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Abstract
We study the approximation of general multiobjective optimization problems with the
help of scalarizations. Existing results state that multiobjectiveminimization problems
can be approximated well by norm-based scalarizations. However, for multiobjec-
tive maximization problems, only impossibility results are known so far. Countering
this, we show that all multiobjective optimization problems can, in principle, be
approximated equally well by scalarizations. In this context, we introduce a trans-
formation theory for scalarizations that establishes the following: Suppose there
exists a scalarization that yields an approximation of a certain quality for arbitrary
instances of multiobjective optimization problems with a given decomposition speci-
fying which objective functions are to be minimized/maximized. Then, for each other
decomposition, our transformation yields another scalarization that yields the same
approximation quality for arbitrary instances of problems with this other decomposi-
tion. In this sense, the existing results about the approximation via scalarizations for
minimization problems carry over to any other objective decomposition—in particu-
lar, to maximization problems—when suitably adapting the employed scalarization.
We further provide necessary and sufficient conditions on a scalarization such that its
optimal solutions achieve a constant approximation quality. We give an upper bound
on the best achievable approximation quality that applies to general scalarizations and
is tight for the majority of norm-based scalarizations applied in the context of mul-
tiobjective optimization. As a consequence, none of these norm-based scalarizations
can induce approximation sets for optimization problems with maximization objec-
tives, which unifies and generalizes the existing impossibility results concerning the
approximation of maximization problems.
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1 Introduction

Multiobjective optimization covers methods and techniques for solving optimization
problems with several equally important but conflicting objectives, a field of study
which is of growing interest both in theory and real-world applications. In such prob-
lems, solutions that optimize all objectives simultaneously usually do not exist. Hence,
the notion of optimality needs to be refined: A solution is said to be efficient if any
other solution that is better in some objective is necessarily worse in at least one
other objective. The image of an efficient solution under the objectives is called a
nondominated image. A solution is said to be weakly efficient if no other solution
exists that is strictly better in each objective. It is widely accepted that some entity,
called the decision maker, chooses a final preferred solution among the set of (weakly)
efficient solutions. When no prior preference information is available, a main goal of
multiobjective optimization is to compute all nondominated images and, for each
nondominated image, at least one corresponding efficient solution.

However, multiobjective optimization problems are typically inherently difficult:
they are hard to solve exactly (Ehrgott 2005; Serafini 1987) and, moreover, the car-
dinalities of the set of nondominated images may be exponentially large (or even
infinite, e.g., for continuous problems), see e.g. Bökler andMutzel (2015), Ehrgott and
Gandibleux (2000) and the references therein. In general, this impedes the applicability
of exact solution methods and strongly motivates the approximation of multiobjective
optimization problems—aconcept to substantially reduce the number of required solu-
tions while still obtaining a provable solution quality. Here, it is sufficient to find a
set of (not necessarily efficient) solutions, called an approximation set, that, for each
possible image, contains a solution whose image is in every objective at least as good
up to some multiplicative factor.

A scalarization is a technique to systematically transform a multiobjective opti-
mization problem into single-objective optimization problems with the help of
additional parameters such as weights or reference points.1 The solutions obtained by
solving these single-objective optimization problems are then interpreted in the con-
text of multiobjective optimization (see, e.g., Ehrgott and Wiecek 2005; Jahn 1985;
Miettinen and Mäkelä 2002; Wierzbicki 1986 for overviews on scalarizations). As a
consequence, scalarization techniques are a key concept in multiobjective optimiza-
tion: They often yield (weakly) efficient solutions and they are used as subroutines in
algorithms for solving or approximatingmultiobjective optimization problems.Unsur-
prisingly, there exists a vast amount of research concerning both exact and approximate
solutions methods that use scalarizations as building blocks, see Bökler and Mutzel
(2015), Holzmann and Smith (2018), Klamroth et al. (2015), Wierzbicki (1986) and
Bazgan et al. (2022), Daskalakis et al. (2016), Diakonikolas and Yannakakis (2008),
Glaßer et al. (2010a), Glaßer et al. (2010b), Halffmann et al. (2017) and the references
therein for a small selection.

A widely-known scalarization—and probably the most simple example—is
the weighted sum scalarization, where single-objective optimization problems are

1 Throughout this paper, we define a scalarization as a set of such transformations (see Definition 2.6). In
the literature, it is common that these transformations follow an underlying construction idea (see Sect. 5).
However, we do not explicitly assume this here.
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obtained by forming weighted sums of the multiple objective functions while keeping
the feasible set unchanged. The weighted sum scalarization is frequently used, among
others, in approximation methods for multiobjective optimization problems. In fact, it
has been shown that optimal solutions of the weighted sum scalarization can be used
to obtain approximation sets for each instance of each multiobjective minimization
problem (Bazgan et al. 2022; Glaßer et al. 2010a, b; Halffmann et al. 2017). However,
these approximation results crucially rely on the assumption that all objectives are to
be minimized. In fact, it is known that, for the weighted sum scalarization as well as
for every other scalarization studied so far in the context of approximation, even the
union of all sets of optimal solutions of the scalarization obtainable for any choice
of its parameters does, in general, not constitute an approximation set in the case
ofmaximization problems (Bazgan et al. 2022; Glaßer et al. 2010a, b; Halffmann et al.
2017; Herzel et al. 2023). Consequently, general approximation methods building on
the studied scalarizations cannot exist for multiobjective maximization problems.

This raises several fundamental questions: Are there intrinsic structural differences
between minimization and maximization problems with respect to approximation via
scalarizations? Is it, in general, substantially harder or even impossible to construct a
scalarization formaximization problems that is as powerful as theweighted sumscalar-
ization is for minimization problems? More precisely, does there exist a scalarization
such that, in arbitrary instances of arbitrary maximization problems, optimal solutions
of the scalarization constitute an approximation set?Beyond that, can also optimization
problems in which both minimization and maximization objectives appear be approx-
imated by means of scalarizations? If yes, what structural properties are necessary
in order for scalarizations to be useful concerning the approximation of multiobjec-
tive optimization problems in general? We answer these questions in this paper and
study the power of scalarizations for the approximation of multiobjective optimization
problems from a general point of view. We focus on scalarizations built by scalariz-
ing functions that combine the objective functions of the multiobjective problem by
means of strongly or strictly monotone and continuous functions. This captures many
important and broadly-applied scalarizations such as the weighted sum scalarization,
the weighted max-ordering scalarization, and norm-based scalarizations (Ehrgott and
Wiecek 2005), but not scalarizations that change the feasible set. However, most
important representatives of the latter class such as the budget constraint scalariza-
tion, Benson’s method, and the elastic constraint method are capable of finding the
whole efficient set and, thus, obviously yield approximation sets with approximation
quality equal to one (see Ehrgott 2005; Ehrgott and Wiecek 2005).

We develop a transformation theory for scalarizations with respect to approxi-
mation in the following sense: Suppose there exists a scalarization that yields an
approximation of a certain quality for arbitrary instances of multiobjective optimiza-
tion problems with a given decomposition specifying which objective functions are
to be minimized/maximized. Then, for each other decomposition, our transformation
yields another scalarization that yields the same approximation quality for arbitrary
instances of problems with this other decomposition.We also study necessary and suf-
ficient conditions for a scalarization such that optimal solutions can be used to obtain
an approximation set, and determine an upper bound on the best achievable approxi-
mation quality. The computation of this upper bound simplifies for so-called weighted
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scalarizations and, in particular, is tight for the majority of norm-based scalarizations
applied so far in the context of multiobjective optimization. As a consequence of this
tightness, none of the above norm-based scalarizations can induce approximation sets
for arbitrary instances of optimization problems containing maximization objective
functions. Hence, this result unifies and generalizes all impossibility results concern-
ing the approximation of maximization problems obtained in Bazgan et al. (2022),
Glaßer et al. (2010a), Glaßer et al. (2010b), Halffmann et al. (2017), Herzel et al.
(2023).

1.1 Related work

General approximation methods seek to work under very weak assumptions and, thus,
to be applicable to large classes of multiobjective optimization problems. In contrast,
specific approximation methods are tailored to problems with a particular structure.
We refer to Herzel et al. (2021b) for an extensive survey on both general and specific
approximation methods for multiobjective optimization problems.

Almost all general approximation methods for multiobjective optimization prob-
lems build upon the seminal work of Papadimitriou and Yannakakis (2000), who
show that, for any ε > 0, a (1+ ε)-approximation set (i.e., an approximation set with
approximation quality 1 + ε in each objective) of polynomial size is guaranteed to
exist in each instance under weak assumptions. Moreover, they prove that a (1 + ε)-
approximation set can be computed in (fully) polynomial time for every ε > 0 if and
only if the so-called gap problem, which is an approximate version of the canonical
decision problem associated with the multiobjective problem, can be solved in (fully)
polynomial time.

Subsequent work focuses on approximation methods that, given an instance
and α ≥ 1, compute approximation sets whose cardinality is bounded in terms of
the cardinality of the smallest possible α-approximation set while maintaining or only
slightly worsening the approximation quality α (Bazgan et al. 2015; Diakonikolas and
Yannakakis 2009, 2008; Koltun and Papadimitriou 2007; Vassilvitskii andYannakakis
2005). Additionally, the existence result of Papadimitriou and Yannakakis (2000) has
recently been improved by Herzel et al. (2021a), who show that, for any ε > 0,
an approximation set that is exact in one objective while ensuring an approximation
quality of 1 + ε in all other objectives always exists in each instance under the same
assumptions.

As pointed out in Halffmann et al. (2017), the gap problem is not solvable in
polynomial time unless P = NP for problems whose single-objective version is
APX-complete and coincides with the weighted sum problem. For such problems, the
algorithmic results of Papadimitriou and Yannakakis (2000) and succeeding articles
cannot be used. Consequently, other works study how the weighted sum scalariza-
tion and other scalarizations can be employed for approximation. Daskalakis et al.
(2016), Diakonikolas and Yannakakis (2008) show that, in each instance, a set of solu-
tions such that the convex hull of their images yields an approximation quality can be
computed in (fully) polynomial time if and only if there is a (fully) polynomial-time
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approximation scheme for all single-objective optimization problems obtained via the
weighted sum scalarization.

The results of Glaßer et al. (2010a), Glaßer et al. (2010b) imply that, in each
instance of each p-objective minimization problem and for any ε > 0, a ((1 + ε) ·
δ · p)-approximation set can be computed in fully polynomial time provided that
the objective functions are positive-valued and polynomially computable and a δ-
approximation algorithm for the optimization problems induced by the weighted sum
scalarization exists. They also give analogous results for more general norm-based
scalarizations, where the obtained approximation quality additionally depends on the
constants determined by the norm-equivalence between the chosen norm and the 1-
norm.

Halffmann et al. (2017) present a method to obtain, in each instance of each biob-
jective minimization problem and for any 0 < ε ≤ 1, an approximation set that
guarantees an approximation quality of (δ · (1 + 2ε)) in one objective function while
still obtaining an approximation quality of at least (δ · (1 + 1

ε
)) in the other objective

function, provided a polynomial-time δ-approximation algorithm for the problems
induced by the weighted sum scalarization is available. This “trade-off” between the
approximation qualities in the individual objectives is studied in more detail by Baz-
gan et al. (2022), who introduce a multi-factor notion of approximation and present a
method that, in each instance of each p-objective minimization problem for which a
polynomial-time δ-approximation algorithm for the problems induced by theweighted
sum scalarization exists, computes a set of solutions such that each feasible solution
is component-wise approximated within some (possibly solution-dependent) vector
(α1, . . . , αp) of approximation qualities αi ≥ 1 such that

∑
i :αi>1 αi = δ · p + ε.

From another point of view, the weighted sum scalarization can be interpreted
as a special case of ordering relations that use cones to model preferences. Vander-
pooten et al. (2016) study approximation in the context of general ordering cones and
characterize how approximation with respect to some ordering cone carries over to
approximation with respect to some larger ordering cone. In a related paper, Herzel
et al. (2023) focus on biobjective minimization problems and provide structural results
on the approximation quality that is achievable with respect to the classical (Pareto)
ordering cone by solutions that are efficient or approximately efficient with respect to
larger ordering cones.

Notably, none of the methods and approximation results for minimization problems
provided inBazgan et al. (2022),Glaßer et al. (2010a),Glaßer et al. (2010b),Halffmann
et al. (2017), Herzel et al. (2023) can be translated to maximization problems in
general: Glaßer et al. (2010a), Glaßer et al. (2010b) and Halffmann et al. (2017)
show that similar approximation results are impossible to obtain in polynomial time
for maximization problems unless P = NP. Bazgan et al. (2022) provide, for any
p ≥ 2 and polynomial pol, an instance I with encoding length |I | of a p-objective
maximization problem such that at least one solution not obtainable as an optimal
solution of the weighted sum scalarization is not approximated by solutions that are
obtainable in this way within a factor of 2pol(|I |) in p − 1 of the objective functions.
Similarly,Herzel et al. (2023) show that, for any set P of efficient solutionswith respect
to some larger ordering cone and any α ≥ 1, an instance of a biobjective maximization
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problem can be constructed such that the set P is not an α-approximation set (in the
classical sense).

To the best of our knowledge, the only known results tailored to general maximiza-
tion problems are presented by Bazgan et al. (2013). Here, rather than building on
scalarizations, additional severe structural assumptions on the set of feasible solutions
are proposed in order to obtain an approximation.

In summary, most of the known approximation methods that build on scalarizations
focus on minimization problems. In fact, mainly impossibility results are known con-
cerning the application of such methods for maximization problems and, to the best
of our knowledge, a scalarization-based approximation of optimization problems with
both minimization and maximization objectives has so far not been considered at all.

1.2 Our contribution

We study the power of optimal solutions of scalarizations with respect to approxi-
mation. We focus on scalarizations built by scalarizing functions that combine the
objective functions of the multiobjective problem by means of strongly or strictly
monotone and continuous functions. In particular, we address the questions outlined
above and study why existing approximation results and methods using scalarizations
typically work well for minimization problems, but do not yield any approximation
quality for maximization problems in general. To this end, we develop a transforma-
tion theory for scalarizations with respect to approximation in the following sense:
Suppose there exists a scalarization that yields an approximation of a certain quality
for arbitrary instances of multiobjective optimization problems with a given decompo-
sition specifyingwhich objective functions are to beminimized /maximized. Then, for
each other decomposition, our transformation yields another scalarization that yields
the same approximation quality for arbitrary instances of problems with this other
decomposition. Hence, our results show that, in principle, the decomposition of the
objectives into minimization and maximization objectives does not have an impact on
how well multiobjective problems can be approximated via scalarizations. In partic-
ular, this shows that, with respect to approximation, equally powerful scalarizations
exist for (pure) minimization and (pure) maximization problems and any other possi-
ble decomposition of the objectives into minimization and maximization objectives.
Consequently, the lack of positive approximation results for maximization problems
in the literature is not based on a general impossibility. Rather, it results from the fact
that the scalarizations that work well for minimization problems (such as the weighted
sum scalarization) have been used also for maximization problems, while our results
show that different scalarizations work for the maximization case.

We further provide necessary and sufficient conditions for a scalarization such
that optimal solutions of the scalarization can be used to obtain approximation sets for
arbitrary instances of multiobjective problems with a certain objective decomposition.
We give an upper bound on the best achievable approximation quality solely depending
on the level sets of the scalarizing functions contained in the scalarization. We show
that the computation of this upper bound simplifies for weighted scalarizations, and
provide classes of scalarizations, which include all norm-based scalarizations applied
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in the context ofmultiobjective optimization, forwhich this upper bound is in fact tight.
As a consequence of this tightness, none of the above norm-based scalarizations can
induce approximation sets for arbitrary instances of optimization problems containing
maximization objectives. Hence, this result unifies and generalizes all impossibility
results concerning the approximation of maximization problems obtained in Bazgan
et al. (2022), Glaßer et al. (2010a), Glaßer et al. (2010b), Halffmann et al. (2017),
Herzel et al. (2023).

2 Preliminaries

In this section, we revisit basic concepts frommultiobjective optimization and state the
assumptions made in this article. For a thorough introduction to the field of multiob-
jective optimization, we refer to Ehrgott (2005). In the following, if, for a set Y ∈ R

p

and some index i ∈ {1, . . . , p}, there exists a q ∈ R
p such that yi ≥ qi for all y ∈ Y ,

we say that Y is bounded from below in i (by q). If there exists a q ∈ R
p such that

yi ≤ qi for all y ∈ Y , we say that Y is bounded from above in i (by q). Note that a set
Y ⊆ R

p is bounded (in the classical sense) if and only if Y is bounded from above in
all i and bounded from below in all i .

We consider general multiobjective optimization problems with p objectives each
of which is to be minimized or maximized: Let p ∈ N\{0} be, as is usually
the case in multiobjective optimization, a fixed constant, and let MIN ∈ 2{1,...,p},
MAX := {1, . . . , p}\MIN, and � := (MIN,MAX). Then, we call � an objective
decomposition and we define multiobjective optimization problems as follows:

Definition 2.1 Let � = (MIN,MAX) be an objective decomposition. A p-objective
optimization problem of type� is given by a set of instances. Each instance I = (X , f )
consists of a set X of feasible solutions and a vector f = ( f1, . . . , f p) of objective
functions fi : X → R, i = 1, . . . , p, where the objective functions fi , i ∈ MIN, are
to be minimized and the objective functions fi , i ∈ MAX, are to be maximized. If
MIN = {1, . . . , p} and MAX = ∅, the p-objective optimization problem of type �

is called a p-objective minimization problem. If MIN = ∅ and MAX = {1, . . . , p},
the p-objective optimization problem of type � is called a p-objective maximization
problem.

Component-wise orders on R
p, based on a given objective decomposition, induce

relations between images of solutions:

Definition 2.2 Let� = (MIN,MAX) be an objective decomposition. For y, y′ ∈ R
p,

the weak component-wise order, the component-wise order, and the strict component-
wise order (with respect to �) are defined by

y �� y′ :⇔ yi ≤ y′
i for all i ∈ MIN, yi ≥ y′

i for all i ∈ MAX,

y ≤� y′ :⇔ yi ≤ y′
i for all i ∈ MIN, yi ≥ y′

i for all i ∈ MAX and y 
= y′,
y <� y′ :⇔ yi < y′

i for all i ∈ MIN, yi > y′
i for all i ∈ MAX,

respectively. Furthermore, we write Rp
> := {y ∈ R

p | 0 < yi , i = 1, . . . , p}.
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Based on these component-wise orders, multiobjective notions of optimality can be
defined:

Definition 2.3 Let � be an objective decomposition. In an instance of a p-objective
optimization problem of type�, a solution x ∈ X (strictly) dominates another solution
x ′ ∈ X if f (x) ≤� f (x ′) ( f (x) <� f (x ′)). A solution x ∈ X is called (weakly)
efficient if there does not exist any solution x ′ ∈ X that (strictly) dominates x . If a
solution x ∈ X is (weakly) efficient, then the corresponding point y = f (x) ∈ R

p

is called (weakly) nondominated. The set XE ⊆ X of efficient solutions is called
the efficient set. The set YN = f (XE ) ⊆ R

p of nondominated images is called the
nondominated set.

In each instance of a p-objective optimization problem, it is then the goal to return
a set X∗ ⊆ X of feasible solutions whose image f (X∗) under f : X → R

p is the
nondominated set YN .

One main issue of a multiobjective optimization problem is that the nondominated
set YN may consist of exponentially many images in general (Bökler andMutzel 2015;
Ehrgott and Gandibleux 2000), i. e., such problems are intractable. Approximation is a
concept to substantially reduce the number of solutions that must be computed. Instead
of requiring at least one corresponding efficient solution for each nondominated image,
a solution whose image “almost” (by means of a multiplicative factor) dominates the
nondominated image is sufficient. To ensure that approximation is meaningful and
well-defined, a typical assumption made in the literature on both the approximation
of single-objective and multiobjective optimization problems (see Williamson and
Shmoys 2011 and Bazgan et al. 2013, 2015; Diakonikolas and Yannakakis 2009;
Papadimitriou and Yannakakis 2000; Vanderpooten et al. 2016, respectively) is also
used in this work:

Assumption 2.4 In any instance of each p-objective optimization problem, the setY =
f (X) of feasible points is a subset ofRp

>. That is, the objective functions fi : X → R>

map solutions to positive values, only.

Approximation is then formally defined as follows:

Definition 2.5 Let � = (MIN,MAX) be an objective decomposition and let α ≥ 1
be a constant. In an instance I = (X , f ) of a p-objective optimization problem of
type �, we say that x ′ ∈ X is α-approximated by x ∈ X , or x α-approximates x ′, if
fi (x) ≤ α· fi (x ′) for all i ∈ MIN and fi (x) ≥ 1

α
· fi (x ′) for all i ∈ MAX. A set Pα ⊆ X

of solutions is called an α-approximation set if, for any feasible solution x ′ ∈ X , there
exists a solution x ∈ Pα that α-approximates x ′.

Scalarizations are common approaches to obtain (efficient) solutions (Ehrgott
2005). One large class of scalarizations transforms amultiobjective optimization prob-
lem into a single-objective optimization problemwith the help of scalarizing functions:

Definition 2.6 Given an objective decomposition �, a function s : Rp
> → R is called

• strongly �-monotone if y ≤� y′ for y, y′ ∈ R
p
> implies s(y) < s(y′), and
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• strictly �-monotone if y <� y′ for y, y′ ∈ R
p
> implies s(y) < s(y′).

Then, a scalarizing function for � is a function s : Rp
> → R that is continuous and

(at least) strictly �-monotone. The level set of s at some point y′ is denoted by

L(y′, s) := {
y ∈ R

p
> | s(y) = s(y′)

}
.

A set S of scalarizing functions is referred to as a scalarization for �.

This definition is motivated by norm-based scalarizations (Ehrgott 2005) and cap-
tures several important scalarizations such as the weighted sum scalarization (see
Example 2.12). These scalarizations typically subsume only scalarizing functions
that follow the same underlying construction idea. Such a construction is motivated,
for example, by (polynomial-time) solvability of the obtained single-objective opti-
mization problems. However, we allow scalarizations to contain various different
scalarizing functions for the sake of generality.

With the help of scalarizing functions, any instance of amultiobjective optimization
problem can be transformed into instances of a single-objective optimization problem,
for which solution methods are widely studied.

Definition 2.7 Let s : Rp
> → R be a scalarizing function for an objective decomposi-

tion�. In an instance I = (X , f ) of a multiobjective optimization problem of type�,
a solution x ∈ X is called optimal for s if s( f (x)) ≤ s( f (x ′)) for each x ′ ∈ X .

Note that the minimization of the instance of a single-objective problem obtained
by scalarizing functions (which is implicitly assumed both in Definitions 2.6 and 2.7)
is without loss of generality. One could alternatively define strongly (strictly) �-
monotonicity of functions s via y ≤� y′ (y <� y′) implies s(y) > s(y′), and
optimality for s of a solution x ∈ X via s( f (x)) ≥ s( f (x ′)) for all x ′ ∈ X . Then, all
results in this work are still valid.

In order to guarantee that optimal solutions exist for any scalarizing function, we
additionally assume:

Assumption 2.8 In any instance of each p-objective optimization problem, the set
Y = f (X) of feasible points is compact.

Note that Assumption 2.8 is satisfied for a large variety of well-known optimiza-
tion problems, including multiobjective formulations of (integer/mixed integer) linear
programs with compact feasible sets, nonlinear problems with continuous objectives
and compact feasible sets, and all combinatorial optimization problems.

Summarizing, we assume that, in any instance of each p-objective optimization
problem, the set Y = f (X) of feasible points is a compact subset of Rp

>. This implies
that the objective functions fi : X → R> map solutions to positive values only, and
that the set of images of feasible solutions is guaranteed to be bounded from below in
all i (by the origin). Hence, the set of images is bounded if and only if it is bounded
from above in all i .

Before we interpret scalarizing functions and their optimal solutions in the context
of multiobjective optimization, we collect some useful properties.
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Lemma 2.9 Let � = (MIN,MAX) be an objective decomposition. Let s : Rp
> → R

be a scalarizing function for �. Let q, y ∈ R
p
>. Then, there exists λ ∈ R> such

that s(q ′) = s(y), where q ′ ∈ R
p
> is defined by q ′

i := λ · qi for all i ∈ MIN,
q ′
i := 1

λ
· qi for all i ∈ MAX.

Proof Without loss of generality, let MIN = {1, . . . , k} and MAX = {k + 1, . . . , p}
for some k ∈ {0, . . . , p}. Otherwise, the objectives may be reordered accordingly.
Consider the function sq : R> → R, sq(λ) := s((λ·q1, . . . , λ·qk, 1

λ
·qk+1, . . . ,

1
λ
·qp)).

Then, sq is a continuous function. Choose

λ := 1

2
· min

{
y1
q1

, . . . ,
yk
qk

,
qk+1

yk+1
, . . . ,

qp
yp

}

and

λ̄ := 2 · max

{
y1
q1

, . . . ,
yk
qk

,
qk+1

yk+1
, . . . ,

qp
yp

}

.

Then λ · qi < yi < λ̄ · qi for all i = 1, . . . , k and λ · qi > yi > λ̄ · qi for all
i = k + 1, . . . , p, which implies that

sq(λ) < s(y) < sq(λ̄).

Since sq is continuous, by the intermediate value theorem, there exists some λ ∈ R>

such that

s

((

λ · q1, . . . , λ · qk, 1
λ

· qk+1, . . . ,
1

λ
· qp

))

= sq(λ) = s(y).

�
Lemma 2.10 Let s : Rp

> → R be a scalarizing function for some objective decompo-
sition �. Let y, y′ ∈ R

p
>. Then, y �� y′ implies s(y) ≤ s(y′).

Proof Again, let � = ({1, . . . , k}, {k + 1, . . . , p}) for some k ∈ {0, . . . , p} without
loss of generality. Let y �� y′. For the sake of a contradiction, assume that s(y) >

s(y′). Then, by Lemma 2.9, there exists λ ∈ R> such that s(q) = s(y′), where q ∈ R
p
>

is defined by

q :=
(

λ · y1, . . . , λ · yk, 1
λ

· yk+1, . . . ,
1

λ
· yp

)

.

Note that λ < 1 since, otherwise, either q = y or q >� y and, thus, s(y′) =
s(q) ≥ s(y) by the strict monotonicity of s. We obtain q <� y �� y′ and, therefore,
s(q) < s(y′) contradicting that s(q) = s(y′). �

Concerning scalarizing functions, a natural question is whether optimal solutions
for a scalarizing function s are always efficient.
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Proposition 2.11 Let� be an objective decomposition. Let I = (X , f ) be an instance
of a p-objective optimization problem of type � and s : Rp

> → R be a scalarizing
function for �. Then any solution x ∈ X that is optimal for s is weakly efficient.
Moreover, there exists a solution x ∈ X that is optimal for s and also efficient. If s is
strongly �-monotone, then any solution x ∈ X that is optimal for s is efficient.

Proof Let x ∈ X be an optimal solution for s. Assume that x is not weakly efficient,
i.e., there exists x ′ ∈ X such that f (x ′) <� f (x). Then the strict �-monotonicity of
s implies that s( f (x ′)) < s( f (x)) contradicting that x is optimal for s.

Since f (X) is a compact set, the continuous function s attains itsminimumon f (X),
i.e., there exists a solution x ∈ X that is optimal for s. Moreover, it is well-known
that the nondominated set YN is externally stable if Y = f (X) is compact (Ehrgott
2005). Thus, if x is not efficient, there exists an efficient solution x ′ dominating x .
Lemma 2.10 yields that s( f (x ′)) ≤ s( f (x)), which implies that (the efficient solution)
x ′ is also optimal for s.

If s is strongly �-monotone, then, for any solution x ∈ X that is not efficient, there
exists a solution x ′ ∈ X with f (x ′) ≤� f (x) and, therefore, s( f (x ′)) < s( f (x)).
Hence, any optimal solution for s must be efficient. �
Example 2.12 Consider an objective decomposition � = (MIN,MAX). Then, for
any (fixed) weight vector w = (w1, . . . , wp) ∈ R

p
>, the function sw : Rp

> →
R, sw(y) := ∑

i∈MIN wi · yi − ∑
i∈MAX wi · yi defines a scalarizing function that is

strongly �-monotone. The scalarizing function sw is called weighted sum scalarizing
function with weights w1, . . . , wp. The set of all weighted sum scalarizing func-
tions {sw(y) = ∑

i∈MIN wi · yi − ∑
i∈MAX wi · yi | w ∈ R

p
>} is called weighted sum

scalarization. Typically, a feasible solution that is optimal for some weighted sum
scalarizing function is called supported (Bazgan et al. 2022; Ehrgott 2005).

Note that, in the literature, the single-objective optimization problem obtained by a
weighted sum scalarizing function applied to instances ofmultiobjectivemaximization
problems typically reads as maxx∈X

∑p
i=1 wi · fi (x). In our notation used in the

above example, the single-objective problem reads asminx∈X −∑p
i=1 wi · fi (x). Since

minx∈X −∑p
i=1 wi · fi (x) = −maxx∈X

∑p
i=1 wi · fi (x), the optimization problems

are indeed equivalent in the sense that the optimal solution sets of both problems
coincide. Next, we generalize the concept of supportedness to arbitrary scalarizations:

Definition 2.13 Let S be a scalarization (of finite or infinite cardinality) for an objective
decomposition �. In an instance of a multiobjective optimization problem of type �,
a solution x ∈ X is called S-supported if there exists a scalarizing function s ∈ S such
that x is optimal for s.

Note that optimal solutions for a scalarizing function are not necessarily unique.
Moreover, different optimal solutions can be mapped to different images in R

p, and,
thus, contribute different information to the solution/approximation process. However,
given a scalarization S, it is often the case that not all S-supported solutions must be
computed to draw conclusions on the nondominated set. Instead, it is sufficient to
compute a set of solutions that contains, for each s ∈ S, at least one solution that is
optimal for s, see, for example, Bökler and Mutzel (2015). Hence, we define:
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Definition 2.14 Let S be a scalarization (of finite or infinte cardinality) for an objective
decomposition �. In an instance of a multiobjective optimization problem of type �,
a set of solutions P ⊆ X is an optimal solution set for S, if, for each scalarizing
function s ∈ S, there is a solution x ∈ P that is optimal for s.

Note that the set of S-supported solutions is the largest optimal solution set for S
in the sense that it is the union of all optimal solution sets for S.

Example 2.15 Let I = (X , f ) be an instance of a bi-objective minimization problem
such that Y = conv({q1, q2}) for some q1, q2 ∈ R

p
> with q11 < q21 and q12 > q22 .

Let S be the weighted sum scalarization (see Example 2.12). Then, X is the set of
(S-) supported solutions, and {x1, x2} with f (x1) = q1 and f (x2) = q2 is an optimal
solution set for S with minimum cardinality.

3 Transforming scalarizations

In this section, we study the approximation quality that can be achieved formultiobjec-
tive optimization problems bymeans of optimal solutions of scalarizations. Countering
the existing impossibility results for maximization problems (see Sect. 1.1), we show
that, in principle, scalarizations may serve as building blocks for the approximation of
any multiobjective optimization problem: If there exists a scalarization S for an objec-
tive decomposition � such that, in each instance of each multiobjective optimization
problem of type �, every optimal solution set for S is an approximation set, then,
for any other objective decomposition �′, there exists a scalarization S′ for which
the same holds true (with the same approximation quality). To this end, given a set
� ⊆ {1, . . . , p}, we define a “flip function” σ� : Rp

> → R
p
> via

σ�
i (y) :=

{
1
yi

, if i ∈ �,

yi , else.
(1)

Note that σ� is continuous, bijective, and self-inverse, i.e., σ�(σ�(y)) = y for all
y ∈ R

p
>.

In the remainder of this section, let an objective decomposition � = (MIN,MAX)

be given. Using σ� , we define a transformed objective decomposition by reversing the
direction of optimization of all objective functions fi , i ∈ �. Formally, this is done as
follows:

Definition 3.1 For � = (MIN,MAX), the �-transformed decomposition �� =
(MIN�,MAX�) (of �) is defined by MIN� := (MIN\�) ∪ (� ∩ MAX) and
MAX� := (MAX\�) ∪ (� ∩ MIN).

It is known (e.g., from Papadimitriou and Yannakakis 2000) that any p-objective
optimization problem of type � can be transformed with the help of σ� to a p-
objective optimization problem of type ��: for any instance I = (X , f ) of a given
p-objective optimization problem of type �, define an instance I� = (X�, f �) of
some p-objective optimization problem of type �� via X� := X and f � : X →
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R
p
>, f �(x) := σ�( f (x)). The instance I� is equivalent to I in the sense that, for any

two solutions x, x� ∈ X , the solution x� is (strictly) dominated by the solution x in
I if and only if x� is (strictly) dominated by x in I� . Moreover, it is easy to see that
our assumption that the set of feasible points is a compact subset of Rp

> is preserved
under this transformation: If f (X) is a compact subset of Rp

>, then f �(X) is also a
compact subset of Rp

>. Further, this transformation is compatible with the notion of
approximation: For any α ≥ 1, a solution x ′ ∈ X is α-approximated by a solution
x ∈ X in I if and only if x ′ is α-approximated by x in I� . This means that a set Pα ⊆ X
of solutions is an α-approximation set for I if and only if Pα is an α-approximation
set for I� . Note that this transformation is self-inverse, i.e., (I�)� = I . Thus, we
call I� the �-transformed instance of I , and the p-objective optimization problem of
type �� that consists of all �-transformed instances the �-transformed optimization
problem. Similarly, we define �-transformed scalarizing functions:

Definition 3.2 Let s : Rp
> → R be a scalarizing function for� and let� ⊆ {1, . . . , p}.

We define the �-transformed scalarizing function s� : Rp
> → R (of s) by

s�(y) := s
(
σ�(y)

)
.

Given a scalarization S for �, we call S� := {
s�

∣
∣ s ∈ S

}
the �-transformed scalar-

ization (of S).

Note that the scalarizing function
(
s�

)�
, i.e., the �-transformed scalarizing function

of the �-transformed scalarizing function of s, equals the scalarizing function s: For
each y ∈ R

p
>, we have

(
s�

)�
(y) = s�

(
σ�(y)

) = s
(
σ�

(
σ�(y)

)) = s(y).

The next lemma shows that scalarizing functions for � are indeed mapped to scalar-
izing functions for ��:

Lemma 3.3 Let s be a scalarizing function for �. Then, s� is a scalarizing function
for �� .

Proof Since s and σ� are continuous, s� is continuous as well. Let y, y′ ∈ R
p
>

such that y <�� y′. Then, σ�(y) <� σ�(y′) and, since s is strictly �-monotone,
s(σ�(y)) ≤ s(σ�(y′)). That is, the function s� is strictly ��-monotone. �

As discussed in Remark 3.8 below, several meaningful, but not self-inverse, defi-
nitions of a �-transformed scalarizing function s� exist.

The next lemma shows that the �-transformed scalarizing function s� of a scalar-
izing function s preserves optimality of a solution x in the sense that x is optimal for
s in I if and only if x is optimal for s� in I� .

Lemma 3.4 Let I = (X , f ) be an instance of a p-objective optimization problem of
type � and let s : Rp

> → R be a scalarizing function for �. Then a solution x ∈ X is
an optimal solution for s in I if and only if x is an optimal solution for s� in I� .
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Proof Note that

s�(σ�( f (x ′′))) = s(σ�(σ�( f (x ′′))) = s( f (x ′′))

for all x ′′ ∈ X . This implies, for any x, x ′ ∈ X , that s( f (x)) ≤ s( f (x ′)) if and only
if s�(σ�( f (x))) ≤ s�(σ�( f (x ′))) and, hence, a feasible solution x is optimal for s
in I if and only if x is optimal for s� in I� = (X , f �). �

Consequently, if every optimal solution set for S is an approximation set in an
instance (X , f ) of a p-objective optimization problem of type �, every optimal solu-
tion set for S� is an approximation set for the instance I� of the �-transformed
p-objective optimization problem with the same approximation quality:

Corollary 3.5 Let S be a scalarization for �, let I = (X , f ) be an instance of a p-
objective optimization problem of type �, and let α ≥ 1. Then, in I , every optimal
solution set for S is an α-approximation set if and only if, in the instance I� of
the �-transformed optimization problem, every optimal solution set for S� is an α-
approximation set.

Proof Lemma 3.4 implies that an optimal solution set for S in I is an optimal solution
set for S� , and vice versa. The set S� is an α-approximation set in I if and only if it
is an α-approximation set in I� . �
As a consequence of Corollary 3.5, we obtain the following transformation theorem:

Theorem 3.6 (Transformation Theorem for Scalarizations with respect to Approxi-
mation) Let α ≥ 1. Let S be a scalarization for � = (MIN,MAX) such that, in each
instance of each p-objective optimization problem of type �, every optimal solution
set for S is an α-approximation set. Then, for any other objective decomposition �′,
there exists a scalarization S′ such that the same holds true: in each instance of each
p-objective optimization problem of type �′, every optimal solution set for S′ is an
α-approximation set.

Proof Let�′ = (MIN′,MAX′)be anobjective decomposition. Set� = (MIN\MIN′)∪
(MAX\MAX′). Then, (�′)� = �. Let I ′ be an instance of a multiobjective optimiza-
tion problem of type �′. Then, (I ′)� is an instance of the �-transformed optimization
problem, which is of type (�′)� = �, and by assumption, in (I ′)� , every optimal
solution set for S is an α-approximation set. But then, in

(
(I ′)�

)� = I ′, every optimal
solution set for S� is an α-approximation set by Corollary 3.5. Hence, S′ := S� is the
desired scalarization for �′. �
Example 3.7 Let �min = ({1, . . . , p},∅) and �max = (∅, {1, . . . , p}). Recall that
the weighted sum scalarizing function for �min with weights w1, . . . , wp > 0 is
sw : Rp

> → R>, sw(y) = ∑p
i=1 wi · yi . Then, −sw is the weighted sum scalarizing

function for �max. Let S = {sw : Rp
> → R | w ∈ R

p
>} and −S = {−sw : Rp

> →
R | w ∈ R

p
>} be the weighted sum scalarizations for �min and �max, respectively. It is

known that, in each instance of each p-objective minimization problem, every optimal
solution set for S is a p-approximation set, but there exist instances of p-objective
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maximization problems for which the set of −S-supported solutions does not yield
any constant approximation quality (Bazgan et al. 2022; Glaßer et al. 2010a).

Consider � = {1, . . . , p}. Then, �max is the �-transformed objective decompo-
sition of �min, and vice versa. Thus, the opposite result holds for the corresponding
�-transformed scalarizations: The �-transformed scalarization of S, which is a scalar-
ization for �max, is the scalarization

S� =
{

s�
w : Rp

> → R, s�
w(y) = w1

y1
+ . . . + wp

yp

∣
∣
∣
∣ w ∈ R

p
>

}

.

The�-transformed scalarization of−S, which is a scalarization for�min, is the scalar-
ization

−S� =
{

s�
w : Rp

> → R, s�
w(y) = −w1

y1
− . . . − wp

yp

∣
∣
∣
∣ w ∈ R

p
>

}

.

Hence, in each instance of each p-objective maximization problem, every optimal
solutions set for S� is a p-approximation set, but there exist instances of p-objective
minimization problems for which the set of −S�-supported solutions does not yield
any constant approximation quality.

Remark 3.8 Let S be a scalarization for� and let � ⊆ {1, . . . , p}. In fact, for each s ∈
S, any continuous strictly increasing function g : s(Rp

>) → R could be utilized to
define s� via s�(y) := g

(
s
(
σ�(y)

))
while still obtaining the results of Lemma 3.4,

Corollary 3.5, and Theorem 3.6. However, defining s� as in Definition 3.2 yields the
additional property that (s�)� = s for any scalarizing function s, i.e., applying the
transformation twice yields the original scalarizing function.

Example 3.9 Let �min = ({1, . . . , p},∅). Since the weighted sum scalarizing func-
tion sw : Rp

> → R, sw(y) = ∑p
i=1 wi · fi (x) for �min is positive-valued, one can

alternatively define its �-transformation with the help of g : R> → R>, g(t) = − 1
t .

For a p-objective maximization problem, the corresponding optimization problem
induced by this transformation reads as

min
x∈X − 1

∑p
i=1 wi · 1

fi (x)

.

Note that this single-objective optimization problem is equivalent to

max
x∈X

p∑

j=1

w j · 1
∑p

i=1 wi · 1
fi (x)

in the sense that, in each instance, the optimal solution sets coincide. The func-
tion hw : Rp

> → R>, hw(y) = ∑p
j=1 w j · 1∑p

i=1 wi · 1
yi

is known as the weighted

harmonic mean (Ferger 1931).
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Example 3.10 In each instance of each p-objective minimization problem, every opti-
mal solution set for the weighted max-ordering scalarization S = {sw : Rp

> →
R>, sw(y) = maxi=1,...,p wi · yi | w ∈ R

p
>}must contain at least one efficient solution

for each nondominated image (Ehrgott 2005), i.e., every optimal solutions set for S is
a 1-approximation set. The transformed scalarizing function sw ∈ S for maximization
(i.e., the {1, . . . , p}-transformed scalarizing function) is

s{1,...,p}
w : Rp

> → R>, s{1,...,p}
w (y) = max

i=1,...,p
wi · 1

yi
.

Consequently, the transformed scalarization of the weighted max-ordering scalariza-
tion for maximization is S{1,...,p} = {s{1,...,p}

w : Rp → R | w ∈ R
p
>} and, in each

instance of each p-objective maximization problem, every optimal solution set for
S{1,...,p} is a 1-approximation set.

For a p-objective maximization problem and a scalarizing function s{1,...,p}
w ∈

S{1,...,p}, one can rewrite the corresponding implied single-objective optimization
problem: In each instance, it holds that

min
x∈X max

i=1,...,p
wi · 1

fi (x)
= min

x∈X
1

mini=1,...,p
1
wi

fi (x)
= 1

maxx∈X mini=1,...,p
1
wi

fi (x)
.

Hence, the optimal solution set of minx∈X maxi=1,...,p wi · 1
fi (x)

coincides with the

optimal solution set ofmaxx∈X mini=1,...,p w̃i · fi (x), where w̃ = ( 1
w1

, . . . , 1
wp

) ∈ R
p
>.

Thismeans that, in each instance of each p-objectivemaximization problem, instead of
solving all single-objective minimization problem instances obtained from scalarizing
functions s{1,...,p} ∈ S{1,...,p}, one can solve the single-objective maximization prob-
lem instances obtained from the functions in {rw̃ : Rp

> → R, rw̃(y) = mini=1,...,p w̃i ·
yi | w̃ ∈ R

p
>} to obtain a 1-approximation set.

4 Conditions for general scalarizations

Given an objective decomposition � and α ≥ 1, we study sufficient and necessary
conditions for a scalarization S such that, in each instance of each multiobjective
optimization problemof type�, the set of S-supported solutions is anα-approximation
set. We also derive upper bounds on the best approximation quality α that can be
achieved by S-supported solutions and that solely depends on the level sets of the
scalarizing functions. In the following, we assume without loss of generality that the
objective decomposition � = (MIN,MAX) is given such thatMIN = {1, . . . , k} and
MAX = {k+1, . . . , p} holds for some k ∈ {0, . . . , p}. Otherwise, the objectives may
be reordered accordingly.

The first result in this section states that, for any finite set S of scalarizing functions
and any α ≥ 1, the set of S-supported solutions, and, thus, any optimal solution set
for S, is not an α-approximation set in general.
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Theorem 4.1 Let S be a scalarization of finite cardinality for �. Then, for any α ≥ 1,
there exists an instance I of a multiobjective optimization problem of type� such that
the set of S-supported solutions is not an α-approximation set.

Proof We first show that it suffices to construct an instance of a biobjective optimiza-
tion problem of each possible type such that the set of S-supported solutions is not an
α-approximation set. To this end, given an objective decomposition� of p > 2 objec-
tives, we consider the objective decomposition �̄ restricted to the objectives 1 and 2
given as �̄ := (∅, {1, 2}) if k = 0, �̄ := ({1}, {2}) if k = 1, and �̄ := ({1, 2},∅) if
k ≥ 2. Now, let S be a scalarization of finite cardinality for �. Then, for each s ∈ S,
the function s̄ : R2

> → R, s̄(y1, y2) := s(y1, y2, 1, . . . , 1) is a scalarizing function
for �̄. Applying the construction for p = 2 to the set S̄ = {s̄ | s ∈ S} of scalarizing
functions for �̄ then yields an instance of a biobjective optimization problem of type
�̄ such that the set of S̄-supported solutions is not an α-approximation set; and this
instance can be transformed into an instance of a p-objective optimization problem
of type � such that the set of S-supported solutions is not an α-approximation set by
setting the additional p − 2 objective functions to be equal to 1 for all x ∈ X .

It remains to show the claim for biobjective optimization problems, i.e., for p = 2.
To this end, we first consider the case �̄ = ({1, 2},∅), i.e., the case where both
objective functions are to beminimized. Let S be a finite set of scalarizing functions for
�̄. In the following,we construct an instance I = (X , f ) of a biobjectiveminimization
problem of type �̄ whose feasible set X consists of |S| + 1 solutions such that

1. no solution x ∈ X is α-approximated by any other solution x ′ ∈ X\{x}, and
2. we have s( f (x)) 
= s( f (x ′)) for all x, x ′ ∈ X with x 
= x ′ and each s ∈ S.

We set X = {x (0), . . . , x (|S|)} and inductively determine the components of the vec-
tors f (x (	)) for 	 = 0, . . . , |S| as follows: We start by setting f1(x (0)) := f2(x (0)) :=
1. Next, let f (x (0)), . . . , f (x (	−1)) be given for some 	 ∈ {1, . . . , |S|}. We con-
struct the vector f (x (	)) such that x (	) does not α-approximate x (m) and is not
α-approximated by x (m) form = 0, . . . , 	−1, and such that s( f (x (	))) 
= s( f (x (m)))

for m = 0, . . . , 	 − 1 and each s ∈ S. To this end, we first set

f1(x
(	)) := 1

α + 1
· min

{
f1(x

(0)), . . . , f1(x
(	−1))

}

f2(x
(	)) := (α + 1) · max

{
f2(x

(0)), . . . , f2(x
(	−1))

}
+ |S|2.

If s( f (x (	))) 
= s( f (x (m))) for m = 0, . . . , 	 − 1 and each s ∈ S, we are done.
Otherwise, we do a decreasing step as follows: We strictly decrease the value f1(x (	))

by a factor of 1
2 and strictly decrease the value of f2(x (	)) by an additive constant

of 1. Note that, by strict monotonicity, this strictly decreases the value s( f (x (	))) for
each s ∈ S. Thus, for each m ∈ {0, . . . , 	 − 1} and s ∈ S where we previously had
s( f (x (	))) = s( f (x (m))), we now have s( f (x (	))) < s( f (x (m))). Note that this strict
inequality is preserved in subsequent decreasing steps. Hence, after at most 	 · |S|
many decreasing steps, we must have s( f (x (	))) 
= s( f (x (m))) for m = 0, . . . , 	 − 1
and each s ∈ S, so we can proceed with the construction of f (x (	+1)) in iteration 	+1.
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It is now left to prove that the resulting instance satisfies the two claimedProperties 1
and 2. The solution x (	) whose objective values have been constructed in iteration 	

is not α-approximated by x (m) for m = 0, . . . , 	 − 1 in the first objective f1 since

f1(x
(	)) ≤ 1

α + 1
· min

{
f1(x

(0)), . . . , f1(x
(	−1))

}

<
1

α
· min

{
f1(x

(0)), . . . , f1(x
(	−1))

}
.

Further, the solution x (	) does not α-approximate x (m) in the second objective f2
for m = 0, . . . , 	 − 1: We have performed at most 	 · |S| ≤ |S|2 many decreasing
steps, where, in each decreasing step, the value f2(x (	)) has been decreased by 1.
Thus,

f2(x
(	)) ≥ (α + 1) · max

{
f2(x

(0)), . . . , f2(x
(	−1))

}
+ |S|2 − 	 · |S|

> α · max
{
f2(x

(0)), . . . , f2(x
(	−1))

}
.

Hence, the instance I = (X , f ) constructed as above indeed satisfies the two claimed
Properties 1 and 2. Property 2 implies that, for each scalarizing function s ∈ S, exactly
one solution is optimal for s. Thus, at most |S| many solutions can be S-supported,
and at least one solution x ∈ X is not S-supported. However, by Property 1, this
solution x is not α-approximated by any other solution. Thus, I is an instance of a
biobjective minimization problem for which the set of S-supported solutions is not an
α-approximation set.

In order to show the claim for the case �̄ = (∅, {1, 2}), i.e., the case where both
objective functions are to bemaximized, we apply the above construction to the {1, 2}-
transformed scalarization S{1,2}. This yields an instance I of a biobjectiveminimization
problem where the set of S{1,2}-supported solutions is not an α-approximation set.
Thus, by Corollary 3.5, the set of S-supported solutions is not an α-approximation
set in the {1, 2}-transformed instance I {1,2}, which is an instance of a biobjective
maximization problem. The case �̄ = ({1}, {2}) follows analogously with the trans-
formation induced by � = {2}. �

Note that the (algorithmically motivated) approximation for instances of p-
objectiveminimization problems inGlaßer et al. (2010a),Glaßer et al. (2010b), Bazgan
et al. (2022) is done by an instance-based choice of finitely many scalarizing func-
tions.Nevertheless, to obtain a scalarization that yields approximation sets for arbitrary
instances of arbitrary p-objective minimization problems, the cardinality of S must
be infinite by Theorem 4.1. However, the inapproximability results for maximization
problems presented in Bazgan et al. (2022), Herzel et al. (2023) state that there exists
an instance where even the set of all supported solutions (for the weighted sum scalar-
ization) does not constitute an approximation set. Hence, in general, even considering
infinitely many scalarizing functions is not sufficient for approximation. Instead, addi-
tional conditions for the scalarizing functions are crucial, which we derive next.
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We first study with what approximation quality a given feasible solution can be
approximated by optimal solutions for a single scalarizing function. Afterwards, we
investigate what approximation quality can be achieved by every optimal solution set
for a scalarization S, and then derive conditions under which an optimal solution set
for S constitutes an approximation for arbitrary instances of p-objective optimization
problems of type �.

The first result shows that, given a feasible solution x ′, if the component-wise
maximum ratio between points in the level set of a scalarizing function at f (x ′) can
be bounded by some α ≥ 1, then x ′ is α-approximated by every optimal solution for
the scalarizing function:

Lemma 4.2 In an instance of a p-objective optimization problem of type�, let x ′ ∈ X
and y′ := f (x ′). Let s : Rp

> → R be a scalarizing function for � such that the level
set L(y′, s) is bounded from above in i = 1, . . . , k by some q ∈ R

p
> and bounded from

below in i = k + 1, . . . , p by some q ′ ∈ R
p
>. Then the solution x ′ is α-approximated

by every solution x ∈ X that is optimal for s, where

α := sup

{

max

{
y1
y′
1
, . . . ,

yk
y′
k
,
y′
k+1

yk+1
, . . . ,

y′
p

yp

} ∣
∣
∣
∣ y ∈ L(y′, s)

}

. (2)

Proof Note that α < ∞ since y′ = f (x ′) is fixed and L(y′, s) is bounded from
above in i = 1, . . . , k by q ∈ R

p
> and bounded from below in i = k + 1, . . . , p by

q ′ ∈ R
p
>. Let x be an optimal solution for s. By Lemma 2.9, there exists λ ∈ R> such

that y′′ ∈ R
p
> defined by y′′

i := λ · fi (x) for i = 1, . . . , k and y′′
i := 1

λ
· fi (x) for

i = k + 1, . . . , p satisfies s(y′′) = s(y′), i.e., y′′ ∈ L(y′, s). Moreover, λ < 1 would
imply that s(y′′) < s( f (x)) ≤ s( f (x ′)) = s(y′) = s(y′′) by strict monotonicity of s
and optimality of x for s, which is a contradiction. Hence, λ ≥ 1, so f (x) ≤� y′′, and
we obtain

fi (x)

fi (x ′)
≤ y′′

i

fi (x ′)
= y′′

i

y′
i

≤ max

{
y′′
1

y′
1
, . . . ,

y′′
k

y′
k
,
y′
k+1

y′′
k+1

, . . . ,
y′
p

y′′
p

}

≤ α

for i = 1, . . . , k and

fi (x ′)
fi (x)

≤ fi (x ′)
y′′
i

= y′
i

y′′
i

≤ max

{
y′′
1

y′
1
, . . . ,

y′′
k

y′
k
,
y′
k+1

y′′
k+1

, . . . ,
y′
p

y′′
p

}

≤ α

for i = k + 1, . . . , p. �
We proceed by investigating with what approximation quality a given feasible

solution can be approximated by the set of S-supported solutions of a scalarization S.

Proposition 4.3 In an instanceof a p-objective optimizationproblemof type�, let x ′ ∈
X be given. Let S be a scalarization for� such that, for some scalarizing function s̄ ∈
S, the level set L(y′, s̄) for y′ := f (x ′) is bounded from above in i = 1, . . . , k by
some q ∈ R

p
> and bounded from below in i = k + 1, . . . , p by some q ′ ∈ R

p
>. Then,
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for any ε > 0, the solution x ′ is (α + ε)-approximated by every optimal solution for
some scalarizing function s ∈ S, where

α := inf
s∈S sup

{

max

{
y1
y′
1
, . . . ,

yk
y′
k
,
y′
k+1

yk+1
, . . . ,

y′
p

yp

} ∣
∣
∣
∣ y ∈ L(y′, s)

}

.

If the infimum is attained at some s ∈ S, then x ′ is α-approximated by every optimal
solution for s.

Proof Note that α < ∞ since y′ = f (x ′) is fixed and L(y′, s̄) is bounded from above
in i = 1, . . . , k by some q̄ ∈ R

p
> and bounded from below in i = k + 1, . . . , p by

some q̄ ′ ∈ R
p
>. Given ε > 0, let s ∈ S be a scalarizing function such that

sup

{

max

{
y1
y′
1
, . . . ,

yk
y′
k
,
y′
k+1

yk+1
, . . . ,

y′
p

yp

} ∣
∣
∣
∣ y ∈ L(y′, s)

}

≤ α + ε.

Then L(y′, s) must be bounded from above in i = 1, . . . , k by some q ∈ R
p
> and

bounded from below in i = k+1, . . . , p by some q ′ ∈ R
p
>. Thus, Lemma 4.2 implies

that x ′ is (α + ε)-approximated by any solution x ∈ X that is optimal for s, which
proves the first claim. If the infimum is attained at s ∈ S, this means that we even have

sup

{

max

{
y1
y′
1
, . . . ,

yk
y′
k
,
y′
k+1

yk+1
, . . . ,

y′
p

yp

} ∣
∣
∣
∣ y ∈ L(y′, s)

}

= α,

and the second claim also follows immediately by using Lemma 4.2. �
If the scalarization S admits a common finite upper bound on

inf
s∈S sup

{

max

{
y1
y′
1
, . . . ,

yk
y′
k
,
y′
k+1

yk+1
, . . . ,

y′
p

yp

} ∣
∣
∣
∣ y ∈ L(y′, s)

}

for all points y′ ∈ R
p
>, then Proposition 4.3 implies that, in each instance of each

p-objective optimization problem of type �, every optimal solution set for S yields a
constant approximation quality:

Theorem 4.4 Let S be a scalarization for � and let

α := sup
y′∈Rp

>

inf
s∈S sup

{

max

{
y1
y′
1
, . . . ,

yk
y′
k
,
y′
k+1

yk+1
, . . . ,

y′
p

yp

} ∣
∣
∣
∣ y ∈ L(y′, s)

}

.

If α < ∞, then, in each instance of each p-objective optimization problem of type �,
every optimal solution set for S is an (α + ε)-approximation set for any ε > 0. If,
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additionally, the infimum

inf
s∈S sup

{

max

{
y1
y′
1
, . . . ,

yk
y′
k
,
y′
k+1

yk+1
, . . . ,

y′
p

yp

} ∣
∣
∣
∣ y ∈ L(y′, s)

}

is attained and finite for each y′ ∈ R
p
>, then, in each instance of each p-objective

optimization problem of type�, every optimal solution set for S is an α-approximation
set.

Proof Let I = (X , f ) be an instance of a p-objective optimization problem of type�.
Let x ′ ∈ X be a feasible solution and set y′ := f (x ′). Then

inf
s∈S sup

{

max

{
y1
y′
1
, . . . ,

yk
y′
k
,
y′
k+1

yk+1
, . . . ,

y′
p

yp

} ∣
∣
∣
∣ y ∈ L(y′, s)

}

≤ α,

which implies that L(y′, s̄) must be bounded from above in i = 1, . . . , k by some
q̄ ∈ R

p
> and bounded from below in i = k + 1, . . . p by some q̄ ′ ∈ R

p
> for at least

one s̄ ∈ S. Consequently, the first claim follows by Proposition 4.3. The second claim
follows similarly by using the second statement in Proposition 4.3. �
Given a scalarization S for � and y′ ∈ R

p
>, set

α(y′) := inf
s∈S sup

{

max

{
y1
y′
1
, . . . ,

yk
y′
k
,
y′
k+1

yk+1
, . . . ,

y′
p

yp

} ∣
∣
∣
∣ y ∈ L(y′, s)

}

.

Theorem 4.4 states that, if there exists a common finite upper bound α with
supy′∈Rp

>
α(y) ≤ α < ∞, then a constant approximation quality (namely α + ε)

is achieved by every optimal solution set for S in arbitrary instances of arbitrary p-
objective optimization problems of type �. The following example, however, shows
that the weaker condition α(y′) < ∞ for every y′ ∈ R

p
> (which holds if all level

sets L(y′, s) are bounded from above in i = 1, . . . , k by some q̄ ∈ R
p
> and bounded

from below in i = k+1, . . . p by some q̄ ′ ∈ R
p
>) is not sufficient in order to guarantee

a constant approximation quality:

Example 4.5 Let p = 2 and �min = ({1, 2},∅). Consider the scalarization S = {s}
for �min, where s : R2

> → R is defined by s(y) := min{y21 + y2, y1 + y22 }. Then,
Theorem 4.1 shows that there exists an instance of a biobjective minimization problem
with a solution x ′ ∈ X such that x ′ is not α-approximated by any S-supported solution.
Nevertheless, for any y′ ∈ R

2
>, it can be shown that

α(y′) = sup

{

max

{
y1
y′
1
,
y2
y′
2

} ∣
∣
∣
∣ y ∈ L(y′, s)

}

≤ max

{
s(y′)
y′
1

,

√
s(y′)
y′
1

,
s(y′)
y′
2

,

√
s(y′)
y′
2

}

< ∞.
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Further,

sup
y′∈Rp

>

α(y′) ≥ sup
a≥1

sup

{

max
{ y1
a

,
y2
a

} ∣
∣
∣
∣ y ∈ R

2
>, s(y) = s((a, a))

}

= sup
a≥1

sup

{

max
{ y1
a

,
y2
a

} ∣
∣
∣
∣ y ∈ R

2
>, s(y) = a2 + a

}

= sup
a≥1

a2 + a

a
= sup

a≥1
a + 1 = ∞,

so there is no α < ∞ with supy′∈Rp
>

α(y′) ≤ α as required in Theorem 4.4.

There exist scalarizations S for which the approximation quality α given in Theo-
rem 4.4 is tight in the sense that, for any ε > 0, there is an instance of a multiobjective
optimization problem of type � such that the set of S-supported solutions is not an
(α · (1− ε))-approximation set. Examples of such scalarizations where, additionally,
α is easy to calculate, are presented in Sect. 5.2.

Nevertheless, we now show that the approximation quality in Theorem 4.4 is not
tight in general. To this end, we provide an example of a scalarization S for mini-
mization for which each individual scalarizing function s ∈ S does not satisfy the
requirements of Lemma 4.2. That is, for each point y′ ∈ R

p
>, the level set L(y′, s)

is not bounded from above in some i = 1, . . . , p. However, for each instance, every
optimal solution set for the whole scalarization S is indeed a 1-approximation set.

Example 4.6 Again, let p = 2 and �min = ({1, 2},∅). For each w ∈ R
2
> and ε ∈

(0, 1), define a scalarizing function sw,ε : R2
> → R for �min via

sw,ε(y) := max

{

min
{w1 · y1

ε
,w2 · y2

}
,min

{
w1 · y1, w2 · y2

ε

} }

.

Then, the level set L(y′, sw,ε) = {
y ∈ R

2
> | sw,ε(y) = sw,ε(y′)

}
is unbounded for each

y′ ∈ R
2
>, and consequently not bounded from above in neither i = 1 nor i = 2. Thus,

for each sw,ε and each y′ ∈ R>, it holds that

sup

{

max

{
y1
y′
1
,
y2
y′
2

} ∣
∣
∣
∣ y ∈ L(y′, sw,ε)

}

= ∞

and, therefore, the value α given in Theorem 4.4 is infinite. However, for S = {sw,ε :
w ∈ R

2
> | 0 < ε < 1}, in any instance I = (X , f ) of any biobjective minimization

problem, at least one corresponding efficient solution x ∈ XE for every nondominated
image y ∈ YN must be contained in every optimal solution set for S and, consequently,
every optimal solution set is a 1-approximation set: Since f (X) is a compact subset
of R2

>, it is bounded from above in each i by some y ∈ R
2
>, and from below in each i

by some y′ ∈ R
2
>. Choose ε <

y′
1·y′

2
y1·y2 . Then, for each w ∈ R

2
> with y′

2 ≤ w1 ≤ y2 and
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y′
1 ≤ w2 ≤ y1, and each x ∈ X , we have

w1 · f1(x) ≤ y2 · y1 <
y′
1 · y′

2

ε
≤ w2 · f2(x)

ε
and

w2 · f2(x) ≤ y1 · y2 <
y′
2 · y′

1

ε
≤ w1 · f1(x)

ε
,

so sw,ε( f (x)) = max{w1 · f1(x), w2 · f2(x)}. This means that, for such combinations
of w and ε, the scalarizing function sw,ε coincides with the weighted max-ordering
scalarizing function. It is well-known that, for y ∈ YN , any optimal solution x for the
weighted max-ordering scalarizing function with weights w1 = y2 and w2 = y1 is a
preimage of y, i.e., f (x) = y and x ∈ XE .

5 Weighted scalarizations

In this section, we tailor the results of Sect. 4 to so-called weighted scalarizations, in
which the objective functions are weighted by positive scalars before a given scalar-
izing function s for an objective decomposition � is applied. By varying the weights,
different optimal solutions are potentially obtained. In Sect. 5.1, we show that the com-
putation of the approximation quality α given in Theorem 4.4 simplifies for weighted
scalarizations.Moreover, we see in Sect. 5.2 thatα is easy to calculate and is best possi-
ble for all norm-based weighted scalarizations applied in the context of multiobjective
optimization.

As in Sect. 4, we assumewithout loss of generality that the objective decomposition
is given as � = ({1, . . . , k}, {k + 1, . . . , p}) for some k ∈ {0, . . . , p}. Weighted
scalarizations for � are then formally defined as follows:

Definition 5.1 Let W ⊆ R
p
> be a set of possible weights and s : R

p
> → R some

scalarizing function for �. Then, the weighted scalarization S induced by W and s is
defined via

S = {
sw : Rp

> → R, sw(y) = s(w1 · y1, . . . , wp · yp) | w ∈ W
}
. (3)

As the most prominent example, this class contains the weighted sum scalarization,
where W = R

p
> and s : Rp

> → R, s(y) := ∑k
i=1 yi − ∑p

i=k+1 yi , see Example 2.12.

5.1 Simplified computation of the approximation quality

For weighted scalarizations S as in (3), the computation of the approximation qualityα

given in Theorem 4.4 simplifies as follows:

Lemma 5.2 Let S be the weighted scalarization induced by W = R
p
> and some scalar-

izing function s for �. Define α ≥ 1 as in (2), i.e.,

α := sup
y′∈Rp

>

inf
s′∈S

sup

{

max

{
y1
y′
1
, . . . ,

yk
y′
k
,
y′
k+1

yk+1
, . . . ,

y′
p

yp

} ∣
∣
∣
∣ y ∈ L(y′, s′)

}

.
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Further, define β ≥ 1 by

β := inf
ȳ∈Rp

>

sup

{

max

{
y∗
1

ȳ1
, . . . ,

y∗
k

ȳk
,
ȳk+1

y∗
k+1

, . . . ,
ȳp
y∗
p

} ∣
∣
∣
∣ y

∗ ∈ L(ȳ, s)

}

.

Then, it holds that α = β.

Proof Let y′ ∈ R
p
>. For each s′ ∈ S, there exists a vector w ∈ R

p
> of parameters

such that s′ = sw. Vice versa, for each vector w ∈ R
p
> of parameters, there exists a

scalarizing function s′ ∈ S such that sw = s′. Consequently,

inf
s′∈S

sup

{

max

{
y1
y′
1
, . . . ,

yk
y′
k
,
y′
k+1

yk+1
, . . . ,

y′
p

yp

} ∣
∣
∣
∣ y ∈ L(y′, s′)

}

= inf
w∈Rp

>

sup

{

max

{
y1
y′
1
, . . . ,

yk
y′
k
,
y′
k+1

yk+1
, . . . ,

y′
p

yp

} ∣
∣
∣
∣ y ∈ L(y′, sw)

}

.

Further, it holds that

inf
w∈Rp

>

sup

{

max

{
y1
y′
1
, . . . ,

yk
y′
k
,
y′
k+1

yk+1
, . . . ,

y′
p

yp

} ∣
∣
∣
∣ y ∈ L(y′, sw)

}

= inf
w∈Rp

>

sup

{

max

{
y1
y′
1
, . . . ,

yk
y′
k
,
y′
k+1

yk+1
, . . . ,

y′
p

yp

} ∣
∣
∣
∣

y ∈ R
p
>, s(w1 · y1, . . . , wp · yp) = s(w1 · y′

1, . . . , wp · y′
p)

}

= inf
ȳ∈Rp

>

sup

{

max

{
y1
y′
1
, . . . ,

yk
y′
k
,
y′
k+1

yk+1
, . . . ,

y′
p

yp

} ∣
∣
∣
∣

y ∈ R
p
>, s

(
ȳ1
y′
1

· y1, . . . , ȳp
y′
p

· yp
)

= s(ȳ)

}

= inf
ȳ∈Rp

>

sup

{

max

{
y∗
1

ȳ1
, . . . ,

y∗
k

ȳk
,
ȳk+1

y∗
k+1

, . . . ,
ȳp
y∗
p

} ∣
∣
∣
∣ y

∗ ∈ R
p
>, s(y∗) = s(ȳ)

}

= β,

where we substitute ȳi = wi · y′
i , i = 1, . . . , p, in the second equality and y∗

i = ȳi
y′
i
· yi ,

i = 1, . . . , p, in the third equality. Note that, since y′
i > 0 for i = 1, . . . , p, every

point ȳ ∈ R
p
> can actually be obtained via ȳi = wi · y′

i using an appropriate positive
weight vector w ∈ R

p
>. Hence, for each y′ ∈ R

p
>, the value

inf
s′∈S

sup

{

max

{
y1
y′
1
, . . . ,

yk
y′
k
,
y′
k+1

yk+1
, . . . ,

y′
p

yp

} ∣
∣
∣
∣ y ∈ L(y′, s′)

}

is equal to the constant β, and we obtain α = supy′∈Rp
>

β = β. �
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Consequently, if, for some ȳ ∈ R
p
>, the level set L(ȳ, s) is bounded from above

in i = 1, . . . , k by some q ∈ R
p
> and bounded from below in i = k + 1, . . . , p

by some q ′ ∈ R
p
>, Theorem 4.4 and Lemma 5.2 imply that, in each instance, every

optimal solution set for S constitutes an approximation set with approximation quality
arbitrarily close or even equal to β, with β computed as in Lemma 5.2. This is captured
in the following theorem:

Theorem 5.3 Let S be the weighted scalarization induced by W = R
p
> and some

scalarizing function s for � such that, additionally, L(ȳ, s) is bounded from above in
i = 1, . . . , k by some q ∈ R

p
> and bounded from below in i = k + 1, . . . , p by some

q ′ ∈ R
p
> for some ȳ ∈ R

p
>. Define

β := inf
ȳ∈Rp

>

sup

{

max

{
y∗
1

ȳ1
, . . . ,

y∗
k

ȳk
,
ȳk+1

y∗
k+1

, . . . ,
ȳp
y∗
p

} ∣
∣
∣
∣ y

∗ ∈ L(ȳ, s)

}

.

Then, in each instance of each p-objective optimization problem of type �, every
optimal solution set for S is a (β + ε)-approximation set for any ε > 0. If the infimum
is attained, i.e., if there exists ȳ ∈ R

p
> such that

β = sup

{

max

{
y∗
1

ȳ1
, . . . ,

y∗
k

ȳk
,
ȳk+1

y∗
k+1

, . . . ,
ȳp
y∗
p

} ∣
∣
∣
∣ y

∗ ∈ L(ȳ, s)

}

holds, then, in each instance of each p-objective optimization problem of type�, every
optimal solution set for S is a β-approximation set. �
Example 5.4 Again, consider the objective decomposition�min = ({1, . . . , p},∅) and
the scalarizing function s : Rp

> → R, s(y) = ∑p
i=1 yi . Then, the weighted scalariza-

tion induced by W = R
p
> and s is the weighted sum scalarization S = {sw : Rp

> →
R, sw(y) = ∑p

i=1 wi yi | w ∈ R
p
>} for minimization. For each ȳ ∈ R

p
>, it can be

shown (see Lemma A.1 in the appendix) that a tight upper bound on the component-
wise worst case ratio of ȳ to any y∗ ∈ L(ȳ, s) is

sup

{

max

{
y∗
1

ȳ1
, . . . ,

y∗
p

ȳp

} ∣
∣
∣
∣ y

∗ ∈ R
p
>, s(y∗) = s(ȳ)

}

=
⎛

⎝
p∑

j=1

ȳ j

⎞

⎠ · max
i=1,...,p

{
1

ȳi

}

.

For p = 2, this is illustrated in Fig. 1 (left). Since (1, . . . , 1) ∈ R
p
> with

inf
ȳ∈Rp

>

sup

{

max
i=1,...,p

{
y∗
i

ȳi

} ∣
∣
∣
∣ y

∗ ∈ R
p
>, s(y∗) = s(ȳ)

}

≥ sup

{

max
i=1,...,p

{ yi
1

} ∣
∣
∣
∣ y ∈ R

p
>, s(y) = s((1, . . . , 1))

}

=
⎛

⎝
p∑

j=1

1

⎞

⎠ max
i=1,...,p

{
1

1

}

= p,
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where the proof of the first inequality is given in Theorem 5.5, the approximation
quality for the weighted sum scalarization for minimization given in Theorem 5.3
resolves to β = p.

In view of Theorem 4.4, observe that, for each y′ ∈ R
p
>, exactly the parameter

vector w′ =
(∑p

i=1 y
′
i

y′
1

, . . . ,

∑p
i=1 y

′
i

y′
p

)

∈ R
p
> satisfies

inf
sw∈S sup

{

max

{
y1
y′
1
, . . . ,

yp
y′
p

} ∣
∣
∣
∣ y ∈ L(y′, sw)

}

= sup

{

max

{
y1
y′
1
, . . . ,

yp
y′
p

} ∣
∣
∣
∣ y ∈ L(y′, sw′)

}

= p,

see Fig. 1 (right) for an illustration of the case p = 2. Hence, Theorems 4.4 and 5.3
indeed generalize the known approximation results on the weighted sum scalarization
for minimization in Glaßer et al. (2010a), Bazgan et al. (2022). In fact, the known
tightness of these results yields that the approximation quality in Theorems 4.4 and 5.3
is tight for the weighted sum scalarization for minimization.

For the weighted sum scalarization for objective decompositions � containing
maximization objectives, however, it can be shown that

inf
ȳ∈Rp

>

sup

{

max

{
y∗
1

ȳ1
, . . . ,

y∗
k

ȳk
,
ȳk+1

y∗
k+1

, . . . ,
ȳp
y∗
p

} ∣
∣
∣
∣ y

∗ ∈ L(ȳ, s)

}

= ∞.

This bound is also tight: for every α ≥ 1, an instance of a p-objective optimiza-
tion problem of type � exists for which the set of supported solutions is not an
α-approximation set. A proof is given in Sect. 5.2.

5.2 Tightness results for norm-based weighted scalarizations

In the following, we consider scalarizations as in (3) for which the defining scalarizing
function s is based on norms. We first consider the case that all objective functions are
to beminimized and then investigate the case with at least onemaximization objective.

Note that a norm restricted to the positive orthant is not necessarily a scalarizing
function for�min = ({1, . . . , p},∅).2 Hence,we have to assume that s is strictly�min-
monotone. This assumption is satisfied, among others, for all q-norms with 1 ≤ q ≤
∞. The next result states that, for each weighted scalarization induced by W = R

p
>

and a strictly �min-monotone norm s, the computation of the approximation quality
given in Theorem5.3 simplifies to an explicit expression.Moreover, the approximation
quality is best possible. Glaßer et al. (2010a) compute the value of α for the special
case of q-norms based on constants given by the norm equivalence to the 1-norm. The

2 For example, consider the norm ||y|| := |y1|+|y2− y1| onR2. Then (4, 2) <�min (5, 5), but ||(4, 2)|| =
6 > 5 = ||(5, 5)||.
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Fig. 1 Let s(y) = y1 + y2 be the (unweighted) sum scalarizing function for �min = ({1, 2},∅). Left: the

component-wise worst case ratio of ȳ to any y∗ ∈ L(ȳ, s) is bounded by sup

{

max

{
y∗
1
ȳ1

,
y∗
2
ȳ2

} ∣
∣
∣
∣ y∗ ∈

L(ȳ, s)

}

= max

{
ȳ1+ȳ2
ȳ1

,
ȳ1+ȳ2
ȳ2

}

≥ 2. Right: the component-wise worst case ratio of y′ to any

y ∈ L(y′, sw′ ), where w′ =
(

y′
1+y′

2
y′
1

,
y′
1+y′

2
y′
2

)

, is bounded by sup

{

max

{
y1
y′
1
,

y
y′
2

} ∣
∣
∣
∣ y ∈ L(y′, sw′ )

}

=

max

{
1
y′
1

·
(

y′
1 + w′

2
w′
1

· y′
2

)

, 1
y′
2

·
(

w′
1

w′
2

· y′
1 + y′

2

)}

= max

{
2·y′

1
y′
1

,
2·y′

2
y′
2

}

= 2.

next result extends this: for each�min-monotone norm, there is actually a closed-form
expression for the approximation quality α:

Theorem 5.5 Let s : R
p → R≥ be a strictly �min-monotone norm, let S =

{sw : Rp
> → R, sw(y) = s(w1 · y1, . . . , wp · yp) | w ∈ R

p
>} be the weighted scalar-

ization induced by W = R
p
> and s and denote by ei the i-th unit vector in Rp. Then,

inf
ȳ∈Rp

>

sup

{

max

{
y∗
1

ȳ1
, . . . ,

y∗
p

ȳp

} ∣
∣
∣
∣ y

∗ ∈ L(ȳ, s)

}

= s

(
1

s(e1)
, . . . ,

1

s(ep)

)

=: α.

Moreover,

1. in each instance of each p-objectiveminimization problem, every optimal solution
set for S is an α-approximation set, and

2. for each 0 < ε < 1, there exists an instance of a p-objectiveminimization problem
where the set of S-supported solutions is not an (α · (1 − ε))-approximation set.

Proof For each ȳ ∈ R
p
>, Lemma A.1 in the appendix implies that

sup

{

max

{
y∗
1

ȳ1
, . . . ,

y∗
p

ȳp

} ∣
∣
∣
∣ y

∗ ∈ L(ȳ, s)

}

= s(ȳ) · max

{
1

s(e1) · ȳ1 , . . . ,
1

s(ep) · ȳp
}

.

Then, with imin := argmini=1,,...,p s(ei ) · ȳi , it holds that

s(ȳ) · max

{
1

s(e1) · ȳ1 , . . . ,
1

s(ep) · ȳp
}

= s

(
s(e1) · ȳ1
s(e1)

, . . . ,
s(ep) · ȳp
s(ep)

)

· 1

s(eimin) · ȳimin
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≥ s

(
s(eimin) · ȳimin

s(e1)
, . . . ,

s(eimin) · ȳimin

s(ep)

)

· 1

s(eimin) · ȳimin

= s

(
1

s(e1)
, . . . ,

1

s(ep)

)

.

Since choosing ȳ :=
(

1
s(e1)

, . . . , 1
s(ep)

)
∈ R

p
> yields

s(ȳ) · max

{
1

s(e1) · ȳ1 , . . . ,
1

s(ep) · ȳp
}

= s

(
1

s(e1)
, . . . ,

1

s(ep)

)

,

we obtain

inf
ȳ∈Rp

>

sup

{

max

{
y∗
1

ȳ1
, . . . ,

y∗
k

ȳk
,
ȳk+1

y∗
k+1

, . . . ,
ȳp
y∗
p

} ∣
∣
∣
∣ y

∗ ∈ L(ȳ, s)

}

= s

(
1

s(e1)
, . . . ,

1

s(ep)

)

.

Then, Statement 1 follows by Theorem 5.3 since the infimum is in fact attained.
We now prove Statement 2. Assume without loss of generality that s(ei ) = 1

for i = 1, . . . , p. Otherwise use the norm s′ := sw for w ∈ R
p
> with wi = 1

s(ei )

instead. Then S = {s′
w | w ∈ R

p
>}, s′(ei ) = s(wi · ei ) = wi · s(ei ) = 1, and

α = s
(

1
s(e1)

, . . . , 1
s(ep)

)
= s′(1, . . . , 1) = s′

(
1

s′(e1) , . . . ,
1

s′(ep)

)
.

Given 0 < ε < 1, first define vectors ẽ1, . . . , ẽ p ∈ R
p
> with ẽij := eij + δ for i, j ∈

{1, . . . , p}, where δ := ε
2α . Then, define a p-objective minimization problem instance

(X , f ) with X = {x̄, x (1), . . . , x (p)} via

f j (x̄) := 1

α
+ δ for j = 1, . . . , p

and

f (x (i)) :=
(
1 − ε

2

)
· ẽi for i = 1, . . . , p.

Then the solution x̄ is not (α · (1 − ε))-approximated by any other solution x (i): For

each i = 1, . . . , p, we have fi (x̄) = 1+ ε
2

α
and fi (x (i)) = (

1 − ε
2

)·ẽii = (
1 − ε

2

)·(1+δ)

and, thus,

(1 − ε) · α · fi (x
(i)) = (1 − ε) ·

(
1 + ε

2

)
< 1 − ε

2
< fi (x̄).

Moreover, for each w ∈ R
p
>, the solution x̄ is not optimal for sw: Given w ∈ R

p
>,

choose i ∈ {1, . . . , p} such that wi = min j=1,...,p w j . Then

sw(ẽi ) ≤ sw(ei ) + δ · sw(1, . . . , 1) = wi · s(ei ) + δ · s(w) = wi + δ · s(w),
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Table 1 Approximation qualities guaranteed by Theorem 5.5 for weighted scalarizations implied by the
1-norm, a q-normwith 1 ≤ q < ∞, the Tchebycheff norm, and the modified augmented Tchebycheff norm
with � > 0. In each case, the chosen reference point is the origin

Norm s(y)
∑p

i=1 yi
(∑p

i=1 y
q
i

) 1
q maxi=1,...,p yi

∑p
i=1 yi + � · maxi=1,...,p{yi }

Approx. qual. α p p
1
q 1 p+�

1+�

where the inequality follows by the triangle inequality. This implies that

sw( f (x (i))) =
(
1 − ε

2

)
· sw(ẽi )

< sw(ẽi )

≤ wi + δ · s(w)

= 1

α
· s(wi , . . . , wi ) + δ · s(w)

≤
(
1

α
+ δ

)

· s(w)

= sw( f (x̄)),

which concludes the proof. �
Table 1 presents the approximation qualities given by Theorem 5.5 of the most fre-
quently used norms in the context of multiobjective optimization.

Theorem 5.5 can be further generalized: Recall Remark 3.8 which illustrates alter-
native definitions for �-transformed scalarizing functions by means of continuous
strictly increasing functions. This is possible since, given a scalarizing function s, the
optimal solution sets of the induced single-objective optimization problem instance
do not change under the concatenation of any continuous strictly increasing func-
tion g with s. The same reasoning also yields that the class of scalarizations, for which
the approximation quality given in Theorem 4.4 can be stated explicitly and is best
possible, is even broader:

Corollary 5.6 Let s : Rp → R≥ be a strictly�min-monotone norm and let g : (R
p
>) →

R be a continuous strictly increasing function. Let S̃ = {s̃w : Rp
> → R, s̃w(y) =

g(s(w1 · y1, . . . , wp · yp)) | w ∈ R
p
>} be the weighted scalarization for mini-

mization induced by W = R
p
> and the concatenation of g and s. Further, let

α := s
(

1
s(e1)

, . . . , 1
s(ep)

)
, where ei denotes the i-th unit vector in R

p. Then,

1. in each instance of each p-objectiveminimization problem, every optimal solution
set for S̃ is an α-approximation set, and

2. for each 0 < ε < 1, there exists an instance of a p-objectiveminimization problem
where the set of S̃-supported solutions is not an (α · (1 − ε))-approximation set.

Proof Note that, since g : (R
p
>) → R is continuous and strictly increasing, s̃ is indeed

a scalarizing function for �min = ({1, . . . , p},∅). In particular, for each ȳ, y∗ ∈ R
p
>,
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it holds that g(s(ȳ)) = g(s(y∗)) if and only if s(ȳ) = s(y∗) and, therefore, L(ȳ, s̃) =
L(ȳ, s). Hence, the claim follows immediately from Theorem 5.5. �

Next, we consider the case that at least one maximization objective is given. Again,
let � = ({1, . . . , k}, {k + 1, . . . , p}) for some 0 ≤ k < p be given without loss
of generality. Besides the transformation presented in Sect. 3, another adaption of
strictly �min-monotone norms to scalarizing functions for � is to first combine all
minimization objectives by means of the norm projected to the first k-objectives,
combine all maximization objectives by means of the norm projected to the last p−k-
objectives, and subtract the norm value of the maximization objectives from the norm
value of the minimization objective. If applied to the 1-norm, we obtain in such a
way the different weighted sum scalarizing functions introduced in Example 2.12. A
formal and even more general definition is given in the next lemma:

Lemma 5.7 Let � = ({1, . . . , k}, {k + 1, . . . , p}). Let s1 : R
k → R≥ be a

strictly ({1, . . . , k},∅)-monotone norm on R
k , and let s2 : Rp−k → R≥ be a

strictly ({1, . . . , p − k},∅)-monotone norm on R
p−k . Define the function s : Rp

> →
R, s(y) := s1(y1, . . . , yk) − s2(yk+1, . . . , yp). Then, s is a scalarizing function for
�.

Proof The function s is continuous since s1 aswell as s2 are continuous. Let y, y′ ∈ R
p
>

such that y <� y′. Then, yi < y′
i for all i = 1, . . . , k and yi > y′

i for all
i = k + 1, . . . , p. Since s1 is strictly ({1, . . . , k},∅)-monotone and s2 is strictly
({1, . . . , p − k},∅)-monotone, it holds that s1(y1, . . . , yk) < s2(y′

1, . . . , y
′
k) and

s1(yk+1, . . . , yp) > s2(y′
k+1, . . . , y

′
p), and, therefore, s(y) < s(y′). �

The next result states that S-supported solutions, where S is aweighted scalarization
induced byW = R

p
> and a scalarizing function s as in Lemma 5.7, are no approxima-

tion set in general. In particular, this generalizes the impossibility results concerning
the approximation of multiobjective maximization problems via the weighted sum
scalarization presented in Bazgan et al. (2022), Glaßer et al. (2010a), Glaßer et al.
(2010b), Halffmann et al. (2017), Herzel et al. (2023).

Theorem 5.8 Let � = ({1, . . . , k}, {k + 1, . . . , p}) such that 0 ≤ k < p. Let a
scalarizing function s for � be given as in Lemma 5.7 and let S = {sw : Rp

> →
R, sw(y) := s(w1 · y1, . . . , wp · yp) | w ∈ R

p
>} be the weighted scalarization induced

by W = R
p
> and s. Then,

1. For any α ≥ 1, there exists an instance of a p-objective optimization problem of
type � such that the set of S-supported solutions is not an α-approximation set.

2. It holds that

inf
ȳ∈Rp

>

sup

{

max

{
y∗
1

ȳ1
, . . . ,

y∗
k

ȳk
,
ȳk+1

y∗
k+1

, . . . ,
ȳp
y∗
p

} ∣
∣
∣
∣ y

∗ ∈ L(ȳ, s)

}

= ∞.

Proof Statement 2 follows immediately by Statement 1 and Theorem 5.3. Hence, it is
left to prove Statement 1.
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For the sake of simplification, we denote, for any point y ∈ R
p
>, by s1(y) the

application of s1 to the projection of y to the components 1, . . . , k. Similarly,we denote
by s2(y) the application of s2 to the projection of y to the components k + 1, . . . , p.

Let ei denote the i-th unit vector in R
p and assume without loss of generality that

s1(ei ) = 1 for i = 1, . . . , k and s2(ei ) = 1 for i = k + 1, . . . , p. Otherwise, use the
function s′ : Rp

> → R, s′(y) = s1(w1 · y1, . . . , wp · yp)−s2(wk+1 · yk+1, . . . , wp · yp)
with w =

(
1

s1(e1)
, . . . , 1

s1(ek )
, 1
s2(ek+1)

, . . . , 1
s2(ep)

)
instead. Then, s1(wi · ei ) = wi ·

s1(ei ) = 1 for i = 1, . . . k and s2(wi · ei ) = wi · s2(ei ) = 1 for i = k + 1, . . . , p.
Additionally, S = {s′

w | w ∈ R
p
>} and

inf
ȳ∈Rp

>

sup

{

max

{
y∗
1

ȳ1
, . . . ,

y∗
k

ȳk
,
ȳk+1

y∗
k+1

, . . . ,
ȳp
y∗
p

} ∣
∣
∣
∣ y

∗ ∈ L(ȳ, s)

}

= inf
ȳ∈Rp

>

sup

{

max

{
y∗
1

ȳ1
, . . . ,

y∗
k

ȳk
,
ȳk+1

y∗
k+1

, . . . ,
ȳp
y∗
p

} ∣
∣
∣
∣ y

∗ ∈ L(ȳ, s′)
}

,

see the proof of Lemma 5.2.
In order to prove Statement 1, we distinguish whether there exists exactly one

objective function to be maximized (k = p − 1) or at least two objective functions to
be maximized (k < p − 1).

We first prove the case that k = p − 1. Given α ≥ 1, choose m ∈ R such that
0 < m < 1 − α

α+1 , and choose M ∈ R such that M > α + 1 ≥ 1. Then, define an

instance of a p-objective optimization problem of type � with X = {x̄, x (1), x (2)} via
f (x̄) := (1, . . . , 1) and f (x (1)) := (m, . . . ,m, 1

α+1 ) and f (x (2)) := (α +1, . . . , α +
1, M). Then, x̄ is not α-approximated by x (1) since

α · f p(x
(1)) = α

α + 1
< 1 = f p(x̄),

and x̄ is not α-approximated by x (2) since

α · f1(x̄) = α < α + 1 = f1(x
(2)).

Moreover, for each w ∈ R
p
>, the solution x̄ is not optimal for sw: Let w ∈ R

p
> be

given. If s1(w1, . . . , wp−1) ≥ s2(wp), it holds that

sw( f (x (1))) = s1(w1 · m, . . . , wp−1 · m) − s2(wp · 1

α + 1
)

= m · s1(w1, . . . , wp−1) − 1

α + 1
s2(wp)

= m · s1(w1, . . . , wp−1) − α + 1 − α

α + 1
s2(wp)

= s1(w1, . . . , wp−1) − s2(wp) + (m − 1)s1(w1, . . . , wp−1) + α

α + 1
s2(wp)

≤ sw( f (x̄)) + (m − 1)s1(w1, . . . , wp−1) + α

α + 1
s1(w1, . . . , wp−1)
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= sw( f (x̄)) +
(

m − 1 + α

α + 1

)

s1(w1, . . . , wp−1)

< sw( f (x̄)) +
(

1 − α

α + 1
− 1 + α

α + 1

)

s1(w1, . . . , wp−1) = sw( f (x̄)).

Otherwise, if s1(w1, . . . , wp−1) ≤ s2(wp), it holds that

sw( f (x (2))) = s1(w1 · (α + 1), . . . , wp−1 · (α + 1)) − s2(wp · M)

= (α + 1) · s1(w1, . . . , wp−1) − M · s2(wp)

= s1(w1, . . . , wp−1) − s2(wp) + α · s1(w1, . . . , wp−1) − (M − 1)s2(wp)

≤ sw( f (x̄)) + (α − M + 1) · s2(wp)

< sw( f (x̄)) + (α − (α + 1) + 1) · s2(wp) = sw( f (x̄)).

Hence, the case k = p − 1 is proven.
Now, let k < p−1.Givenα ≥ 1,wedefine an instance of a p-objective optimization

problem of type � with X = {x̄, x (k+1), . . . , x (p)} via f (x̄) := (1, . . . , 1) and, for
j = k + 1, . . . , p,

fi (x
( j)) := 1

2
, if i = 1, . . . , k,

f j (x
( j)) := s2(1, . . . , 1),

fi (x
( j)) := 1

α + 1
, if i = k + 1, . . . , p, i 
= j .

Then, x̄ is not α-approximationed by x ( j), j ∈ {k + 1, . . . , p}, since there is an
i ∈ {k + 1, . . . , p}\{ j} such that

α · fi (x
(i)) = α

α + 1
< 1 = fi (x̄).

Moreover, for each w ∈ R
p
>, the solution x̄ is not optimal for sw: For w ∈ R

p
>, let

j := argmaxi=k+1,...,p wi . Then,

sw( f (x ( j))) = s1(w1 f1(x
( j)), . . . , wk fk(x

( j))) − s2(wk+1 fk+1(x
( j)), . . . , wp f p(x

( j)))

< s1(w1, . . . , wk) − s2(w j · s2(1, . . . , 1) · e j )
= s1(w1, . . . , wk) − w j · s2(1, . . . , 1) · s2(e j )
= s1(w1, . . . , wk) − s2(w j . . . , w j )

≤ s1(w1, . . . , wk) − s2(wk+1 . . . , wp) = sw( f (x̄)),

where the inequalities follows since s1 is strictly ({1, . . . , k},∅)-monotone and the
application of Lemma 2.10 to s2. This concludes the proof. �

Analogously to the minimization case, a concatenation of any continuous strictly
increasing function with the scalarizing function does no affect the result of Theo-
rem 5.8:
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Corollary 5.9 Let � = ({1, . . . , k}, {k + 1, . . . , p}) such that 0 ≤ k < p. Let a
scalarizing function s for � be given as in Lemma 5.7 and let g : (R

p
>) → R be a

continuous strictly increasing function. Let S̃ = {s̃w : Rp
> → R, s̃w(y) = g(s(w1 ·

y1, . . . , wp · yp)) | w ∈ R
p
>} be the weighted scalarization for minimization induced

by W = R
p
> and the concatenation of g and s. Then, for any α ≥ 1, there exists

an instance of a p-objective optimization problem of type � such that the set of S̃-
supported solutions is not an α-approximation set.

6 Discussion and conclusion

Until now, scalarizations that yield an approximation set in each instance are only
known for the case of pure multiobjective minimization problems. In fact, concerning
all scalarizations for maximization studied so far in the context of approximation, only
impossibility results are known, and we are not aware of any work that studies the
approximation via scalarizations for the case that bothminimization andmaximization
objectives are present.

In this work, we establish that, from a theoretical point of view, all optimization
problems can be approximated equally well via scalarizations. In particular, for each
objective decomposition, scalarizations can be constructed that yield the same approx-
imation quality. This is possible due the existence of powerful scalarizations for the
approximation of multiobjective minimization problems such as the weighted sum
scalarization, see Example 2.12, or norm-based weighted scalarizations, see Theo-
rem 5.5: for each instance of eachmultiobjectiveminimization problem, every optimal
solution set yields an approximation quality that depends solely on the scalarization
itself. Our results of Sect. 3 show that the above scalarizations can, for each other
decomposition �, appropriately be transformed such that the same holds true: in each
instance of each multiobjective minimization problem of type �, every optimal solu-
tion set for the transformed scalarization yields an approximation quality meeting
exactly the approximation quality given by the original scalarization.

It should be noted that the scalarizing functions of the transformations of the above
mentioned scalarizations turn out to be nonlinear. Therefore, the associated instances
of the single-objective optimization problems are surmised to be difficult to solve
exactly in general, even when using heuristics or programming methods that sacrifice
polynomial-time running time. Hence, follow up research is motivated: do scalariza-
tions for objective decompositions including maximization objectives exist that yield
an a priori identifiable approximation quality in arbitrary instances and whose implied
single-objective problem instances are solvable from a theoretical and/or practical
point of view? Theorem 5.8 rules out the majority of scalarizations studied and applied
until now in the context of multiobjective optimization. Nevertheless, the findings of
Sect. 4 indicate guidelines on conditions for the scalarizing functions of a potential
scalarization.

Another crucial question relates to the tightness of the upper bound on the best
approximation quality given in Theorem 4.4. Example 4.6 shows that, in general,
the upper bound is not tight. However, for the majority of norm-based scalariza-
tions applied in the context of multiobjective optimization, the upper bound is in fact
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best possible, see Sect. 5.2. What conditions on scalarizations imply that the given
approximation quality is best possible? Do general weighted scalarizations meet these
conditions?

A third direction of research could be a study of scalarization in view of a
component-wise approximation as, for example, considered in Bazgan et al. (2022),
Herzel et al. (2021a),Halffmann et al. (2017).Hereby,wenote that the results of Sect. 3,
Theorem 4.1 and Lemma 4.2, are easy to generalize to this case. However, to obtain
necessary conditions for a scalarization for (component-wise) approximation similar
to the results of Proposition 4.3, the infimum operator must be replaced by a concept
for vectors of approximation qualities in order to specify what “the best approxima-
tion factors” means. Hence, the study of scalarizations in view of a component-wise
approximation can potentially be connected to the multi-factor notion of approxima-
tion introduced in Bazgan et al. (2022).
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Appendix A: A bound on ratios in level sets

Lemma A.1 Let s : Rp → R be a strictly ({1, . . . , p},∅)-monotone norm. For each
ȳ ∈ R

p
>, it holds that

sup

{

max

{
y∗
1

ȳ1
, . . . ,

y∗
p

ȳp

} ∣
∣
∣
∣ y

∗ ∈ L(ȳ, s)

}

= max

{
s(ȳ)

s(e1) · ȳ1 , . . . ,
s(ȳ)

s(ep) · ȳp
}

,

where ei denotes the i-th unit vector in R
p.
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Proof For each y∗ ∈ L(ȳ, s), by the triangle inequality, the nonnegativity and mono-
tonicity of the norm, and y∗ ∈ R

p
>, it holds that

s(ȳ) = s(y∗) = s

⎛

⎝
p∑

j=1

y∗
j · e j

⎞

⎠ ≥ s(y∗
i · ei ) = y∗

i · s(ei ) for all i = 1, . . . , p,

which implies that

max

{
y∗
1

ȳ1
, . . . ,

y∗
p

ȳp

}

≤ max

{
s(ȳ)

s(e1) · ȳ1 , . . . ,
s(ȳ)

s(ep) · ȳp
}

.

This shows that the supremum on the left-hand side in the claim is less than or equal
to the term on the right-hand side. In order to show that equality holds, we choose
imax = argmaxi=1,...,p

s(ȳ)
s(ei )·ȳi and construct a sequence

(
y(n)

)
n∈N ⊆ L(ȳ, s) such that

lim
n→∞max

{
y(n)
1

ȳ1
, . . . ,

y(n)
p

ȳp

}

= s(ȳ)

s(eimax) · ȳimax

.

This is done by initially constructing a sequence in R
p
> converging to s(ȳ)

s(eimax )
· eimax

which is then projected on the level set L(ȳ, s) by appropriately chosen scaling factors.
Since s(ȳ)

s(eimax )
· eimax is contained in the closure of L(ȳ, s), the projected sequence also

converges to s(ȳ)
s(eimax )

· eimax :

For each n ∈ N, define a vector ỹ(n) ∈ R
p
> by

ỹ(n)
imax

:= s(ȳ)

s(eimax)
, ỹ(n)

j := 1

n
, j = 1, . . . , p, j 
= imax.

Then, for each n ∈ N, it holds that ỹ(n) ≥ s(ȳ)
s(eimax )

· eimax , which implies that s(ỹ(n)) ≥
s( s(ȳ)

s(eimax )
·eimax) = s(ȳ). If s(ỹ(n)) = s(ȳ), set λn := 1. In the case that s(ỹ(n)) > s(ȳ),

Lemma 2.9 implies that there exists a scalar 0 < λn < 1 such that s(λn · ỹ(n)) = s(ȳ).
Since, for each n ∈ N, it holds that s(ȳ) = s(λn · ỹ(n)) = λn · s(ỹ(n)) and since s is
continuous, we obtain

lim
n→∞ λn = lim

n→∞
s(ȳ)

s(ỹ(n))
= s(ȳ)

s
(
limn→∞ ỹ(n)

) = s(ȳ)

s
(

s(ȳ)
s(eimax )

· eimax

) = 1.

For each n ∈ N, define the vector y(n) := λn · ỹ(n). Then,
(
y(n)

)
n∈N ⊆ L(ȳ, s)

by choice of λn and, since limn→∞ λn = 1 and limn→∞ ỹ(n) = s(ȳ)
s(eimax )

· eimax , it
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additionally holds that limn→∞ y(n) = s(ȳ)
s(eimax )

· eimax . Consequently,

lim
n→∞max

{
y(n)
1

ȳ1
, . . . ,

y(n)
p

ȳp

}

= lim
n→∞

y(n)
imax

ȳimax

= s(ȳ)

s(eimax) · ȳimax

and the claim is proven. �
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