the function joblib.dump. With a slight code
modification, we can also generate the red line in 5.

1 from qutip import *

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from numpy import pi, sqrt

5 from scipy import interpolate

6 from joblib import dump

7

8 N = 30 # fock state truncation

9 omega = 2 * pi * 5e9 # resonance frequency

10

11

12 # function that returns the end max negativity for given

parameters of the initialization process

13 # inputs K,kappa ,e2 in unit 1/s

14 # time_param dimensionless parameter that characterizes and

is linearly proportional to the duration of the turn -up (

read in detail in Bachelor ’s thesis)

15 # different convention for K - watch out

16 def wigner_negativity(K, kappa , e2 , time_param):

17 a = destroy(N) # destruction operator

18 H0_init = -K * a.dag() * a.dag() * a * a # non time -

varying part of the Hamiltonian

19

20 # time -varying part of the Hmailtonian with coefficient

the captures the time -variation

21 H1_init = e2 * (a.dag() ** 2 + a**2)

22

23 def H1_init_coeff(t, args):

24 return 1 / 2 * np.tanh((t - 4 * time_param / K) * (K

/ time_param)) + 1 / 2

25

26 # complete Hamiltonian

27 H_init = [H0_init , [H1_init , H1_init_coeff ]]

28

29 # time scale for numerical solving of the master

equation

30 # details in Bachelor ’s thesis

31 times = np.linspace(0, (6 * time_param) / K, 200)

32

39

https://github.com/FabianSchatz/Kerr-cat-qubit-Bachelor-project-public


33 opt = {

34 "nsteps": 3000

35 } # steps of the integration (needs to be increased for

certain computations)

36

37 # mesolve (see documentation qutip: Master equation),

c_ops are complete list of loss operators

38 time_ev = mesolve(

39 H_init , fock(N, 0), tlist=times , c_ops=sqrt(kappa) *

a, args=None , options=opt

40 )

41

42 end_state = time_ev.states [-1] # end state of

initialization via Master equation

43

44 # evaluate Wigner negativity on the axis (Re a=0 or y-

axis) for x=0

45 x_gridspace = np.linspace(0, 0, 1)

46 y_gridspace = np.linspace(-2, 2, 500)

47 W_end_state = wigner(end_state , x_gridspace , y_gridspace

)

48 wigner_values = [

49 W_end_state[i, 0] for i in range (500)

50 ] # negativity maximal on Re(a)=0

51

52 return -min(wigner_values)

53

54

55 # returns for given K and Q the minimum value of wigner

funciton that is possible to reach with optimizing over

e2 (second output is the e2 value in Hz that optimizes

Wigner negativity)

56 def max_wigner_negativity_optimized_over_ e2 (K, kappa ,

time_param):

57 # empirically we could test that photon numbers lower

than 0.8 and higher than 8 don’t lead to higher

negativity (increasing range of e2 values doesn’t

affect results)

58 e2 _values = np.linspace (0.8 * K, 8 * K, 60) # array

with e2s with optimize over

59 negativity_values = np.array(

60 [wigner_negativity(K, kappa , e2 , time_param) for e2

in e2 _values]

61 ) # array with all Wigner negativity value for the

possible e2s

62

63 # find max and the e2 value that maximizes negativity

64 max_negativity_value = np.max(negativity_values)

65 max_ e2 = e2 _values[np.argmax(negativity_values)]

66 return max_negativity_value , max_ e2 / (2 * pi)
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67

68

69 # plot K*Q in Hz versus optimized negativity

70 # read in thesis why initialization negativity only depends

on product K*Q

71 # K is set to 500 kHz

72 KQ_array_Hz = np.logspace(np.log10 (7 * 10**9) , np.log10 (2 *

10**12) , 100)

73 K_fixed = 5e5

74 kappa_array = omega / (KQ_array_Hz / (K_fixed))

75 optimized_negativity = [

76 max_wigner_negativity_optimized_over_ e2 (2 * pi * K_fixed

, kappa_array[i], 2)[0]

77 for i in range(len(kappa_array))

78 ]

79 plt.plot(KQ_array_Hz , optimized_negativity)

80

81

82 # we want to have the this function (Negativity vs K*Q) for

other plots so we dump it with joblib.dump and plot it to

ensure a correct fit

83 f = interpolate.interp1d(KQ_array_Hz , optimized_negativity)

84 dump(f, "Negativity(KQ) 100 values newest")

85 plt.plot(KQ_array_Hz , f(KQ_array_Hz), color="red")

86

87 # plot appearance

88 plt.xscale("log")

89 plt.xlabel("K*Q in Hz")

90 plt.ylabel("Max negativity in Wigner function")

91

92 plt.grid(True , which="both", linestyle=":", linewidth =0.5,

color="gray")

93 plt.tick_params(axis="both", which="both", direction="in",

length=6, width =1)

94 plt.minorticks_on ()

95 plt.show()

Listing 1: Negativity in terms of K*Q for qutip simulation

C.2 Code: Negativity in terms of K*Q calculation for adi-
abatic evolution and qutip simulation for comparison
(figure 4)

This code generates figure 4, and with some minor modifications, figure 5.

1 import numpy as np

2 from scipy.integrate import odeint

3 import matplotlib.pyplot as plt

4 from numpy import pi

41



5 from numpy import tanh

6 from scipy import interpolate

7 from joblib import dump

8 from joblib import load

9

10 omega = 2 * np.pi * 5 * 1e9 # resonance frequency

11

12

13 # derivation of the differential equation for the negativity

during turn up is explained in detail in Bachelor ’s

thesis

14 def DEQ_Negativity(n, t, K, e2 , kappa , time_param):

15 # alpha2_t means alpha(t)**2

16 alpha2_t = e2 / (2 * K) * (tanh((t - 4 * time_param / K)

* K / time_param) + 1)

17 # differential equation for increasing negativity due to

increasing alpha

18 increase = (

19 n

20 * pi**2

21 * e2

22 / (16 * alpha2_t **2 * time_param)

23 * (1 - tanh((t - 4 * time_param / K) * K /

time_param) ** 2)

24 )

25 # differential equation for decreasing negativity due to

photon loss

26 decrease = -2 * alpha2_t * kappa * n

27 # complete differential equation

28 dNegdt = increase + decrease

29 return dNegdt

30

31

32 # solve DEQ for the system parameters (no optimizing over e2

yet)

33 # starting value of the numerical integration is explained

in detail in Bachelor ’s thesis , but short explanation

inside function

34 # return end negativity

35 def max_wigner_DEQ(K, e2 , kappa , time_param):

36 # numerical integration starts at time 3 * time_param /

K, if it starts earlier , negativity values are very

small and numerical integration fails (gives wrong

result)

37 t = np.linspace (3 * time_param / K, 6 * time_param / K,

1000)

38 # calculation of Wigner negativity at the start of the

integration , can be calculated because the start

state is almost the cat state as there for small

alpha photon loss is negligible
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39 n0 = 1 / pi * np.exp(-(pi**2) * K / (4 * 0.24 * e2))

40 # numerical integration

41 n = odeint(DEQ_Negativity , n0 , t, args=(K, e2 , kappa ,

time_param))

42 return n[-1]

43

44

45 # optimize negativity over e2 (corresponding to photon

number of the end state)

46 def max_wigner_optimized_over_ e2 _DEQ(K0 , kappa0 , time_param)

:

47 # create a list of all negativity values for the e2 ’s

48 list_max_wigner_optimized_over_ e2 = [

49 max_wigner_DEQ(K0 , i, kappa0 , time_param)

50 for i in np.linspace(K0 * 0.8, 7 * K0 , 50)

51 ]

52 # return the max negativity value and the e2 in Hz for

which we get this negativity

53 return max(list_max_wigner_optimized_over_ e2), np.

linspace (0.8 * K0, 7 * K0, 50)[

54 list_max_wigner_optimized_over_ e2 .index(max(

list_max_wigner_optimized_over_ e2 ))

55 ] / (2 * pi)

56

57

58 # define the axis K*Q

59 KQ_array = np.logspace(np.log10 (7 * 10**9) , np.log10 (2 *

10**12) , 100)

60 # like for the qutip simulation , fix a K and go over kappa

instead of K*Q (because optimized negativity is only

dependent on K*Q)

61 K_fixed = 5e5

62 kappa_array = omega / (KQ_array / (K_fixed))

63

64 # generate the optimized negativity values for given K and

kappa and therefore given K*Q

65 optimized_negativity_values_DEQ = [

66 max_wigner_optimized_over_ e2 _DEQ(2 * pi * K_fixed ,

kappa_array[i], 2)[0]

67 for i in range(len(kappa_array))

68 ]

69

70 # plot the optimized negativity values against K*Q

71 plt.plot(

72 KQ_array ,

73 optimized_negativity_values_DEQ ,

74 color="black",

75 label="Calculation for adiabatic evolution",

76 )

77
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78

79 # plot for comparison the Negativity values we got from the

qutip simulation

80 # load the function that gives Negativity in terms of K*Q

for the qutip simulation

81 Negativity_KQ_qutip = load("Negativity(KQ) 100 values newest

")

82 plt.plot(KQ_array , Negativity_KQ_qutip(KQ_array), color="red

", label="qutip simulation")

83

84 # plot appearance

85 plt.xscale("log")

86 plt.xlabel("K*Q in Hz")

87 plt.ylabel("Maximum Wigner negativity")

88

89 plt.legend ()

90

91 plt.grid(True , which="both", linestyle=":", linewidth =0.5,

color="gray")

92 plt.tick_params(axis="both", which="both", direction="in",

length=6, width =1)

93 plt.minorticks_on ()

94

95 plt.show()

Listing 2: Negativity in terms of K*Q for calculation (assumption of adiabatic
evolution) and for the qutip simulation for comparison

C.3 Code: Modification of the previous code for the al-
ternative model described in section 3.2

For the alternative and easier way of calculating Wigner negativity for adia-
batic evolution, the function max wigner DEQ from the previous code must be
changed as follows.

1 import numpy as np

2 from numpy import tanh , exp , pi

3 from scipy.integrate import odeint

4

5

6 # alternative (easier) way to calculate Wigner negativity

for adiabatic evolution

7 # we only show the part of the code that changes

8 def max_wigner_DEQ(K, e2 , kappa , time_param):

9 times = np.linspace(0, 6 * time_param / K, 1000) # time

steps of the evolution

10

11 # describing photon loss through a differential equation

as explained in the Bachelor ’s thesis
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12 def photon_loss_differential_description(n, t):

13 alpha2_t = e2 / (2 * K) * (tanh((t - 4 * time_param

/ K) * K / time_param) + 1)

14 decrease = -2 * alpha2_t * kappa * n

15 return decrease

16

17 # solving the differential equation

18 photon_loss_factor = odeint(

photon_loss_differential_description , 1, times)

19

20 # Wigner negativity decrease due to photon loss must be

multiplied by Wigner negativity of alpha cat state

21 # to good approximation it is given by the following

expression

22 def negativity_alpha_cat_state(t):

23 alpha2_t = e2 / (2 * K) * (tanh((t - 4 * time_param

/ K) * K / time_param) + 1)

24 return 1 / pi * exp(-(pi**2) / (8 * alpha2_t))

25

26 # return the last value (end of initialization) for the

Wigner negativity

27 negativity_t = (

28 np.array(negativity_alpha_cat_state(times))

29 * np.array(photon_loss_factor).flatten ()

30 )

31 return negativity_t [-1]

Listing 3: Code change compared to Listing C.2 for the alternative way of
calculating Wigner negativity

C.4 Code: Dephasing constant for initialized state with
parameters K and Q

This code generates figure 11. With modications of the noise rates or replacing
dephasing decay constants with dephasing times, we can also generate figures
9, 10 and 8.

1 from qutip import *

2 import numpy as np

3 import matplotlib.pyplot as plt

4 import math

5 from math import pi

6 from math import sqrt

7 from joblib import load

8 from scipy.optimize import curve_fit

9 from matplotlib.lines import Lin e2D

10

11 # load the function that gives the photon number for optimal

initialization
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12 n_KQ = load("n(KQ) qutip 100 values interpolation newest")

13

14

15 # to get alpha we take the sqrt , for values of K*Q smaller

than 7 e9 Hz we dont care about the dephasing time because

the initialized state doesn’t have Negativity in the

Wigner function

16 # we set the value alpha value for K*Q = 7e9

17 def alpha(KQ):

18 if KQ > 7 * 1 e9:

19 return sqrt(n_KQ(KQ))

20 else:

21 return sqrt (0.92)

22

23

24 N = 20 # Fock state truncation

25 omega = 2 * pi * 5 * 1e9 # resonance frequency

26

27

28 # goal: simulate decay time of the coherent alpha state to

get dephasing time for KCQ

29 # therefore plot the x expectation value against time and

fit an exponential decay

30 # function takes characteristic system parameters K in Hz

and Q

31 # function assumes thermal nuumber and kappa_eff (rate for a

^dagger * a noise) to be the same as in Grimm paper

32 def dephasing_time(K_Hz , Q):

33 # calculate related system parameters from K and Q (

alpha value such that we have maximum negativity)

34 K = K_Hz * 2 * pi

35 alpha_value = alpha(K_Hz * Q)

36 e2 = K * alpha_value **2 # calculate the e2 of the

optimal initialization

37 kappa = omega / Q # photon loss rate

38 kappa_thermal = kappa * 0.08 # photon gain rate

39 kappa_eff = 2 * pi * 230 # rate of a^dagger a noise

40

41 a = destroy(N) # destruction operator

42 x = (a + a.dag()) / 2 # x operator

43

44 H_cat = -K * a.dag() * a.dag() * a * a + e2 * (

45 a.dag() ** 2 + a**2

46 ) # static Hamiltonian

47

48 times = np.linspace(0, 1e-6 * 150, 400) # time scale of

system evolution

49

50 opt = {

51 "nsteps": 7000
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52 } # number of steps in numerical solving of the master

equation

53

54 # master equation solver , coherent alpha state is the

initial state , loss operators corresponding to the

noise processes , e_ops=[x] gives the x expectation

value for each time in times

55 time_ev = mesolve(

56 H_cat ,

57 coherent(N, alpha_value),

58 tlist=times ,

59 c_ops =[

60 sqrt(kappa) * a,

61 sqrt(kappa_thermal) * a.dag(),

62 sqrt(kappa_eff) * a.dag() * a,

63 ],

64 e_ops =[x],

65 args=None ,

66 options=opt ,

67 )

68

69 # fit exponential decay (at t=0 the x expectation value

of the coherent state is alpha), c is the dephasing

constant

70 def fitted_exponential(x, c):

71 return alpha_value * np.exp(-x * c)

72

73 dephasing_time_value , _ = curve_fit(fitted_exponential ,

times , time_ev.expect [0])

74 print(dephasing_time_value [0])

75 return dephasing_time_value [0]

76

77

78 # make a K,Q grid

79 K = np.linspace (0.5 e5 , 10 e5 , 10)

80 Q = np.linspace (0.5 e5 , 10 e5 , 10)

81

82

83 # Calculate the dephasing times for each pair (K, Q)

84 decay_constants = np.zeros((len(K), len(Q)))

85 for i in range(len(K)):

86 for j in range(len(Q)):

87 decay_constants[i, j] = dephasing_time(K[i], Q[j])

88

89 # Plot the contour plot with the given levels for the

dephasing time

90 plt.figure(figsize =(8, 6))

91 viridis_r = plt.cm.get_cmap("viridis").reversed ()

92 contour = plt.contour(

93 K / 1 e6 ,
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94 Q / 1 e6 ,

95 decay_constants.T,

96 levels=np.array ([6 e3 , 7 e3 , 8 e3 , 1 e4 , 1.5 e4 , 2.5 e4 , 5 e4 ])

,

97 cmap=viridis_r ,

98 vmin=2 e3 ,

99 vmax =6.5 e4 ,

100 )

101

102 # plot appearance

103 # plt.colorbar(contour , label=" KCQ Dephasing Time in " r"$\
mu s$")

104 plt.xlabel("K in MHz")

105 plt.ylabel("Q in " r"$10^6$")
106

107 plt.grid(True , which="both", linestyle=":", linewidth =0.5,

color="black")

108 plt.tick_params(axis="both", which="both", direction="in",

length=6, width =1)

109 plt.minorticks_on ()

110

111 # Legend description

112 legend_description = Lin e2 D(

113 [0], [0], linestyle="", label=r"$\text{Decay constant in

} 1/s $"
114 )

115

116 # Contour legend labels

117 legend_labels = ["6000", "7000", "8000", "10000", "15000", "

25000", "50000"]

118 legend_colors = [

119 contour.collections[i]. get_edgecolor () for i in range(

len(legend_labels))

120 ]

121 legend_handles = [

122 Lin e2 D([0], [0], linestyle="-", color=legend_colors[i])

123 for i in range(len(legend_labels))

124 ]

125

126 # Add description to the legend handles and labels

127 legend_handles.insert(0, legend_description)

128 legend_labels.insert(0, r"$\text{Decay constant in } 1/s $")
129

130 plt.legend(legend_handles , legend_labels)

131

132 plt.show()

Listing 4: Dephasing constant for initialized state with system parameter K, Q
and noise rates as in [Gri+20]

48


	Contents
	Introduction
	Kerr-cat qubit
	State initialization
	Qutip simulation
	Calculation for adiabatic evolution
	Results

	Cat-quadrature (CQ) readout
	Measurement
	Kerr-cat qubit dephasing time

	Conclusion
	Appendix
	Theory of coherent states
	Methods
	Wigner distribution
	Lindblad master equation
	Input-Output Formalism
	Quantum Stochastic Calculus

	Code
	Code: Negativity in terms of K*Q qutip simulation
	Code: Negativity in terms of K*Q calculation for adiabatic evolution and qutip simulation for comparison (figure 4)
	Code: Modification of the previous code for the alternative model described in section 3.2
	Code: Dephasing constant for initialized state with parameters K and Q




