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Abstract

The exponential growth in the number of satellites orbiting Earth is in need of the development of more efficient,
autonomous decision-making frameworks for managing large satellite constellations. Traditional centralized
methods of satellite operation are increasingly inadequate in dealing with the dynamic and unpredictable
nature of space environments. To address these challenges, this thesis investigates the application of Deep
Reinforcement Learning (DRL) for decentralized autonomous decision-making in Federated Satellite Systems
(FSS), a paradigm that enables the collaborative use of satellite resources across different owners and missions.

This research presents a comprehensive framework that integrates DRL into satellite operations, with the objec-
tive of enhancing real-time decision-making capabilities. A modular simulation environment was developed to
model the interactions between multiple satellites within an FSS, simulating various operational scenarios in-
cluding resource sharing and communication management. The simulation framework supports diverse satellite
types and coordination models, ranging from fully centralized to fully decentralized configurations, allowing
for a thorough evaluation of different operational strategies.

Three state-of-the-art DRL algorithms—Deep Q-Networks (DQN), Soft Actor-Critic (SAC), and Proximal Pol-
icy Optimization (PPO)—were implemented and trained within this simulation environment. These algorithms
were evaluated based on their performance in optimizing satellite operations, particularly in tasks such as target
observation, data sharing, and resource management.

The scenario considered for this project consists of 20 observer satellites and 20 target objects orbiting Earth.
The main goal for the observers is to detect and observe the targets while in orbit, and meanwhile spread the
obtained data between all participants while leveraging energy and storage resources. The comparative analysis
of these AI agents in different coordination models highlights the strengths and weaknesses of each algorithm in
different operational contexts, providing valuable insights into the trade-offs between computational efficiency,
scalability, and mission success.

Furthermore, the practical feasibility of deploying these DRL algorithms in real satellite systems was assessed
by implementing them on an NVIDIA Jetson, a hardware platform representative of onboard satellite computers.
The performance benchmarks indicate that DRL-based approaches can be effectively integrated into existing
satellite architectures, paving the way for more autonomous and resilient space missions.
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1 Introduction

1.1 Motivation

As the number of satellites in orbit continues to grow and the demand for their services increases, managing
large constellations and interactions between satellites is becoming increasingly challenging. Currently, there
are approximately 10,000 satellites in orbit, and this number is projected to rise to 30,000 by the end of the
decade [1], [2]. Under these conditions, efficient scheduling and rapid decision-making for satellites will
become critical issues. This project aims to enhance the autonomy of satellite operations by implementing an
Artificial Intelligence (AI) Deep Reinforcement Learning (DRL) approach for real-time, on-board, collaborative
decision-making.

The presentation of Federated Satellite System (FSS) marks a significant shift in the space industry, introducing
a decentralized approach to satellite operations. This paradigm, as discussed by Golkar [3], emphasizes the
collaborative use of satellite assets across different owners, offering a more efficient and scalable utilization of
space resources. The concept not only proposes an innovative business model but also challenges the traditional
centralized methods of satellite management.

The integration of DRL into the management of FSS represents a groundbreaking step towards autonomous
decision-making. Reinforcement Learning (RL) for satellite operations, as explored in the doctoral works of
Harris [4] and Herrmann [5], offers a robust framework for spacecraft planning and scheduling, addressing
the complex and dynamic nature of space environments. The work further underscores the potential of RL in
enhancing the autonomy of spacecraft, paving the way for more sophisticated DRL applications.

Harris’ investigation into the autonomous management and control of multi-spacecraft operations showcases the
intricate balance between autonomy and environmental interaction. This research highlights the critical role of
advanced computational methods, like DRL, in navigating the unpredictable dynamics of space and enhancing
the coordination within federated systems.

Recent advancements in satellite’s networks, as outlined by Messina [6], introduce a decentralized optimization
framework for satellite network operations. Their work on formulating a dynamic graph optimization framework
highlight the need for adaptive, real-time decision-making mechanisms that can cope with the evolving nature of
satellite networks. This is where DRL can make a substantial impact, offering a pathway to optimize operations
while accounting for temporal and spatial variations.

Moreover, the exploration of AI techniques for next-generation massive satellite networks by Al Homssi et al.
[7] illustrates the growing importance of AI in the domain of satellite communication and management. Their
research into AI applications, including DRL, for enhancing the efficiency and reliability of satellite networks
further validates the potential of DRL in revolutionizing networks of federated satellite systems.

To address these challenges in satellite’s efficient, decentralized and uncertain task scheduling in dynamic
environments, this work proposes a series of AI algorithms that are trained based on a simulated environment
with the objective of maximizing rewards depending on the actions satellites choose, such as observing a target
or successfully sharing information with participants of the federation. The choice of RL and Artificial Neural
Network (ANN) for on-board autonomous decision-making poses useful advantages such as minimal restrictions
on environment and problem representation thanks to the Markov Decision Process (MDP) framework, optimal
learning from experience and fast execution times [8].
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Our use case’s main goal is to observe and spread information about a series of target satellites orbiting earth.
This mission is carried out by a set of observer satellites that work inside a FSS, sharing a pool of resources.
Each of the observers is equipped with an AI algorithm in order to choose which action to perform in each
situation, always aiming at enhancing the mission outcome and leverage the limited resources on-board and on
the FSS network.

These algorithms are trained on a FSS simulator which has been specifically developed for this project. This
simulator offers different capabilities such as different communication types (ranging from fully decentralized
to fully centralized), customizable satellite properties, variable number of satellites, and more settings that help
shape the federation to provide an heterogeneous and realistic environment to train and test the AI policies.

Thanks to the adaption of the simulator to RL frameworks, we can train different AI agents to improve our
mission outcomes. These agents are then compared between them in different scenarios and communication
configurations to see the differences in performance and efficiency of each one of them. In addition, the
deployment of these algorithms on an NVIDIA Jetson serves as benchmark for real satellites application,
providing a broader testing environment for the thesis.

By leveraging the power of DRL in satellite operations, we seek to explore new frontiers in satellite network
management, aiming for a future where satellite systems can autonomously adapt and optimize their operations in
real-time. This endeavor not only contributes to the technical advancement of satellite operations but also aligns
with the strategic goals of space exploration and utilization, promoting a more interconnected and autonomous
space infrastructure.

1.2 Summary of Objectives

The primary objectives of this research can be divided into research questions that have be addressed and a set
of objectives that help us answer these questions while providing useful additional outcomes from this project.

1.2.1 Research Questions

Answering the research questions stated for this thesis:

• RQ1: How does the application of reinforcement learning differ between centralized and decentralized
coordination models in satellite federations, and what are the respective impacts on scalability, resilience,
and adaptability?

• RQ2: How do various reinforcement learning algorithms compare in terms of computational efficiency
and performance when applied to decentralized versus centralized coordination in satellite networks?

• RQ3: How do observation tasks impact the performance of reinforcement learning algorithms, par-
ticularly in applications such as object detection, and what are the key considerations for optimizing
performance in such scenarios?

1.2.2 Goals

1. Scalable and Efficient Simulation Framework:

• Develop a modular simulation framework tailored for Federated Satellite Systems (FSS), enabling
the integration of diverse satellite types and their interactions.

• Ensure the simulation framework is compatible with existing RL frameworks such as Ray RLlib or
Stable Baselines 3 (SB3) to facilitate seamless training of AI agents.

• Incorporate realistic satellite dynamics and communication protocols to provide a robust testing
environment for RL algorithms.
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2. Training AI Agents for Autonomous Execution:

• Implement and evaluate DRL algorithms to train AI agents capable of autonomously executing
satellite tasks.

• Focus on optimizing resource utilization (e.g., power, storage) and maximizing mission outcomes
through intelligent decision-making.

• Validate the performance of trained agents in simulated environments, ensuring their ability to adapt
and respond to dynamic space conditions.

3. Leveraging Common Resources in Satellite Operations:

• Design DRL policies that enable satellites to collaboratively share and leverage resources within the
FSS.

• Explore the potential of Multi-agent Reinforcement Learning (MARL) to enhance coordination and
cooperation among multiple satellites.

• Aim for a decentralized model where individual satellites can make informed decisions based on
local observations and shared information.

By achieving these objectives, this research aims to contribute to the advancement of autonomous satellite
operations, paving the way for more efficient, resilient, and capable space systems.

To provide a brief overview of the structure of this thesis:

Chapter 2 introduces the Concept of Operations (ConOps) and the main problem addressed in this research.
It provides background on both traditional and modern approaches to task scheduling and mission planning in
satellites. Additionally, it offers a formal definition of the FSS and highlights key variables and parameters
within essential systems such as communication, energy, and storage.

In Chapter 3, the theoretical background of RL is summarized, including the algorithms used in this project.
This chapter is the foundation for understanding how RL principles are applied to enhance satellite autonomy
within the FSS framework.

Chapter 4 presents the simulation framework developed for this research. This includes details on the imple-
mentation methodology, the formulation of the Decentralized Partially Observable Markov Decision Process
(Dec-POMDP), and the validation of the simulation framework.

In Chapter 5, a comparative analysis of the training of different DRL algorithms used in this project, namely
Deep Q-Networks (DQN), Soft Actor-Critic (SAC), and Proximal Policy Optimization (PPO), is presented. This
chapter discusses their hyperparameter search and further training within the FSS framework.

Chapter 6 provides the results obtained from the simulations, studying the effectiveness of the DRL approaches
under different coordination setups, including fully decentralized, centralized, and partially decentralized coor-
dination models.

Chapter 7 explores the real-world applications of the developed algorithms, focusing particularly on their
potential deployment in actual satellite systems. This chapter aims to bridge the gap between theoretical
research and practical implementation by deploying the trained agents in a Jetson AGX Orin.

Finally, the thesis concludes by summarizing the major contributions of the research, discussing its limitations,
and suggesting potential directions for future work in autonomous satellite operations and the application of AI
in space systems.
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2 Problem Formulation

2.1 Introduction and ConOps

The mission involves a network of observer satellites, each equipped with varying communication and resource
capabilities, such as different communication bands and battery levels, operating in different orbits. These
satellites work together to detect, observe, and share information about a set of target satellites, which represent
objects orbiting in space. The primary objective is to maximize the number of high-quality observations while
minimizing the duplication of effort and resource consumption across the network, making sure the information
is spread as efficiently as possible.

The mission is designed around several key components. Observer satellites are responsible for detecting and
observing the target satellites, equipped with communication systems that allow them to share observation
data with other observers in the network. Target satellites, on the other hand, are passive objects that the
observer satellites must locate and monitor. The FSS serves as the framework that enables decentralized
operation, resource sharing, and communication among the observer satellites, allowing the network to function
autonomously with each satellite contributing to the collective mission objectives. Inter-satellite communication
is facilitated through Inter-Satellite Link (ISL), enabling the exchange of observation data, orbital parameters,
and other mission-critical information. Additionally, each observer satellite must manage its own resources,
including energy, data storage, and communication bandwidth, to sustain long-term operations and achieve
mission goals.

Operational scenarios within the mission simulate different aspects of the FSS in action. In the target detection
and observation scenario, observer satellites autonomously detect and observe target satellites based on their
individual capabilities and current operational status. The quality and quantity of observations depend on factors
such as orbital alignment, pointing accuracy, and resource availability. Data sharing and propagation occur
once a target satellite is detected or observed, with the data being shared across the network to ensure that all
participants have access to the latest and most accurate information about the target satellites, even if they have
not observed the targets themselves. Resource optimization is another crucial aspect, where observer satellites
must optimize their use of resources to maximize the overall mission outcome, including managing energy
consumption, data storage, and communication bandwidth. Finally, the dynamic mission adaptation feature
of the FSS framework allows the network to adapt to changing conditions, enabling continuous operation in a
complex and uncertain environment.

Before delving into more technical details, this chapter tries to clarify and present the main constrains and
limitations that have to be addressed in order to get a clear view on the topic.

2.2 Related Work

One of the main motivations behind this thesis is the improvement of autonomous missions, therefore a brief
description of traditional mission planning and scheduling is given, as well as some of the most recent DRL
approaches that have arisen in the last years. This is essential to understand the main advantage of the application
of AI to space systems, giving an extremely flexible, robust and immediate solution to dynamic and opportunistic
environments.
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2.2.1 Traditional Task Planning and Scheduling

Spacecraft planning and scheduling have traditionally been ground-based processes. During the early phases of
mission development and periodically during operations, an iterative process occurs between science planning
and mission planning to define the science objectives and spacecraft trajectories at different levels of fidelity.
These inputs are then fed into an activity planner, which generates an activity plan detailing the tasks the
spacecraft must complete to meet the science objectives. This plan may also incorporate inputs from navigation
and flight dynamics teams, depending on the mission. Once generated, the activity plan is sequenced into
commands, which are then uplinked to the spacecraft and executed open-loop on board. This process is
illustrated in Figure 2.1.

Figure 2.1 Traditional task planning and scheduling process.

This traditional approach introduces several challenges. First and foremost, executing the plan open-loop means
the spacecraft cannot react to changes in its environment. If the spacecraft cannot complete a task or meet a
constraint, the plan must be regenerated on the ground and then uplinked again, a process that can take several
minutes to several hours. This method is also not extensible to opportunistic science events, so if an interesting
event is detected, the spacecraft must wait for the next planning cycle to respond.

Additionally, this approach lacks robustness to environmental changes, requiring ground-based regeneration and
uplinking of new plans. While this is manageable for missions with high predictability, such as Earth-observing
satellites, it poses significant problems for missions with high uncertainty, such as deep space or event detection
missions. As a result, robustness must be built into the plan at the cost of science return, efficiency, or quality.
Thus, autonomous on-board planning and scheduling algorithms are desirable to reduce reaction times, enable
opportunistic science, and increase plan robustness.

Significant efforts have been made to mitigate these challenges by enabling spacecraft to modify ground-based
plans in the event of contingencies. One notable solution is CASPER (Continuous Activity Scheduling Planning
Execution and Replanning), an on-board planning and scheduling software developed by NASA [9]. CASPER
utilizes iterative repair techniques to continually check existing plans for resource constraint violations and
modify them as necessary on board the spacecraft. This software, alongside the automated ground-based
planning tool ASPEN [10], has been applied to several missions, such as Earth Observing-1 (EO-1) [11] and the
Intelligent Payload Experiment (IPEX) [12], demonstrating the capability for on-board schedule modification.

Other tools, such as MEXEC [13] and Aerie [14] developed for the Europa Clipper mission, adjust activities
based on resource variations and task execution. The Scheduling Planning Routing Inter-satellite Network Tool
(SPRINT) [15], developed by MIT, addresses replanning for Earth-observing satellite constellations using a
global planner for scheduling and on-board planners for handling unexpected opportunities.

While these on-board replanning tools address many of the challenges of ground-based planning, they still require
an a priori plan generated on the ground and periodically uplinked to the spacecraft. This process remains time-
consuming during regular operations. Providing spacecraft with greater control over their operational decisions
can reduce the burden on operators, saving time and resources.

Strasser’s work [16] focuses on the optimization of scheduling for a heterogeneous Earth observation satellite
constellation. His approach involves a centralized model that leverages mathematical optimization techniques
to generate efficient schedules. This method emphasizes the use of a global planner to coordinate tasks across
multiple satellites, ensuring optimal resource utilization and mission success. In contrast, our approach aims to
decentralize decision-making and scheduling, leveraging the capabilities of DRL within the Federated Satellite
System paradigm. This decentralized approach eliminates the need for a centralized model, allowing individual
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satellites to autonomously adapt and optimize their operations in real-time. By utilizing DRL, each satellite
in the network can learn and make decisions based on local observations and interactions, leading to a more
flexible and resilient system.

This shift from a centralized to a decentralized model aligns with the strategic goals of enhancing autonomy and
efficiency in satellite operations, paving the way for more advanced and adaptive space missions. By comparing
these two approaches, it is evident that decentralization through RL offers a promising pathway to overcoming
the limitations of traditional and centralized planning methods in satellite scheduling.

2.2.2 Reinforcement Learning Approaches

Reinforcement learning (RL) has emerged as a transformative approach in the field of satellite operations,
offering significant advantages in planning and scheduling through its ability to learn and adapt to dynamic
environments. RL, a subset of Machine Learning (ML), involves training agents to make a series of decisions
by interacting with their environment to maximize cumulative rewards [8], [17]. This method has shown
remarkable success in various domains, including robotics [18], game playing [19], and, more recently, space
applications [20].

Autonomous decision-making is a critical capability for future satellite missions, particularly those involving
Earth observation, scientific research, and communication. Traditional rule-based systems often struggle to
handle the complexity and variability of space environments. DRL provides a powerful framework for developing
autonomous systems capable of handling these challenges.

DRL techniques have demonstrated state-of-the-art performance in complex decision-making tasks. For in-
stance, Harris et al. [21] describe efforts at Ball Aerospace to develop a DRL-driven solution for the single-
satellite, arbitrary-target, single-ground-station planning problem. By leveraging high-fidelity simulations, DRL
agents can explore subtle dynamics that might be overlooked by approximation-driven techniques, leading to
improved performance in tasking and planning. The process for RL approach on task planning and dynamic
scheduling can be seen in Figure 2.2. Here the initial stages of science and mission planning are exactly the
same as in the traditional planning approach, however, once the trained agent has been uplinked, it can react to
the challenges faced by traditional planning thanks to the closed environment-agent loop.

Figure 2.2 Reinforcement Learning approach for task planning and scheduling process.

The application of DRL in multi-agent systems, such as satellite federations, is particularly promising. Ramezani
et al. [22] explore the use of MARL for planning and task coordination in a swarm of CubeSats. Their approach
addresses the processing limitations of individual CubeSats by allowing them to pool their resources, thereby
enabling the execution of complex computations collaboratively. This methodology not only enhances the
computational capabilities of CubeSat constellations but also improves their robustness and adaptability in
dynamic environments.

Other AI techniques are also increasingly being integrated into satellite networks to address various challenges,
like dynamic task scheduling, energy management, and communication optimization. Al Homssi et al. [23]
provide an overview of diverse AI applications for next-generation massive satellite networks, highlighting the
role of AI in optimizing ISL, Satellite Access Network (SAN), and network security. The proactive and adaptive
nature of AI-driven solutions makes them well-suited for managing the complexities of large-scale satellite
constellations.
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2.3 Federated Satellite System Paradigm and Definition

2.3.1 The Federated Satellite System Paradigm

The Federated Satellite System (FSS) paradigm [3] introduces a revolutionary approach to Distributed Satellite
Systems (DSS). This novel concept defines a common network for diverse spacecraft, enhancing their capabilities
by providing a pool of resources accessible to any participant of the FSS. This solution enables leveraging the
unique abilities of other participants to improve mission outcomes.

In traditional satellite systems, each satellite operates independently with its resources and capabilities. However,
the FSS paradigm shifts this approach by creating an interconnected network where satellites can share resources
such as downlink bandwidth, processing power, and storage capacity. Other studies such as the Techsat 21 project
[24] have expored the use of microsatellites formations to accomplish missions typically performed by larger
single satellites. These cooperative models promotes efficiency and flexibility, allowing satellites to perform
tasks beyond their individual capabilities by utilizing shared resources within the federations.

These concepts, where satellites autonomously share resources and capabilities, has gathered increasing attention
in academia over the past decade. This attention is largely due to advancements in small satellite technologies,
such as CubeSats, which make satellite federations more feasible both technically and economically [25]. The
FSS paradigm enhances cost-effectiveness, performance, and reliability of space missions by creating a virtual
combination of resources that can be dynamically allocated based on mission needs.

A key advantage of the FSS paradigm is its potential to form opportunistic and temporary collaborations
among satellites, addressing various technological challenges when implemented in orbit. These collaborations
enable the formation of dynamic, reconfigurable networks that can adapt to changing mission requirements and
environmental conditions. For instance, satellites in a federation can share their idle resources, such as unused
bandwidth or processing power, thereby optimizing the overall performance of the network and improving the
mission outcome.

This thesis is built on the foundational concepts of FSS and integrates the decentralized optimization framework
developed by Messina [6]. His research on formulating a dynamic graph optimization underscores the need for
adaptive, real-time decision-making mechanisms within satellite networks. By applying Deep Reinforcement
Learning (DRL) to this framework, our project aims to enhance the autonomy and efficiency of satellite
operations. This integration is expected to address the challenges of temporal and spatial variations in satellite
networks, enabling more robust and resilient mission planning and execution. Our exploration into DRL for
decentralized autonomous decision-making aligns with Messina’s vision of adaptive satellite networks and
contributes to the broader goal of advancing space exploration and satellite management technologies.

2.3.2 Federated Satellite System Definition

Once the FSS paradigm has been presented, it serves as the base framework for our project. The decentralized
nature of the FSS contributes the dynamic and uncertain behaviour of the whole mission. In order to improve
the mission outcome, the satellites must learn to interact between them and with the changing FSS environment.

First of all, we must state that there are two types of satellites participating in the simulation: observers and
targets. Their specific characteristics and details are presented in the next sections, but it is important to know
that they have heterogeneous communication and imaging capabilities as well as different orbits and parameters
such as battery or storage.

Working inside the FSS framework, the network is considered as the virtual infrastructure to trade resources
among satellites through an inter-satellite link (ISL). Each of the observer satellites is one of the federation
network’s nodes. These nodes detect and observe target objects in space and then share and propagate information
between them. This information, meaning the knowledge communicated or received concerning a particular
fact or circumstance [6], can in this case be incomplete, not the current one and can also be obtained indirectly
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from another observer satellite. This helps understand the impacts of dynamic partial observable environments
in the decision-making or resource optimization processes.

The targets are considered in this project as objects (satellites) in space that have to be discovered and recorded
by observers. Each of the observer satellites can share observation data or information on the contacted targets,
spreading the information across the satellite network in a real-time manner. The main goal is to optimize
the resources so that in the end all observer satellites have information on every target without the need to
perform the observations by themselves, but rather in a collaborative mission fashion, making use of the pool
of resources. Moreover, here the observers are both customers and suppliers of the FSS.

2.4 Satellite Subsystems, Parameters and Variables

In order to create a realistic environment founded on the FSS, a simulator was developed to model the main
mission. As stated in the ConOps, the mission goals mainly include space objects detection and observation
and communication and coordination operations. Therefore, in order to correctly model all the interactions and
capabilities of the participants, a formal definition of the framework’s satellites subsystems has to be given.
While in this section the satellites’ parts are described, a more detailed description of the higher architectural
components of the whole simulation framework is presented in Section 4.

All the values presented in this section were adjusted as necessary for our specific simulation scenarios, but they
are fully customizable. Moreover, validation tests are performed for all systems in Section 4.3.

2.4.1 Orbital and Attitude Parameters

In our simulation framework, we model the orbital and attitude dynamics of both observer and target satellites.
The following Keplerian parameters are used to ensure realistic and reliable simulation outcomes. A visual
description of the parameters is found in Figure 2.3

Orbital Parameters

• Semimajor Axis: represents the size of the satellite’s orbit, being half the distance between the apoapsis
and periapsis, in our case simulating typical Low Earth Orbits (LEO) such as Sun-Synchronous Orbits
(SSO). Specific values are varied depending on the scenario to simulate different altitudes and mission
profiles.

• Eccentricity: describes the shape of the ellipsis, generally kept low to simulate nearly circular orbits,
with the exact values adjusted for scenarios involving slight orbital variations.

• Inclination: set based on the desired orbital plane, such as SSOs for consistent sunlight exposure or
equatorial orbits for different mission needs. The inclination is calculated or selected to match the
mission requirements.

• Right Ascension of Ascending Node (RAAN): determines the orbital plane’s orientation relative to the
Earth’s equatorial plane, adjustable to simulate different timing and coordination requirements within the
satellite network.

• Argument of Perigee and True Anomaly: define the orbit’s orientation and the satellite’s position within
the orbit, varied to test different initial conditions and orbital phases.

• Mean Motion: the rate at which the satellite orbits the Earth, calculated based on the semimajor axis and
gravitational parameter.
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Figure 2.3 Diagram of orbital parameters.

Attitude Parameters

• Quaternion: represents the satellite’s orientation in three-dimensional space. The initial quaternion can
be set to represent various starting orientations, with adjustments made as needed for specific simulation
requirements.

• Angular Velocity: defines the rotation rate of the satellite about its axes, adjustable to simulate different
rotational states and stabilization requirements.

Orbital Propagation

The satellite’s orbit is propagated using Keplerian mechanics, which is an essential method for simulating the
motion of celestial bodies under the influence of gravity. This method relies on solving Kepler’s equation to
compute the position and velocity of the satellite in its orbit over time. The propagation begins by defining
the orbital elements, including the semimajor axis 0, eccentricity 4, inclination 8, argument of perigee l, right
ascension of the ascending node ⌦, and the true anomaly \.

The mean motion = of the satellite, which represents the angular speed at which the satellite orbits the Earth, is
calculated using the formula:

= =
r

`

0
3 (2.1)

where ` = 3.986004418 ⇥ 1014 m3/s2 is the standard gravitational parameter for Earth.

Kepler’s equation is then solved to find the eccentric anomaly ⇢ , which is related to the true anomaly \ and the
orbital eccentricity 4 by:

⇢ = arctan

 p
1 � 42 sin \
4 + cos \

!
(2.2)

The mean anomaly " is determined from:



Chair of Spacecraft Systems
TUM School of Engineering and Design
Technical University of Munich

10

" = ⇢ � 4 sin ⇢ (2.3)

The time evolution of the orbit is computed by incrementing the true anomaly \ using the rate of change §\,
which is given by:

§\ =
p

1 � 42 ·
=

1 � 4 cos ⇢
(2.4)

The new radius vector A , which represents the distance from the center of the Earth to the satellite, is updated
using:

A =
0(1 � 42

)

1 + 4 cos \
(2.5)

Finally, the position (G, H, I) and velocity ÆE = (EG , EH , EI) vectors of the satellite are calculated in the inertial ref-
erence frame by combining the orbital elements and trigonometric functions, ensuring the accurate propagation
of the satellite’s orbit over time.

Attitude Propagation

Attitude propagation is performed using quaternion kinematics, which provides a robust method for simulating
the orientation of the satellite in three-dimensional space. The satellite’s orientation is represented by a
quaternion, a four-dimensional vector that encodes rotation in a way that avoids the singularities associated with
Euler angles.

The quaternion’s time evolution is governed by the satellite’s angular velocity Æl = (lG ,lH ,lI). The rate of
change of the quaternion, §@, is calculated using the following differential equation:

§@ =
1
2

26666664

0 �lG �lH �lI

lG 0 lI �lH

lH �lI 0 lG

lI lH �lG 0

37777775
@ (2.6)

This equation is integrated using an Euler integration step, where the quaternion is updated as:

@new = @old + §@ · �C (2.7)

where �C is the time step for propagation.

To maintain the quaternion’s unit norm (ensuring it remains a valid rotation), the quaternion is normalized after
each update:

@new =
@new
k@newk

(2.8)

This normalization process is crucial as it prevents numerical errors from accumulating over time, which
could otherwise lead to drift in the satellite’s simulated orientation. By applying these quaternion kinematics,
the satellite’s attitude is accurately propagated, allowing for precise control and stabilization of the satellite’s
orientation during the mission.
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2.4.2 Communication Subsystem

Observer satellites are the only ones with communication capabilities. They are equipped with an omni-
directional antenna, based on Line-of-Sight (LOS). The simulation assumes negligible latency for simplicity
but includes provisions to simulate realistic delays as needed.

The communication subsystem of the satellites is crucial for data exchange and coordination among federation
participants. Each satellite is equipped with a communication system based on Scrocciolani’s work [26] with
further adjustements made by Messina [6], and it is characterized by the following features and values depicted
in Table 2.1:

Parameter Value Unit

Frequency 437 MHz
Bandwidth 9600 Hz
Transmit Power 2 W
Transmit Gain 1 dB
Receive Gain 1 dB
System Losses 3.5 dB
Receiver Sensitivity -151 dBW
Modulation Scheme QPSK -

Table 2.1 Link Budget for Communication Subsystem

• Communication Band: satellites are additionally equipped with different communication bands, ran-
domly selected from the four options of Ultra High Frequency (UHF), Very High Frequency (VHF),
S-band, or X-band, with the possibility of having all bands available for complete communication capa-
bilities (for instance for the central node of the network).

• Power and Gain: the communication system operates with a transmission power of 2 W, and both
transmission and reception gains are accounted for, with gains set to 1 dB, and corresponding losses
included.

• Frequency and Bandwidth: the system operates at a frequency of 437 MHz, with a bandwidth of 9600
Hz, supporting various modulation schemes, including Quadrature Phase Shift Keying (QPSK).

• Modulation and Sensitivity: the system supports a modulation order of 4 (QPSK) and has a sensitivity
of -151 dBW, ensuring robust communication under various conditions.

The communication subsystem includes calculations for the following variables:

• Free Space Loss (FSL): determined by the distance between communicating satellites and their operating
frequency.

• Signal-to-Noise Ratio (SNR): the system calculates SNR based on the power, gains, losses, and FSL,
which is critical for determining data transmission quality.

• Data Rates and Bit Error Rate (BER): the system computes both ideal and effective data rates,
considering modulation efficiency and channel conditions. BER calculations assess communication
reliability.

The maximum distance to communicate taking into account our specifications and conditions is around 2,315
km, limited by the effective data rate calculation.
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2.4.3 Information Sharing

Communication between observers is conducted in both directions. This means that after two satellites have
successfully communicated, regardless of which one initiated the contact, both receive the same information on
other observers and targets they have contacted.

Successful data transmission is achieved when the total amount of data transmitted exceeds the total amount of
data to be transmitted. This is determined by estimating the data that needs to be transmitted, which depends
on the amount of new information collected by each observer. Additionally, the transmission rate used in these
calculations is estimated based on FSL.

Target data is only considered valid if the target has been contacted in recent timesteps, ensuring that information
on target satellites remains accurate and timely. This approach helps maintain the federation’s activity in detecting
and observing targets.

The following information can be shared and gathered by each observer participant:

• Orbital Parameters: both self and from contacted observer satellites, providing current positioning and
motion details.

• Communication Ability: towards other observer satellites, determining the potential for successful data
exchange.

• Battery Level: information on the power status of both the observer and recently contacted observers,
important for energy management and planning.

• Storage Level: data storage status for both the observer and recently contacted observers, critical for data
management and prioritization.

• Pointing Accuracy: equivalent to the quality of data collected, shared among the network to provide a
measure of observation quality.

• Target Orbital Parameters: data about the orbits of recently contacted target satellites, crucial for
tracking and further observations.

• Observation Status: indicates whether targets have been detected or observed, helping prioritize future
observation tasks.

• Communication Status: status of communication links between observers, used for managing network
connectivity and data flow.

2.4.4 Coordination Models

As stated, communication bands may vary among observers, allowing for the development of different, custom
coordination types for the environment:

• Centralized Communication: only one node of the FSS network has a universal communication band.
The rest of the participants must transmit information to this central node for further propagation.

• Decentralized Communication with Band Constraints: each participant can only communicate with
others sharing the same communication band. Central nodes (equipped with all bands) can be introduced
to increase the complexity, providing a more challenging setup.

• Unconstrained Decentralized Communication: every node can transmit information to any other node
within the maximum distance limits specified by the communication system’s technical components. This
mode is exactly the same as the decentralized one, but without the requirement of having the same band
as the other node.
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(a) Centralized Coordination (b) Partially Decentralized Coordination
(c) Unconstrained (Fully) Decentralized
Coordination

Figure 2.4 Comparison of Coordination Models

These models support various coordination scenarios, from centralized to fully decentralized systems, as can
be seen in Figure 2.4, allowing flexibility in the simulation of different network architectures and operational
strategies.

2.4.5 Imaging and Observation Capabilities

The optical payload on the observer satellites is designed to capture data on space events and objects. The
following details describe the imaging system and its operational parameters.

Each observer satellite is equipped with an optical payload characterized by the following [27]:

• Aperture Diameter: 9 mm, allowing sufficient light gathering for imaging in various conditions.

• Wavelength: 700 nm, representing the upper limit of the visible light spectrum, typically used for optical
observations.

• Object Size Resolution: the system is calibrated to resolve objects of specified dimensions (5 meters in
our case, to mimic Starlink size satellites detection).

The observation process is a critical aspect of the satellite’s operation, encompassing several essential steps.
Initially, the satellite evaluates both the distance to the target and the pointing accuracy. The maximum distance
for effective observation is governed by the diffraction limit of the optical system.

To assess pointing accuracy, the satellite calculates its pointing direction and the vector from the observer to
the target satellite. The cosine of the angle between these vectors is then computed to determine the angular
distance. If this distance falls within a total 20-degree field of view and the target is within the maximum
detectable distance (see Figure 2.5), the pointing accuracy is normalized on a scale from 0 to 1, with higher
values indicating better alignment.

The diffraction limit is calculated using the formula:

Diffraction Limit = 2.44 ·
_ · 3

⇡

(2.9)

where _ is the wavelength of light (700 nm in this case), d is the distance to the target, and D is the aperture
diameter of the optical system (0.09 m).

To determine the maximum detectable distance, adjustments to the diffraction limit equation are made:

Max Detectable Distance =
Object Size · ⇡

2.44 · _
(2.10)
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This calculation ensures that only targets within the detectable range and with sufficient pointing accuracy are
observed. For instance, assuming a Starlink-sized object, the limit distance is just over 263 km. A visualization
of the field of view and estimated limit distance is depicted in Figure 2.5.

Figure 2.5 Satellites’ imaging field of view and limit distance.

Upon a successful observation, the satellite updates the observation status matrix and records the cumulative
pointing accuracy. Additionally, the observer’s available storage is adjusted based on the data collected during
the observation process.

The optical payload’s performance metrics, such as pointing accuracy and the number of observations, are
meticulously recorded. These metrics are then used to refine observation strategies and optimize resource
utilization, ensuring efficient and accurate data collection in a dynamic and challenging space environment.

2.4.6 Energy Management

The energy management system on each observer satellite ensures continuous operation by balancing energy
consumption and generation. The following components and processes describe how energy is managed:

Each satellite is equipped with a battery system and solar panels for energy storage and generation:

• Energy Storage Capacity: the energy storage system uses a battery pack with a capacity of 84 Wh,
sufficient for maintaining satellite operations during eclipse periods when solar energy is unavailable.

• Solar Panels: the solar panels have a total surface area of 0.12 m2 (0.4 m ⇥ 0.3 m), which are deployable
and capable of harnessing solar energy. The efficiency of these panels is set at 30%, with the solar
constant assumed to be 1,370 W/m2.

• Energy Available: at the start, each satellite is assigned an amount of energy available, which is randomly
generated between 20 and 70 Wh.

The charging of the satellite’s battery is governed by the exposure to sunlight. Sunlight exposure is determined
by the satellite’s position relative to the Sun and whether the satellite is in the Earth’s shadow (eclipse). This
exposure is further modulated by the angle between the satellite’s pointing direction and the Sun vector.

The energy produced by the solar panels is calculated using Equation 2.11:

Energy Produced = Solar Panel Size ⇥ Efficiency ⇥ Solar Constant ⇥ Sunlight Exposure ⇥ Time Step (2.11)

This produced energy is then added to the battery’s energy reserves, ensuring the total does not exceed the
maximum capacity or falls below zero.

The power consumption of the satellites varies depending on the operational mode [28]:

• Standby Mode: the baseline power consumption for maintaining satellite systems operational is 7.5 W.
This amount includes 0.2 W that correspond to the communication subsystem, which in total consumes
2 W.
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• Communication Mode: when the satellite is actively communicating, the power consumption increases
to 9.3 W, accounting for the additional energy required for data transmission and reception.

• Observation Mode: during active observation, the power consumption is highest, at 18.806 W, reflecting
the energy-intensive nature of imaging and data processing.

The power consumption is subtracted from the available energy in the battery according to the current operational
mode, ensuring that the satellite’s energy levels are continually monitored and managed. This management
includes handling situations where energy reserves are depleted or when the satellite needs to enter low-power
modes to conserve energy.

This energy management system ensures that the satellites can sustain operations, handle dynamic power
requirements, and maximize the utilization of available solar energy.

2.4.7 Data Storage and Management

The data storage system onboard each observer satellite is designed to handle the data collected during ob-
servations and communications. The following components and processes describe how data is managed and
stored:

Each satellite is equipped with a storage system characterized by the following:

• Total Data Storage Capacity: the maximum storage capacity is 64 GB, not sufficient for storing extensive
observation data and other mission-related information, increasing the complexity of the simulations.

• Initial Storage Available: at the start of the mission, each satellite is assigned an amount of storage
available, which can be randomly generated.

• Data Package Size: the size of each data package per observer satellite is standardized at 52 bytes,
facilitating consistent data handling and transmission, while the amount of target data transmitted depends
on the state of the simulation. The size of 52 bytes takes into account the orbital parameters together with
the availability boolean, battery, storage, pointing accuracy data and communication ability data.

The rate at which data storage is consumed depends on the satellite’s current activities:

• Observation Mode: during active observation, the data collected is stored at a fixed rate of 1 Mbits/s
(1024 ⇥ 1024 ⇥ 8 bits per second), which accounts for high-resolution data and metadata.

• Communication Mode: during the communication process, storage is not directly consumed by the act
of transmitting data. Instead, storage consumption occurs after the data has been successfully transmitted.
At that point, the amount of transmitted data is deducted from the available memory storage. Once
transmission is finished and the data is accounted for at the receiving end, the storage is not freed up in
the sender’s end. As a result, the restrictive availability of storage may impact the satellite’s ability to
collect and store new data.

Data handling during operations involves several crucial processes. As data is collected during observations,
it is stored in the satellite’s onboard memory. The amount of storage available is continuously updated by
subtracting the data stored per time unit (time step) from the available storage.

During communication, data is transmitted to other satellites. The storage available on the sending satellite
is decremented by the amount of data transmitted. This process ensures that storage capacity is accurately
reflected, and any data received by other satellites is accounted for in their respective storage systems.

The system ensures data integrity by preventing storage overflows. When the available storage reaches its
maximum capacity, new data collection or reception is stopped.

The storage management system is critical for maintaining data integrity and ensuring that the satellites can
continue to collect and transmit data efficiently throughout the mission. Proper handling of data storage also
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allows for effective mission planning and real-time decision-making, leveraging the full capabilities of the
satellite’s onboard systems.
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3 Reinforcement Learning in Satellite Operations

In the context of federated satellite systems, the complexity of coordinating multiple satellites to achieve
mission objectives necessitates advanced decision-making frameworks. Traditional methods, as seen in Section
2.2, while effective in certain scenarios, struggle to adapt to the dynamic and unpredictable nature of space
environments. As the demand for real-time, autonomous operations increases, it becomes imperative to explore
more sophisticated approaches that can enhance both the efficiency and resilience of satellite networks. This
is where Reinforcement Learning (RL) becomes invaluable. By providing a structured approach to learning
optimal strategies from the developed environment, RL offers a powerful tool for addressing the challenges
inherent in decentralized satellite operations. The following section delves into the principles of RL and how it
can be applied to develop autonomous systems capable of making real-time decisions in complex environments.

3.1 Introduction to Reinforcement Learning

In the realm of satellite operations, RL provides a framework for developing autonomous systems capable of
making real-time decisions. Reinforcement learning has its origin from using machine learning to optimally
control an agent in an environment.

The goal of reinforcement learning is to learn an optimal policy, a policy that achieves the maximum expected
reward from the environment when acting. The reward is a single dimensionless value that is returned by the
environment immediately after an action. The whole process can be visualized in Figure 3.1.

Figure 3.1 Reinforcement learning process [29].

The agent learns a policy, a function that maps an observation obtained from its environment to an action. Policy
functions are typically a Deep Neural Network (DNN) (with several hidden layers, see Figure 3.2), therefore
giving name to "deep" reinforcement learning [29].
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Figure 3.2 Neural network example [30].

Traditional methods like Mixed-Integer Programming (MIP) often face limitations in terms of computational
feasibility and adaptability to changing conditions, especially in dynamic environments like satellite task
scheduling. RL, on the other hand, excels in such settings by learning optimal policies through continuous
interaction with the environment [31].

The foundational concept in RL is the Markov Decision Process (MDP), which formalizes and describes the
problem of decision-making in stochastic environments [32]. An MDP is defined by a set of states, actions,
transition probabilities, and rewards. In the context of satellite operations, an MDP can model the decision-
making process for tasks such as imaging, communication, and maneuvering. When full state observability is
not possible, the problem extends to Partially-Observable Markov Decision Process (POMDP), where decisions
are made based on incomplete information [17].

In DRL, contrary to RL, state and action spaces can be mapped with a function or value, let it be &(B, 0), that
returns a value (reward). In DRL, where problems become more complex, this Q-value is approximated with
an Artificial Neural Network (ANN). The ANN may need to be "deep", meaning a few hidden layers may not
suffice to capture all the intricate details of that knowledge, hence the use of DNN.

Finally, in this chapter, three of the most extended and used DRL algorithms are presented: PPO, DQN and
SAC. These are the algorithms applied to our case and each of them is a state-of-the-art tool to obtain DNNs
for complex problems.

3.2 Markov Decision Processes and Reward-Driven Behavior

Markov Decision Processes (MDPs) [32], [33] are fundamental to the field of Reinforcement Learning and
provide a formal framework for modeling decision-making in situations where outcomes are partly under the
control of a decision-maker and partly random. MDPs are defined by a tuple ((, �, %, ', W) where:

• ( represents the set of all possible states the system can be in.

• � is the set of actions available to the decision-maker.

• ' is the reward function, '(B, 0), giving the immediate reward received after transitioning from state B to
state B

0 after action 0.

• ' is the reward function, which assigns a numerical value to each state-action pair, guiding the agent’s
learning by indicating the desirability of different outcomes.

• W is the discount factor, which reflects the importance of future rewards compared to immediate ones.
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In satellite operations, MDPs can model various scenarios, such as scheduling tasks, optimizing fuel usage, or
managing communications. For example, the state might represent the satellite’s current position, battery level,
and task queue, while actions could involve choosing the next task, adjusting orbit, or entering a power-saving
mode. The reward function in this context is designed to maximize the operational efficiency and mission
objectives of the satellite.

The process is as follows: a decision-making agent takes an action 08 while in state B8 . The decision-making
agent transitions to a new state B8+1 and receives a reward A8 [20] (see Figure 3.3).

Figure 3.3 MDP process.

MDPs assume full observability, meaning the agent has access to the complete state of the environment. However,
in many practical scenarios, including satellite operations, agents often operate under partial observability,
where they cannot access all relevant state information. This leads to the use of Partially Observable Markov
Decision Processes (POMDPs), which are extensions of MDPs designed to handle situations where the agent
must make decisions based on incomplete or uncertain information [21]. A POMDP is defined by a tuple
((, �, %, ', W,$, /) where:

• $ is the set of observations.

• / is the observation probability matrix, / (> |B0, 0), representing the probability of observing > given the
next state B

0 and action 0.

In a POMDP, the agent maintains a belief state, 1(B), which is a probability distribution over possible states
based on the history of actions and observations. The objective is to find a policy c : ⌫ ! � that maximizes
the expected cumulative reward, where ⌫ is the set of all possible belief states.

In more complex systems involving multiple agents like ours, the problem becomes even more challenging.
In these cases, decentralized partially observable Markov Decision Process (Dec-POMDP) is employed. Dec-
POMDPs account for the fact that each agent has only partial information and must make decisions that consider
the potential actions of other agents. This adds layers of complexity due to the need for coordination and
the increased computational challenges, as Dec-POMDPs are known to be of high computational complexity
(2=$ (1) ) [34]. A Dec-POMDP is defined by a tuple (# , (, {�8}, %, {'8}, W, {$8}, /) where:

• # is the number of agents.

• ( is the set of states.

• {�8} is the set of actions for each agent 8.

• % is the transition probability matrix.

• {'8} is the reward function for each agent 8.

• W is the discount factor.
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• {$8} is the set of observations for each agent 8.

• / is the observation probability matrix.

The objective in a Dec-POMDP is to find a set of policies {c8} (Equation 3.1) that maximize the expected
cumulative reward for all agents:

{c
⇤

8
} = arg max

{c8 }
Ö

"
1’
C=0

W
C

#’
8=1

'8 (BC , 08,C ) | {c8}

#
(3.1)

In the context of satellite operations, observations are dynamic and partial. An agent (satellite) may or may not
have information on another observer (satellite) or target at any given time. This scenario fits well within the
POMDP and Dec-POMDP frameworks, where decision-making must account for incomplete and dynamically
changing information.

3.3 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) integrates deep neural networks into the RL framework, allowing for
the handling of high-dimensional state and action spaces. This integration is particularly crucial for satellite
systems, where the complexity of tasks and the variability in the environment are significant. DRL algorithms,
such as PPO, DQN, and SAC, provide robust mechanisms for policy optimization by leveraging the powerful
function approximation capabilities of deep neural networks. These algorithms enable agents to make informed
decisions based on a richer understanding of the environment, accommodating the dynamic and uncertain nature
of satellite operations [31].

The use of frameworks like Ray RLlib, which offers scalability and flexibility, is quite useful in deploying DRL
algorithms in practical applications. This framework supports various RL algorithms and facilitates efficient
training across distributed systems, making it an ideal choice for large-scale problems like those encountered in
satellite operations [35] [36].

3.3.1 Q-Values and Deep Reinforcement Learning

The transition from traditional RL to DRL involves the use of Deep Neural Networks (DNNs) to approximate
complex functions such as the Q-value in Q-learning. In DRL, neural networks are used to represent policies
or value functions, enabling the handling of high-dimensional state and action spaces that are infeasible with
traditional tabular methods. This is particularly relevant in satellite operations, where the state space can include
continuous variables like position, velocity, and resource levels [21].

The Q-value function, or Q-function, is essential to many RL algorithms, including those used in DRL. The
Q-function &(B, 0) represents the expected cumulative reward of taking action 0 in state B. In deep Q-learning,
a neural network, often called a Q-network, approximates this function. The network takes the state as input
and outputs Q-values for all possible actions. This allows the agent to select actions that maximize the expected
reward [30].

The use of DNNs in approximating Q-values and policies is essential for scaling RL to real-world problems
with complex and continuous state and action spaces. For instance, in satellite operations, the state space might
include variables such as orbital parameters, battery levels, and communication status, while the action space
could involve decisions about maneuvers, communication scheduling, and data collection tasks [21], [20].
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3.3.2 Hyperparameter Tuning

Hyperparameter tuning is a crucial stage in the deep reinforcement learning pipeline. The goal is to find the
optimal set of hyperparameters that enable the model to converge to a good minimum and generalize well on
unseen data. Common hyperparameters include learning rate, batch size, number of epochs, optimizer type,
size of hidden layers, and activation functions.

While tuning these parameters can be daunting due to the large search space and the time-consuming nature of
training deep learning models, there are well-established strategies to streamline this process.

For the learning rate, utilizing a scheduler can help mitigate issues related to selecting a suboptimal initial
learning rate. These schedulers adjust the learning rate during training to maintain optimal convergence. The
choice of activation functions can significantly impact the performance and convergence of neural networks, with
ReLU (Rectified Linear Unit) and its variants being commonly used due to their simplicity and effectiveness.
When selecting an optimizer, Adam and its variants are often a good starting point due to their robustness and
ability to handle sparse gradients. For the size of hidden layers, it’s advisable to start with a smaller number of
hidden layers and units, scaling up as needed based on model performance and computational resources [30],
[37].

Given the vastness of the hyperparameter space, manual tuning can be inefficient. To address this, several
automated methods are commonly employed [30], [37]:

• Grid Search: this method involves systematically exploring a predefined grid of hyperparameter val-
ues. While comprehensive, grid search is often impractical for large hyperparameter spaces due to its
computational intensity.

• Random Search: a more efficient alternative, random search samples hyperparameters from specified
distributions. This method typically explores the hyperparameter space more effectively than grid search,
as it does not require exhaustive evaluation of all possible combinations.

• Bayesian Optimization: this advanced technique balances exploration and exploitation of the hyperpa-
rameter space. It models the function to be optimized and iteratively selects hyperparameters to evaluate,
using prior results to make informed decisions. Despite its sophistication, Bayesian optimization can be
computationally demanding and may not always provide significant improvements over random search.

The choice of hyperparameter tuning method depends on the specific requirements and constraints of the
project, including computational resources and time availability. For instance, in environments where training
is expensive or time-consuming, methods like Bayesian or ASHA optimization might offer a better trade-off
between search efficiency and computational cost.

3.3.3 Training

In the context of Deep Reinforcement Learning, training refers to the iterative process through which an agent
learns to optimize its policy or value function by interacting with an environment. The training phase is crucial
as it determines the effectiveness of the agent in achieving its goals, such as optimizing resource usage or
maximizing mission outcomes in satellite operations.

The training process in DRL involves several key steps [8], [37]:

• Experience Collection: the agent interacts with the environment to collect experiences, which are tuples
of the form (B, 0, A, B

0
). Here, B represents the state, 0 the action taken, A the reward received, and B

0 the
subsequent state. These experiences are stored in a replay buffer, which helps in breaking the correlation
between consecutive experiences and stabilizes training.

• Policy Update: using the collected experiences, the agent updates its policy or value function. In policy-
based methods like Proximal Policy Optimization (PPO), the policy is updated directly to maximize
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expected rewards. In value-based methods like Deep Q-Networks (DQN), the value function &(B, 0) is
updated to minimize the difference between predicted and actual rewards.

• Exploration vs. Exploitation: a crucial aspect of training in DRL is balancing exploration (trying new
actions to discover their effects) and exploitation (choosing actions that are known to yield high rewards).
Strategies like epsilon-greedy in DQN or entropy regularization in Soft Actor-Critic (SAC) help maintain
this balance.

• Parallelization and Scalability: DRL training can be computationally intensive, especially with high-
dimensional state and action spaces. Techniques such as parallelization are employed to speed up the
training process. This involves distributing the workload across multiple processing units or machines.
For example, multiple environments can be simulated in parallel, with each environment running inde-
pendently to collect experiences simultaneously.

The training process in DRL is iterative and involves continuous refinement of the agent’s policy. This process
is computationally demanding but crucial for developing robust and effective agents capable of performing
complex tasks in dynamic environments, such as satellite constellation management.

3.3.4 Deep Q-Networks

Deep Q-Networks (DQNs) represent a significant advancement in the application of neural networks within
reinforcement learning, specifically for tasks involving high-dimensional state spaces. DQNs approximate the
action-value function&(B, 0), which estimates the expected return of taking an action 0 in state B under a certain
policy. This approach allows the agent to learn which actions yield the highest rewards over time [38].

The core idea behind DQNs is to use a deep neural network to generalize the &-value function across a wide
range of states, rather than relying on a simple lookup table. This is crucial for handling large and continuous
state spaces where traditional methods fall short.

Key components of DQN include [39]:

• Experience Replay: to break the correlation between consecutive samples, DQNs use a mechanism
called experience replay. This involves storing the agent’s experiences (B, 0, A, B

0
) in a replay buffer and

randomly sampling from this buffer during the training process. This random sampling helps in stabilizing
the training process and reduces the risk of oscillations or divergence. The buffer is periodically updated
to ensure it doesn’t grow indefinitely, usually by removing the oldest experiences.

• Target Network: DQNs employ a target network, a copy of the original Q-network, to compute the target
& values. The weights of the target network are updated less frequently than those of the primary network,
providing a stable target for learning and helping to mitigate the instability that arises from frequently
changing targets.

• Double DQN: an improvement over the basic DQN, Double DQN addresses the issue of overestimation
bias in the action-value function. It decouples the selection and evaluation of actions by using the primary
network to select the action and the target network to evaluate it. This helps in obtaining more accurate
value estimates.

DQNs are classified as off-policy algorithms, meaning they can learn the optimal policy independently of the
agent’s current actions. This is advantageous for environments where exploration and exploitation must be
balanced effectively.

In the context of satellite operations, DQNs are particularly useful for making decisions in environments where
the state space is large and continuous, such as managing energy resources, scheduling tasks, and optimizing
communication links [20]. Algorithm 1 provides the full pseudo-code for DQN [39]
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Algorithm 1: Deep Q-Learning [39]
1: Initialize replay buffer D
2: Initialize state-action value function & \ (B, 0) with random weights \
3: Initialize target state-action value function &̂ \

� (B, 0) with weights \�  \

4: for iteration = 1 to # do
5: for 8 = 1 to |� | do
6: for actor = 1 to " do

7: 08  

(
arg max0 & \ (B8 , 0) with probability 1 � n
random action otherwise

8: B8+1, A8 ⇠ ⌧ (B8 , 08)

9: Store transition (B8 , 08 , A8 , B8+1) in D

10: Sample random minibatch of transitions (B 9 , 0 9 , A 9 , B 9+1) from D

11: H 9 =

(
A 9 if B 9+1 is terminal
A 9 + W max00 &̂ \

� (B 9+1, 0
0
) otherwise

12: Perform gradient descent step on (H 9 �& \ (B 9 , 0 9))
2 with respect to \

13: Periodically reset &̂ \
�  & \

14: end for
15: end for
16: end for

3.3.5 Soft Actor-Critic

Soft Actor-Critic (SAC) is an advanced off-policy actor-critic algorithm that has gained attention for its effec-
tiveness in continuous action spaces, although it can be used in discrete ones too [38]. SAC integrates entropy
regularization into the reinforcement learning framework, encouraging exploration by maximizing both the
expected reward and the entropy of the policy. This balance between exploration and exploitation helps the
agent avoid suboptimal deterministic policies [39], [40].

The key components of SAC include [39]:

• Policy Network (Actor): generates a stochastic policy c(0 |B), which outputs actions given the state.

• Q-Value Networks (Critics): two Q-value networks, &1 and &2, are used to evaluate the expected return
for state-action pairs, reducing overestimation bias.

• Entropy Regularization: the inclusion of an entropy term UH(c(·|B)) in the objective function, where U
is a temperature parameter, encourages a diverse set of actions, enhancing exploration. The temperature
parameter U can be automatically adjusted during training to maintain a desired level of exploration.

The SAC training process involves updating the policy and Q-functions iteratively. The objective for the policy
update incorporates the expected Q-value and an entropy term, as shown in Equation 3.2:

� (c) = Ö(B,0)⇠D


min
8=1,2

&8 (B, 0) � U log c(0 |B)
�

(3.2)

SAC’s off-policy nature allows it to use data from outside the current policy distribution, improving sample
efficiency and robustness. The Q-functions are updated to minimize the Bellman residual, and the policy is
updated using a gradient method to maximize the expected reward while considering the entropy bonus. SAC’s
use of both Q-functions and entropy regularization enhances policy robustness and sample efficiency, making
it suitable for complex environments like satellite operations. Algorithm 2 shows the logic of this method [39].
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Algorithm 2: Soft Actor-Critic [39]
1: Input: initial policy parameters \, Q-function parameters q1, q2, empty replay buffer D
2: Set target parameters equal to main parameters qtarg,1  q1, qtarg,2  q2
3: repeat
4: Observe state B and select action 0 ⇠ c\ (·|B)

5: Execute 0 in the environment
6: Observe next state B

0, reward A , and done signal 3 to indicate whether B0 is terminal
7: Store (B, 0, A, B

0
, 3) in replay buffer D

8: if B0 is terminal then
9: Reset environment state

10: end if
11: if it’s time to update then
12: for j in range(however many updates) do
13: Randomly sample a batch of transitions, ⌫ = {(B, 0, A, B

0
, 3)} from D

14: Compute targets for the Q functions:

H(A, B
0
, 3) = A + W(1 � 3)

✓
min
8=1,2

&targ,8 (B
0
, 0̃
0
) � U log c\ (0̃

0
|B
0
)

◆
, 0̃

0
⇠ c\ (·|B

0
)

15: Update Q-functions by one step of gradient descent:

rq8

1
|⌫|

’
(B,0,A ,B0 ,3)2⌫

�
&q8 (B, 0) � H(A, B

0
, 3)

�2 for 8 = 1, 2

16: Update policy by one step of gradient ascent:

r\

1
|⌫|

’
B2⌫

✓
min
8=1,2

&q8 (B, 0̃\ (B)) � U log c\ (0̃\ (B) |B)

◆
,

where 0̃\ (B) is a sample from c\ (·|B) which is differentiable w.r.t. \ via the reparameterization
trick.

17: Update target networks:

qtarg,8  dqtarg,8 + (1 � d)q8 for 8 = 1, 2

18: end for
19: end if
20: until convergence

3.3.6 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is an on-policy reinforcement learning algorithm that aims to improve the
stability and reliability of policy updates. PPO uses a surrogate objective function to restrict the extent to which
the new policy can deviate from the old policy, preventing large updates that could lead to divergence [38], [37].
This makes PPO particularly robust for environments with highly variable rewards, such as satellite operations.

PPO combines the benefits of Trust Region Policy Optimization (TRPO) and simpler optimization methods,
achieving a balance between performance and computational efficiency. It uses a clipped surrogate objective to
limit the policy updates, which can be seen in Algorithm 3 [39], [41].
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PPO is classified as an on-policy algorithm, meaning it uses the data generated by the current policy to update
the policy itself. This requires careful handling of exploration, as the data collection and policy improvement
steps are closely tied, ensuring that updates are based on the most recent policy interactions.

Algorithm 3: Proximal Policy Optimization [39]
1: Input: initial policy parameters \0, initial value function parameters q0
2: for : = 0, 1, 2, . . . do
3: Collect set of trajectories D: = {g8} by running policy c: = c(\:) in the environment.
4: Compute rewards-to-go '̂C .
5: Compute advantage estimates �̂C (using any method of advantage estimation) based on the current value

function +q: .
6: Update the policy by maximizing the PPO-Clip objective:

\:+1 = arg max
\

1
|D: |)

’
g2D:

)’
C=0

min
✓
c\ (0C |BC )

c\: (0C |BC )
�̂
c\: (BC , 0C ), 6(n , �̂

c\: (BC , 0C ))

◆
,

typically via stochastic gradient ascent with Adam.
7: Fit value function by regression on mean-squared error:

q:+1 = arg min
q

1
|D: |)

’
g2D:

)’
C=0

�
+q (BC ) � '̂C

�2
,

typically via some gradient descent algorithm.
8: end for

3.3.7 Multi-Agent Problems

In multi-agent reinforcement learning (MARL), multiple agents interact within a shared environment, often
with overlapping goals or resources (Figure 3.4). This approach is especially useful in scenarios like our
multi-satellite environment, where coordination between satellites can enhance system performance.

Figure 3.4 Multi-agent reinforcement learning process [29].

Cui et al. [42] utilized double Deep Q-Networks for communication scheduling in a constellation of Earth-
orbiting satellites, demonstrating superior performance compared to genetic algorithms in terms of computation
time and efficiency. Dalin et al. [43] applied the Multi-agent Deep Deterministic Policy Gradient (MADDPG)
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algorithm to address multi-satellite tasking, achieving results comparable to other solvers. However, both studies
faced limitations in handling resource constraints and scaling algorithms beyond fixed constellation parameters
during training.

MARL encompasses a variety of problem formulations and algorithms tailored to multi-agent decision-making
challenges. Key aspects of MARL include different reward structures—fully cooperative, competitive, and
mixed cooperative/competitive—and training methodologies. For instance, one can model cooperative training
by enhancing global rewards when certain objectives are achieved. In the case of competitive environments,
a negative reward can be applied to agents that did not accomplish the goals or were beaten by other agents.
These methodologies range from independent learning, where each agent learns its own policy, to centralized
learning, where a joint policy is learned for the entire action space, and Centralized Training with Decentralized
Execution (CTDE), which balances the strengths of centralized and decentralized approaches.

Independent learning methods like Independent Q-learning (IQL), Independent Advantage Actor-Critic (IA2C),
and Independent Proximal Policy Optimization (IPPO) face challenges such as non-stationarity and partial ob-
servability, yet they remain practical solutions. In contrast, centralized approaches can be more computationally
intensive due to the exponential growth in joint action spaces but do not suffer from non-stationarity [5].

CTDE methods, such as MADDPG, Counterfactual Multi-Agent (COMA) policy gradient, central-V, Value
Decomposition Networks (VDN), and QMIX, offer a compromise by leveraging full observability during training
while allowing decentralized execution. This hybrid approach can be particularly beneficial in environments
like satellite constellations, where decentralized decision-making is essential during operation but centralized
strategies can optimize learning [44], [21], [20].

Figure 3.5 Mapping agents to policies in multi-agent reinforcement learning problems [35].

As illustrated in Figures 3.4 and 3.5, the multi-agent setup and different policy mappings in DRL allows for
a diverse range of interactions among agents, including collaborative, competitive, and mixed strategies. This
heterogeneity provides a more realistic approach to tackling complex problems like the FSS, where multiple
satellites may need to coordinate or compete for limited resources.
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4 Simulation and Training Framework

4.1 Background

In order to obtain a set of policies that can achieve a good performance when working with a group of federated
satellites, giving the lack of real data, the development of a proper simulation framework is one of the main and
most important tasks in this project.

An essential characteristic and requirement of this system is scalability, therefore, a modular simulator is the
chosen approach. It needs at least three main components: the satellites, the federation simulator and the RL
environment that serves as connection with the Python RL libraries and AI frameworks.

The steps to integrate all three components starts by including the participant satellites (both observers and
targets) in the simulator and then wrap everything using the Gymnasium [45], [46] and Ray RLlib [36] APIs,
which makes sure all the interfaces with RL libraries are correct. Figure 4.1 illustrates the main higher
architecture of the framework. A sequence diagram of the whole framework can also be found in the Annex
(Figure A.5).

Figure 4.1 Training and simulation framework architecture.

The simulator and satellites parts used for the framework are developed based on the work by Messina [6]. While
Messina’s work is primarily focused on information propagation among different communication structures
(centralized, decentralized, etc.), observation tasks and other features such as charging and partial observations
and communications were also implemented for this project. This allows for further capabilities and tests,
enhancing the federation simulation.

Regarding the RL libraries, the two main available options are SB3 [47] and Ray RLlib [36]. Although there is
not much literature on the comparison between these two tools, a common consensus among users is that RLlib
is the best for managing large-scale projects, while SB3 provides an easier and more user friendly interface
for speed-up smaller ones. Therefore, RLlib was the chosen option, since it allows for distributed training
and it has great MARL support. The access to Leibniz Supercomputing Centre (LRZ) AI Cluster provides
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powerful machines equipped with state-of-the-art hardware like NVIDIA A100s (available hardware and more
information can be seen in their documentation webpage [48]). In order to leverage these resources, RLlib,
despite its steeper learning curve, has all the necessary capabilities to scale up the project and obtain a better
overall performance. Table 4.1 displays the algorithm catalog available in Ray RLlib. Moreover PyTorch was
the chosen option for the RL framework, since it works with all the algorithms we use, even with multi-GPU.

Algorithm Frameworks Discrete Actions Continuous Actions Multi-Agent Model Support Multi-GPU

APPO tf + torch Yes +parametric Yes Yes +RNN, +LSTM auto-wrapping, +Attention, +autoreg tf + torch
BC tf + torch Yes +parametric Yes Yes +RNN torch
CQL tf + torch No Yes No tf + torch

DreamerV3 tf Yes Yes No +RNN (GRU-based by default) tf
DQN, Rainbow tf + torch Yes +parametric No Yes tf + torch
IMPALA tf + torch Yes +parametric Yes Yes +RNN, +LSTM auto-wrapping, +Attention, +autoreg tf + torch
MARWIL tf + torch Yes +parametric Yes Yes +RNN torch
PPO tf + torch Yes +parametric Yes Yes +RNN, +LSTM auto-wrapping, +Attention, +autoreg tf + torch
SAC tf + torch Yes Yes Yes torch

Table 4.1 Overview of available algorithms in RLlib (v.2.10) [36]

4.2 Implementation Methodology

In the next sections, the main parts of the code are presented to provide an specific definition of Section 2.
The implementation methodology outlines the steps and techniques used to integrate the various components
of the FSS simulation framework. This framework is designed to support the development and evaluation of
reinforcement learning algorithms in a simulated satellite constellation environment. By carefully defining
the problem space and the interactions between different system components, we ensure that the simulation
environment accurately reflects the complexities and challenges inherent in real-world satellite operations.

4.2.1 Decentralized Partially Observable Markov Decision Process Formulation

In our FSS simulation, we utilize the Decentralized Partially Observable Markov Decision Process (Dec-
POMDP) framework. This framework is essential for modeling systems with multiple agents, where each agent
has only partial information about the global state and must make decisions considering the potential actions
of other agents. The inherent complexity of Dec-POMDPs arises from the need for coordination among agents
and the computational challenges associated with high-dimensional state and action spaces.

A Dec-POMDP is formally defined by the tuple (# , (, {�8}, %, {'8}, W, {$8}, /), as outlined in Section 2, to
which we include targets ()) for completeness. Below is a brief summary of each parameter, with detailed
explanations provided in the following subsections. Notably, while the discount factor (W), the transition
probability matrix (%), and the observation probability matrix (/) are key theoretical components, they are
not explicitly defined in the simulation setup. Instead, the RL algorithms implicitly handle these elements
during training. The discount factor is a predefined parameter that influences the weighting of future rewards in
the cumulative reward calculation, encouraging long-term planning. The transition probabilities, although not
directly modeled, are effectively learned by the agent through interactions with the environment, as the agent
updates its policy based on observed state transitions and rewards.

• # represents the number of agents in the system, corresponding to the observer satellites in our FSS. For
our use case, we used 20 agents.

• ) denotes the number of target satellites present in the simulation. In our specific case, there are 20
targets.

• ( is the set of possible states of the environment, including all relevant variables such as satellite positions,
velocities, and communication statuses.
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• {�8} denotes the set of actions available to each agent 8. In our case there are 2 + ) actions per agent,
making a total of 22 possible actions for our use case. The first action accounts for stand-by, the second one
tries to propagate the information throughout the network and the rest account for observing Target[�8�2].

• % is the transition probability matrix, describing the probability of moving from one state to another given
the current state and the actions of all agents. This encapsulates the physical dynamics of the satellites
and their interactions.

• {'8} is the reward function for each agent 8, providing feedback based on the actions taken and their
outcomes. The reward functions are designed to align with mission objectives, giving positive rewards
when successfully communicating with other observer or when obtaining a high-quality observation of a
target.

• W is the discount factor, reflecting the importance of future rewards compared to immediate ones. A
higher value emphasizes long-term planning.

• {$8} represents the set of observations available to each agent 8, which may include partial information
about the state of other satellites and targets. A more detailed view on this component is given in Section
4.2.4.

• / is the observation probability matrix, detailing the likelihood of receiving a particular observation given
the state and actions. This accounts for the partial and uncertain nature of information in the system.

Again, the primary objective in a Dec-POMDP framework is to find a set of policies {c8} for the agents that
maximize the expected cumulative reward shown in Equation 3.1

In the context of satellite operations, each satellite (agent) operates with partial and dynamic information about
the environment and other satellites. For instance, an agent may not always know the exact position or status
of another satellite due to limited communication windows or sensor constraints. This scenario fits well within
the Dec-POMDP framework, as it inherently handles the challenges of partial observability and the need for
decentralized decision-making.

This Dec-POMDP formulation allows us to model the complexities of coordinating multiple satellites, each
making decisions based on limited information, to achieve shared objectives. This framework is crucial for
developing and testing advanced reinforcement learning algorithms tailored for multi-agent systems in dynamic
and uncertain environments.

4.2.2 Satellites

This part is fundamental for accurately simulating the physical and functional attributes of satellites, encom-
passing two primary types: observers, responsible for gathering data and observations, and targets, which serve
as objects of observation.

While the satellite’s capabilites and main characteristics were reviewed in Section 2.4, in this part a more
architectural and code-oriented view is described.

The core structure of the code includes the Satellite, ObserverSatellite, and TargetSatellite
classes. The Satellite class serves as the base, providing essential attributes and methods shared across all
satellites, such as those for orbital mechanics and power systems explained in Section 2.4. TheObserverSatellite
class builds upon this foundation by incorporating specific functionalities required for observation and com-
munication missions, including calculating pointing accuracy and managing observational data received from
others.

The ObserverSatellite and TargetSatellite classes inherit all the properties of the base Satellite
class, as depicted in Figure 4.2. The ObserverSatellite class, in particular, extends these basic functional-
ities to include advanced methods for conducting observation missions, processing data, and coordinating with
other satellites.
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Figure 4.2 Instantiation of satellite class.

Key components of the Satellite class are based on Messina’s work [6] and include:

• Propagate Orbit: simulates the satellite’s orbit using Keplerian elements and updates the satellite’s
position and velocity.

• Propagate Attitude: updates the satellite’s orientation over time, using angular velocity and quaternion
representation.

• Distance Calculation: computes the distance between satellites, crucial for assessing communication
and observational capabilities.

• Pointing Direction Calculation: determines the satellite’s pointing direction, essential for observation
missions.

• Battery Management: manages the satellite’s battery charge, accounting for sunlight exposure and solar
panel efficiency.

• Sunlight Exposure Calculation: calculates the amount of sunlight received by the satellite’s solar panels,
considering eclipse conditions and orientation.

• Communication and Data Handling: oversees data storage and communication capabilities, assessing
the satellite’s ability to communicate based on its state and distance to other satellites.

The complete attributes and methods of the Satellite class can be found in Figure A.1 in the Annex A
section. Figure A.2 of the Annex details the complete attributes and methods of the ObserverSatellite
class, highlighting its enhanced capabilities for observational tasks.

Key components of the ObserverSatellite class include the following:

• Observation Techniques: methods for evaluating pointing accuracy, observing targets, and updating
data and contact matrices, which are critical for the coordination and data exchange among satellites.

• Observation Management: functions for assessing the status and quality of observations, tracking
observation counts, and managing observation-related data.

• Communication Management: methods to determine communication capabilities with other satellites,
based on the type of coordination network (centralized, decentralized, etc.).

• Data Processing: manages the processing state and availability of new data for communication with
other satellites.

• Energy and Storage Management: detailed tracking of energy consumption rates for various activities
(standby, communication, observation) and management of data storage capacities.

Observation, communication, data processing and energy and storage management capabilities are based on
Messina’s work [6].
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This class structure supports the simulation’s objective of accurately modeling the behaviors and interactions
within a satellite constellation, thereby facilitating the development and refinement of advanced reinforcement
learning algorithms in a controlled and realistic environment.

4.2.3 Simulator

The simulator file is the core component that models the dynamics and interactions within the satellite federation.
It encompasses the mechanisms for information propagation and observation tasks, ensuring realistic and
computationally efficient processing of agent actions. While detailed orbital mechanics are managed within the
satellite classes, the simulator focuses on the interactions and coordination among the satellites.

The simulator framework is built around the Simulator class, with specific subclasses as displayed in Figure
4.3 to handle different communication structures within the federated satellite system. These subclasses define
the rules for how satellites communicate and coordinate, reflecting different real-world operational scenarios.

The simulator inherits and extends functionalities originally developed by Messina [6], integrating additional
capabilities such as battery management, object detection, and observation coordination.

Figure 4.3 Instantiation of simulator class.

Key components of the Simulator class include:

• Time Step Management: manages the simulation time steps, ensuring consistent progression and
synchronization across all simulation elements.

• Action Processing: interprets and processes actions taken by the satellites, updating the internal state of
the simulation accordingly. This component is crucial for evaluating the outcomes of different strategies
implemented by the RL agents.

• Reward Calculation: computes a reward signal to guide RL training, based on the outcomes of the
agents’ actions. This mechanism helps the RL model learn optimal behaviors over time.

• Termination Condition: defines conditions under which the simulation episode ends, such as reaching
a maximum number of time steps or achieving specific mission objectives.

• Communication and Data Exchange: manages the data communication between observer satellites,
including updating adjacency and contact matrices. This feature is particularly important for simulating
networked operations and decentralized decision-making processes.

• Energy and Storage Management: tracks energy consumption and storage utilization, critical for
maintaining operational realism, especially when considering the limited resources available on satellite
platforms.
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The comprehensive attributes and methods of the Simulator class are illustrated in Figure A.3 in the Annex.
This structure supports a modular approach, allowing for easy adaptation and integration with various RL
libraries and APIs.

4.2.4 Federated Satellite System Environment

The environment file (FSS_env) establishes a comprehensive environment for simulating, training, and deploy-
ing reinforcement learning algorithms within the Federated Satellite System (FSS). This environment is built
upon Gymnasium’s Multi-Agent environment framework [46], providing a standard interface for interacting
with RL algorithms. Gymnasium, originally developed by OpenAI and now maintained by the Farama Foun-
dation, offers a robust platform for developing and comparing RL algorithms through a standardized API and a
suite of environments [45].

The FSS_env class inherits from Ray RLlib’s MultiAgentEnv class, setting up a simulation with multiple
satellite agents, targets and a simulator. This environment enables seamless interaction with algorithms by
standardizing inputs and outputs, making it compatible with various RL frameworks. The key components that
can be extracted from the class are:

• Action Space: the action space is defined as a discrete set of actions, encompassing the primary operations
a satellite can perform. This includes stand-by, communicating with other satellites and observing targets.
The exact number of actions is determined by the number of targets like defined in the Dec-POMDP,
forming a space of 2 + ) possible actions.

• Observation Space: the observation space is a complex, continuous space represented by a matrix that
encapsulates the state of each satellite. Under includes details such as orbital parameters, battery levels,
storage capacity, communication status, and observation status of targets.

• Reset Function: this function initializes the simulator and satellites, setting up the initial conditions for
the simulation. It returns the initial state of the environment, preparing it for the RL agent’s interaction.

• Step Function: the step function updates the state of the simulator based on the actions taken by the
agents. It calls the Simulator class step function and runs it until a special event is detected.

• Special Event Detection: although not explicitly included in the class methods, this feature identifies
critical events that might significantly alter the state of the environment, such as events in which two
satellites become close enough to communicate or observe. These events trigger agent responses in the
simulation, making it more efficient to train by only asking the agents to compute actions whenever they
can obtain a positive rewards and avoiding "empty" steps in which the best possible action is to stand-by.
Nevertheless, most agents in the special event steps also have to learn to stand-by and not waste resources
if they are not the ones involved in the event, making sure the policy is trained in all kind of situations.

The complete list of methods and attributes of the environment class can be seen in Figure A.4 in the Annex.
However, more detailed description of the spaces and reward function is given here.

State Space

The state space in the FSS_env class encompasses all possible states that the system can occupy. This
comprehensive space includes both observable and underlying unobservable states, capturing the full complexity
of the environment.

In detail, the state space consists of:

• State Variables: These include complete orbital parameters (such as semimajor axis, inclination, ec-
centricity, etc.) for each satellite, battery levels, data storage capacities, communication statuses, and
observation statuses for each satellite.
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• Dimensionality: Given the number of satellites and the complexity of the data (positions, velocities,
system statuses), the state space is high-dimensional. For example, the state of each satellite may
be represented by a feature vector, which includes various aspects like position coordinates, velocity
components, energy levels, and data storage statuses.

Observation Space

The observation space of the DRL problem is dynamically structured to capture the state of each satellite and
the system as a whole. This includes the following parameters:

Parameter Description Data Type

observer_satellites Orbital parameters of observer satellites Continuous
band Own communication band identifier (ranging from 1 to 5) Discrete

availability Own availability status Binary
target_satellites Target satellites’ position and velocity Continuous

battery Battery level of observers Continuous
storage Storage level of observers Continuous

observation_status Observation status of target satellites Discrete
pointing_accuracy Pointing accuracy of observer satellites towards target satellites Continuous
communication_status Communication status between observers Binary
communication_ability Communication ability with other observer satellites Binary

Table 4.2 Information shared or/and available for each Observer Satellite

Bear in mind that these attributes are dynamic and partial, depending on each observer communications and
observations as has been established in the Dec-POMDP formulation.

Action Space

The action space in the FSS_env environment defines the set of all possible actions that each agent (satellite)
can take. This space is critical for the RL agents as it dictates their potential decisions at any given time.

Key features of the action space include:

• Discrete Actions: each agent can select from a discrete set of actions, which include operations like
observing a target, communicating with other satellites, or engaging in standby modes. The number of
actions is determined by the number of targets, resulting in an action space of size 2 + ) .

• Action Mapping: actions are encoded as integers, with each integer corresponding to a specific action
such as selecting a target to observe or initiating a communication sequence. This encoding simplifies
the integration with RL algorithms that require discrete action spaces.

Rewards

The reward is a critical component of the FSS_env environment, guiding the RL agents towards achieving the
desired objectives. It defines the rewards or penalties that agents receive based on their actions and the resulting
state transitions.

The rewards are designed to:

• Encourage Effective Observations: agents receive positive rewards for successfully observing targets,
particularly when such observations improve the overall knowledge state of the system (to avoid repetitions)
or are taken with a high pointing accuracy.
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• Promote Efficient Communication: rewards are also granted for effective communication between
satellites.

• Penalize Inefficiency: negative rewards or penalties are imposed for actions that waste resources or
deplete them, such as not completing a data transmission, running out of battery or filling up the storage.

• Incorporate Long-Term Goals: the reward incorporates factors that promote long-term collaborative
strategic goals, giving points when the main mission (all the participants have observation data on all the
targets) has been accomplished, and ensuring continuous system-wide situational awareness.

4.3 Validation of Simulation Framework

To ensure the accuracy and reliability of the developed FSS simulation framework, a comprehensive validation
process was conducted. This process involved several tests designed to verify key functionalities, including orbit
propagation, attitude propagation, battery management, communication effectiveness, and observation accuracy.
These tests are crucial for confirming that the simulation behaves as expected under various conditions and
scenarios.

The validation tests were implemented using the unittest framework in Python, with a consistent set of initial
conditions applied across all tests to maintain reproducibility and control.

In the orbit propagation test, the custom Keplerian orbit propagation results were compared against the outputs
from the poliastro library [49], which serves as a reference standard. The comparison involved calculating
position and velocity errors between the custom propagation and poliastro’s results, ensuring that the
error margins for position and velocity remained within acceptable limits—specifically less than 1000 meters
(approximately 0.01% of the total orbit magnitude) for position and 100 m/s (roughly 1% of the magnitude) for
velocity.

The attitude propagation test validated the quaternion-based attitude propagation mechanism by comparing it
against the results obtained using scipy’s solve_ivp function. The accuracy of quaternion propagation was
assessed by measuring the maximum quaternion error, which was maintained below a threshold of 0.1.

For the battery test, energy usage over time was simulated, accounting for various operational modes such
as standby, communication, and observation. The test evaluated the trajectory of energy consumption and
availability over a simulated period, ensuring that energy calculations were accurate and that energy levels did
not exceed storage capacity or fall below zero.

The distance and effective data rate test verified the calculation of distances between satellites and the corre-
sponding effective data rates. It checked the correct calculation of distances based on satellite positions and
ensured that data rate determinations were accurate, producing non-negative values aligned with the expected
communication capabilities.

The observation accuracy test assessed the ability of satellites to correctly identify and observe targets within
their field of view and maximum distance. Various scenarios with different distances and attitudes were tested,
ensuring that observations only occurred when the target was within the field of view and the maximum detection
distance. Additionally, the test verified that the observation status matrix, cumulative pointing accuracy, and
observation counts were accurately updated based on the satellite’s observational capabilities and configurations.

The validation results indicated that all tests were executed successfully, confirming the correctness and robust-
ness of the simulation framework. Detailed test results and error margins are documented in the Annex A.3 for
reference. The validation process provided confidence in the simulation’s ability to accurately model satellite
behaviors and interactions, laying a solid foundation for subsequent research and development efforts utilizing
this framework.
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5 Comparative Analysis of Training Process of
Reinforcement Learning Algorithms

The training and evaluation of reinforcement learning (RL) algorithms were conducted using an HPC cluster
provided by the Leibniz Supercomputing Center (LRZ) [48], specifically utilizing the HGX A100 Architecture.
Due to the intensive computational requirements and the extensive data necessary for training, this setup was
chosen after initial failed attempts to train with a MacBook Pro and a Jetson AGX Orin.

For reference, each training iteration in the MacBook and Jetson takes approximately between 90 and 120
minutes, while in the HGX one of this iterations is computed in not more than 10 or 12 minutes.

In addition, Ray RLlib was selected for its scalability and support for distributed training, allowing for efficient
management of complex, large-scale simulations. The choice of hardware significantly impacted the training
efficiency due to the enhanced computation speed provided by GPUs, which is vital for the matrix multiplications
in DRL. The training utilized the HGX A100 Architecture, part of the LRZ cluster:

Specification Details
Slurm Partition lrz-hgx-a1��-8�x4

Number of nodes 5
CPU cores per node 96
Memory per node 1 TB
GPUs per node 4 NVIDIA A100
Memory per GPU 80 GB

Table 5.1 HGX A100 Architecture specifications used in the training [48].

The environment was configured with the parametersnum_targets, num_observers, communication_type,
time_step, andduration. The resource allocation was handled through settings likenum_rollout_workers
(parallel actors for simulating environment interactions), num_envs_per_worker, num_cpus_per_worker,
and num_gpus_per_worker.

5.1 Hyperparameter Search

For hyperparameter optimization, a grid search with the advanced ASHA Scheduler and Optimizer [50] was
employed. A major assumption of SHA and ASHA is that if a trial performs well over an initial short time
interval it will perform well at longer time intervals, combining random search with principled early stopping
in an asynchronous way. This optimization included 20 samples per algorithm, with the possibility of early
stopping if results were significantly below expectations. The analysis focused on three RL algorithms: Deep
Q-Network (DQN), Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO).

The hyperparameter search and training process were implemented using Python with Ray and Torch libraries.
Key configurations included environment settings, resource settings, and search space specifications.
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5.1.1 Deep Q-Network

For DQN, the hyperparameter search space included:

• Target network update frequency (target_network_update_freq): choice between 500, 1000, 2000
or 3600.

• Learning rate schedule (lr_schedule): a selection from [[0, 1e-4], [1000000, 1e-5]] or [[0, 1e-3],
[1000000, 1e-4]].

Target Network Update Frequency Learning Rate Schedule Reward

2000 [[0, 1e-4], [1000000, 1e-5]] 1344.07
1000 [[0, 1e-3], [1000000, 1e-4]] -626.465
2000 [[0, 1e-3], [1000000, 1e-4]] -1000.35
500 [[0, 1e-4], [1000000, 1e-5]] -972.159
2000 [[0, 1e-3], [1000000, 1e-4]] -975.798
2000 [[0, 1e-3], [1000000, 1e-4]] -942.652
1000 [[0, 1e-4], [1000000, 1e-5]] 1068.09
2000 [[0, 1e-3], [1000000, 1e-4]] -1024.6
500 [[0, 1e-4], [1000000, 1e-5]] -743.036
3600 [[0, 1e-3], [1000000, 1e-4]] -1032.45
1000 [[0, 1e-3], [1000000, 1e-4]] -1115.76
1000 [[0, 1e-3], [1000000, 1e-4]] -1106.2
1000 [[0, 1e-4], [1000000, 1e-5]] -980.545
3600 [[0, 1e-3], [1000000, 1e-4]] -2348.8
3600 [[0, 1e-3], [1000000, 1e-4]] -1023.31
500 [[0, 1e-4], [1000000, 1e-5]] 277.001
500 [[0, 1e-4], [1000000, 1e-5]] -1033.24
3600 [[0, 1e-4], [1000000, 1e-5]] -987.896
3600 [[0, 1e-4], [1000000, 1e-5]] -996.772
3600 [[0, 1e-4], [1000000, 1e-5]] -1025.75

Table 5.2 DQN Hyperparameter Search Results

The ASHA Scheduler managed the trials based on the episode reward mean, optimizing the parameters to
enhance training efficiency. Results of the search are displayed in Table 5.2, with the highlighted value meaning
the chosen configuration.

5.1.2 Soft Actor-Critic

For SAC, the hyperparameter search space included:

• Learning rate (lr): chosen from a uniform distribution ranging from 1e-7 up to 1e-4.

• Discount factor (gamma): random sample from a random distribution between 0.9 and 0.99.

• GAE lambda (lambda): a random selection from 0.9 to 1.0.

The ASHA Scheduler managed the trials just as in the previous case, with the results shown in Table 5.3,
highlighting the chosen configuration.

5.1.3 Proximal Policy Optimization

For PPO, the hyperparameter search space included:

• Learning rate (lr): ranging from 1e-7 to 1e-4.

• Discount factor (gamma): from 0.9 up to 0.99.

• GAE lambda (lambda): uniformly distributed choice from 0.9 to 1.0.
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Gamma Learning Rate Reward

0.979053 1.22718e-06 -1746.93
0.942453 8.10283e-05 -2713.53
0.930610 2.78385e-05 -1733.62
0.958065 1.31135e-05 -1681.76
0.910371 1.07042e-07 -1699.19
0.984420 1.49338e-06 -29537.8
0.964084 1.88099e-05 -28790.8
0.970649 4.00097e-05 -1785.26
0.963136 6.31194e-05 -1773.75
0.946066 5.52082e-07 -1721.47
0.978031 3.08891e-06 -413.898
0.967298 3.38082e-05 -1750.58
0.927746 7.10176e-07 -1722.01
0.950303 8.55035e-05 -2104.61
0.948195 2.11867e-07 -1719.45
0.925953 6.96477e-06 -1850.80
0.917211 1.61142e-07 -1712.76
0.930684 3.62808e-05 -1730.05
0.939489 3.59890e-07 -1741.40
0.905464 8.59721e-05 -1750.84

Table 5.3 SAC Hyperparameter Search Results

Gamma Learning Rate Lambda Reward

0.923488 1.69668e-05 0.992815 -1160.51
0.92444 9.89899e-05 0.929464 -1280
0.977139 8.44094e-05 0.904515 -1122.54
0.954782 4.15919e-05 0.924528 -1131.59
0.907877 6.92507e-05 0.938835 -1273.36
0.984239 1.99378e-05 0.952727 -1281.85
0.931683 6.92763e-05 0.929491 -1113.12
0.932597 1.66651e-05 0.9202 -1080.1
0.923478 5.93653e-05 0.933646 -1130.07
0.970321 9.66406e-05 0.97461 -1287.03
0.943435 1.85936e-05 0.908595 -1272.82
0.914669 7.80153e-05 0.946209 -1110.51
0.927431 6.12855e-05 0.998174 -1264.96
0.978612 9.82495e-05 0.939177 -1276.17
0.919107 4.21289e-05 0.919598 -1109.66
0.932353 2.98588e-05 0.971295 -1117.3
0.930893 1.65387e-05 0.941362 -1303.55
0.928018 9.16354e-05 0.981015 -1283.2
0.957544 9.57006e-05 0.996926 -1165.02
0.946976 1.59942e-05 0.901437 -1103.02

Table 5.4 PPO Hyperparameter Search Results
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Results of the tuning are summarized in Table 5.4, again having the best results highlighted in cyan.

5.2 Training

The training framework and infrastructure played a vital role in achieving efficient and scalable training for
the RL algorithms. It must be stated that all trainings were carried out for nearly 3 days using the uncon-
strained decentralized coordination configuration. Nevertheless all three algorithms are tested in centralized
and decentralized network configurations in the results part (Section 6).

Several frameworks facilitate the training of DRL agents by providing tools for managing the complexities of
data collection, parallelization, and model updating. While frameworks like Ray RLlib offer robust support
for parallelized training and multi-agent setups, others like SB3 provide reliable and fast implementations of
common RL algorithms. For this project, Ray RLlib has been chosen due to its scalability and support for
distributed training as was mentioned in previous sections. This Ray framework allows for the creation of
multiple "workers," which can either be local (within the same process) or remote (distributed across multiple
nodes), making this setup (see Figure 5.1) particularly advantageous for large-scale simulations and complex
environments, such as those encountered in satellite operations.

Effective resource allocation is key to optimizing the training process. Parameters like num_workers,
num_gpus, and num_cpus_per_worker allow fine-tuning of how resources are utilized. This ensures that
both the policy update and experience collection phases are performed efficiently, making full use of available
computational resources.

Figure 5.1 Training parallelization with Ray Rollout Workers.

The choice of hardware and infrastructure significantly impacts the efficiency and speed of the training process.
The use of GPUs accelerates the computation of neural network operations, which is critical in DRL due to the
large number of matrix multiplications involved. In distributed training setups, multiple GPUs or clusters can
be utilized to further enhance training speed and handle larger models.

5.2.1 Deep Q-Network

The DQN algorithm’s performance, as shown in Figure 5.2, reflects a gradual improvement over the course of
the training iterations. Initially, there is a significant dip in performance, which could be indicative of the agent’s
exploration phase where it is actively trying to discover better strategies. This behavior is common in DRL as
the DQN algorithm, through the process of exploration-exploitation, sometimes opts for suboptimal actions in
the short term to gather more diverse experiences.

After this initial drop, the algorithm’s performance begins to stabilize and improve steadily, indicating that the
DQN agent is effectively learning from its environment and refining its policy. The relatively smooth upward
trend post-exploration suggests that the DQN model is successfully leveraging its experience replay and the
learned Q-values are converging towards an optimal policy. However, the occasional minor fluctuations hint at
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the ongoing balance the agent is maintaining between exploration and exploitation, and the potential sensitivity
of DQN to certain hyperparameters such as the variable learning rate. Despite these fluctuations, the final stable
behaviour indicates a strong potential of the DQN model in this environment when appropriately tuned.

Figure 5.2 Normalized Episode Reward Mean against Training Iterations for DQN.

5.2.2 Soft Actor-Critic

The performance of the SAC algorithm, as seen in Figure 5.3, indicates a relatively flat progression in normalized
episode reward mean across the training iterations. This flat curve suggests that SAC did not experience
significant learning improvements during training, remaining mostly stagnant after an initial increase.

SAC is generally well-suited for continuous action spaces, where it excels by maintaining a balance between
exploration and exploitation through its entropy regularization. However, in this discrete action space scenario,
SAC may be struggling to apply its continuous action optimization principles effectively, leading to suboptimal
policy learning. The algorithm’s inability to improve further could also be due to suboptimal tuning of the
entropy coefficient, which plays a crucial role in guiding the exploration process. If the coefficient is too high,
the agent might focus too much on exploring, hindering its ability to exploit known good strategies; if too low,
the exploration might not be sufficient, leading to premature convergence to suboptimal policies, which seems
to be the case.

The relatively stable but low reward curve could also point to a mismatch between the algorithm’s assumptions
and the actual environment’s dynamics, suggesting that alternative algorithms or modifications to the SAC
approach might be necessary to achieve better performance in this specific task setup.
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Figure 5.3 Normalized Episode Reward Mean against Training Iterations for SAC.

5.2.3 Proximal Policy Optimization

The PPO algorithm’s performance, depicted in Figure 5.4, reveals a pattern of initial strong improvement
followed by high instability. In the early stages of training, PPO demonstrates a rapid increase in normalized
episode reward mean, which is characteristic of PPO’s ability to quickly capitalize on advantageous policies due
to its clipped objective function that stabilizes policy updates.

However, after reaching a peak, the performance starts to decline and fluctuates significantly. This behavior
suggests that while PPO initially found a promising policy, it struggled to maintain and refine it over time.
The observed instability could be attributed to the aggressive updates made by PPO, especially if the clipping
parameter or other hyperparameters such as learning rate were not finely tuned. Additionally, the volatility in
the reward curve might indicate that the algorithm is experiencing difficulties in dealing with the non-stationary
nature of the environment, which can occur in dynamic and complex tasks like those modeled in this simulation.

The subsequent decline in performance after the peak could also reflect an overfitting issue, where the agent’s
policy becomes overly specialized to particular scenarios encountered earlier in training, resulting in less
generalization to new situations. This highlights a potential need for further exploration of the hyperparameter
space or alternative strategies such as using a more conservative clipping threshold to promote a more balanced
exploration-exploitation trade-off.
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Figure 5.4 Normalized Episode Reward Mean against Training Iterations for PPO.

5.2.4 Comparative Analysis

The comparative analysis of the three algorithms’ performance is depicted in Figures 5.5 and 5.6. These plots
illustrate the normalized episode reward mean over training iterations and training time for all algorithms.

PPO initially outperformed the other algorithms by quickly achieving high rewards. However, its performance
exhibited significant instability as training continued, leading to fluctuations and a decline in reward mean. This
suggests that while PPO can rapidly identify strong policies, it struggles to maintain and improve them over
time, possibly due to the algorithm’s sensitivity to hyperparameter settings or the non-stationary nature of the
task environment.

DQN, on the other hand, demonstrated a more gradual and consistent improvement, with fewer fluctuations
after the initial exploration phase. This consistency indicates that DQN was able to steadily learn and refine its
policies, ultimately leading to robust performance. The final surge in DQN performance further underscores its
potential effectiveness in environments where stability and long-term policy optimization are critical.

SAC performed the weakest among the three algorithms, showing minimal improvement throughout the training
period. This poor performance is likely due to SAC’s inherent design, which is better suited for continuous
action spaces rather than the discrete action space used in this scenario. The lack of significant reward increases
suggests that SAC struggled to adapt to the specific challenges of this task, and may require further tuning or
different configurations to be effective in similar environments.

Overall, DQN and PPO show potential for effective application in satellite constellation management tasks, with
DQN being the most stable and reliable in this context. Future research might explore hybrid approaches that
combine the rapid learning of PPO with the stability of DQN, or investigate modifications to SAC that better
align with the discrete nature of the task.
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Figure 5.5 Normalized Episode Reward Mean over Training Iterations.

Figure 5.6 Normalized Mean Episode Rewards over Training Time.
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6 Results

This section presents the results of the simulation experiments, where different coordination configurations
were tested using the reinforcement learning algorithms presented. The focus is on three distinct coordination
types: unconstrained (fully) decentralized coordination, centralized coordination with a single central node, and
constrained (partially) decentralized coordination without central nodes.

In the fully decentralized coordination, all participants can talk to everyone, while in the constrained partially
decentralized approach only the observers sharing the same communication band are allowed to exchange
information between them.

Each scenario was simulated 100 times for each algorithm, and the results are discussed in this section. A random
Monte Carlo experiment was also conducted to provide a baseline comparison, highlighting the performance
differences between random actions and the trained policies. Moreover all data displayed in this chapter can be
found in the form of a table in the Annex A.4.

6.1 Validation of Policies

To further analyze the decision-making process of each agent, a series of 12 test scenarios was designed.
These scenarios were structured around three specific test cases, each with a predefined optimal action that the
agents were expected to select. The scenarios were tested under four different resource conditions, created by
combining low and high battery and storage levels. The detailed logic and outcomes of the tests are summarized
and can also be visualized in the Annex A.5.

Each test scenario was carefully crafted to isolate particular aspects of the agents’ decision-making processes.
For example, in the communication test scenario, Observers 1 and 2 were placed within communication range of
each other—specifically within 2325 km—to evaluate whether they could successfully identify and execute the
correct communication action. These observers were intentionally positioned to be isolated from the observation
test to prevent any overlap in test conditions.

For the observation test scenario, Observer 3 was positioned near Target 1, specifically within the observation
range of 263 km. This scenario was designed to test the agents’ ability to select the correct observation action.
Similar to the communication test, the observation test was isolated from other scenarios to ensure that the
agents’ decision-making could be evaluated without interference from other actions.

Additionally, an extra observer was included to test the stand-by scenario. This observer was positioned with a 90º
offset in true anomaly relative to the other observers, ensuring that it was isolated from both the communication
and observation tests. This configuration allowed the agent to evaluate the situation and correctly decide to take
no action (i.e., stand-by) when no other meaningful action was appropriate.
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(a) Low-Low (Battery, Storage) (b) Low-High (Battery, Storage)

(c) High-Low (Battery, Storage) (d) High-High (Battery, Storage)

Figure 6.1 Communication validation scenarios under different resource conditions. The correct action in these scenarios
is Action 1.

Figure 6.1 illustrates the communication scenario across the four resource conditions. The correct action for
this scenario is action 1. It can be observed that DQN and PPO agents frequently select the correct action,
though not consistently. The SAC agent, however, fails to select the correct action, repeatedly choosing action
11 regardless of the resource conditions.
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(a) Low-Low (Battery, Storage) (b) Low-High (Battery, Storage)

(c) High-Low (Battery, Storage) (d) High-High (Battery, Storage)

Figure 6.2 Observation validation scenarios under different resource conditions. The correct action in these scenarios is
Action 2.

Figure 6.2 shows the results for the observation scenario, where action 2 is the correct choice. Both DQN and
PPO agents show a tendency to select the correct action, with varying degrees of frequency depending on the
resource conditions. Conversely, the SAC agent again consistently fails, choosing action 11 in all scenarios.
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(a) Low-Low (Battery, Storage) (b) Low-High (Battery, Storage)

(c) High-Low (Battery, Storage) (d) High-High (Battery, Storage)

Figure 6.3 Stand-by validation scenarios under different resource conditions. The correct action in these scenarios is
Action 0.

Finally, Figure 6.3 presents the stand-by scenario, where the optimal action is to take no action (action 0). Here,
both DQN and PPO agents correctly choose the stand-by action more frequently, although their performance is
still inconsistent. The SAC agent continues its pattern of selecting action 11, demonstrating a lack of adaptability
to different situations.

In conclusion, while both PPO and DQN agents show potential for improvement and fine-tuning of their policies,
the SAC agent’s performance suggests that its policy is fundamentally flawed, as it consistently fails to adapt to
the scenarios presented. Nevertheless, the results from the SAC agent are included in the following sections for
comparative analysis.

6.2 Comparative Performance Analysis

In Figures 6.4, 6.5, and 6.6, we observe a visual comparison of key parameters across the three coordination
models. These radar charts provide a comprehensive overview of how each algorithm performed under different
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coordination scenarios by comparing metrics such as adjacency matrix percentage, global observation counts,
global communication counts, total data transmitted, and battery available at the end of the simulation.

The parameters (all normalized between 0 and 1) being compared are critical in evaluating the effectiveness of
each algorithm:

• Adjacency Matrix Percentage: this parameter represents the proportion of possible communication
links between observers that were successfully established during the simulation. A value of 1 indicates
that all observers were able to communicate with each other, while a value closer to 0 suggests that few
or none of the communication links were successfully established. This metric is crucial for assessing the
effectiveness of the coordination strategy in maintaining network connectivity among satellites.

• Global Observation Counts: this metric counts the total number of observations made by all observers of
the various targets in the simulation. It indicates how effectively the agents were able to gather information
about the environment, which is essential for mission success.

• Global Communication Counts: this parameter measures the total number of communications ex-
changed between observers. High communication counts suggest that the observers were actively sharing
information, which is critical for coordinated decision-making in a distributed satellite network.

• Total Data Transmitted: this metric quantifies the total amount of data transmitted between observers
during the simulation. Effective coordination strategies should maximize this value, as more data
transmission typically translates to better coordination and information sharing.

• Battery Available: this parameter indicates the amount of battery power remaining at the end of the
simulation. Efficient algorithms should aim to conserve battery life while still achieving high performance
in other metrics, as energy management is vital in satellite operations.

In the unconstrained decentralized coordination scenario (Figure 6.4), the PPO algorithm demonstrated superior
performance across most metrics. Notably, PPO excelled in maintaining battery life, indicating its efficiency in
energy management while still achieving high values in adjacency and global observation counts. This suggests
that PPO is able to balance effective communication and observation with energy conservation, making it
particularly well-suited for unconstrained decentralized environments where resource management is crucial.
Additionally, PPO showed strong performance in data transmission, which is vital for maximizing information
sharing in such scenarios. The DQN algorithm also performed well, though it slightly lagged behind PPO in
terms of observation counts, suggesting that while DQN is effective, it may prioritize different aspects of the
mission compared to PPO. The Monte Carlo baseline and SAC both showed considerably lower performance,
with SAC particularly struggling across all metrics, reinforcing its inadequacy in this context.

The centralized coordination model (Figure 6.5) presented a different set of challenges for the algorithms.
Here, PPO continued to perform well, especially in data transmitted, though its performance in adjacency
and battery conservation was somewhat reduced compared to the unconstrained decentralized coordination
scenario. This reduction suggests that PPO may not adapt as effectively to environments where a central
node dictates coordination, potentially due to the restrictive nature of centralized control. Interestingly, the
Monte Carlo method showed competitive performance in global observation counts and adjacency, likely due
to the stochastic nature of its actions occasionally resulting in favorable communication patterns. The DQN
algorithm, however, struggled significantly in this configuration, particularly in terms of data transmission
and global communication counts, indicating that it may not generalize well to centralized environments. As
expected, SAC continued to underperform, confirming its unsuitability for such tasks.

In the constrained decentralized coordination scenario (Figure 6.6), where no central node exists, the PPO
algorithm again demonstrated a balanced performance across all metrics, although it was not as dominant as in
the unconstrained decentralized coordination scenario. This suggests that while PPO is robust, its effectiveness
slightly diminishes in more complex and more restricted environments. The DQN algorithm showed some
improvement in adjacency and global communication counts compared to its performance in the centralized
scenario but still was short in data transmitted, indicating partial adaptability to decentralized structures. The
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Monte Carlo approach remained competitive in global observation counts, which may be attributed to random
variations that occasionally result in effective observation patterns. Again, SAC continued to show poor
performance, highlighting its inability to establish effective policies.

Overall, PPO consistently demonstrated superior performance across different coordination models, particularly
excelling in unconstrained decentralized environments (trained case) where its energy efficiency and balanced
approach to communication and observation provided clear advantages. In contrast, DQN showed potential but
struggled with generalization across different coordination structures, particularly in centralized environments,
suggesting that further tuning or training in these kinds of environments may be needed to improve its robustness.
The Monte Carlo baseline provided a useful comparison, occasionally performing competitively in less structured
environments, but overall it lacked the targeted efficiency of trained algorithms. Finally, SAC consistently failed
to perform across all coordination models, indicating that it may require significant modifications or alternative
approaches to be viable in similar scenarios.

Figure 6.4 Comparison of key parameters in the unconstrained decentralized coordination model.
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Figure 6.5 Comparison of key parameters in the centralized coordination model.

Figure 6.6 Comparison of key parameters in the constrained decentralized coordination model.

6.2.1 Resources Management

The PPO algorithm demonstrated a clear superiority in resource management, particularly in terms of extending
battery life. Across the different scenarios, PPO achieved an impressive increase in battery longevity, ranging
from 12% to as much as 55% compared to the other algorithms. This substantial enhancement in energy
efficiency indicates that PPO is highly effective in optimizing power consumption, which is critical for prolonging
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the operational lifespan of satellites in mission scenarios. However, it’s important to note that storage utilization
remained consistent across all tested algorithms and scenarios. This consistency suggests that while PPO excels
in managing dynamic resources like battery power, more static resources such as storage did not benefit from
similar optimization, possibly because the mission scenarios did not push storage capacity to its limits as we
planned.

6.2.2 Communication Tasks

The performance of the DQN algorithm was strong in the unconstrained decentralized coordination scenario for
which it was trained. However, its ability to generalize to other coordination configurations, such as centralized
and constrained decentralized setups, was limited, resulting in a noticeable decline in performance. This drop
highlights a potential issue with DQN which may require additional training or fine-tuning to perform optimally
in environments that differ significantly from its training conditions.

In contrast, PPO displayed remarkable adaptability, outperforming all other algorithms in the centralized
coordination configuration, even though it was not explicitly trained for this type of network. This adaptability
suggests that PPO has a robust capacity for handling dynamic and restrictive coordination environments, making
it a versatile choice for varying mission parameters.

Figures 6.7 and 6.8 further illustrate the differences in how these algorithms handle communication tasks. In the
unconstrained decentralized coordination scenario, both PPO and DQN prioritize data transmission as a means
of maximizing rewards. This is evident from the high total data transmitted, as seen in Figure 6.7. However,
in more restrictive coordination scenarios, both algorithms shift their focus towards observation tasks, as seen
by the lower number of communications per satellite in Figure 6.8. This shift indicates a strategic adjustment
where the algorithms seek to maximize their performance based on the constraints of the environment.

Figure 6.7 Total Data Transmitted (Bits) across different coordination scenarios.
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Figure 6.8 Number of Communications per Satellite across different coordination scenarios.

Therefore, the strengths of PPO in both resource management and communication adaptability are clear, making
it a robust choice for satellite operations that involve varying degrees of coordination freedom. Meanwhile,
the performance of DQN suggests that while it can be highly effective in familiar environments, it may require
additional tuning or training to achieve similar results in less familiar scenarios. The clear distinction in how
these algorithms prioritize tasks based on coordination constraints offers valuable insights for future mission
planning and algorithm selection.

6.2.3 Observation Tasks

While the quality of observations is highly influenced by external factors such as random orbit generation for
both observers and targets, making it somewhat arbitrary, the quantity of observations can still provide valuable
insights into the behavior of the algorithms. Figure 6.9 illustrates the number of observations per satellite across
different coordination scenarios.

In more restrictive coordination environments, both DQN and, more notably, PPO strategically increase their
observation count to accumulate more rewards. This behavior indicates that these algorithms adapt to the
constraints by focusing on maximizing the observable data they can gather, which directly translates into higher
rewards. This strategic adaptation is crucial in environments where communication is limited, as it allows the
algorithms to continue performing effectively despite the constraints.

In contrast, under the fully decentralized coordination scenario, these algorithms shift their focus from maximiz-
ing observations to prioritizing data transmission. This shift suggests that in environments where coordination
is not a limiting factor, PPO and DQN recognize the higher value of transmitting information across the network
rather than increasing the number of observations. This ability to adapt their strategy based on the coordination
environment demonstrates the flexibility and sophistication of these algorithms.

The Monte Carlo baseline, on the other hand, exhibits significant variability in the number of observations. This
variability is expected given the random nature of the Monte Carlo approach, which does not employ a strategic
method for maximizing observations or rewards. Despite this variability, PPO consistently outperforms the
baseline, reinforcing its effectiveness in both restrictive and open coordination scenarios. The consistency of
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PPO in optimizing for the overall reward, regardless of the scenario, highlights its robustness and reliability in
various operational environments.

Figure 6.9 Number of Observations per Satellite across different coordination scenarios.

6.3 Overall Mission Performance

The overall mission performance is assessed through various metrics, including observation status, mission
duration, and rewards. These metrics provide a comprehensive view of how well each algorithm performed in
terms of fulfilling the primary mission objectives.

Observation status is a critical metric, as it directly reflects the mission’s success in terms of observing and
sharing information about the targets. The observation status is defined as follows:

• 0 - Undetected: the target has not been detected by any satellite.

• 1 - Detected: the target has been detected, but it is not currently being observed.

• 2 - Being Observed: the target is actively being observed by a satellite.

• 3 - Fully Observed: the target has already been observed.

The closer the average observation status is to 3, the more successful the mission has been in propagating
information across the network. This metric provides a nuanced understanding of how effectively the satellites
were able to fulfill their primary observation tasks.

Figure 6.10 depicts the average observation status achieved by all participating satellites across different co-
ordination scenarios. This status is crucial as it represents the degree to which the mission’s primary objec-
tive—observing and sharing information—has been fulfilled.

Contrary to expectations, the Monte Carlo baseline, which employs random actions, surprisingly achieves
the highest observation status across all coordination scenarios. This outcome suggests that the inherent
randomness in Monte Carlo may occasionally lead to favorable outcomes, particularly in dynamic and less
predictable environments. However, this does not imply strategic superiority, as Monte Carlo lacks consistent
decision-making processes.

PPO and DQN, while designed to optimize observation and communication strategies, perform well but do not
surpass Monte Carlo in observation status. Notably, PPO performs consistently across all coordination types,
indicating its strong adaptability to different coordination constraints. In the fully decentralized coordination
scenario, both PPO and DQN show solid performance, although neither matches the peak observation status
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of Monte Carlo. In centralized coordination, PPO slightly edges out DQN, showing better resource allocation
and communication management. In partially decentralized coordination, PPO again maintains its consistency,
whereas DQN shows a slight drop in performance, indicating potential difficulties in managing resources without
a central node.

SAC, on the other hand, significantly underperforms in all coordination scenarios. This poor performance was
expected and highlights SAC’s struggle with the resource-sharing and coordination tasks essential for achieving
better observation statuses in these kinds of environments.

Figure 6.10 Mean observation status achieved in the simulation.

The duration of the simulation, illustrated in Figure 6.11, offers important insights into the efficiency of
each algorithm. A longer mission duration typically suggests that the satellites are effectively managing
their resources, thereby delaying the point at which a satellite runs out of battery or storage. Among the
algorithms, DQN stands out by significantly extending the mission duration, particularly in the unconstrained
fully decentralized coordination scenario. This indicates that DQN is highly efficient in resource management,
potentially prioritizing battery life to maximize mission longevity. However, despite the prolonged mission
duration, the battery levels at the end of the simulation are considerably lower in DQN than in PPO, as noted in
previous sections. This discrepancy suggests that while DQN may excel in overall resource management, PPO
performs better in maintaining individual battery levels.

Overall, the trade-off between mission duration and rewards becomes evident when considering the outcomes
in Figure 6.12. While DQN extends the mission duration, this does not necessarily translate into the highest
rewards. This implies that simply prolonging the mission may not align with an optimal reward strategy. In
contrast, PPO achieves a balance between mission duration and effective completion of objectives, securing
high rewards while maintaining reasonable mission lengths.
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Figure 6.11 Duration of the simulation in seconds.

Figure 6.12 highlights the disparities in reward allocation among the different algorithms. The Monte Carlo
approach, as expected, results in lower rewards due to its random action selection, which lacks the strategic
decision-making evident in the learning-based algorithms. Interestingly, both PPO and DQN achieve positive
rewards, yet there is a notable difference in how these rewards correlate with mission performance metrics like
observation status and mission duration. This discrepancy suggests that the reward function may require further
refinement to ensure it aligns more closely with mission-critical objectives, such as maximizing observation
status and ensuring efficient resource management.

Figure 6.12 Rewards achieved by different algorithms.

In conclusion, while PPO demonstrates a strong balance between maximizing rewards and achieving mission
objectives, DQN excels in prolonging mission duration but may need further tuning to align its strategy more
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closely with reward maximization. The surprisingly strong performance of the Monte Carlo baseline in terms
of observation status, despite its lack of strategic planning, underscores the importance of refining the reward
structure and potentially reconsidering the weighting of different mission objectives in the learning process. The
consistent underperformance of the SAC algorithm across all scenarios suggests that it may not be well-suited
for the discrete action space and coordination-focused environment of the FSS. This underperformance indicates
a need for further investigation into its applicability and perhaps a re-evaluation of its use in similar contexts.
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7 Application to Real Satellites

To evaluate the feasibility of deploying RLs algorithms on CubeSat platforms, particularly those with limited
computational resources, we conducted performance tests on different computing environments. These tests
measured the average time required to compute a single action, a crucial factor in determining the practical
application of these RL models in real-time satellite operations.

The tests were performed on a MacBook Pro M2 (2022) for benchmarking and an NVIDIA Jetson AGX Orin
32GB, with the latter running in limited power mode (30W) to simulate more realistic space conditions [51].
The tests involved executing at least 72,000 actions, which corresponds to one hour of simulated time with 20
agents.

Device PPO (ms) DQN (ms) SAC (ms)

MacBook Pro M2 4.13 5.55 6.64
Jetson AGX Orin (30W) 10.26 11.14 13.33

Table 7.1 Average computation time per action for different RL algorithms on various hardware platforms.

The results indicate that the MacBook Pro M2 significantly outperforms the Jetson AGX Orin in terms of
computation time, which is expected given the M2’s more powerful architecture designed for general-purpose
computing. However, in this case the Jetson AGX Orin’s performance is of particular interest due to its relevance
for onboard satellite processing.

Even in limited power mode, the Jetson AGX Orin achieved average computation times ranging from 10.26 ms
for PPO to 13.33 ms for SAC. These computation times are within an acceptable range for real-time processing
in many satellite operations, where timely decision-making is crucial. The results suggest that deploying RL
algorithms on CubeSats equipped with a Jetson AGX Orin is feasible for real-time operations, such as collision
avoidance, dynamic resource allocation, or adaptive communication strategies.

The Jetson’s limited power mode provides a conservative estimate of performance, which is vital for understand-
ing its behavior in the energy-constrained environment of a CubeSat. While the computation time increases
slightly compared to the MacBook Pro M2, this trade-off is reasonable given the power constraints inherent to
space hardware.

In conclusion, the performance metrics suggest that deploying RL algorithms such as PPO, DQN, and SAC on
CubeSats with Jetson AGX Orin hardware is not only feasible but also practical for real-time satellite operations.
Future work may focus on further optimizing these algorithms for reduced power consumption and exploring
their integration into full satellite systems.
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8 Conclusions

This thesis has advanced the understanding and implementation of decentralized reinforcement learning (DRL)
for satellite constellations, particularly focusing on enhancing the federation capabilities of satellite networks. By
decentralizing decision-making and prioritizing collective goals, this approach enables more scalable, resilient,
and autonomous operations. The integration of artificial neural networks, particularly through DRL, has shown
significant potential for improving both the efficiency and speed of decision-making processes, surpassing
traditional planning methods [16, 12]. This advancement underscores the feasibility of applying DRL in real
satellite operations, demonstrating the potential for deploying such technologies in embedded systems within
satellites.

The comparative analysis of key parameters across different coordination models, as summarized in Table 8.1,
further reinforces the effectiveness of DRL. The table highlights how different algorithms perform under various
coordination scenarios, showcasing the adaptability and robustness of the PPO algorithm, in particular. These
findings emphasize the readiness of DRL techniques for practical application in the increasingly complex and
dynamic environments of satellite constellations.

Adjacency Battery Available Data Transmitted (bits) Global Communication Counts Global Observation Counts Global Observation Status Reward

Unconstrained (Fully) Decentralized Coordination

PPO 0.84 0.42 349747.1 13.68 0.10 2.57 666.48
DQN 1.00 0.28 370352.65 16.39 0.04 2.38 62.96
SAC 0.05 0.27 0 0 0.05 1.09 -1533.7

Centralized Coordination

PPO 0.14 0.37 216930.96 8.37 0.20 2.24 603.63
DQN 0.14 0.27 23477.17 0.97 0.06 2.10 88.58
SAC 0.05 0.27 0 0 0.05 1.09 -1522.16

Constrained (Partially) Decentralized Coordination

PPO 0.19 0.35 11249.72 0.77 0.24 1.91 545.88
DQN 0.29 0.27 10872.72 1.07 0.06 1.59 134.43
SAC 0.05 0.28 0 0 0.05 1.09 -1536.17

Table 8.1 Key Parameters Comparison of DRL Algorithms under Different Coordination Models

8.1 Research Questions Revisited

RQ1: How does the application of reinforcement learning differ between centralized and decentralized
coordination models in satellite federations, and what are the respective impacts on scalability, resilience,
and adaptability?

Reinforcement learning demonstrates distinct advantages when applied to decentralized coordination models
in satellite federations, particularly in terms of scalability, resilience, and adaptability. Decentralized RL
approaches, such as PPO, are well-suited for large-scale, dynamic environments where satellites operate inde-
pendently but share collective goals. These models enable more scalable and resilient operations by allowing
each satellite to make decisions based on local observations without the need for a global state, thereby reducing
the computational load and avoiding single points of failure. Moreover, decentralized RL excels in adaptability,
as it allows the system to respond to changes in the environment quickly and efficiently.

In contrast, centralized RL approaches offer a more comprehensive view of the environment, which can
be advantageous for highly interconnected systems requiring a unified strategy. However, the scalability of
centralized models is limited, as they require extensive computational resources to maintain and process global
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state information. This can lead to inefficiencies and potential bottlenecks as the system grows in complexity.
Therefore, while centralized coordination can be effective for smaller or more static satellite federations,
decentralized RL models are generally more robust and efficient for large-scale, autonomous operations.

RQ2: How do various reinforcement learning algorithms compare in terms of computational efficiency
and performance when applied to decentralized versus centralized coordination in satellite networks?

The thesis reveals that different reinforcement learning algorithms exhibit varying levels of performance and
computational efficiency depending on whether they are applied in decentralized or centralized coordination
models. PPO consistently shows strong performance across both decentralized and centralized settings, with
particular strengths in adaptability and resource management. PPO balances mission objectives effectively,
achieving high rewards while maintaining efficient resource utilization.

DQN, on the other hand, is particularly effective at extending mission duration, making it suitable for scenarios
where longevity is critical. However, DQN’s performance can decline in partially decentralized environments
where the lack of global state information may lead to suboptimal decisions. Despite this, DQN remains a
strong candidate for applications where stability and computational efficiency are prioritized.

SAC underperforms across both decentralized and centralized models, particularly in environments requiring
discrete actions. SAC struggles with the specific demands of satellite coordination tasks, such as effective
resource sharing and communication management. The thesis suggests that SAC may not be well-suited for
these types of missions without significant modifications to its approach.

Overall, PPO emerges as the most versatile and robust algorithm, capable of adapting to various coordination
models while maintaining high performance and computational efficiency. DQN, while less adaptable, offers
strong computational efficiency and mission longevity, making it a viable alternative in specific contexts.

RQ3: How do observation tasks impact the performance of reinforcement learning algorithms, par-
ticularly in applications such as object detection, and what are the key considerations for optimizing
performance in such scenarios?

Observation tasks in object detection within space environments are highly dynamic and unpredictable, with
observation windows often lasting only a few seconds. This unpredictability poses a significant challenge for
reinforcement learning algorithms, which must quickly adapt to changing conditions. The thesis demonstrated
that while DRL algorithms like PPO and DQN can effectively manage these tasks, their performance is heavily
influenced by the availability and quality of observations. Key considerations for optimizing performance include
improving the algorithms’ ability to prioritize critical observations and ensuring that the reward functions are
closely aligned with mission objectives. Additionally, incorporating advanced techniques such as attention
mechanisms could further enhance the ability of these algorithms to focus on the most relevant data.

8.2 Benefits of DRL in Satellite Operations

The integration of DRL into satellite operations offers several key benefits:

• Enhanced Autonomy: DRL enables satellites to make real-time decisions autonomously, reducing
reliance on ground-based control and minimizing response times.

• Optimized Resource Utilization: by learning optimal policies, DRL helps satellites efficiently manage
limited resources, such as power and bandwidth, improving mission outcomes.

• Robustness to Environmental Changes: DRL agents can adapt to unforeseen changes in the environ-
ment, ensuring continued operation and mission success despite dynamic conditions.

• Scalability: the use of multi-agent reinforcement learning (MARL) allows for scalable solutions in
satellite swarms, where multiple agents can coordinate and optimize their actions collectively.
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In conclusion, the application of reinforcement learning, particularly DRL, represents a significant advancement
in the field of satellite operations. By enabling autonomous, adaptive, and efficient decision-making, DRL holds
the potential to revolutionize satellite missions, paving the way for more resilient and capable space systems.

8.3 Major Contributions

This work contributes to the state of the art in satellite constellation management by demonstrating the ability to
optimize resources and improve mission outcomes using DRL. Furthermore, it provides a modular framework
that can be expanded and customized to train multi-agent reinforcement learning policies for autonomous
satellite operations. This framework not only supports current satellite missions but also serves as a foundation
for future developments in satellite capabilities. An open-source repository of the project is also available.

8.4 Future Work

Future research should focus on incorporating additional real-world factors, such as line-of-sight constraints,
atmospheric interference, and sensor limitations, to further enhance the realism of the simulations. These factors
are critical for developing DRL algorithms that can be effectively deployed in actual satellite missions, where
such constraints significantly impact performance.

Moreover, integrating maneuvering capabilities, including collision-avoidance and general spacecraft maneu-
vering, as additional actions within the DRL framework could lead to more sophisticated decision-making
processes. This would allow satellite federations to autonomously navigate complex environments, improving
their overall resilience and operational efficiency.

Another important area of future work is the further scaling of the training process. Leveraging multi-node
supercomputing resources could significantly accelerate the training of DRL models, enabling the development
of more complex and capable algorithms. This approach would allow for the handling of larger federations and
more intricate mission scenarios by distributing the computational load across multiple nodes in a supercomputer.
Such scalability is crucial for testing and refining the algorithms to meet the demands of real-world satellite
operations.

The reward-driven behavior of DRL algorithms has proven to be a key factor in their success, and thus, the
design and refinement of reward functions must be deeply addressed. Future research should explore more
sophisticated reward structures that better align with mission objectives, ensuring that the DRL algorithms are
not only optimizing for performance but also adhering to operational constraints and goals.

Additionally, the potential applications of DRL in other satellite missions should be explored. Beyond satellite
federations for communication and observation, DRL could be applied to Earth observation, navigation, and
even space exploration missions. These applications would benefit from the autonomous decision-making
capabilities that DRL provides, enabling more efficient and effective mission planning and execution.

Improving visualization tools for simulation results could also significantly enhance the accessibility and
impact of this research. Effective visualization would allow stakeholders with less technical expertise to better
understand the implications of DRL algorithms in satellite federation management, fostering broader adoption
of these advanced technologies.

Finally, a deeper exploration into hybrid centralized-decentralized frameworks could yield even more robust
and versatile satellite federations. The refinement of these frameworks, along with the continuous improve-
ment of reward functions, could enable satellites to perform increasingly complex missions in dynamic space
environments, paving the way for more autonomous and adaptive space operations.
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A Annex

A.1 Class Diagrams

Figure A.1 Satellite class attributes and methods.
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Figure A.2 Observer satellite class attributes and methods.
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Figure A.3 Simulator class attributes and methods.
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Figure A.4 Federated Satellite System Environment class attributes and methods.
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A.2 Sequence Diagram

Figure A.5 Federated Satellite System Environment sequence diagram.
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A.3 Validation and testing of simulator
######### A t t i t u d e p r o p a g a t i o n t e s t

##########################################

I n i t i a l a t t i t u d e p a r a m e t e r s :
Qua t e r n i on : [ 1 . 0 . 0 . 0 . ] , Angula r v e l o c i t y : [ 0 . 0 1 0 . 01 0 . 0 1 ]

Custom a t t i t u d e p r o p a g a t o r r e s u l t s a f t e r p r o p a g a t i o n :
Qua t e r n i on : [ 0 . 9999625 0 .00499981 0 .00499981 0 .00499981 ]

SciPy s o l v e r r e s u l t s a f t e r p r o p a g a t i o n :
Qua t e r n i on : [0 . 99985001 0 .00999938 0 .00999938 0 .00999938 ]

Max Qua t e r n i on e r r o r : 0 .008660226974575889
.
######### B a t t e r y p r o p a g a t i o n t e s t

##########################################

I n i t i a l b a t t e r y s t a t e :
Energy A v a i l a b l e : 50 . 0 Wh, S o l a r Pane l S i z e : 0 . 12 m^2 , E f f i c i e n c y : 0 . 3 ,

S o l a r Con s t a n t : 1370 W/m^2

Power consumpt ion c o n s t a n t (1 f o r normal , 3 f o r f a s t e r d i s c h a r g i n g ) : 3
S a t e l l i t e ene rgy d e p l e t e d ( o b s e r v e r ) . T e rm in a t i n g s i m u l a t i o n .

F i n a l Energy A v a i l a b l e : 0 . 0 Wh
.
######### D i s t a n c e and E f f e c t i v e Data Rate Te s t

##########################################

D i s t a n c e between s a t e l l i t e s : 100000 .00 m
E f f e c t i v e Data Rate : 19200 .00 b i t s / s e c
A v a i l a b l e and new i n f o t o communicate : True
Can communicate wi th o t h e r : True
o b s e r v e r can communicate wi th o b s e r v e r
o b s e r v e r has communicated wi th o b s e r v e r and t r a n s m i t t e d 3000 .00 b i t s o f

d a t a
Reward : 1 . 1 , Data t r a n s m i t t e d : 3000 , S t e p s : 1

D i s t a n c e between s a t e l l i t e s : 500103 .31 m
E f f e c t i v e Data Rate : 19200 .00 b i t s / s e c
A v a i l a b l e and new i n f o t o communicate : True
Can communicate wi th o t h e r : True
o b s e r v e r can communicate wi th o b s e r v e r
o b s e r v e r has communicated wi th o b s e r v e r and t r a n s m i t t e d 3000 .00 b i t s o f

d a t a
Reward : 1 . 1 , Data t r a n s m i t t e d : 3000 , S t e p s : 1

D i s t a n c e between s a t e l l i t e s : 2300022 .46 m
E f f e c t i v e Data Rate : 19200 .00 b i t s / s e c
A v a i l a b l e and new i n f o t o communicate : True
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Can communicate wi th o t h e r : True
o b s e r v e r can communicate wi th o b s e r v e r
o b s e r v e r has communicated wi th o b s e r v e r and t r a n s m i t t e d 3000 .00 b i t s o f

d a t a
Reward : 1 . 1 , Data t r a n s m i t t e d : 3000 , S t e p s : 1

D i s t a n c e between s a t e l l i t e s : 2325022 .22 m
E f f e c t i v e Data Rate : 0 . 00 b i t s / s e c
A v a i l a b l e and new i n f o t o communicate : True
Can communicate wi th o t h e r : F a l s e
Reward : −0.01 , Data t r a n s m i t t e d : 0 , S t e p s : 1

D i s t a n c e between s a t e l l i t e s : 2350021 .98 m
E f f e c t i v e Data Rate : 0 . 00 b i t s / s e c
A v a i l a b l e and new i n f o t o communicate : True
Can communicate wi th o t h e r : F a l s e
Reward : −0.01 , Data t r a n s m i t t e d : 0 , S t e p s : 1

D i s t a n c e between s a t e l l i t e s : 2400021 .52 m
E f f e c t i v e Data Rate : 0 . 00 b i t s / s e c
A v a i l a b l e and new i n f o t o communicate : True
Can communicate wi th o t h e r : F a l s e
Reward : −0.01 , Data t r a n s m i t t e d : 0 , S t e p s : 1

.
######## S t a r t i n g Dummy S i m u l a t i o n ########

Observer −1 i s o b s e r v i n g Ta rge t −1 wi th p o i n t i n g a c cu r a cy 1 .00
Observer −1 has ob s e rved Ta rge t −1 wi th p o i n t i n g a c cu r a cy 1 .00
Observer −1 can communicate wi th Observer −2
Observer −1 has communicated wi th Observer −2 and t r a n s m i t t e d 1056 .00 b i t s

o f d a t a
S t ep 10000 done
S a t e l l i t e ene rgy o r s t o r a g e d e p l e t e d ( Observer −1) . T e rm in a t i n g s i m u l a t i o n

.
S i m u l a t i o n t e r m i n a t e d a f t e r 3 .2085468769073486 seconds .
Forced t e r m i n a t i o n a t s t e p 11042
Ep i sode f i n i s h e d

T o t a l s t e p s : 11042
T o t a l d u r a t i o n o f e p i s o d e : 3 .208 seconds
T o t a l reward : −97.000

R e s u l t s :
Adjacency Mat r i x :
[ [ 1 1 ]

[1 1 ] ]
Data Ma t r i x :
[ [ 0 . 1 0 5 6 . ]

[ 1 0 5 6 . 0 . ] ]
C o n t a c t s Ma t r i x :
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[ [ 1 ]
[ 1 ] ]

G loba l O b s e r v a t i o n Counts :
[ [ 1 ]

[ 0 ] ]
Max P o i n t i n g Accuracy Avg :
[ 1 . ]
G loba l O b s e r v a t i o n S t a t u s Ma t r i x :
[ [ 3 ]

[ 3 ] ]
B a t t e r i e s :
[ 0 . 0 . 35775238 ]
S t o r a g e :
[0 . 64840965 0 .8498539 ]
.
######### O b s e r v a t i o n Accuracy Te s t

##########################################

T e s t i n g p o s i t i o n s (100 km a p a r t , p e r f e c t a l i g nmen t ) :
Obse rve r 1 : (7142846 .101516889 , −1129.3850175896164 , 7380 .564140244884)
T a r g e t : (7242846 .101516889 , −1129.3850175896164 , 7380 .564140244884)
o b s e r v e r i s o b s e r v i n g { ’Name ’ : 0} wi th p o i n t i n g a c cu r a cy 1 .00
o b s e r v e r has ob s e r ved { ’Name ’ : 0} wi th p o i n t i n g a c cu r a cy 1 .00
D i s t a n c e : 100000 m
Reward : [ 2 . ]
P o i n t i n g Accuracy : 1 . 00
O b s e r v a t i o n S t a t u s Ma t r i x : [ 3 ]
Cumula t ive P o i n t i n g Accuracy : [ [ 1 . ]

[ 0 . ] ]
O b s e r v a t i o n Counts : 1
Globa l O b s e r v a t i o n Counts : [ [ 1 ]

[ 0 ] ]
Max P o i n t i n g Accuracy Avg : [ 1 . ]

T e s t i n g p o s i t i o n s (263 km a p a r t − on t h e edge of max d i s t a n c e , p e r f e c t
a l i g nmen t ) :

Obse rve r 1 : (7142846 .101516889 , −1129.3850175896164 , 7380 .564140244884)
T a r g e t : (7405846 .101516889 , −1129.3850175896164 , 7380 .564140244884)
o b s e r v e r i s o b s e r v i n g { ’Name ’ : 0} wi th p o i n t i n g a c cu r a cy 1 .00
o b s e r v e r has ob s e r ved { ’Name ’ : 0} wi th p o i n t i n g a c cu r a cy 1 .00
D i s t a n c e : 263000 m
Reward : [ 2 . ]
P o i n t i n g Accuracy : 1 . 00
O b s e r v a t i o n S t a t u s Ma t r i x : [ 3 ]
Cumula t ive P o i n t i n g Accuracy : [ [ 1 . ]

[ 0 . ] ]
O b s e r v a t i o n Counts : 1
Globa l O b s e r v a t i o n Counts : [ [ 1 ]

[ 0 ] ]
Max P o i n t i n g Accuracy Avg : [ 1 . ]
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T e s t i n g p o s i t i o n s (264 km a p a r t − j u s t above t h e l i m i t , p e r f e c t a l i g nme n t
) :

Obse rve r 1 : (7142846 .101516889 , −1129.3850175896164 , 7380 .564140244884)
T a r g e t : (7406846 .101516889 , −1129.3850175896164 , 7380 .564140244884)
D i s t a n c e : 264000 m
Reward : −0.02
P o i n t i n g Accuracy : 0 . 00
O b s e r v a t i o n S t a t u s Ma t r i x : [ 0 ]
Cumula t ive P o i n t i n g Accuracy : [ [ 0 . ]

[ 0 . ] ]
O b s e r v a t i o n Counts : 0
Globa l O b s e r v a t i o n Counts : [ [ 0 ]

[ 0 ] ]
Max P o i n t i n g Accuracy Avg : [ 0 . ]

T e s t i n g p o s i t i o n s (200 km a p a r t , 90 r o t a t i o n ) :
Obse rve r 1 : (7142846 .101516889 , −1129.3850175896164 , 7380 .564140244884)
T a r g e t : (7342846 .101516889 , −1129.3850175896164 , 7380 .564140244884)
D i s t a n c e : 200000 m
Reward : −0.02
P o i n t i n g Accuracy : 0 . 00
O b s e r v a t i o n S t a t u s Ma t r i x : [ 0 ]
Cumula t ive P o i n t i n g Accuracy : [ [ 0 . ]

[ 0 . ] ]
O b s e r v a t i o n Counts : 0
Globa l O b s e r v a t i o n Counts : [ [ 0 ]

[ 0 ] ]
Max P o i n t i n g Accuracy Avg : [ 0 . ]

T e s t i n g p o s i t i o n s (200 km appa r t , −60 r o t a t i o n ) :
Obse rve r 1 : (7142846 .101516889 , −1129.3850175896164 , 7380 .564140244884)
T a r g e t : (7342846 .101516889 , −1129.3850175896164 , 7380 .564140244884)
D i s t a n c e : 200000 m
Reward : −0.02
P o i n t i n g Accuracy : 0 . 00
O b s e r v a t i o n S t a t u s Ma t r i x : [ 0 ]
Cumula t ive P o i n t i n g Accuracy : [ [ 0 . ]

[ 0 . ] ]
O b s e r v a t i o n Counts : 0
Globa l O b s e r v a t i o n Counts : [ [ 0 ]

[ 0 ] ]
Max P o i n t i n g Accuracy Avg : [ 0 . ]

T e s t i n g p o s i t i o n s (200 km appa r t , 20 r o t a t i o n ) :
Obse rve r 1 : (7142846 .101516889 , −1129.3850175896164 , 7380 .564140244884)
T a r g e t : (7342846 .101516889 , −1129.3850175896164 , 7380 .564140244884)
D i s t a n c e : 200000 m
Reward : −0.02
P o i n t i n g Accuracy : 0 . 00
O b s e r v a t i o n S t a t u s Ma t r i x : [ 0 ]
Cumula t ive P o i n t i n g Accuracy : [ [ 0 . ]
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[ 0 . ] ]
O b s e r v a t i o n Counts : 0
Globa l O b s e r v a t i o n Counts : [ [ 0 ]

[ 0 ] ]
Max P o i n t i n g Accuracy Avg : [ 0 . ]

T e s t i n g p o s i t i o n s (200 km appa r t , −10 r o t a t i o n ) :
Obse rve r 1 : (7142846 .101516889 , −1129.3850175896164 , 7380 .564140244884)
T a r g e t : (7342846 .101516889 , −1129.3850175896164 , 7380 .564140244884)
o b s e r v e r i s o b s e r v i n g { ’Name ’ : 0} wi th p o i n t i n g a c cu r a cy 0 .00
o b s e r v e r has ob s e r ved { ’Name ’ : 0} wi th p o i n t i n g a c cu r a cy 0 .00
D i s t a n c e : 200000 m
Reward : [ 1 . 00199602 ]
P o i n t i n g Accuracy : 0 . 00
O b s e r v a t i o n S t a t u s Ma t r i x : [ 3 ]
Cumula t ive P o i n t i n g Accuracy : [ [ 0 . 0 0 1 9 9 6 0 2 ]

[ 0 . ] ]
O b s e r v a t i o n Counts : 1
Globa l O b s e r v a t i o n Counts : [ [ 1 ]

[ 0 ] ]
Max P o i n t i n g Accuracy Avg : [ 0 . 00199602 ]

.
######### O r b i t p r o p a g a t i o n t e s t

##########################################

I n i t i a l o r b i t p a r a m e t e r s :
x : 7142846.1015168885 y : −1129.3850175896164 z : 7380.564140244884 vx :

−7.7969655127956345 vy : −1128.2563498920574 vz : 7373.19229203744

Custom K l e p e r i a n o r b i t p r o p a g a t o r r e s u l t s :
’x ’ : 7142834 .406071798 , ’y ’ : −2258.768804218457 , ’ z ’ : 14761 .12023612507 ,

’ vx ’ : −15.593922527374481 , ’ vy ’ : −1128.2545025247753 , ’ vz ’ :
7373.19230411004

P o l i a s t r o o r b i t p r o p a g a t o r r e s u l t s :
{ ’ x ’ : 7142834 .390458391 , ’y ’ : −2259.8993152273333 , ’ z ’ :

14768 .50815865133 , ’ vx ’ : −15.61734457690526 , ’ vy ’ :
−1130.5132678264322 , ’ vz ’ : 7387.937288559563}

P o s i t i o n e r r o r : 7 . 474 m
V e l o c i t y e r r o r : 14 .917 m/ s
.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Ran 6 t e s t s i n 6 .293 s

OK
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(a) Charge test (b) Discharge test

Figure A.6 Charge and discharge battery tests.
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A.4 Results
Adjacency Battery Available Computation Time (s) Contacts (Targets) Data Transmitted (bits) Global Communication Counts Global Observation Counts Global Observation Status Maximum Pointing Accuracy Steps Reward Storage Available

Unconstrained Decentralized Coordination

Monte Carlo 0.91 0.28 100.53 1 17088.99 1.13 0.07 2.77 0.37 4705.84 -1591.69 0.56
PPO 0.84 0.42 625.1 1 349747.1 13.68 0.1 2.57 0.41 8257.39 666.48 0.56
DQN 1 0.28 1367.22 1 370352.65 16.39 0.04 2.38 0.27 16228.56 62.96 0.56
SAC 0.05 0.27 535.49 0.99 0 0 0.05 1.09 0.04 4194.68 -1533.7 0.56

Centralized Coordination

Monte Carlo 0.14 0.33 137.16 1 4886.65 0.25 0.54 2.92 0.72 3675.7 -33.53 0.56
PPO 0.14 0.37 640.89 1 216930.96 8.37 0.2 2.24 0.52 8128.5 603.63 0.56
DQN 0.14 0.27 10000.1 1 23477.17 0.97 0.06 2.1 0.3 10741.98 88.58 0.57
SAC 0.05 0.27 532.89 0.99 0 0 0.05 1.09 0.04 4166.02 -1522.16 0.56

Constrained Decentralized Communication

Monte Carlo 0.28 0.27 115.61 1 7878.74 0.74 0.21 2.68 0.59 4635.11 -1746.23 0.57
PPO 0.19 0.35 471.67 1 11249.72 0.77 0.24 1.91 0.56 5627.95 545.88 0.56
DQN 0.29 0.27 980.84 1 10872.72 1.07 0.06 1.59 0.32 10742.31 134.43 0.56
SAC 0.05 0.28 540.91 0.99 0 0 0.05 1.09 0.04 4202.37 -1536.17 0.57

Table A.1 Comparison of DRL Algorithms results under Different Communication Models

A.5 Policies Validation

This annex provides a detailed explanation of the code used to evaluate the decision-making performance of
reinforcement learning policies (DQN, SAC, and PPO) in various simulated satellite scenarios. The purpose
of this test is to determine how well each policy performs under different resource conditions and predefined
decision-making situations. The results of these tests are illustrated in the form of action distribution plots in
Figure A.7.

The code is designed to simulate a satellite environment where each satellite is tasked with specific objectives
such as communication, observation, or standby operations. The environment simulates the operational dy-
namics of a satellite constellation using the FSS_env environment. The primary objective is to evaluate the
performance of three different reinforcement learning (RL) policies—Deep Q-Network (DQN), Soft Actor-Critic
(SAC), and Proximal Policy Optimization (PPO)—by observing the decisions they make in various predefined
scenarios.

The simulation process starts by creating the environment using the env_creator function, which initializes
the simulation based on a configuration dictionary (env_config). The next step is setting up fixed initial
conditions for the satellites using the generate_fixed_initial_conditions function. This function
defines orbital parameters, energy levels, and storage capacities for each satellite, corresponding to different test
scenarios such as being in communication range or observation range.

The initialize_specific_satellites function then creates instances of ObserverSatellite and
TargetSatellite using the initial conditions. These instances represent the observers and targets in the sim-
ulation, each with specific capabilities related to energy storage and data handling. The test_policy_once
function is responsible for running a single simulation step using the provided RL policy. It computes the
actions selected by the policy, applies them to the environment, and updates the observations, rewards, and
states accordingly.

The run_tests_for_policy function executes the entire simulation for each RL policy. It iterates over
multiple test scenarios with varying resource conditions (combinations of battery and storage levels) and
collects the actions chosen by the agents. These scenarios are defined by combinations of low and high battery
and storage levels, labeled as low_low, low_high, high_low, and high_high.

To analyze the decision-making behavior of each policy, the code tracks the distribution of actions selected in
each scenario. The actions are indexed from 0 to 21, corresponding to the possible actions in the environment.
The results are then plotted as bar charts, where each scenario and resource condition is represented by a
separate subplot. This visual representation allows for a comparison of how frequently each action was chosen
by different RL policies under varying conditions.

The results generated by this code offer valuable insights into the decision-making behavior of each RL policy.
By analyzing the action distribution, we can see that PPO has a more exploratory behaviour, while DQN is more
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conservative. SAC is a total failure regarding the policy, choosing the same action regardless of the state of the
environment, but the results are included for comparison as well.

In addition, this code collects data from 100 repetitions of each scenario for each policy, ensuring that the results
are statistically significant.

The plotted results are presented here as well:

Figure A.7 Policy actions distributions for different test cases.
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