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Abstract

This thesis focuses on the development of a robust node-based shape optimization frame-

work that integrates vertex morphing and uncertainty quantification (UQ) techniques to im-

prove the design of engineering structures. Traditional shape optimization methods are of-

ten limited by their inability to account for uncertainties in real-world applications, such as

variations in material properties, boundary conditions, and external forces. This research

addresses this limitation by combining node-based optimization with two uncertainty quan-

tification methods: Monte Carlo simulations and Polynomial Chaos Expansion (PCE). This

ensures the robustness of the design under stochastic variations. To overcome the chal-

lenges of node-based optimization, vertex morphing is used.

The proposed methodology is validated through academic case studies, including an arch

structure subjected to random load conditions. These examples demonstrate the framework’s

capability to produce designs that are both optimal under nominal conditions and resilient to

uncertainties. The results confirm the effectiveness of the approach in delivering reliable,

high-performance designs that account for real-world variability.
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Kurzfassung

Diese Masterarbeit beschäftigt sich mit der Entwicklung eines robusten, knotenbasierten

Formoptimierungsframeworks, das Vertex-Morphing und Methoden der Unsicherheitsquan-

tifizierung (UQ) vereint, um das Design von technischen Strukturen zu verbessern. Tradi-

tionelle Methoden der Formoptimierung stoßen oft an ihre Grenzen, da sie Unsicherheiten

in realen Anwendungen, wie Materialschwankungen, variierende Randbedingungen oder ex-

terne Kräfte, nicht ausreichend berücksichtigen. Diese Forschung adressiert diese Prob-

lematik, indem sie knotenbasierte Optimierung mit zwei Methoden der Unsicherheitsquan-

tifizierung kombiniert: Monte-Carlo-Simulationen und Polynomial Chaos Expansion (PCE).

Dadurch wird sichergestellt, dass das Design auch unter stochastischen Einflüssen robust

bleibt. Um die Herausforderungen der knotenbasierten Optimierung zu überwinden, wird

Vertex Morphing als Regularisierungsmethode eingesetzt.

Die vorgeschlagene Methodik wird anhand akademischer Fallstudien validiert, darunter eine

Bogenstruktur, die zufälligen Lastbedingungen ausgesetzt ist. Diese Beispiele zeigen die

Fähigkeit der Methode, Designs zu erzeugen, die sowohl unter nominalen Bedingungen op-

timal sind als auch widerstandsfähig gegenüber Unsicherheiten. Die Ergebnisse bestätigen

die Wirksamkeit des Ansatzes bei der Entwicklung zuverlässiger, leistungsstarker Designs,

die reale Variabilitäten berücksichtigen.

Schlüsselwörter

FEM; Robuste Optimierung; Unsicherheitsquantifizierung, Polynomial Chaos Expansion, Monte

Carlo, Vertex Morphing
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1 Introduction

1.1 Robust Node-based Shape Optimization

Shape optimization is a fundamental tool in the design of engineering structures across var-

ious fields, aiming to achieve optimal geometries that meet specific performance criteria,

such as minimizing drag in fluid flow or maximizing structural stiffness. Traditionally, shape

optimization has relied on Computer-Aided Design (CAD) parameterization, which offers ro-

bustness by preserving geometrical quality. However, CAD-based methods often suffer from

a limited design space, constrained by predefined parameters.

To overcome this limitation, node-based shape optimization has emerged as an alternative.

In this approach, mesh node positions are directly manipulated, providing a larger design

space and enabling more flexible and often non-intuitive shape modifications. Despite this

flexibility, node-based methods pose significant challenges, including mesh dependency, po-

tential shape irregularities, and the handling of a large number of design variables [1]. To

address these issues, regularization techniques such as vertex morphing, introduced by Ho-

jjat et al. [2], have been developed. Vertex morphing integrates mesh filtering and smoothing

directly into the optimization process, allowing the management of complex design spaces

while ensuring smooth geometric transitions.

Another key challenge in shape optimization is the need to account for uncertainties inher-

ent in real-world applications, such as variations in material properties, boundary conditions,

and external forces. Designs optimized under nominal conditions may perform poorly when

subjected to slight perturbations. Robust optimization methodologies aim to mitigate this

risk by ensuring that designs perform consistently across a range of uncertain conditions.

While robust optimization has been increasingly applied to CAD-based shape optimization,

particularly in aerodynamic applications (see e.g., [3], [4], [5]), its use in node-based shape

optimization remains largely unexplored.

This thesis focuses on developing a robust node-based shape optimization framework that

combines Polynomial Chaos Expansion (PCE) as an Uncertainty Quantification (UQ) tool

with vertex morphing as a parameterization technique.
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1.2 Outline

This thesis is organized to explore robust shape optimization under uncertainty, progress-

ing from foundational concepts to the development of a comprehensive optimization frame-

work. Chapter 2 introduces the core principles and mathematical formulations of shape op-

timization, including methods of shape representation, objective functions, constraints, and

gradient-based algorithms. Chapter 3 introduces the fundamentals of UQ, with a focus on

Monte Carlo simulations and PCE as key techniques for addressing uncertainties. In Chapter

4, these concepts are integrated to develop a robust optimization framework. Chapter 5 ap-

plies this framework to practical case studies, demonstrating its effectiveness in two academic

examples. Finally, Chapter 6 summarizes the research findings.
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2 Shape Optimization

In this chapter, the fundamentals of shape optimization will be discussed. As many different

methods and techniques exist, the differences are explained and brought together, illustrat-

ing the final chosen workflow: A node-based shape optimization algorithm that uses adjoint

sensitivities and the vertex morphing technique for regularization.

2.1 Optimization Problem

2.1.1 Standard optimization problem

Shape optimization begins with the formulation of a mathematical optimization problem, where

the goal is to find the optimal shape of a structure or component that minimizes (or maximizes)

a specific objective function. The optimization problem can be formulated in a standard for-

mat

Minimize: f(x)

Design variables: x

Subject to: gi(x) ≤ 0,

hj(x) = 0,

rk(x,u(x)) = 0

(2.1)

where f is an objective function that has to be minimized by varying the design variables x,

such that the equality constraints hj and the inequality constraints gk are satisfied. u is the

vector of state variables and rk are the residuals of the state governing equations, i.e., the

physical constraints on the problem.

2.1.2 Design variables

The design variables are represented by the column vector x = [x1, x2, ..., xn]
T and define

a given design. The size of the vector n determines the dimensionality. In structural opti-

mization, we typically classify our optimization problem depending on the choice of design

variables.

Robust Node-Based Shape Optimization with Vertex Morphing 3



Figure 1 Levels of structural optimization [6]

Example The differences between the different classes can be made clear with the help of a

truss structure. In sizing both the shape and the connectivity of the truss members are fixed.

The strategy would be to adjust the thickness or cross-sectional areas of each member to op-

timize for a lighter structure. In topology optimization, via the creation or removal of members,

the connectivity and layout of the structure would be explored to find an optimal structure. In

shape optimization, the geometry of the structure, i.e., the position of each joint, has to be

determined, while the connectivity is given. Fig. 1 demonstrates these differences.

Whilst for shape optimization of 1D truss structures, the vector of design variables consists of

the truss joint coordinates, different types of approaches have been developed for continuous

2D and 3D models. The main two methods are node-based (parameter-free) and CAD-based

(parametric) approaches. Node-based shape optimization involves directly manipulating the

nodes within a finite element mesh to achieve desired performance improvements, offering

fine-tuned control over local geometrical features but often at the cost of increased computa-

tional complexity. Conversely, CAD-based shape optimization adjusts the geometric param-

eters of the CAD model itself, preserving design intent and ensuring that changes remain

consistent with manufacturable and aesthetic considerations. This method is particularly ad-

vantageous during early design stages, where broader changes to fundamental geometric

features are required. Understanding the strengths and limitations of each approach is cru-

cial for selecting the appropriate optimization strategy based on the specific requirements and

stage of the design process.

(b)

Figure 2 Node-based (left) vs CAD-based (right) optimization of a wing cross-section, adapted from [7]
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In this thesis, a node-based shape optimization workflow is chosen.

2.1.3 Objective and constraint functions

In shape optimization, both objective functions f and constraints g, h are expressed as re-

sponse functions J that describe how the shape of a design influences its performance. The

most common examples for strucural responses used as objective functions or constraints

include stresses, strain energy and weight. Further constraints could include the goal of

maintaining a specific volume or shape restrictions. These constraints ensure that the opti-

mized shape meets necessary design criteria, such as structural integrity or manufacturing

limitations.

2.1.4 Solution strategies

Zero-order methods

Zero-order methods, also known as derivative-free optimization methods, are techniques

used for optimizing functions without requiring gradient information. They are particularly

useful when the objective function is non-differentiable, noisy, or computationally expensive

to evaluate. Search methods, such as the Nelder-Mead simplex algorithm [8], systematically

explore the search space by evaluating function values and iteratively refining the solution.

Population-based methods, including genetic algorithms [9], evolutionary strategies [10] and

particle swarm optimization [11], leverage a population of potential solutions that evolve over

iterations to explore the search space more broadly and avoid local optima. These methods

are essential tools for solving complex optimization problems where traditional gradient-based

techniques are not applicable.

Gradient-based methods

Gradient-based methods on the other hand are optimization techniques that utilize gradient

information to find the minimum or maximum of a function. These methods are divided into

first-order and second-order approaches. First-order methods, such as Gradient Descent

and its variants, use only the first derivative (gradient) to guide the search direction, making

them computationally efficient and suitable for large-scale problems. In contrast, second-

order methods, like Newton’s method [12] and the BFGS algorithm [13], employ both the

gradient and the Hessian matrix (second derivative) to determine the search direction and

step size, providing faster convergence and greater accuracy for problems where the Hessian

is computationally feasible to compute.

In this thesis, we will employ two first-order methods, which will be explained in the next

section.
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2.2 Optimization Algorithms

2.2.1 Steepest Descent

Steepest descent is a first-order optimization method to find the minimum of unconstrained

problems. The method iteratively updates the solution by moving in the direction of the neg-

ative gradient, which represents the steepest descent direction. The update rule for the iter-

ation k is given by:

x(k+1) = x(k) − α(k)∇f(x(k)), (2.2)

where α(k) is the step size, and ∇f(x(k)) is the gradient of f at x(k). The steepest descent

method is computationally simple and effective for many problems, though it may converge

slowly if the step size is not properly chosen.

2.2.2 Gradient projection

Gradient projection is a type of algorithm that was introduced by Rosen [14] in 1960 to solve

constrained problems. We start with the optimization problem:

Minimize: f(x)

Design variables: x

Subject to: gi(x) ≤ 0,

hj(x) = 0,

rk(x,u(x)) = 0

(2.1 revisited)

If we select only the r active constraints, we can define an n×r matrix N, where the columns

of this matrix are the gradients of the active constraints. The basic assumption of the gradient

projection method is that x lies on the tangential subspace to the boundary of the active

constraints. If our solutions x(k) and x(k+1) at iteration k and k + 1 satisfy the constraints,

then the constraints can be rewritten as:

NT s = 0 (2.3)

where s is a search direction. To project the steepest descent direction−∇f onto the tangent
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subspace of the active set of constraints, we can redefine the problem as follows:

minimize: sT∇f (2.4)

s.t.: NT s = 0, (2.5)

sT s = 1 (2.6)

The second condition bounds the solution. The Lagrangian function for this problem is:

L(s, λ, µ) = sT∇f − sTNλ− 2µ(sT s− 1) (2.7)

where λ and µ are called Lagrange multipliers. The condition for L to be stationary is:

∂L

∂s
= ∇f −Nλ− 2µs = 0 (2.8)

We can find λ by multiplying (2.8) by NT and using the condition from (2.3):

λ = (NTN)−1NT∇f (2.9)

The feasible search direction s is given by:

s =
1

2µ
[I −N(NTN)−1NT ]∇f (2.10)

After finding the feasible search direction, a new shape x(k+1) can be found. A line-search

can be applied to find the step size α(k) that sufficiently reduces the objective function, or a

constant step size can be used. The design update is then given by:

x(k+1) = x(k) + α(k)s (2.11)
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2.3 Regularization using Vertex Morphing

Before we can apply any of the solution strategies to our design variables, we need to intro-

duce a regularization step. Regularization in node-based shape optimization is essential to

manage the large number of design solutions that can arise when each node in the control

mesh acts as a design parameter. Without regularization, many of these solutions tend to

be noisy, resulting in non-smooth design surfaces and low-quality meshes. These irregular-

ities can lead to unusable or invalid shapes, such as meshes with self-intersections, kinks,

or other artifacts that do not satisfy the desired constraints. Regularization techniques, like

filtering operations on shape gradients, help produce smooth and valid shape updates that

can be applied to the mesh without causing numerical issues. By ensuring a minimum level

of smoothness, regularization enhances the stability and practicality of the optimization pro-

cess.

(a) Node-based optimization without regularization (b) Node-based optimization with vertex morphing

Figure 3 Motivation for regularization: Directly using the nodal sensitivities leads to undesired artifacts (a), whereas applying a
regularization technique leads to smoother geometries (b).

One regularization method is the vertex morphing technique as first presented by Hojjat et al.

[2]. The main idea of this method is to introduce a surface control field and define an explicit

mapping between the geometry space and control space. After a backward mapping, the

optimization problem is solved in the control space, and the shape update is finally obtained

after a forward mapping.

Consider a body occupying a volume Ω with a surface Γ. Material points on Γ are described

using surface coordinates θ = {θ1, . . . , θd−1} ∈ Rd−1. For a 3-dimensional geometry, d = 3.

Each material point on the surface can be traced through the spatial position vector field

x(θ, t) ∈ R3, expressed as:

Robust Node-Based Shape Optimization with Vertex Morphing 8



x(θ, t) =



x1(p(θ, t))

x2(p(θ, t))

x3(p(θ, t))


(2.12)

Here, the pseudo-time t represents the iterative evolution of the geometry during the opti-

mization process.

2.3.1 Control Field and Kernel-Based Filter

The proposed control field p(θ, t) ∈ R3, which depends on the surface coordinates, governs

the geometry through a functional A(p,θ) = x(θ), where A : R3 → R3. The relationship

between p(θ, t) and x(θ, t) is defined by an explicit kernel-based filter:

x(θ0) = A(p,θ0) =

∫
Γ
A(θ − θ0)p(θ) dΓ (2.13)

The coordinates x at point θ0 are obtained as a convolution of the operator A(θ − θ0) over

the control field p(θ). The function A serves as a kernel, typically a linear hat function or

a Gaussian function. Both types of filters produce similar qualitative results. The Gaussian

function is defined as:

A(θ − θ0) =
1

r
√
2π
e−

∥θ−θ0∥
2

2r2 (2.14)

The linear hat function is defined as:

A(θ − θ0) =

1− ∥θ−θ0∥
r , if ∥θ − θ0∥ ≤ r,

0, if ∥θ − θ0∥ > r,

(2.15)
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−3 −2 −1 0 1 2 3
θ − θ0

0.0

0.2

0.4

0.6

0.8

1.0

A
(θ
−
θ 0
)

Filter Functions: Gaussian and Linear Hat

Gaussian Function

Linear Hat Function

Figure 4 Two commonly used filter functions: Gaussian and linear hat

From Eq. 2.13, the derivative of the spatial vector x at point θ0 with respect to the control

coordinates at point θ1 is:

dx(θ0)

dp(θ1)
= A(θ1,θ0) (2.16)

generated shape x

design control field p

filter function

filter domain

x(θ0)

p(θ0)

θ0 θ0 + rθ0 − r θ

Figure 5 Filtering of design control field to generate shape, adapted from [15]

Fig. 5 shows the basic idea of the application of the control field in 1D.
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2.3.2 Objective Function Formulation

We consider a design objective Φ with a volume density fΩ for minimization. The optimization

takes place in the control space, so the objective is a function of the control field:

Φ(p(θ, t)) =

∫
Ω
fΩ(p(θ, t)) dΩ (2.17)

Or, expressed as a surface Γ problem, as is most often the case in shape optimization:

Φ(p(θ, t)) =

∫
Γ
fΓ(p(θ, t)) dΓ (2.18)

The surface density fΓ is obtained from the volume density fΩ by integration over the thick-

ness for shell geometries:

fΓ =

∫
h
fΩ dn; n(θ, t) ∈ R3 (2.19)

2.3.3 Discretization of the Problem

To solve the continuous problem, it must be discretized. The geometry field x(θ) is discretized

into finite parts with shape functions Rj and nodal coordinates X = {X1, X2, . . . , Xn} ∈
Rn:

x(θ) ≈ xh(θ) =
∑
i

Ri(θ)Xi (2.20)

Similarly, the design control field p(θ) is discretized with control points pj and shape functions

Nj :

p(θ, t) ≈ ph(θ) =
∑
j

Nj(θ)pj(t) (2.21)

Robust Node-Based Shape Optimization with Vertex Morphing 11



Eq. 2.13 transforms to:

xh(θ0) =

∫
Γ
A(θ − θ0)Nj(θ)pj dΓ (2.22)

The control points pj are independent of the integral and can be factored out:

xh(θ0) =

(∫
Γ
A(θ − θ0)Nj(θ) dΓ

)
pj = Bj(θ0)pj (2.23)

generated shape x

discretized design
filter function

filter domain

Xi

pi

i i+ 2i− 2 i− 1 i− 1 i+ 3i− 3 nodes

control field p

Figure 6 Linearly approximated design control field, adapted from [15]

2.3.4 Optimization Process

The optimization design variables are the control points pj of the geometrical coordinates Xj .

The update rule for the new design according to the steepest descent method described in

Section 2.2.1 is:

p(k+1) = p(k) +∆p(k) = p(k) − α(k) dfΓ
dp(k)

(2.24)

The variation δΦ due to an infinitesimal variation of the geometry δx at the surface Γ is:

δΦ =

∫
Γ

dfΓ
dx

δx dΓ (2.25)

Robust Node-Based Shape Optimization with Vertex Morphing 12



In the control space, this is approximated as δF :

δΦ(p) ≈ δF (ph) =
dF

dpi
δpi =

∫
Γ

dfΓ
dp

Niδpi dΓ (2.26)

The design gradient at position θ1 is:

dfΓ
dp

(θ1) =

∫
Γ
Aadj(θ1 − θ)

dfΓ
dx

dΓ (2.27)

The shape gradient field dfΓ
dx also needs to be discretized. Applying the geometry discretiza-

tion yields:

dfΓ
dxh

≈
∑
i

Ri(θ)
dfΓ
dXi

(2.28)

The term dfΓ
dXi

is calculated locally for each nodal coordinate by a sensitivity analysis from a

solver. The design gradient dfΓ
dpj

is computed from these values.

Similarly, the nodal constraint gradients are calculated using the same approach. The gradi-

ent of a constraint function g with respect to the nodal coordinates is given by:

dgΓ
dxh

≈
∑
i

Ri(θ)
dgΓ
dXi

(2.29)
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2.4 Sensitivity Analysis

One of the most crucial steps in an optimization algorithm is the calculation of the gradients

of both the objective functions as well as the constraints. In general, these functions depend

on the design variables x, as well as the response variables u. In structural analysis, the

latter correspond to displacements. These response variables are not independent but are

influenced by the design variables x, as a change in the geometry also leads to a change in

displacements.

After the discretization of the geometry, the nested dependencies can generally be formulated

as:

fΓ = fΓ(X,u(X)) (2.30)

Thus, for the calculation of the gradient, we have to consider the chain rule of differentiation:

dfΓ
dX

=
∂fΓ
∂X

+
∂fΓ
∂u

du

dX
(2.31)

The term du
dX is called the state sensitivity. To calculate the state sensitivity, we use the

state equations of the underlying problem. In structural analysis problems, this is the global

stiffness equation:

r = Ku− p = 0 (2.32)

Taking the derivative with respect to the nodal variables X, we get:

dr

dX
=
dK

dX
u+K

du

dX
− dp

dX
= 0 (2.33)

Solving for du
dX , we obtain:

du

dX
= K−1

(
dp

dX
− dK

dX
u

)
(2.34)
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2.4.1 Direct Method

In the direct method, the gradient of the objective function with respect to the design variables

is calculated by first solving Eq. 2.34 for du
dX . Then, this result is substituted into Eq. 2.31 to

compute the total derivative dfΓ
dX .

2.4.2 Adjoint Method

In the adjoint method, we first rewrite Eq. 2.31 by substituting Eq. 2.34:

dfΓ
dX

=
∂fΓ
∂X

+
∂fΓ
∂u

K−1

(
dp

dX
− dK

dX
u

)
(2.35)

We then introduce an adjoint variable λ, which satisfies the adjoint equation:

λ⊤K =
∂fΓ
∂u

⊤
(2.36)

Once the adjoint variable λ is obtained, the gradient of the objective function with respect to

the design variables is computed as:

dfΓ
dX

=
∂fΓ
∂X

+ λ⊤
(
dp

dX
− dK

dX
u

)
(2.37)

2.4.3 Direct vs. Adjoint

Direct sensitivity analysis is straightforward and best suited for problems with a small number

of design variables due to its computational cost. In contrast, adjoint sensitivity analysis is

more efficient for problems with many design variables, as it requires solving the adjoint equa-

tions only once. Adjoint methods are preferable in large-scale optimization scenarios, despite

their implementation complexity, whereas direct methods are favored for simpler, smaller

problems. As node-based shape optimization deals with a large number of design variables

the adjoint method is used.
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2.5 Optimization Loop

In the following, we will assume, that for the engineering problem, we can obtain the values

for the objective function and the constraint functions, as well as their nodal gradients from a

structural solver. We will treat this solver as a black box. We will use J as the notation for

all response functions and G as the nodal gradients dfΓ
dXi

and dgΓ
dXi

. Obtaining these value, we

can now bring everything together.

The optimization starts with the initial geometry. In an iterative process the current geometry

is analyzed by an external finite element solver that calculates the current response values,

as well as the nodal sensitivities. The gradients are mapped into the control space, where

then the actual update is computed. In this work, for unconstrained optimization problems,

the steepest descent method is used. For constrained problems, the gradient projection

method is applied. After the update is computed in the control space, we then apply a forward

mapping to obtain the new nodal coordinates of the geometry, preparing for a new step. This

loop is then repeated until a convergence criterion is met, for example, the objective function

meets a certain absolute value, the relative improvement between two steps is very small, or

after a predefined number of iterations.

Optimizer

Start

Deterministic Solver

Map Update to Geometry Space

Compute Update in Control Space

Map Gradients to Control Space

Convergence?

Result

x(0)

J (k), G(k)

x(k)

Yes

J∗,x∗

No

G(k)

Figure 7 Flow diagram of optimization loop

Algorithm 1 shows the fundamental steps of the optimization loop in pseudo-code.
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Algorithm 1 Optimization Framework using vertex morphing

1: Initialize design variables x(0)

2: Set convergence criterion

3: k ← 0

4: while convergence criterion not met do

5: Evaluate deterministic solver to compute J and G

6: Map gradients to control space: (Eq. 2.27)

7: Compute update in control space: (Eq. 2.24)

8: Map update to geometry space: (Eq. 2.22)

9: k ← k + 1

10: end while

11: Return optimized design x∗

2.6 Multi-Objective Optimization

Multi-objective optimization is a branch of optimization problems in which more than one

objective function is optimized simultaneously. Unlike single-objective optimization, where a

single optimal solution is sought, multi-objective optimization aims to find a set of solutions

that provide a trade-off among conflicting objectives. This is because improving one objective

might lead to a deterioration in another.

2.6.1 Concept of Pareto Optimality

In multi-objective optimization, the concept of Pareto optimality is used to describe solutions

that represent the best trade-offs among the different objectives. A solution is considered

Pareto optimal if there is no other solution that can improve at least one objective without

worsening another. Formally, given a set of objective functions f1, f2, . . . , fk, a solution x∗ is

Pareto optimal if there does not exist another solution x such that:

fi(x) ≤ fi(x∗) for all i and fj(x) < fj(x
∗) for at least one j.

Here, x is said to dominate x∗ if it improves on at least one objective without harming any

other.
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2.6.2 Pareto Front

The Pareto front (or Pareto boundary) is a set of all Pareto optimal solutions in the objective

space. This front provides a comprehensive view of the trade-offs between objectives and

helps decision-makers choose a solution that best matches their preferences or constraints.

In practice, the Pareto front is often visualized in a two-dimensional or three-dimensional plot

where each point on the front represents a solution that cannot be improved in any objective

without degrading another.
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Figure 8 The Pareto front as the set of points that are not dominated by any other feasible point

In summary, multi-objective optimization provides a framework for handling problems with

conflicting objectives by identifying a set of optimal solutions, known as the Pareto front, that

balance these objectives. This approach helps in making informed decisions based on trade-

offs and preferences.
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3 Fundamentals of Uncertainty

Quantification

3.1 Statistical Preliminaries

To ensure this thesis is self-contained, we briefly review the fundamental concepts, defini-

tions, and notation of random calculus. These will be necessary to later utilize them in the

robust optimization workflow. The content in this section is based on [16], [17], and [18],

which are recommended for further reading.

Random Variables

Random variables form the foundation of random calculus and are classified into two cate-

gories: continuous and discrete. A random variable is denoted by X, and its realization or

outcome is represented by x.

Continuous random variables are described by their cumulative distribution function (CDF)

FX(x). The CDF is defined as the probability that X takes a value less than or equal to x:

FX(x) = P (X ≤ x). (3.1)

The probability density function (PDF) fX(x) is obtained by differentiating the CDF:

fX(x) =
dFX(x)

dx
. (3.2)

The probability of X falling within the interval [a, b] can be computed as:

P (a ≤ X ≤ b) =
∫ b

a
fX(x) dx. (3.3)
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For discrete random variables, the cumulative mass function (CMF) PX(x) and the probability

mass function (PMF) pX(x) are defined as:

PX(x) =
∑
xi≤x

pX(xi), (3.4)

pX(x) = P (X = xi). (3.5)

Table 1 presents some common continuous and discrete random variables.

Distribution Notation fX(x) or pX(x) Support

Continuous Gaussian N (µ, σ2) 1
σ
√
2π
e−

(x−µ)2

2σ2 (−∞,∞)

Gamma Gamma(α, λ) λα

Γ(α)x
α−1e−λx [0,∞)

Beta Beta(α, β) Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1 [0, 1]

Uniform U(α, β) 1
β−α [α, β]

Discrete Poisson Poi(λ) e−λ λx

x! {0, 1, 2, . . .}

Binomial Bin(n, p)
(
n
x

)
px(1− p)n−x {0, 1, 2, . . . , n}

Neg. Binomial NB(n, p)
(
x+n−1

x

)
(1− p)xpn {0, 1, 2, . . .}

Hypergeometric Hyp(N,K, n)
(Kx)(

N−K
n−x )

(Nn)
{0, 1, 2, ...

...,min(K,n)}
Table 1 Common probability distributions, adapted from [18].

Moments of Random Variables

Statistical moments are numerical characteristics used to describe random variables. The

n-th moment E(Xn) of a random variable X is given by:

µX = E(Xn) =

∫
xnfX(x) dx. (3.6)
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The first moment, µX = E(X), is known as the expected value or mean of X. The variance

of X, denoted by σ2, is defined as:

σ2X = Var(X) = E(X2)− (E(X))2, (3.7)

and measures the variability of X around its mean.

Joint Distributions

In many problems, outcomes depend on more than one random variable. Let X = (X1, X2, . . . , XN )T

be a vector of N random variables. The joint CDF is defined as:

FX(x) = P (X1 ≤ x1, X2 ≤ x2, . . . , XN ≤ xN ). (3.8)

The joint PDF is given by:

fX(x) =
∂N

∂x1∂x2 · · · ∂xN
FX(x). (3.9)

Marginal PDFs can be obtained from the joint PDF by integrating. For example, the marginal

PDF fX1(x1) of X1 is:

fX1(x1) =

∫
fX(x1, x2) dx2. (3.10)

The conditional PDF of X1 given X2 = x2 is denoted fX1|X2
(x1|x2) and is defined by:

fX1|X2
(x1|x2) =

fX(x1, x2)

fX2(x2)
. (3.11)

Random variables X1 and X2 are considered independent if:

fX1|X2
(x1|x2) = fX1(x1). (3.12)

The covariance between Xi and Xj is given by:

Cov(Xi, Xj) = E[(Xi − µXi)(Xj − µXj )], (3.13)

which measures the linear dependence between the two variables.
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The correlation coefficient is defined as:

ρXi,Xj =
Cov(Xi, Xj)

σXiσXj

, (3.14)

and ranges from [−1, 1]. It is important to note that the correlation coefficient measures only

linear relationships. While ρXi,Xj = 0 indicates no linear correlation, it does not imply that Xi

and Xj are independent.

Problem Description and Notation

In the following chapters, we examine systems that generally depend on a spatial variable

x, and an N -dimensional random vector ξ. The solution u we seek is the output of a model

M. In the context of structural optimization, this will be a response function, that is obtained

through structural analysis. Since u is a function of one or more random variables, it is itself a

random variable with an (unknown) PDF. The goal is to obtain information about the stochastic

moments of u and, potentially, to approximate its PDF.

Input

x, ξ
M

Output

u(x, ξ)

Figure 9 Problem description
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3.2 Monte Carlo Method

The Monte Carlo method is one of the most popular approaches for computing expectations

related to the problem described in Section 3.1. It involves the following steps:

1. Draw a finite sequence of independent and identically distributed (i.i.d.) samples

{ξ1, ξ2, . . . , ξNS} from the distribution of the random variable of interest using a pseudo-

random number generator.

2. Evaluate the model for each sample, yielding us = u(ξs).

3. Estimate the expectation by aggregating the results:

µu = E[u(ξ)] =
∫
u(ξ)fX(ξ) dξ ≈ 1

NS

NS∑
s=1

ui. (3.15)

4. Obtain the variance of the estimator:

σ̂2u = Var(u) =
1

NS − 1

NS∑
s=1

(ui − µ̂)2, (3.16)

where µ̂ = 1
NS

∑NS
i=1 u

i is the sample mean of the model evaluations. The standard

deviation of the estimator is then:

σ̂u =
√

Var(u). (3.17)

The Monte Carlo method provides a straightforward way to estimate expectations related to

stochastic quantities u [18]. It only requires the ability to draw samples from the input PDF

fX(ξ) and to evaluate the model at these sample points. Consequently, it imposes no specific

regularity requirements on the model [19]. Additionally, because it does not require defining

a grid, it is particularly well-suited for complex integration domains.

However, standard Monte Carlo estimators converge at a relatively slow rate of O( 1√
NS

) as

NS → ∞. This slow convergence can be a significant drawback when high resolution is

required and evaluating the deterministic model is computationally expensive. On the posi-

tive side, the convergence rate is independent of the dimension of ξ, making Monte Carlo

estimators a popular choice for high-dimensional problems.

To improve convergence rates, several advanced techniques have been developed. These

include "Quasi-Monte Carlo" methods [20], control variate methods [21], and specialized sam-

pling techniques, which will be discussed in Section 3.3.2.
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3.3 Polynomial Chaos Expansion

3.3.1 Basic Aspects and Properties

The main idea of the Generalized Polynomial Chaos Method (gPCM) is to approximate u

using an expansion of the form:

u(x; ξ) ≈ uP (x; ξ) :=
P∑
i=0

ci(x)Ψi(ξ), (3.18)

where Ψi are the expansion polynomials, and ci are the corresponding deterministic coeffi-

cients. The number of terms P + 1 in the expansion is determined by:

P + 1 =
(p+N)!

p!N !
, (3.19)

where N is the number of random variables and p is the highest polynomial degree used.

N

p
1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 6 10 15 21 28

3 4 10 20 35 56 84

4 5 15 35 70 126 252

5 6 21 56 126 252 462

6 7 28 84 252 462 924

8 9 45 165 495 1287 3003

12 13 91 455 1820 6188 18,564

Table 2 Number of terms P + 1 in a gPCM model with respect to the highest expansion order p and the number of random
variables N , computed using (3.19).

In theory, the type of polynomials used in the Polynomial Chaos Expansion can be chosen

arbitrarily, and the PCM will converge in a mean-square sense. However, for certain random

variables, specific polynomials can provide optimal convergence. These optimal polynomials

satisfy an orthogonality condition with respect to the PDF fX(ξ) of the random variables,

i.e., ∫
Γ
Ψi(ξ)Ψj(ξ)fX(ξ) dξ = ⟨Ψi,Ψj⟩ = γjδij , (3.20)

where δij is the Kronecker delta and γj is a normalization constant.
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In 1938, Wiener [22] demonstrated that for the multivariate Gaussian distribution, Hermite

polynomials are optimal. For other common distributions, adapted polynomials have been

identified, as summarized in the Askey table [23].

Probability Distribution Askey Chaos Support

Continuous Gaussian Hermite-Chaos (−∞,∞)

Gamma Laguerre-Chaos [0,∞)

Beta Jacobi-Chaos [a, b]

Uniform Legendre-Chaos [a, b]

Discrete Poisson Charlier-Chaos {0, 1, 2, . . .}

Binomial Krawtchouk-Chaos {0, 1, 2, . . . , N}

Negative Binomial Meixner-Chaos {0, 1, 2, . . .}

Hypergeometric Hahn-Chaos {0, 1, 2, . . . , N}
Table 3 Askey table, adapted from [24]. This table lists common probability distributions and their corresponding optimal
polynomial chaos families.

H0 = 1

H1 = ξ

H2 = ξ2 − 1

H3 = ξ3 − 3ξ

H4 = ξ4 − 6ξ2 + 3

Table 4 First five Hermite polynomials.

For any other distributions, orthogonal polynomials can still be constructed using methods

such as the Gram-Schmidt process [25]. Thus, the choice of basis functions depends solely

on the distribution of the random variables ξ and is independent of the function u. For inde-

pendent variables ξ, the corresponding basis functions Ψ can be calculated as a product of

the individual polynomial functions ψ [26]:

Ψj(ξ) =
N∏
k=1

ψik(ξk) such that
N∑
k=1

ik ≤ p and 0 ≤ j ≤ N. (3.21)

After selecting the type of polynomial, there are various methods to calculate the coefficients

ci(x). These methods will be discussed in Section 3.3.2. A key property of the coefficients

is that the stochastic moments can be computed using a weighted sum. For the mean and
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variance, we have:

E(u) =

〈
P∑
i=0

ci(x)Ψi, 1

〉

=
P∑
i=0

ci(x)⟨Ψi, 1⟩ = u0(x). (3.22)

σ2(u) = E(u2)− (E(u))2

=

〈
P∑
i=0

P∑
j=0

ci(x)uj(x)Ψi,Ψj

〉
− u20(x)

=
P∑
i=0

P∑
j=0

ci(x)uj(x)⟨Ψi,Ψj⟩ − u20(x)

=

P∑
i=0

c2i (x)⟨Ψi,Ψi⟩ − u20(x)

=
P∑
i=1

c2i (x)⟨Ψi,Ψi⟩

=
P∑
i=1

c2i (x)γi. (3.23)
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3.3.2 Intrusive Methods vs. Non-Intrusive Methods

While all Polynomial Chaos (PC) methods ultimately yield a polynomial expansion as given

in Eq. (3.18), their implementation and the process of calculating the expansion coefficients

differ significantly. These methods can generally be categorized into two main approaches:

intrusive and non-intrusive. Fig. 10 illustrates conceptual diagrams of each approach.

In intrusive PC methods, the polynomial expansion of the unknown variables is directly in-

tegrated into the governing equations of the model. This is achieved by replacing each un-

known u with its expansion in terms of the polynomial basis and corresponding coefficients.

The result is a modified set of equations where the solution is sought for the PC coefficients

ci. These methods, such as the intrusive Galerkin projection method [27], can solve for all

PC coefficients in a single computation, leading to high accuracy as the stochastic system

is solved directly. However, this advantage comes at the cost of complexity, as the original

deterministic code must be altered. This often leads to increased implementation effort and

computational expense, particularly when the modified equations result in a coupled system

that affects a significant portion of the original model [24]. Despite these challenges, intrusive

methods can be more accurate because they integrate the stochasticity into the core of the

simulation, avoiding approximations made in non-intrusive methods [23].

Non-intrusive PC methods, on the other hand, treat the existing deterministic model as a

black box. Rather than modifying the model equations, these methods construct a surrogate

model based on Eq. (3.18). The PC coefficients are determined either by projection or

regression. In projection-based methods, the solution u is projected onto the polynomial

basis, and the coefficients ci are computed using a quadrature rule. This approach requires

the selection of appropriate quadrature nodes and weights to evaluate the integral, ensuring

that the stochastic system is well-represented.

In contrast, regression-based methods, also known as collocation-based PC or Point Col-

location Polynomial Chaos Expansion (PCol-PCE), approximate the solution by sampling the

stochastic space at NS collocation points. For each sample, the expansion can be written

as:

u(x; ξS) =

P∑
i=0

ci(x)Ψi(ξ
S), (3.24)

which results in a system of NS equations with P +1 unknowns. This overdetermined system

is solved using a regression technique, where the goal is to minimize the residuals between

the system evaluations and the polynomial approximation.
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Non-intrusive methods are often easier to implement because they do not require modifica-

tion of the original code and can leverage existing deterministic solvers. However, they may

be less accurate or require more computational effort due to the need for multiple evalua-

tions of the deterministic model, especially when using regression or high-order quadrature

methods.

Input

x, ξ,Ψ(ξ)

M→MPCE

u

(a) Intrusive PCE

Input x, ξ

Ψ(ξ)

M

x, ξS , uS

M′ u

(b) Non-intrusive PCE

Figure 10 Comparison of PCE approaches

Sampling Techniques

The number of samples and the method by which they are drawn for Monte Carlo meth-

ods (see Section 3.2) and PCol-PCE can vary significantly. Samples can be drawn either

randomly (or pseudo-randomly) from the PDF of the random variable or selected determin-

istically. Random sampling involves generating samples purely based on probability, while

deterministic sampling selects points in a structured manner to ensure better coverage of the

PDF. Although deterministic sampling can represent higher-order moments more accurately,

it becomes computationally expensive when attempting to represent these moments with high

precision.

Several techniques combine elements of both random and deterministic sampling to achieve

more efficient sampling. Notable examples include Latin Hypercube Sampling (LHS) [28],

Hammersley Sampling (HS) [29], and Sobol sequences [30]. Unlike purely random sampling,

both LHS and HS divide the cumulative distribution function (CDF) of the random variable

into equal segments and then generate a sample within each segment. This process en-

sures that the CDF is sampled more uniformly, resulting in a more complete representation

of the distribution [31]. Sobol sequences, in contrast, are a sequence of points within the

uniform unit hypercube where each new point is chosen based on the position of previously

sampled points. This approach ensures an even distribution of points without clustering or

gaps. The samples generated by Sobol sequences can then be transformed to match other
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random distributions [32]. It should be noted that the convergence behavior of Monte Carlo

methods described in Section 3.2 holds strictly for independent and identically distributed (iid)

random samples.

Fig. 11 provides a visual representation of standard normal CDFs using 10 two-dimensional

samples generated by different sampling techniques. In Fig. 11a, purely random sampling

leads to a disproportionate number of samples in the upper half of the CDF. Specifically, when

dividing the CDF into five equal intervals, five samples are concentrated in the interval [0.8, 1],

while only one sample for x1 and zero samples for x2 were drawn from the interval [0, 0.2].

This uneven distribution results in an incomplete representation of the PDF, but it should

be noted that this is the result of a single random sampling instance and is not generally

repeatable.

In contrast, Fig. s 11b and 11c show LHS and HS samples, which ensure more comprehen-

sive coverage of the CDF. LHS ensures that each segment of the CDF is sampled once for

each variable, while HS uses a more deterministic approach where the first variable’s sam-

ples are endpoints of each segment, and subsequent variables are sampled based on a van

der Corput sequence [33]. The Sobol sequence, as shown in Fig. 11d, provides an even

more homogeneous coverage of the CDF by avoiding clusters and gaps.
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Figure 11 Two-dimensional sampling with NS = 10 of a standard normal distribution for four different sampling techniques,
adapted from [31].

Fig. 12 presents the bivariate normal samples for each of the sampling techniques. While

both random and LHS samples in Fig. s 12a and 12b appear random, the deterministic nature

of HS and Sobol sequences becomes evident in Fig. s 12c and 12d, where the samples are

more evenly spaced.
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Figure 12 200 samples of a bivariate standard Gaussian distribution using different sampling techniques, adapted from [31].

Sampling for PCol-PCE

For PCol-PCE, Hosder et al. [34] demonstrated that Random Sampling (RS), LHS, and HS all

performed similarly in terms of accuracy and computational efficiency1. However, LHS and

HS showed a smoother and more monotonic convergence of statistical moments, making

them more reliable for certain applications.

Another key consideration in PCE, as discussed by Hosder et al. [34], is the relationship

between the number of samples NS and the number of terms in the polynomial expansion

P + 1. This relationship is often expressed through the ratio np, defined as:

1 Sobol sequences were not investigated in this study.
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np =
NS

P + 1
(3.25)

Although this ratio can vary depending on the problem, a value of np = 2 often provides

the best balance between accuracy and computational cost. This serves as a useful rule

of thumb. When np approaches 1, the risk of "overfitting" increases, where the polynomial

expansion too closely follows the sample points. In cases where np = 1, the polynomial

expansion interpolates exactly between the sample points, leading to poor predictions for

points not in the sample set. Conversely, if np is much larger than 2, increasing the polynomial

degree improves the approximation of u and accelerates the convergence of the mean [35].

3.4 Monte Carlo Methods vs Non-intrusive Polynomial Chaos

Expansion

MC methods and non-intrusive PCE both aim to quantify uncertainty, but they differ signif-

icantly in performance. Monte Carlo methods tend to be faster for problems with very high

dimensionality (many random variables) or when the system exhibits highly non-linear or non-

smooth behavior [36]. In such cases, PCE would require a high polynomial degree, increasing

its computational cost. MC methods when low-accuracy estimates are also acceptable for the

benefit of computational speed, as they can generate results incrementally with more sam-

ples improving accuracy over time. Non-intrusive PCE is generally faster when the system is

smooth and well-behaved, and when the dimensionality is moderate. In these cases, PCE

can achieve accurate results with far fewer samples than MC, thanks to its use of polynomial

approximation, which captures the relationship between input uncertainties and outputs ef-

ficiently [37]. For problems where smoothness and moderate dimensions are present, PCE

can drastically reduce the number of model evaluations compared to MC methods, making it

faster for high-accuracy results.

Later on, we will use the non-intrusive Polynomial Chaos Expansion as our main method for

Uncertainty Quantification and rely on a Monte Carlo approach to verify results.
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4 Robust Shape Optimization
4.1 Deterministic Design

Deterministic design refers to the process of engineering or optimizing systems based on

fixed, known parameters without accounting for variability or uncertainty. In this approach,

every parameter in the model is considered to have a specific value, leading to a unique

solution. We can store these model parameters in the parameter vector P0. The primary

advantage of deterministic design is its simplicity and clarity. Engineers and designers can

work with precise numbers, leading to specific, predictable outcomes.

We can write the optimization problem as

x∗ = argmin
x
{f(x,P0)} (4.1)

4.2 Robust Design

Robust design aims to create systems that are resilient to variations and uncertainties in pa-

rameters. Unlike deterministic design, robust design acknowledges that real-world systems

are subject to variability and seeks to minimize the impact of this variability on system per-

formance. The goal is to ensure that the system performs reliably under a wide range of

conditions.

Robust design can be divided into two main categories: non-probabilistic and probabilistic

formulations.

4.2.1 Non-probabilistic Robust Design Formulations

Non-probabilistic robust design formulations do not rely on probability distributions to model

uncertainties. Instead, they use other mathematical approaches to account for variability.
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Multi-Optimization

Multi-optimization involves optimizing multiple objectives simultaneously. Different parameter

vectors Pj are generated to cover the variability of the parameters. The objective function is

then simply a weighted average:

x∗ = argmin
x
{
Nm∑
j=1

wjf(x,Pj)} (4.2)

Worst Case Approach

The worst-case approach focuses on ensuring the system performs acceptably, even under

the most adverse conditions. Designers identify the worst-case scenario for each uncertain

parameter and optimize the system to function under these extreme conditions. This ap-

proach provides a high level of reliability but can be overly conservative, leading to excessive

costs or reduced performance under normal conditions.

x∗ = argmin
x
{max

Pj

{f(x,Pj)}} (4.3)

Interval Analysis

Interval analysis involves defining uncertain parameters as intervals rather than precise val-

ues. The system is then designed to perform satisfactorily for any value within these intervals.

This method is particularly useful when the exact distribution of uncertainties is unknown, al-

lowing for a more flexible and encompassing design. Interval analysis ensures that the system

remains functional across the entire range of possible parameter values.

4.2.2 Probabilistic Robust Design Formulations

In the probabilistic approach, the uncertain parameters are modeled as random variables. In

this case they are defined either with their statistical moments or their PDF. Instead of a fixed

parameter vector P0, they are compromised of dξ independent random variables ξ ∈ Rdm .

Under uncertainty,the quantity of interest (QoI) J is not any more deterministic and becomes

a random variable. The optimization problem is thus shifted towards a statistic of the QoI.
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Mean Optimization

In mean optimization, the goal is to obtain the design with the lowest expected value. This

approach is useful when the primary concern is the overall performance rather than the vari-

ability of outcomes.

The optimization problem can be written as

x∗ = argmin
x
{µf (x)} (4.4)

Standard Deviation Approximation

Standard deviation optimization aims to minimize the variability in system performance due

to uncertainties. By reducing the standard deviation, designers can make the system more

consistent and reliable. This approach is particularly valuable when the consistency of per-

formance is crucial, even if it comes at the expense of slightly lower mean performance.

x∗ = argmin
x
{σf (x)} (4.5)

In practice, this approach is seldom used. Instead, a combination with the minimization of the

mean is applied

Combined Mean and Standard Deviation Optimization

This approach involves optimizing both the mean performance and the standard deviation

simultaneously. The goal is to achieve a balance between high average performance and low

variability. This method provides a comprehensive solution, ensuring that the system is both

effective and reliable.

The optimization problem turns into a multi-objective optimization. One seeks to find different

designs that are located at a pareto front to compare them.

A trivial, but often-used approach is to do a weighted optimization:

x∗ = argmin
x
{wµµf (x) + wσσf (x)} (4.6)
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By varying the weights, one can then generate different designs to choose from. This gener-

ates an approximation of the pareto front.

Quantile Optimization

Quantile optimization targets specific points in the distribution of performance metrics, such

as the median or specific percentiles. For example, optimizing the 90th percentile ensures

that 90% of the outcomes meet a certain performance level. This approach is useful when

there are specific performance targets that must be met with high confidence.

The difference between the different formulations can be seen in Fig. 13.

f

f

x∗2 x∗1 x∗3 x∗4

Optimum in
mean, µ∗f

Deterministic
optimum, f∗

Optimum Optimum in 95%

in std.
dev., σ∗f

quantile, q∗95

x

Deterministic
25− 75% quantiles
5− 95% quantiles
Mean value

Figure 13 Comparison of different robust optimization formulations, adapted from [3]

Optimization under Uncertain Constraints

In most robust optimization approaches the above techniques are applied to the objective

function. However, also the constraints are often influenced by uncertain parameters. In-

stead of ensuring a certain deterministic constraint, we can enforce that either the mean, a

combination of mean and standard deviation, or a certain quantile of probability is fulfilled.
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In this work, the Combined Mean and Standard Deviation Optimization for the objective func-

tion, as well as for the constraints will be applied. Fig. 15 shows the difference between the

deterministic and robust optimization loop.
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x(0)

J (k), G(k)

x(k)

Yes

J∗,x∗

No

(a) Deterministic Optimization
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Figure 14 Comparison of the deterministic and the combined mean and standard deviation optimization

4.3 Proposed Framework

For the step "Uncertainty Quantification" in Fig. 15, various methods can be applied. When

focusing on obtaining a robust design by Combined Mean and Standard Deviation Optimiza-

tion, we can apply the two methods introduced in Chapter 3, i.e., Monte Carlo estimation

and the non-intrusive Polynomial Chaos expansion. Both methods aim to obtain the same

relevant quantities for the optimization:

1. The mean value of the stochastic response function: µJ = E(J)

2. The standard deviation of the stochastic response function: σJ = Std(J)

3. The mean value of the gradients of the stochastic response function: µG = E(G)

4. The standard deviation of the gradients of the stochastic response function: σG =

Std(G)

4.3.1 Robust Optimization with Monte Carlo Estimation

Following the steps described in Section 3.2, we first need to draw samples from the input

vector ξS . The deterministic solver then evaluates the response function J , as well as the

nodal gradients G(X) for each sample.
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The moments of the stochastic response function J can be calculated using Monte Carlo

estimation as:

µJ ,=
1

NS

NS∑
s=1

Js (4.7)

σJ =

√√√√ 1

NS

NS∑
s=1

[Js − µJ ]2 (4.8)

As the quantity of interest J is independent of the spatial position, we can calculate the

gradient of the mean as the mean of the gradients:

µG =
dµJ
dx

=
1

NS

NS∑
s=1

Gs (4.9)

The gradient of the standard deviation is given by:

σG =
1

NSσJ

NS∑
s=1

(Js − µJ) (Gs − µG) (4.10)

4.3.2 Robust Optimization with Polynomial Chaos Expansion

To use polynomial chaos expansion (PCE) for the determination of the statistics of the re-

sponse and the gradients, we approximate the response function J as:

J(x, ξ) =

P∑
i=0

aiΨi(ξ) (4.11)
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The nodal gradients G can also be expressed as a PCE:

G = ∇J =

P∑
i=0

∇aiΨi(ξ) =

P∑
i=0

bi(x)Ψi(ξ) (4.12)

The response coefficients ai are determined using the point-collocation PCE approach by

evaluating the response function for NS samples J i and solving a regression problem.

Similarly, the coefficients bi of the gradient can be calculated by determining the gradients

Gi(x) at each node for each stochastic sample. The coefficients bi are then also determined

via least-squares regression.

The statistics of the response and gradient can be calculated as:

µJ = E(J) = a0 (4.13)

σ2J = Var(J) =
P∑
i=1

a2i ⟨Ψ2
i ⟩ (4.14)

µG = E(G) = b0 (4.15)

σ2G = Var(G) =
P∑
i=1

b2i ⟨Ψ2
i ⟩ (4.16)

The standard deviation of the gradient can be expressed as:

σG =
1

σJ

P∑
i=1

aibi⟨Ψ2
i ⟩ (4.17)

Robust Node-Based Shape Optimization with Vertex Morphing 39



Using the above equations, we now have all we need for the robust optimization loop. The

overall loop is similar to the deterministic loop, with the main difference that instead of directly

using the deterministic response function value J and the deterministic gradients G from

the deterministic solver, we use the deterministic solver to evaluate samples. The samples

are then used to build a PCE approximation, from which we then determine the mean and

standard deviation. These are then fed back to the optimization steps to generate a new

shape xk. The loop stops after a predefined convergence criterion is met.
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Start
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Figure 15 Final Optimisation Framework using PCE

Additionally, Algorithm 2 shows the workflow of the mean and standard deviation optimization

using PCE in pseudo-code.
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Algorithm 2 Robust Optimization Framework using PCE and vertex morphing

1: Initialize design variables x(0)

2: Set convergence criterion

3: k ← 0

4: while convergence criterion not met do

5: Draw NS samples of the random input ξS

6: for each sample s = 1, . . . , NS do

7: Evaluate deterministic solver to compute Js and Gs

8: end for

9: Compute PCE coefficients ai for response function J using regression

10: Compute PCE coefficients bi for gradients G using regression

11: Calculate mean and standard deviation:

12: µ
(k)
J = a0, σ(k)J =

√∑P
i=1 a

2
i ⟨Ψ2

i ⟩

13: µ
(k)
G = b0, σ(k)G = 1

σ
(k)
J

∑P
i=1 aibi⟨Ψ2

i ⟩

14: Calculate weighted objective: J (k)
robust = wµµ

(k)
J + wσσ

(k)
J

15: Calculate weighted gradients: G(k)
robust = wµµ

(k)
G + wσσ

(k)
G

16: Map gradients to control space: (Eq. 2.27)

17: Compute update in control space: (Eq. 2.24)

18: Map update to geometry space: (Eq. 2.22)

19: k ← k + 1

20: end while

21: Return optimized design x∗
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5 Results

The previously presented framework structure was implemented in the open-source software

framework Kratos Multiphysics [38]. To test the effectiveness of finding robust designs, two

benchmark examples will be explored. Both of them were adapted from existing deterministic

models from the Examples repository of Kratos on GitHub.

5.1 Randomly Loaded Arch Structure

5.1.1 Problem Description

The first example is of academic nature and consists of an arch structure which is supported

and loaded with a line load (see Fig. 16).

200mm

188mm

100mm

q

Figure 16 Dimensions of arch structure with line load

The goal of the design process is to find a structure that is of maximal stiffness. To achieve

this, we want to minimize the total strain energy.

The arch structure is discretized with 4998 nodes that form 4818 elements. The material

properties are displayed in Table 5
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Youngs modulus 40000 N/mm

Poisson ratio 0.3

Thickness 0.8 mm

Line load 3.4N/mm

Table 5 Material properties of arch structure

Optimization Formulation

The shape optimization problem can be formulated as:

min
x

U(x) =
1

2
uTK(x)u

subject to

K(x)u = f ,

u = u0 on Γu,

(5.1)

For both the deterministic as well as the robust optimization, a linear filter function with a

filter radius of r = 15mm is used. The steepest descent method with a constant step size

of α = 0.5 is applied. The calculation of the strain energy response and its gradients takes

approximately 3.8s with the Kratos Multiphysics StructuralAnalysisApplication on an Intel(R)

Core(TM) i5-12450H with 2.00 GHz.

Modeling of Uncertainties

In the deterministic approach, we assume that the load is always acting perfectly vertically

on the top nodes. However, in a real-world use case, we might not be certain that this is the

case. In this academic example, we model that the load is constant along the line but that the

load angle might be variable. In the following it is assumed that this angle varies uniformly

both around the x-axis and the y-axis between -45 and +45 degrees. The underlying random

variables are thus:

ξ1 ∼ U(−45, 45)

ξ2 ∼ U(−45, 45)
(5.2)

More sophisticated ways of representing an unknown load could be chosen. However, this

simplified approach is sufficient to demonstrate the differences between the deterministic and

the robust designs.
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5.1.2 Deterministic Optimization

Fig. 17 shows the convergence history of the deterministic optimization. After 40 steps, the

strain energy is reduced by 99.8%. We can see that the relative improvement decays with

increasing iterations.
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Figure 17 Convergence history of the deterministic optimization

Fig. 18 shows the initial and the final geometry after 40 Iterations. One can see that a folding

pattern on top of the structure has emerged. The sides of the structure are now curved a bit

inside, in contrast to the perfectly straight initial geometry. Judging by the optics, the mesh

distortion stays within a reasonable range.
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(a) Initial Geometry (b) Geometry after 40 Optimization steps

Figure 18 Initial and final geometry with deterministic optimization

5.1.3 Uncertainty Quantification

In order to study the accuracy of the Uncertainty Quantification methods we want to use

for the optimization, we calculate the statistical quantities of the strain energy of the initial

geometry. As reference statistics, 10000 Monte Carlo samples are evaluated. Based on that,

we can compare the estimations we get using Polynomial Chaos expansion and choose an

appropriate sample size for our optimization.

In this case, the number of random variables is 2. With Eq. 3.19 to calculate the number of

polynomial terms and the rule of thumb of NS = 2P samples, we can calculate the number

of samples needed for each polynomial order, displayed in Table 6.

p 1 2 3 4

NS 6 12 20 30

Table 6 Number of samples used for different PCE order
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Figure 19 Approximation quality for different PCE order compared to a MC estimation using 10000 random samples

Fig. 19 shows how well PCE is able to approximate the reference solution. In 19a we can

see that already a polynomial order of p = 1, calculated with 6 samples, is sufficient to

approximate the mean value well within a 5% accuracy. However, Fig. 19b shows that with

the linear approximation, the standard deviation is drastically underestimated. Since standard

deviation relies on the square of deviations, which is a non-linear concept, a linear polynomial

expansion (which only models linear relationships) cannot adequately capture the necessary

information about the spread or variability of the data. This makes it unsuitable for calculating

the standard deviation accurately. Yet, by increasing the polynomial degree to 2 and the

sample size to 12, we can see that the standard deviation is now captured well within 5%

accuracy. Here it should be noted that this 5% accuracy criterion of the objective function does

not necessarily mean a 5% accuracy of each of the nodal gradients, nor does it guarantee a

5% accuracy for the objective function of later steps. Subsection 5.1.5 will show how different

sample sizes perform.

5.1.4 Robust Optimization

The robust optimization is carried out four times with different weights for mean and stan-

dard deviation. For this section, the PCE workflow described in Section 4.3 is used with a

polynomial degree of p = 2 and number of samples Ns = 12. We will investigate whether

this low number of samples is enough to obtain more robust designs that perform well under

uncertainty. As a sampling strategy, LHS is employed. To compare the different results, each

optimization is stopped after 40 steps. After the final iteration, the geometry is then loaded

with 1000 Quasi-Monte Carlo samples to be able to get the statistical differences.

Fig. 20 shows the resulting pareto front of the designs. As expected, we can see that all of the

robust designs are dominating the deterministic. This is not surprising, as the deterministic
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optimization does not have any information about the perturbed angles and just finds the

optimum for the perfectly perpendicular line force.
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Figure 20 Approximation of Pareto front after 40 iterations

We can also see, that the four robust designs are performing very similarly. The final statistical

moments are additionally displayed in Table 7.

Optimization µ[Nmm] σ[Nmm]

Deterministic 685.9 560.0

wµ = 1, wσ = 0 97.2 51.8

wµ = 1, wσ = 1 108.3 47.5

wµ = 1, wσ = 3 155.6 36.7

wµ = 1, wσ = 10 174.8 35.7

Table 7 Statistical Moments for deterministic and robust optimization with different weights
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To further analyze the results, Fig. 21 shows a violin plot of the final geometries. In this

plot, the final dataset is used to obtain an estimate of the density distribution and to gain an

insight about the spread and central densities of the estimated distribution. We can see that

the deterministic optimization has a wider spread than the robust results. Again, the 4 robust

designs perform quite similarly, with the designs with a stronger weighing of the standard

deviation having a higher mean, but slightly lower spread.
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Figure 21 Violin plot of strain energy

The statistical analysis shows that the designs emerging from the robust optimization per-

form much better under uncertainty than the deterministically optimal design. It should be

noted again that this is due to the nature of the difference of information of the load angles.

Nonetheless, it shows that the proposed optimization framework is able to iteratively generate

these statistically superior designs.
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Shape

It is also interesting to compare the final geometries to each other. We can see that the

robust arch structures show a different structure of folds than the deterministic geometry.

Within the four robust results, we can see the same folding pattern. However, the height of

the indentations decreases with increasing weight of the standard deviation.

(a) Initial (b) Deterministic

(c) wµ = 1, wσ = 0 (d) wµ = 1, wσ = 1

(e) wµ = 1, wσ = 3 (f) wµ = 1, wσ = 3

Figure 22 Initial and optimized arch geometries
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5.1.5 Study of Accuracy

To study the accuracy of the initial robust optimization (p = 2,NS = 12), we can repeat the

optimization and vary the sample size, as well as the polynomial degree used for the PCE

surrogate.
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Figure 23 Convergence of the statistical moments of the mean optimization (wµ = 1 and wσ = 0)

When optimizing only for the mean, Fig. 23 shows that for a polynomial degree of p = 2

and higher with corresponding samples, the convergence curves for both the mean and the

variance are very similar. For p = 1 we can see, as already mentioned in Section 5.1.3, that

there are slight differences in the mean (e.g., at iteration 12 and 13) and quite large deviations

for the estimated standard deviation estimation. However, as the optimization progresses,

even the inaccurate UQ estimations lead to the same geometry, and after iteration 30, the

curves are almost equal. This is due to the fact that the mean values are estimated well

enough. The final geometry is almost identical to the higher polynomial approximation, which

will be shown in detail in the following sections.

p Ns µ[Nmm] σ[Nmm] ϵµ[%] ϵσ[%]

1 6 108.9 6.04 10 11

2 12 97.2 51.8 4 5

3 20 93.5 48.5 0 1

4 30 93.4 49.2 - -

Table 8 Comparison of final mean and standard deviation, as well as the relative difference compared to the most accurate
estimation
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Combined Mean and Standard Deviation Optimization
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Figure 24 Convergence of the statistical moments of the combined mean and std robust optimization with weights wµ = 1
and wσ = 3

For the combined mean and standard deviation optimization, the poorly estimated standard

deviation plays a much bigger role. Fig. 24 shows that the optimization for the mean is

deviating quite a lot compared to the higher order approximations. The linear approximation

leads to a worse design, as the final mean value differs by 192% and the standard deviation

by 58%. We can also see that using p = 4 and NS = 30 as initial values, we would have

obtained an even better design by 9% in mean and 4% in standard deviation however, this

results in a higher computational effort.

p Ns µ[Nmm] σ[Nmm] ϵµ[%] ϵσ[%]

1 6 387.6 55.7 192 58

2 12 144.6 36.7 9 4

3 20 143.9 38.6 8 9

4 30 132.76 35.7 - -

Table 9 Comparison of final mean and standard deviation, as well as the relative difference compared to the most accurate
estimation
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Shape

The difference of the approximation quality by the linear approximation between the mean

only and the combined mean and standard deviation approximation can also be visualized

when comparing the final geometries. When comparing Fig. 25a with 25b, we can see that –

with very slight differences in shape change magnitude – the final geometries look the same.

When setting Fig. 25c and 25d side by side, the differences are weighed bigger. The degree

of indentation is much lower, and we can see at the bottom that the shape is folding outside

for the linear approximation, whilst the higher order approximations (here p = 2) are folding

to the inside.

(a) Mean optimized PCE Order = 1 (b) Mean optimized PCE Order = 2

(c) Mean and standard optimized PCE Order = 1 (d) Mean and standard optimized PCE Order = 2

Figure 25 Comparison of final geometries for different PCE orders.
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5.2 Mass Minimization with Random Constraints

5.2.1 Problem Description

As a second application example, we present a structural optimization of a solid hook model.

The hook has a height of 237mm and is modeled with a linear elastic material with a Young’s

modulus E = 206.9GPa and a Poisson’s ratio ν = 0.29. The mass of to hook should be

minimized while maintaining the initial compliance for two static load cases with a load at the

center (LC1: F = 32kN ) and tip (LC2 : F = 16kN ) respectively. For both load cases, the

hook is supported at the top. The initial weight of the hook is 241.8g

Figure 26 Optimization setup of the hook with the load-cases [39]

The mesh is discretized with 39292 nodes. However, only the nodes on the outer surface

are considered for the shape optimization. These are 7117 nodes, resulting in 21351 design

variables.
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Optimization Formulation

The goal of the optimization problem is to reduce the mass, whilst retaining the stiffness of

the structure with respect to the two different load cases.

Mathematically, the shape optimization problem can be formulated as:

min
x

M(x)

subject to U1(x) =
1

2
uT
1 K(x)u1 ≤ U1,0,

U2(x) =
1

2
uT
2 K(x)u2 ≤ U2,0,

x ∈ Ωpack,

(5.3)

The calculation of the mass response and its gradients takes about 0.5s, and for each of

the load cases approximately 4.9s with the KratosMultiphysics StructuralAnalysisApplication

on an Intel(R) Core(TM) i5-12450H with 2.00 GHz. As the problem is now a constrained

problem, the gradient projection algorithm is used. The filter function is linear with a radius of

25mm. The optimization is terminated after 25 steps.

Modeling of Uncertainties

As in the first example, the uncertainties in this problem stem from the loading. For both load

cases, the load direction is again varied. Again, the angles are modeled to follow a uniform

distribution.

ξ1 ∼ U(−15, 15)

ξ2 ∼ U(−15, 15)
(5.4)

The difference to the first example is that the objective function stays deterministic as the

mass is independent of the load cases. The strain energy is now used as a constraint,

making both constraints a random variable.
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5.2.2 Deterministic Optimization

As the problem is now constrained, the gradient projection algorithm is used. The optimization

is terminated after 25 steps.
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Figure 27 Convergence diagrams of the deterministic optimization

Fig. 27 shows the convergence behavior of the deterministic algorithm. After 25 iterations,

the mass is reduced by 14.8%. We can see that both constraints stay within 1% violation

during the whole process. Overall the convergence curve is smooth.
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Fig. 28 shows the final geometry. We can see that the cross-section gets a bit wider and

slimmer.

(a) Initial Geometry (b) Geometry after 25 Optimization steps

Figure 28 Initial and final geometry after deterministic optimization

5.2.3 Uncertainty Quantification

As the second example is of a much higher dimension and two stochastic responses have

to be considered, one cannot compute a reliable reference solution using many Monte Carlo

samples. Because of this and limited computational time, we will use p = 3 and NS = 20 for

the PCE approximation. We will use the first iteration to obtain the reference statistics for the

constraints,which are listed in Table 10.

Load case Deterministic Value [Nm] Mean [Nm] Standard Deviation [Nm]

1 586 1534.5 617.15

2 2170.6 2338.4 273.7

Table 10 Statistical Moments for strain energy resulting from load cases 1 and 2
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5.2.4 Robust Optimization
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Figure 29 Convergence of the different robust optimizations. The grey bands visualize ±1% deviation from the initial
constraint value
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Fig. 29 shows the convergence curves of the robust optimizations with different weights. In

the subfigure 29a, we can see that the objective function of the robust optimizations con-

verges less smoothly than the deterministic one. This behavior is related to the constraint

violations, which we can observe in subfigures 29b and c. Especially for the optimizations

with a higher weight on the standard deviation, these violations are quite high. This so-called

zig-zagging is quite common in gradient projection algorithms. The reason for this to occur

is that the shape gradients are not accurate enough or that the step size is too big, both re-

sulting in updates that violate the constraints, which need to be corrected in the next steps.

The remedy for this would be to lower the step size (and thus use more steps) or to use more

samples and a higher polynomial degree. Both result in a higher computational effort.

Geometry Weight [g] Reduction [g] Reduction [%]

Initial 241.8 0.0 0.0

Deterministic 205.7 36.1 14.93

wµ = 1, wσ = 0 218.3 23.5 9.72

wµ = 1, wσ = 1 219.3 22.5 9.31

wµ = 1, wσ = 3 224.8 17.0 7.03

wµ = 1, wσ = 10 223.8 18.0 7.45

Table 11 Weight of the hook after optimization

Table 11 shows the final weight for the different optimizations. The deterministic optimization

is able to reduce the weight by 36.1g. The weight for the robust design is minimized between

17.0g and 23.5g.

Fig. 30 and 31 show the approximations of the distribution of the strain energy for both load

cases after the optimization. As the responses are not minimized but just act as constraints

on the problem, the differences are not as big as in the first example. We can see again a

slight tendency that the deterministic optimisation has a wider spread than the robust results.

Again, a trend of a lower mean with a higher spread to a higher mean with a lower spread

can be seen with a stronger weighing of the standard deviation.

Robust Node-Based Shape Optimization with Vertex Morphing 58



Deterministic wµ = 1, wσ = 0 wµ = 1, wσ = 1 wµ = 1, wσ = 3 wµ = 1, wσ = 10
0

1000

2000

3000

4000
S

tra
in

E
ne

rg
y
[N

m
m
]

Constraint c1

Mean

25-75% Quantiles

5-95% Quantiles

Figure 30 Violin plot of the strain energy resulting from load case 1
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Figure 31 Violin plot of the strain energy resulting from load case 2
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Tables 12 and 13 show the final statistical moments of the strain energy after the optimization.

We can see that the statistical moments of the deterministic optimization are indeed higher

than those in the initial configuration.

Optimization Mean [Nm] Standard Deviation [Nm]

Deterministic 1771.5 800.9

wµ = 1, wσ = 0 1556.6 622.3

wµ = 1, wσ = 1 1596.6 616.1

wµ = 1, wσ = 3 1595.5 592.5

wµ = 1, wσ = 10 1622.4 595.9

Table 12 Statistical Moments for strain energy resulting from load case 1

Optimization Mean [Nm] Standard Deviation [Nm]

Deterministic 2469.9 360.2

wµ = 1, wσ = 0 2338.4 293.9

wµ = 1, wσ = 1 2353.4 256.9

wµ = 1, wσ = 3 2389.5 244.9

wµ = 1, wσ = 10 2684.4 233.1

Table 13 Statistical Moments for strain energy resulting from load case 2
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Shape

(a) Initial (b) Deterministic

(c) wµ = 1, wσ = 0 (d) wµ = 1, wσ = 1

(e) wµ = 1, wσ = 3 (f) wµ = 1, wσ = 10

Figure 32 Initial and optimized hook shapes
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When inspecting the final geometries, one can see that all shapes look quite similar. The

main difference between the geometries is how far the right part is flattened. This difference

can be made clearer in Fig. 33. It is also interesting to see that in the robust optimizations

with higher weight on standard deviation more mass was shifted to the top of the hook (e.g.,

Fig. 32f). In contrast, for the deterministic optimization, mass and thickness were reduced at

that part (see Fig. 32a).

Deterministic
wµ = 1, wσ = 1
wµ = 1, wσ = 10

Figure 33 Detailed comparison between deterministic geometry and robust geometry

We can see that the robust optimization framework is able to produce designs that are differ-

ent from the deterministic optimization process, both in performance and in shape. This does

not necessarily mean that in the end the most robust design will almost be the most desired.

However, it is an effective way to explore the design space further and to generate different

designs to choose from as an engineer.
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6 Conclusion

This thesis set out to answer the question of how a robust node-based shape optimization

framework can be developed to account for uncertainties in design parameters while ensur-

ing optimal and reliable performance. The research focused on integrating vertex morphing in

combination with Monte Carlo simulations and Polynomial Chaos Expansion as uncertainty

quantification techniques to handle the challenges of optimizing complex engineering struc-

tures under variable and uncertain conditions. By addressing the limitations of traditional

deterministic optimization methods, which often overlook real-world uncertainties, this work

aimed to provide a more resilient and dependable approach to shape optimization.

The results of the analysis demonstrated that the proposed framework effectively addresses

the research question by integrating uncertainty quantification into the optimization process.

The case studies, including the randomly loaded arch structure and the mass minimization

of a hook under variable load conditions, showed that the robust optimization framework

can lead to designs that outperform the results of deterministic methods. Designs obtained

through the robust optimization process displayed improved performance in the presence of

uncertainty. Moreover, the application of PCE allowed for an efficient and accurate estimation

of statistical moments, enabling the optimization framework to account for both mean per-

formance and variability. The second example showed, however, that the robust framework

using PCE might lead to convergence problems if the accuracy of the estimated gradient is

not high enough.

Furthermore, some limitations and deficits in the analysis should be acknowledged. Firstly,

while the framework successfully handled the chosen academic case studies, the complexity

of real-world problems might introduce additional challenges that were not fully explored in

this work. The computational cost of uncertainty quantification, particularly in high-dimensional

problems, remains a critical concern. Although PCE offers faster convergence compared to

Monte Carlo methods, the accuracy of results still depends on the number of polynomial terms

and samples used, and the selection of these parameters can be problem-dependent. Finally,

the case studies relied on simplified assumptions for uncertainty modeling, such as uniform

distributions for load variability, which might not always reflect the full range of uncertainties

in real-world applications.

Robust Node-Based Shape Optimization with Vertex Morphing 63



The outlook for further research and development in this field is promising. One area that

warrants exploration is the application of this robust optimization framework to more com-

plex, real-world engineering problems, such as aerospace and automotive structures, where

uncertainty in load conditions, material properties, and environmental factors is common. Ad-

ditionally, future work could focus on enhancing the computational efficiency of uncertainty

quantification methods. While PCE showed potential in reducing computational cost, hybrid

approaches that combine PCE with other uncertainty quantification techniques or machine

learning-based surrogate models may offer a way to further accelerate the process, espe-

cially for high-dimensional problems.

Coupling shape optimization with other advanced manufacturing techniques, such as topol-

ogy optimization or additive manufacturing constraints, could lead to new design paradigms

that are not only robust but also optimized for manufacturability. Moreover, incorporating more

realistic uncertainty models, such as stochastic material properties or time-dependent vari-

ability, could enhance the practical relevance of the framework in real-world applications.

Finally, integrating robust optimization techniques with multi-disciplinary optimization (MDO)

frameworks, where multiple physics, such as fluid-structure interactions or thermal stresses,

are considered, could further broaden the scope and impact of this research. Such advance-

ments would make robust shape optimization an indispensable tool for industries that demand

high-performance and reliable designs under uncertainty.
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