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Cloud-native Fog Robotics:
Model-based Deployment and Evaluation of
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Abstract—As the field of robotics evolves, robots become
increasingly multi-functional and complex. Currently, there is
a need for solutions that enhance flexibility and computational
power without compromising real-time performance. The emer-
gence of fog computing and cloud-native approaches addresses
these challenges. In this paper, we integrate a microservice-
based architecture with cloud-native fog robotics to investigate its
performance in managing complex robotic systems and handling
real-time tasks. Additionally, we apply model-based systems
engineering (MBSE) to achieve automatic configuration of the
architecture and to manage resource allocation efficiently. To
demonstrate the feasibility and evaluate the performance of
this architecture, we conduct comprehensive evaluations using
both bare-metal and cloud setups, focusing particularly on real-
time and machine-learning-based tasks. The experimental results
indicate that a microservice-based cloud-native fog architecture
offers a more stable computational environment compared to a
bare-metal one, achieving over 20% reduction in the standard
deviation for complex algorithms across both CPU and GPU.
It delivers improved startup times, along with a 17% (wire-
less) and 23% (wired) faster average message transport time.
Nonetheless, it exhibits a 37% slower execution time for simple
CPU tasks and 3% for simple GPU tasks, though this impact
is negligible in cloud-native environments where such tasks are
typically deployed on bare-metal systems. Video is available here:
https://www.youtube.com/watch?v=gN5tykUIFfw.

Index Terms—Software architecture for robotic and automa-
tion, hardware-software integration in robotics

I. INTRODUCTION

THE field of robotics is advancing rapidly, requiring
increased computational power and storage for complex,

data-intensive tasks. Cloud robotics addresses this need by
leveraging the vast computing resources of cloud platforms,
enabling robots to access extensive data processing capabilities
and advanced algorithms. However, limitations in network
infrastructure and geographical factors can introduce latency,
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undermining the stability and efficiency of cloud-based sys-
tems. Fog robotics presents a strategic solution by applying
fog computing principles: decentralizing data processing and
bringing it closer to robots in order to reduce latency, which is
crucial for real-time applications. Compared with similar edge
computing, which relies on individual devices with limited
computational resources, fog computing leverages fog servers
with higher processing power, allowing for more complex
data analytics without overburdening edge devices. While
edge computing faces scalability challenges as it depends
on each device to process data, fog computing introduces a
middle layer that offers centralized coordination, improving
system management. This makes fog computing particularly
suitable for complex robotic applications that require real-time
performance.

Recent advancements in robotics have enabled robots to
incorporate capabilities such as control, perception, simulation,
and planning. As robotic applications scale, system com-
plexity increases, presenting challenges in deployment and
maintenance [1]. Monolithic architectures exacerbate these
challenges by reducing system adaptability, making updates
and modifications difficult. Moreover, as systems expand,
troubleshooting and maintenance become more complex, of-
ten leading to inefficient resource utilization. When complex
robotic systems integrate with cloud-native fog architecture,
these challenges are further amplified. Given this, there is
a pressing need to shift towards a microservice architec-
ture, a predominant architectural style in service-oriented
software [2] [3], exemplified by the Robot Operating Sys-
tem (ROS). Transitioning to a microservice-based architecture
fragments the monolithic structure into smaller, more man-
ageable services, increasing the number of components. This
increase, however, complicates resource allocation and soft-
ware deployment. Efficient orchestration and containerization
strategies are thus crucial for managing and deploying these
services effectively.

In this paper, we propose an enhanced microservice ar-
chitecture for fog robotics by decomposing ROS-based com-
plex robotic systems into smaller, manageable components
and leveraging containerization to create isolated execution
environments for each component, as illustrated in Fig. 1.
We utilize Kubernetes, specifically its k3s variant optimized
for embedded systems, as the central tool for orchestrating
these containers in the distributed fog robotics system, thereby
crafting a microservice-based cloud-native fog robotic archi-
tecture. Furthermore, we adopt a modular approach grounded
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in model-based systems engineering (MBSE) to streamline
the configuration and modification of the architecture. By
employing MBSE, we align with the design principles of
microservice-based architectures, substantially enhancing the
structure’s reusability, clarity, maintainability, traceability, and
operational efficiency. These strategies enable the independent
deployment, restarting, or updating of each component, sim-
plifying the process of managing and deploying the system
while easily integrating new functionalities. The feasibility
and performance of these strategies are demonstrated by
comprehensive experiments in real-time scenarios.

The contributions of this work are summarized as follows:
• We propose a solution for managing complex fog robotic

systems by integrating the microservices modular ap-
proach with the cloud-native fog robotics systems to
enhance their flexibility and manageability.

• A MBSE-based modeling strategy is provided to stream-
line the architecture’s configuration, modification, and
resource allocation.

• Our approach is evaluated in real-time application sce-
narios, demonstrating a more stable computational en-
vironment with 20% reduction in standard deviation for
complex algorithms, faster startup times, 17% (wireless),
and 23% (wired) faster message transport.

The remainder of this paper is organized as follows. Sect. II
reviews the research background in fog robotics and microser-
vice architectures. Sect. III details the proposed microser-
vice architecture and the role of MBSE and containerization.
Sect. IV demonstrates the feasibility of our approach and
evaluates it under real-time scenarios. Sect. V discusses the
advantages and limitations of our approach.

II. RELATED WORK

Offloading the heavy computational load to cloud servers
enables robotic systems to perform more advanced tasks [4].
Typical examples are RoboEarth [5] and Robot-cloud [6],
which address the computational limitations of low-cost
robots. However, factors such as latency, availability, and
security limit the usage of cloud robotics.Tian et al. [7]
proposed a fog robotic system by combining cloud robotics
with an agile edge device to overcome these issues. Giovanni
et al. [7] proposed DewROS2, a platform for fog Robotics
that enables real-time system monitoring with minimal perfor-
mance impact. Tanwani et al. [8] also employed fog robotics
in their system for deep robot learning, effectively reducing
inference time. The FogROS2 proposed by Ichnowski [9]
integrates cloud and fog robotics within the ROS distribution,
enhancing performance and timing compared to ROS2.

These robotic systems are complex and will likely become
more so as robotics technology advances. To mitigate this
complexity and simplify management, we employ the concept
of microservices. Microservices address some of the limita-
tions of Service Oriented Architecture (SOA) with a more
refined and modular approach [10]. Luis et al. explored the fea-
sibility of microservices in service orchestration using cloud-
native technology, highlighting its benefits and challenges in
real-world scenarios [11]. Similarly, Singh investigated the
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Fig. 1: To integrate enhanced microservices into fog robotics,
monolithic modules are segmented into independent apps,
deployed in dedicated containers, and assigned to platforms
with different configurations.
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Fig. 2: In the end-to-end workflow for the MBSE method,
the yellow parts are modeling steps that require manual effort,
while the red ones should be automated after model creation.

use of microservice architecture in cloud applications, eval-
uating its performance in terms of response and deployment
times [12]. In our previous work [13], we observed that
microservice could deliver improved startup performance in
the field of autonomous driving. In the field of robotics, Xia
et al. [14] presented a microservice-based service manage-
ment architecture for cloud robotic applications. However,
these works focus either solely on cloud-native technology
or microservice-based architecture. Currently, there is a lack
of research on integrating fog robotics with microservices and
containerization, enabling efficient modification and manage-
ment of robotic systems.

Several studies have provided solutions for resource alloca-
tion challenges using MBSE. Pohlmann et al. [15] introduced
MechatronicUML, a methodology tailored for managing re-
source allocation in distributed vehicular systems. Al-Azzoni
et al. [16] developed a flexible framework that allows users
to define custom models for describing their systems, aiming
to address resource allocation issues effectively. Nevertheless,
there is no practical solution grounded in established systems
and software engineering standards that can be seamlessly
applied to a microservice-based fog robotic system while also
providing the flexibility to define specific requirements.

III. METHODOLOGY

This section illustrates the steps for establishing a
microservice-based cloud-native fog architecture from scratch,
its modeling process, and how we decompose a monolithic
robotic system.
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A. Overview of the MBSE method

By integrating MBSE with containerization and microser-
vices, as illustrated in Fig. 2, we aim to simplify and automate
system creation and deployment, while enhancing flexibility
and scalability. Our method begins by collecting hardware
and software information of the robotic system, which is
used to create the meta-model—a high-level abstraction that
defines the essential rules, meta-types, and properties required
for semantic model creation. Subsequently, we instantiate this
meta-model by creating a partial instance model, effectively
decomposing monolithic applications into microservices that
specify the required hardware and software environments.
Based on these two models, we establish design constraints
according to the requirements and convert them into Satisfia-
bility Modulo Theories (SMT) problems. Solving these SMT
problems enables the generation of a solution instance model
with explicit resource allocations, thereby providing a concrete
representation of the target system. When new components,
such as sensors or robots, need to be integrated into the system,
the software and hardware requirements of the decomposed
applications for these components are added to the solution
instance model. The design constraints are then redefined,
and the SMT problems are resolved to produce an updated
solution instance model. Finally, the solution instance model is
transformed into deployment files, facilitating the deployment
of the fog robotic system using Kubernetes. This architec-
ture allows each component to be independently modified,
restarted, and redeployed, thereby meeting specific system
requirements with enhanced flexibility and scalability.

B. Modeling Method

The Eclipse Modeling Framework (EMF) is selected as
our modeling tool, providing a structured methodology for
documenting and constructing the system. The initial step in
establishing the meta-model involves abstracting the hardware
components of the robotic system. To achieve this, we define
an ExecutionPlatform class, incorporating properties such as
name, RAM size, and real-time kernel availability, to represent
various PCs and embedded systems, as illustrated in Fig. 3.
Subsequently, we create Gpu, Cpu, and Port classes to provide
detailed hardware information for each ExecutionPlatform.

The software information is abstracted through defining
the Application class with properties like RAM, CPU, and
GPU requirements, as well as the commands to be executed
upon creation. This class describes the different applications
that make up the cloud-native robotic system. Additionally,
we define the Environment and Volume classes to specify
the environmental arguments and volume mounts required
by the applications. Apart from the execution platform and
applications running on it, there are external devices, such
as sensors, in a robotic system. In this paper, Camera and
Lidar classes are created to represent the sensors utilized in
the system. Finally, we establish associations between classes
to illustrate relationships. For instance, one application can
have only one execution platform, while one platform can host
multiple applications.

Fig. 3: A meta-model designed for the cloud-native fog
robotics setup, hardware, software, and external devices are
highlighted in orange, purple, and yellow, respectively.

Upon completing the meta-model, we employ an instance
model to instantiate it. During the instance modeling phase,
we decompose the robot’s control components and associated
algorithms into smaller functional segments, thereby aligning
with a microservice-based architecture. The instance model
provides detailed definitions for each decomposed applica-
tion, encompassing both software and hardware requirements.
Specifically, each application specifies the required container
image, the command to execute upon container creation,
environment variables, and necessary volume mounts. This
methodology enables a clear and precise description of each
component within the complex robotic system, resulting in a
set of more manageable applications.

Modifying the instance model facilitates the adjustment of
resource allocation and the addition or removal of applica-
tions, sensors, and PCs easily. However, manually configuring
resource allocation for each application in a complex robotic
system is impractical. Therefore, design space exploration is
needed by establishing the design constraints. For this purpose,
we employ the Object Constraint Language (OCL), a declar-
ative formal language developed by the Object Management
Group (OMG). Figure 4 illustrates the constraints utilized in
this work. In addition to the constraints depicted in the figure,
our design constraints include specific requirements such as
assigning one CPU per application, allocating each application
to the appropriate platform, and assigning GPU resources as
needed.

After defining the constraints, we leverage the EMF2SMT
transformation method, as introduced in our previous
work [17]. This technique facilitates the conversion of EMF
models and OCL specifications into SMT problems. We utilize
the SMT-Lib format to present these problems. Here, we
convert the SMT problems generated using OCL constraints,
as shown in Fig. 4, into human-readable formulas:∑

a∈A
ga ≤ G (1)
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#Keep resource assignments within limits.
context Cpu
inv cpuCore:
application -> collect(coreSize) -> sum() <=

coreNumber
context Gpu
inv gpuPower:
application -> collect(gpuSize) -> sum() <=

vGpuNumber
#Ensure apps have access to required devices.
context Application
inv appLidar:
lidar -> forAll(port.executionplatform = self.

executionplatform)

Fig. 4: OCL Constraints for the instance model

where A and a denote the set of applications and a specific
application, ga is the amount of GPU resource required by an
application, and G is the total available GPU resources.∑

a∈A
ca ≤ C (2)

where ca is the CPU resources required by an application, C
is the total available CPU resources. The last formula is:

xa→d =⇒ φ ::= true (3)

where φ = φ1 ∧ φ2 ∧ φ3, φ denotes whether a is suitable
on a platform, φ1 = xa→d,∀a ∈ A, d ∈ D, φ1 is a
binary variable indicating whether a requires d, D and d
denote the device set and a specific device, respectively,
φ2 = xpd→e,φ3 = xa→e, e ∈ E , φ2 and φ3 indicate
whether a port or a is mapped to e, E and e is the set of
execution platform and one specific platform. These SMT
problems can then be processed by state-of-the-art solvers like
Z3. We plug these results into the instance model employing
Eclipse Acceleo. Then, the Meta-Object Facility Model to Text
(MOFM2T) transformation will be utilized to generate Kuber-
netes deployment files. Through this approach, we efficiently
and reliably obtain the distribution of different applications
among various PCs within complex fog robotic systems while
adhering to specified requirements.

C. Combining microservice architecture with MBSE method

For better illustration, we employ real-world experimental
setups, as illustrated in Fig. 6, to construct a microservice-
based fog robotic system using the MBSE approach. In the first
experiment involving a single Franka robot, we develop both
a meta-model and an instance model. The meta-model con-
struction follows the methodology outlined in Section III-B.
When defining the instance model, we first decompose the
monolithic robot and sensor modules into microservices by
function. Specifically, the Franka real-time interface module
is decomposed into five primary applications: Gripper for
controlling the gripper mechanism, Publisher for broadcasting
the robot’s state, Manager for managing controller switching,
TF for transformation tree handling, and Controller for operat-
ing various controllers. The camera application is responsible
for environment perception, while the detection application
handles the data it collects. The obstacle avoidance algorithm
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Fig. 5: Real world setup of the Experiments.

is split into two applications, one requiring GPU access and
the other only CPU. Subsequently, each application was spec-
ified with its hardware and software requirements, including
CPU, GPU, ports, sensors, environment variables, and volume
mounts, within the partial instance model. Following the
process in Section III-B, we generated the final deployment
file to deploy these nine applications into their dedicated
containers.

In the second experiment, we integrated both a Turtlebot
and a Franka robot into the workspace. To incorporate the
Turtlebot, we first defined a new Lidar class in the meta-model
to abstract the additional sensor introduced by the Turtlebot.
We then decomposed the Turtlebot control into two appli-
cations: Turtlebot Core (responsible for rosserial connections
to Lidar, motor, and power drivers) and Diagnose (for error
monitoring). We also introduce the clustering application for
processing the lidar data and obstacle avoidance application
to prevent collision. These new applications—Turtlebot Core,
Diagnose, clustering, obstacle avoidance and Lidar—were
added to the instance model. The remaining process, as
outlined in Section III-B, was repeated to generate the updated
deployment file for the extended robotic system with 15 differ-
ent applications. These two configurations of robotic systems
demonstrate that incorporating a new robot or sensor into the
system requires only a few modifications to the instance and
meta-model, highlighting the efficiency and flexibility of our
approach.

IV. EXPERIMENTS

This section examines the impact of the microservice-based
fog robotic architecture in practical scenarios.

A. Experiment Setup

Our experiments employ the Control Barrier Func-
tions (CBFs) methodology [18] to deploy an obstacle avoid-
ance algorithm among robots. These setups demand real-time
control with a high frequency of at least 100 Hz, presenting a
significant challenge to the containerized environment inherent
in a microservice-based cloud-native fog (cloud) architecture.
A comprehensive description of the CBF-based algorithm
utilized in this paper is detailed in [19].

The structure of our two experimental setups is illustrated
in Figs. 6a and 6b. The first setup involves a single Panda
robot, while the second setup includes a Franka robot and a
Turtlebot performing obstacle avoidance simultaneously in the
same workspace. Each robot is equipped with an onboard PC,
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(a) Overview of the structure employed in manipulator
obstacle avoidance experiment.
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(b) Overview of the structure employed in multi-robot obstacle avoidance experi-
ment.

Fig. 6: Overview of the structures employed in experiments. The Franka Control is divided into 5 components: Gripper,
Manager, Publisher, TF and Controller; the Turtlebot Control is divided into 2 components: Vehicle and Diagnostic.

complemented by two cameras and a Lidar for environment
perception. We have integrated microservices into the cloud-
native fog architecture, as previously described. We carefully
divided the modules into distinct applications based on their
functions (as detailed in III) to optimize these setups. Our
evaluation compares the cloud-native fog architecture with
the traditional monolithic setup (hereafter referred to as bare-
metal) and the cloud setup. The cloud setup is almost the same
as the fog one, but we utilize tc qdisc package to simulate the
latency introduced by cloud setup. The latency is set to 30 ms
while the jitter is 20 ms.

It is important to note that in our experiment, the bare-metal
setup includes not only the onboard PC but also the server PC
with the help of ROS. This means the bare-metal configuration
is also a fog setup but without separating into microservices
and containerization. Using only the onboard PC for the bare-
metal setup would result in the fog/cloud setups significantly
outperforming it, which would not be a fair comparison.
Our goal is to investigate the impact of containerization and
the division of the monolithic setup. Therefore, we chose a
conventional fog setup as the ’bare-metal’ reference.

The experimental setup includes a PC equipped with an
Intel i5-6500 CPU and a Ubuntu real-time kernel serving as
an onboard computer of Franka. There is a more powerful
workstation featuring an Intel i9-12900K CPU and an RTX
3080 Nvidia GPU that acts as the server. The controlled robots
are a Franka Panda robot and a Turtlebot3 burger vehicle with
a Raspberry Pi 4B as an onboard PC. The real-world setup
for the experiments is shown in Fig. 5. All experiments are
repeated 20 times to ensure a reliable result, and the results
presented are the average among all runs.

B. Evaluation Metrics

The primary benefits of a microservice-based cloud-native
fog architecture include flexible deployment and enhanced
failure recovery capabilities. Accordingly, we have chosen
startup time as a critical metric for evaluating performance.
This includes the overall system startup time and the startup
time for individual functions. We define the overall startup
time as the interval between command input and algorithm
execution. Function startup time is measured from the initial-

ization of the first node in a function to the completion of the
initialization of the last node in that function. Additionally, we
assess the latency in message transmission, the execution time
of algorithms, and overall resource consumption to provide a
comprehensive evaluation of the performance.

C. Franka Robot Manipulator Obstacle Avoidance

This experiment mainly focuses on the robot manipulator.
It investigates the performance of cloud-native fog robotic
architecture (hereafter referred to as fog setup) in real-
time (1000 Hz for robot manipulator, 100 Hz for CBF-based
algorithm) obstacle avoidance tasks.

1) Training Time: The CBF-based algorithm initially re-
quires offline training to optimize the hyperparameters of the
kernel function used in Gaussian Regression. Once this setup
is complete and the hyperparameters are fixed, it enters a phase
where it dynamically updates other real-time parameters based
on live environmental data. The following text will refer to
this phase as online training. Table I presents the results for
the CBF-based algorithm across different setups, and the best
metrics are highlighted in green.

The initial observation reveals that the online training
outcomes from the cloud setup are inadequate for real-time
tasks. The training time significantly exceeds those observed
in both fog and bare-metal setups. Such latency hinders proper
and agile control of the robot, highlighting the incompati-
bility of cloud architecture with tasks demanding real-time
performance. For online training, the bare-metal architecture
significantly outperforms (37%) the fog setup when utilizing
the CPU. However, in cloud-native environments, tasks requir-
ing less than one millisecond are typically deployed on bare-
metal systems. As a result, the reduced performance for these
tasks does not impact the overall performance of the proposed
architecture. The performance gap between fog and bare-metal
architectures narrows when GPU is used for online training
with only 3% lower mean execution time. CPU and GPU
environments exhibit similar performance for offline training
across the three architectures. Notably, the fog architecture
demonstrates a 25-28% lower standard deviation in offline
training times, indicating more stable performance than bare-
metal.
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Fig. 7: Comparison of Startup time (in seconds) under bare-
metal, fog/cloud setup in two experiments(I, II). Franka stands
for the startup time of Franka robot.

2) Startup Time: Startup times between the fog setup and
bare-metal are compared in Figs. 7a-c. The initial observation
indicates that the startup time for the fog architecture is
0.2 s faster than that of the bare-metal setup, while the cloud
setup is 2.2 s slower. Additionally, in the bare-metal setup,
the applications are launched one after another, whereas in
the fog/cloud setup, they are launched almost simultaneously.
When the Franka real-time interface is segmented into five
smaller components, each component launches more rapidly
than when integrated as a single unit, particularly the Gripper,
Manager, and TF applications. Even the cloud setup can
deliver comparable performance. This does not mean the fog/-
cloud setup performs significantly better than the bare-metal
setup. We further elaborate on this by using the TF application
as an example. The TF application contains only one node
that publishes the transformation information between joints
and the gripper. Launching only this node in a fog setup
inside a dedicated container takes little time. Conversely, in
a bare-metal setup, ROS is tasked with launching a suite of
applications at one time. It must handle prerequisite steps such
as setting up the parameter server, launching all associated
dependent nodes, and more before it can proceed with the task
after launching the TF node. Therefore, the TF’s launch time
in a bare-metal environment includes the time taken by the
prerequisite steps. This is the reason why these applications
have extended launch times on bare-metal. However, the fog
setup does deliver a more efficient startup time. Specifically,
the Franka real-time interface in the fog environment launches
in just 0.9 s, outpacing the bare-metal’s 1.3 s. The CBF-based
algorithm exhibits a 1.1 s longer launch time under the fog
architecture. Despite this, the earlier launch of the CBF-
based algorithm in the fog setup compensates for the delay,
resulting in a faster overall startup time. In conclusion, the

TABLE I: The training time (in ms) of GP under fog/cloud
setup and bare-metal. OnT represent Online Training, OffT
represent Offline Training, Std. represent Standard Deviation.

Experiment Setup Mean Min Max Std.

OnT CPU
bare-metal 0.294 0.069 12.761 0.378
fog 0.467 0.098 12.733 0.663
cloud 32.381 20.908 52.773 6.682

OnT GPU
bare-metal 0.692 0.117 14.137 0.803
fog 0.715 0.116 17.260 0.907
cloud 33.099 20.100 58.072 6.979

OffT CPU
bare-metal 3212.6 3128.2 3350.8 109.8
fog 3192.9 3133.8 3337.8 79.8
cloud 3236.7 3158.6 3381.2 114.5

OffT GPU
bare-metal 2376.6 2278.1 2434.1 60.5
fog 2379.7 2332.9 2485.2 45.2
cloud 2401.3 2357.2 2542.1 66.7

fog architecture demonstrates a more efficient startup process
in the experiments conducted. Additionally, the fog setup is
more convenient, requiring only a single terminal command,
whereas the bare-metal setup requires extra manual operations.

3) Message Transmission Time: The message transmission
time between the camera and the detection node is presented
in Table II. The results of the cloud setup show almost no
difference compared to the fog setup, as the communication
between the camera and the PC is entirely local. A notable dis-
covery from the results was that the mean image transmission
time in a fog setup is unexpectedly lower than in a bare-metal
configuration. Specifically, transmission times from the camera
in the fog environment are 23% shorter on average compared
to those in the bare-metal setup. The higher mean transmission
time in the bare-metal setup is due to increased variability,
indicated by the higher standard deviation. More instances
of longer transmission times contribute to the overall higher
mean, suggesting that fog/cloud setups provide a more stable
and efficient network environment for transmitting images.
The above-observed improvements can be attributed to several
factors inherent to the design and operation of cloud-native,
which will be discussed in detail in the IV-E section.

D. Multi-robot Experiment

This experiment is designed to assess the efficiency of a fog
setup in orchestrating multiple robots, particularly in scenarios
that require real-time and wireless communication capabilities.
Additionally, we perform the overall resource consumption
and latency evaluations under this setup.

1) Startup time: The startup time of this multi-robot setup
is depicted in Figs. 7d-f. The Franka robot’s startup time
remains consistent with that of previous experiments. How-
ever, all the rest of the applications except Lidar under the
fog architecture show slightly longer startup times than those
under bare-metal conditions. Overall, the total startup time is
14% slower than the bare-metal. As for the cloud setup, all the
applications launch slower than the bare-metal, and the total
startup time is 49% slower than the bare-metal.

Several factors contribute to this worse result compared to
previous experiments. First, the limited processing power of
Turtlebot’s onboard PC (Raspberry Pi) enlarges the overhead
from containerization and Kubernetes, impacting performance.
Second, it takes longer for k3s to establish connections with
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TABLE II: The image transmission time (in milliseconds)
between sensor nodes and detection node.

Experiment Setup Mean Min Max Std.

Camera 1
bare-metal 2.505 0.251 14.079 3.782
fog 1.939 0.263 27.394 2.832
cloud 2.009 0.277 25.354 2.901

Camera 2
bare-metal 2.639 0.239 13.550 3.893
fog 2.122 0.224 21.809 2.889
cloud 2.119 0.280 22.533 2.955

Lidar
bare-metal 1.631 0.257 26.339 3.145
fog 1.344 0.301 11.800 2.203
cloud 33.567 21.021 51.892 6.129

the Turtlebot over a wireless network, while this time is not
accounted for in the bare-metal setup. Shown in Figs. 7e
and 7f, the vehicle application, indicating the launch of the
Turtlebot, is started 2.9 s and 3.6 s after the command input
in the fog and cloud setups, respectively. This means that on
the Raspberry Pi, Kubernetes takes this amount of time to
assign deployments and create containers. This discrepancy
reasonably accounts for the superior performance of the bare-
metal setup compared to k3s.

2) Message Transmission Time: Since the Turtlebot op-
erates via a wireless connection, the data transmission time
across wireless devices is particularly intriguing. The exper-
iment results are detailed in Table II. An initial observation
from the table is that, despite the Lidar data being consid-
erably smaller than image data, both types require similar
transportation times. The network connection type and whether
the transmission is across devices can influence data transport
performance. Consistent with earlier findings, the performance
of the cloud setup remains significantly worse compared to the
other two configurations due to the increased latency. Similar
to the image results, the fog setup has a lower mean transport
time and, at the same time, a lower standard deviation.
This indicates that fog setup offers superior data transport
performance across wired and wireless connections, regardless
of message type.

3) Resource consumption: To assess the impact of con-
tainerization and microservices on resource utilization, we
record CPU, memory, and GPU usage throughout the ex-
periments, as summarized in Table III. K3s(I) represents
Experiment I, K3s(II) represents Experiment II, and K3s(III)
represents a scenario where each PC runs a single container
without microservices. As shown in table, the use of mi-
croservices and containerization increases CPU and memory
utilization, with greater resource consumption as the system
becomes more decomposed. However, this increase is not
a significant concern due to the sufficient capacity of the
fog server. Additionally, applications on the onboard PC can
be redeployed to the fog server if necessary. Notably, GPU
utilization remains consistent across all experiments.

4) Impact of Latency: We conduct additional experiments
to examine the effects of multiple fog servers connected via
wired Ethernet or wireless network such as Wi-Fi or 5G,
each with different latencies. Using the tc qdisc package, we
simulate latency for wired connections (fog low) with 1 ms
and 0.5 ms jitter and for wireless connections (fog high) with
10 ms and 3 ms jitter. As shown in Table IV, low latency (1

TABLE III: Overall resource utilization across different se-
tups. (I) and (II) denotes experiment I and II. (III) indicates
experiment II without microservice.

Metrics bare (I) bare (II) k3s (I) k3s (II) k3s (III)

CPU 40.05% 62.58% 48.43% 64.18% 59.69%
Memory 26.63% 40.07% 29.51% 46.74 44.55%
GPU 9.12% 8.99% 9.05% 9.09% 9.17%

TABLE IV: Comparison between different latency, Std. de-
notes the standard deviation. Fog (low) and fog (high) represent
the latency simulated for fog servers with wired and wireless
connections, respectively.

Setup bare-metal fog (none) fog (low) fog (high)

Mean Std. Mean Std. Mean Std. Mean Std.

Camera(ms) 2.572 3.838 2.030 2.861 2.987 2.903 12.415 4.544
OnT(ms) 0.493 0.590 0.591 0.785 1.505 0.791 10.799 2.008
Startup(s) 4.827 0.141 4.602 0.090 4.691 0.101 5.322 0.132

ms) has negligible impact on startup time, with only minor
increases in message transmission and execution times during
online training. In contrast, high latency (10 ms) extends
startup time and reduces message and training frequencies
below 100 Hz, failing to meet CBF’s real-time requirements
and causing system instability. These results suggest that
network with guaranteed latency that real-time applications
require are essential for stable and efficient performance when
using multiple fog servers in a microservice-based fog robotic
architecture.

E. Discussion

Some of the previously presented results draw counter-
intuitive conclusions. We observed that the fog setup launched
faster than bare-metal in the first experiment, where there was
only one Franka robot. This is surprising because container-
ization typically introduces additional overhead compared to
bare-metal systems, as deployment assignment and container
creation consume extra time. The experiments are repeated
20 times to ensure reliable output, and based on the existing
results, we found some explanations for this. First, the onboard
PC for the Franka robot is a relatively powerful platform
compared to the Raspberry Pi. Running a Kubernetes agent
and creating five containers simultaneously does not introduce
significant overhead. Second, the integration of an enhanced
microservice architecture contributes to the improvement. We
divide the robot’s control modules and obstacle avoidance
algorithms into smaller, individual components under the fog
setup. This results in each application container encompassing
fewer ROS nodes. According to our previous work [20], ROS
performance significantly decreases when the number of nodes
becomes too large. The Franka robot setup in our experiment
is a relatively complex robotic system with a total of 32
nodes. The efficiency gained from having fewer nodes in each
application outweighs the overhead introduced by containers
and Kubernetes, resulting in faster startup times. However, this
improvement is not universal across all robotic setups. In the
second experiment, factors such as the lower performance of
the Raspberry Pi, the more straightforward Turtlebot module,
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and the poorer network conditions contribute to longer startup
times.

Furthermore, we observed a marked improvement in the
transmission time of messages between nodes within the fog
architecture. Our analysis suggests that this efficiency can
be attributed to the secure, isolated environments created by
containerization on the host system. An essential factor in
this discussion is the role of cgroup scheduling and core
task assignment within the Linux Completely Fair Sched-
uler (CFS) [21]. Kubernetes and Docker leverage cgroups to
manage container workloads efficiently. The CFS allocates
resources to cgroups based on their CPU shares (cshares),
determining how resources are distributed among containers.
One major benefit of this system is the isolation it provides. It
prevents isolated processes from being influenced by external
processes and stops any single process from monopolizing
available resources. Without the containerization layer, pro-
cesses in a native system can unintentionally interfere with
each other, impacting performance. This isolation, combined
with the balanced resource allocation enabled by our design
space exploration method, contributes to the fog architecture’s
more efficient and stable performance. In summary, our ex-
periments validate the microservice-based cloud-native fog
robotic architecture’s feasibility and scalability. They reveal
the architecture’s potential to enhance performance in startup
time and message transport under specific conditions.

V. CONCLUSION

This paper provides a solution for managing complex cloud-
native fog robotic systems by incorporating an enhanced
microservice architecture and containerization. This approach
transforms traditional monolithic robotic systems into smaller,
independent, and more manageable segments, simplifying
tasks like modification and maintenance while improving the
overall efficiency and flexibility of the system. To address the
increased complexity in resource allocation and management,
we propose a modeling strategy based on MBSE for system
abstraction and design space exploration. The MBSE approach
provides several key advantages, such as increased flexibil-
ity, simplified system modifications, and seamless hardware
migration. However, its implementation requires a substantial
initial investment, along with extended solving times as system
complexity increases. Despite these challenges, the long-term
benefits, including enhanced efficiency and reduced need for
manual reconfiguration, outweigh these initial hurdles, making
MBSE a valuable strategy in complex system development.
In addition, we conducted thorough performance assessments
of this architecture compared to traditional bare-metal setups
and cloud deployments in real-time scenarios. The fog setup
demonstrated enhanced flexibility, agility, and improved per-
formance, with faster startup times and message transmission
speeds across both wired and wireless networks. Moreover,
the architecture provides a more stable operating environment,
as evidenced by reduced variability in all evaluation metrics.
Our future work will focus on migrating from ROS1 to ROS2
and incorporating latency considerations into our modeling
process.
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