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Abstract
Changing one variable at a time while controlling others is a key aspect of scientific experimentation and a central com-
ponent of STEM curricula. However, children reportedly struggle to learn and implement this strategy. Why do children’s 
intuitions about how best to intervene on a causal system conflict with scientific practices? Mathematical analyses have 
shown that controlling variables is not always the most efficient learning strategy, and that its effectiveness depends on the 
“causal sparsity” of the problem, i.e., how many variables are likely to impact the outcome. We tested the degree to which 
7- to 13-year-old children (n = 104) adapt their learning strategies based on expectations about causal sparsity. We report 
new evidence demonstrating that some previous work may have undersold children’s causal learning skills: Children can 
perform and interpret controlled experiments, are sensitive to causal sparsity, and use this information to tailor their testing 
strategies, demonstrating adaptive decision-making.
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Introduction

Imagine you are gifted some seeds for the very first time 
in your life: a little tomato plant! You want it to thrive, so 
you need to figure out what makes and keeps it healthy. 
How much sun, water, and fertilizer does it need? This 
kind of task requires performing a series of unconfounded 
experiments to isolate and control how the different vari-
ables under consideration (e.g., sun, water, and fertilizer) 
impact the system (e.g., the health of the plant). For exam-
ple, one might keep the amount of sun and water constant, 
modify the amount of fertilizer, and see what happens. This 
approach—testing one variable at a time while holding all 
other variables constant—is often referred to as the Control 

of Variables Strategy (CVS: Kuhn & Brannock, 1977; Klahr, 
Zimmerman, & Jirout, 2011; Chen & Klahr, 1999). Master-
ing CVS is a crucial component of STEM curricula, featur-
ing as one of the assessment criteria in national standards for 
science education (e.g., see National Academy of Sciences 
2013 p.52). Indeed, STEM students are explicitly taught to 
make causal inferences using CVS (Kuhn & Brannock 1977; 
Klahr et al. 2011; Chen & Klahr 1999). However, previous 
work has suggested that children tend to manipulate multiple 
variables simultaneously when presented with problems like 
the one above, producing ostensibly confounded evidence 
(Wilkening & Huber 2004). Indeed, the education literature 
has generally taken a negative view of children’s spontane-
ous active learning abilities on the basis of experimental 
results, suggesting children struggle to acquire CVS with-
out explicit instruction and extensive practice (reviewed in 
Zimmerman 2007; Schwichow, Croker, Zimmerman, Höf-
fler, & Härtig, 2016), and only start to be able to transfer 
CVS training to new scenarios from around age 10 (Chen 
& Klahr 1999; Schauble 1996; Wilkening & Huber 2004; 
Kuhn 2007; Kuhn, Garcia-Mila, Zohar, Andersen, White, 
Klahr, & Carver, 1995; Klahr, Fay, & Dunbar, 1993; Klahr 
et al. 2011; Zimmerman 2007).

One interpretation of this is that children develop the 
cognitive competencies required for understanding and 
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implementing appropriate active learning strategies only late 
in development (cf. Piaget 1977). On this view, children’s 
tendency to test multiple variables simultaneously reflects a 
general immaturity and lack of rigor in their scientific think-
ing. In this sense, it is considered part of the educators’ role 
to instill such scientific rigor in them by training them to 
implement CVS strategies.

However, we think there are nowadays good reasons to be 
skeptical of this account. The alternative interpretation that 
we explore here is that children’s observed failure in CVS 
tasks might stem from their bringing in different assump-
tions than those intended to be conveyed by cover stories like 
the one above, leading them to apply a different, yet ecologi-
cally effective, default strategy for active learning. As such, 
children’s failure in CVS tasks may depend on the fact that 
the task-relevant properties of the causal system were not 
conveyed with sufficient clarity for children to understand 
that a different strategy should be implemented, other than 
their default.

When is CVS a poor strategy?

Several factors can (and should!) impact causal learning 
strategies, such as the functional form of the causes under 
investigation, their relationship, and whether the causal 
learning system examined is deterministic or stochastic (see 
Jones, Schulz, Meder & Ruggeri, 2018; Spiker & Cantor 
1979; McCormack, Bramley, Frosch, Patrick, & Lagnado, 
2016; Bonawitz, Denison, Gopnik, & Griffiths, Bonawitz 
et al. 2014; Horn, Ruggeri, & Pachur, 2016). Causal spar-
sity refers to the expected number of causally relevant vari-
ables in a system relative to the total number of variables. 
Mathematical analysis shows that expectations about causal 
sparsity mediate the effectiveness of different causal learn-
ing strategies, such that CVS is only sometimes the most 
effective approach (Coenen, Ruggeri, Bramley & Gureckis, 
2019). In particular, as causal sparsity increases—that is, as 
the proportion of candidate causes expected to affect a given 
outcome decreases—manipulating a greater proportion of 
the variables at once can become dramatically more efficient 
than manipulating one variable at a time. For example, if we 
were engaged in finding a cure for a novel plant disease, it 
would be reasonable to expect that most things we might try 
will be ineffective. In this case, it is better to try several sub-
stances at a time until we observe an effect. In general, the 
most informative tests are those whose answers are expected 
to best narrow the learner’s hypothesis space. A particu-
lar manifestation of this is a “split-half” strategy (Nelson, 
Divjak, Gudmundsdottir, Martignon, & Meder, Nelson et al. 
2014), which amounts to testing (as close as possible to) 
half the remaining causal variables with each intervention. 
This is optimal when there is known to be only one cause 

impacting the system, and all candidate causes are equally 
likely (Coenen et al. 2019).1

Evidence for early competence in spontaneous 
active learning

Our initial skepticism about educational psychology’s nega-
tive perspective on children’s active learning ability stems 
from the growing number of studies demonstrating ways 
in which toddlers’ and preschoolers’ active causal learn-
ing skills are already quite sophisticated (Gopnik, Sobel, 
Schulz & Glymour 2001; Ruggeri, Sim, & Xu, 2017; Rug-
geri, Swaboda, Sim, & Gopnik, 2019; Adams, Kachergis, 
Gunzelmann, Howes, Tenbrink & Davelaar, 2017; Lucas, 
Bridgers, Griffiths, & Gopnik, 2014; Cook, Goodman & 
Schulz, 2011; Kushnir & Gopnik, 2005; Schulz, Gopnik, & 
Glymour, 2007; McCormack et al. 2016). Toddlers and pre-
schoolers have been shown to spontaneously make informa-
tive interventions to disambiguate the causal structure of a 
system, both in experimental settings and during spontane-
ous play Kushnir & Gopnik (2005); Cook et al. (2011); Sim 
& Xu (2017); Schulz & Bonawitz (2007), and the efficiency 
of these interventions has been shown to increase with age 
McCormack et al. (2016). Already by age 6, children dem-
onstrate some ability to identify and plan controlled tests 
(Sodian, Zaitchik, Carey, 1991; Osterhaus, Koerber, & 
Sodian, 2015), and even preschoolers can be trained to use 
CVS as a domain-general strategy if given regular feedback 
and guidance (van der Graaf, Segers, & Verhoeven, 2015). 
More recent work shows that even 3- and 4-year-olds rely on 
a variety of exploratory strategies depending on the statisti-
cal structure of a task, selecting the more efficient strategy 
from among a set of options Ruggeri et al. (2019).

How can children be robust and effective causal learners 
but also fail dramatically at implementing CVS in scenarios 
where adult scientists deem it to be the appropriate testing 
strategy? On the one hand, this is in line with previous work 
showing it is hard to robustly change children’s informa-
tion search strategies through instruction (e.g., question-
asking strategies; see Courage 1989; Denney, Denney & 
Ziobrowski, 1973; Ruggeri, Walker, Lombrozo, & Gopnik, 
2021).

However, the spontaneous adaptiveness of children’s 
active learning strategies has seldom been directly investi-
gated outside of question-asking tasks. In causal learning, 
younger learners (4-year-olds) seem to be more flexible than 
older learners (6-year-olds; Gopnik & Bonawitz 2015) and 
even adults in correctly drawing inferences about unusual 

1  As well as being inefficient in sparse settings, CVS is also insuf-
ficient in settings in which causes interact. We focus on the former 
limitation here expand on the latter issue in the General discussion.
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causal relationships from observation (Lucas et al. 2014). 
Moreover, preschoolers’ causal learning is already consist-
ent with Bayesian principles at age 4 (Sobel, Tenenbaum, & 
Gopnik, 2004; Bonawitz et al. 2014). Together, these find-
ings suggest that primary school children, just like adults, 
may be sensitive to context and able to adapt their learning 
strategies to the causal sparsity of a presented system.

Experiment

In this paper, we seek to reconcile conflicting findings from 
the cognitive developmental and educational literature to 
explore whether children’s apparent failure to implement 
CVS may be due to their default assumptions about the tasks 
they are presented with. In particular, we focus on children’s 
sensitivity and ability to tailor their causal learning strategies 
to the causal sparsity of the system they are investigating. 
To test this hypothesis directly, we opted to depart from the 
implicit complexity of naturalistic cover stories and focus on 
a mathematically clean, assumption-transparent setting. We 
presented 7- to 13-year-old children with an unfamiliar ‘box-
of-switches’ and asked them to determine how it worked. 
This age range was motivated by prior research suggest-
ing a strong developmental shift in children’s information 
search strategies between the ages of 7 and 13 Ruggeri & 
Katsikopoulos (2013); Ruggeri & Feufel (2015); Ruggeri 
& Lombrozo (2015); Mosher & Hornsby (1966). Addition-
ally, piloting suggested that children younger than 7 failed 
to understand the instructions and affordances of the switch-
box task. We manipulated children’s expectations about the 
causal sparsity of the system and measured if this changed 
how they approached the problem, with a particular attention 
to the spontaneous use of CVS.

Methods

Participants

Participants were 53 7- to 9-year-olds ( M = 8.19 years, SD 
= 0.59, 24 female) and 51 10- to 13-year-olds ( M = 11.17 
years, SD = 1.28, 16 female) recruited and tested in muse-
ums in [blind for review]. The sample size was chosen based 
on a simulation-based power analysis. This was based on a 
conservative estimate of the effects found in previous work 
with Fisher’s exact test—i.e., a difference of 40% between 
participants’ strategic approach to the different causal spar-
sity conditions, compared to the 66% difference found in a 
related study with adults (Coenen et al. 2019)—and indi-
cated a sample of about 50 participants per age group (N = 
25 per condition) to achieve 80% power with � = .05. All 
participants were [blind for review] or fluent in [blind for 

review]. IRB approval was granted and informed consent 
was obtained from parents prior to children’s participation.

Design and materials

Participants were presented with a wooden box measuring 
approximately 35 × 25 × 10cm. The top of the box featured 
six different switches on the left side (corresponding to the 
six putative causes), three lights (outcome), a red activation 
toggle and a slot to insert coin tokens (Fig. 1). We limited 
the number of switches to six as the number of variables to 
be considered in a causal learning task is known to impact 
children’s ability to use CVS successfully (Wilkening & 
Huber 2004). We wanted children to be able to complete 
the task without assistance, and we wanted to minimize the 
impact of working memory on task performance.

The box was initially inactive, and while it remained inac-
tive the lights would never turn on irrespective of how the 
switches were set. It could be activated by putting a coin in 
the coin slot and then pressing activation toggle whereupon 
the lights would turn on if at least one working switch was 
in the on position. The box contained a raspberry Pi micro-
computer (Richardson, & Wallace, 2012) that determined 
the outcomes and recorded children’s actions during the 
study. Participants were randomly assigned to two condi-
tions: sparse and dense. In the sparse condition, children 
were told that only one of the switches worked. In the dense 
condition, they were told that only one of the switches was 
broken—that is, all the switches could turn on the lights, 
except for one. A single working switch in its “on” position 
was enough to make the lights come on when the activation 
toggle was pressed. In both conditions, children’s task was 
to find the one working or broken switch. Which switch was 
working or broken was randomly determined for each child. 
Participants therefore set the switches in different positions, 
then paid a coin to turn on the activation toggle and see 
whether the lights would turn on.

Fig. 1   Annotated photograph of switch box used for the study
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Relation to traditional CVS tasks

Like most traditional CVS tasks, our switch box task requires 
participants to determine which variables affect the outcome. 
This involves generating a set of hypotheses to consider, 
then intervening to test these hypotheses, observing the out-
come, and coming up with a new intervention to distinguish 
between the remaining possibilities. As with traditional CVS 
tasks, there is the danger of causal overshadowing leading 
to confounded interventional evidence (Waldmann 2001). In 
our case, if a learner turns on multiple switches and sees the 
outcome occur, this does not tell them whether one or multi-
ple of these switches was causally responsible. However, our 
task also differs from classic CVS tasks in several respects. 
First, it includes a sparsity manipulation, which has never 
been explicitly varied in classic CVS paradigms. Second, 
our variables of interest and outcome are binary, while CVS 
tasks typically include continuous variables and outcomes 
or variables which can take a continua of states (e.g., ramp 
length or texture as variables, and distance traveled by a ball 
as the outcome; Siler, Klahr, Magaro, Willows, & Mowery, 
2010). However, these continuous variables are introduced 
qualitatively such that the size and stability of each effect 
is left unspecified. This is why any choices that change any 
more than one input value relative to any earlier test are 
considered to be confounded. Our binary disjunctive setting 
means that a CVS strategy manifests a little differently than 
in these classic tasks. Controlling variables is achieved by 
leaving them turned off in a test, rather than by leaving them 
in whatever position they were in in an earlier trial, however 
the deeper principle is identical.

Crucially, CVS is not the most effective way to solve our 
task in the Sparse condition. However, it is the only effec-
tive method of doing so in the dense condition, and it still 
is a valid approach in the Sparse condition, just sub-opti-
mally effective. Our goal in this paper is thus to examine 
children’s active causal learning performance and use the 
results to reassess the question of what children’s previously 
documented difficulties with CVS tells us about their active 
learning abilities, default assumptions about the task char-
acteristics, and strategy flexibility.

Procedure

Children were first familiarized with the box and its com-
ponents. The experimenter explained the binary (left = off, 
right = on) nature of the switches and the difference between 
broken and working switches. Children were then instructed 
that they had to identify the working switch (in the Sparse 
condition) or the broken switch (in the dense condition). In 
both conditions, before starting the task participants were 
led by the experimenter through two familiarization trials 
to practice the procedure and experience both outcomes. 

All the switches were initially set to their “on” position. 
The experimenter pointed this out, then activated the box 
using the main activation toggle, causing the lights to turn 
on. Next, the experimenter set all the switches to their “off” 
position, one by one, and again activated the box using the 
main activation toggle, this time demonstrating that the 
lights did not turn on.

At this point, control was handed to the child and they 
were asked to identify the target switch. Children could then 
test any combination of on/off switches and see if the lights 
turned on as a result. All switches were set to the “off” posi-
tion again by the experimenter before the beginning of each 
new trial and the child could then turn on any combination 
they liked before activating the machine again. To promote 
efficient search, participants were given six tokens at the 
beginning of the experiment, and had to pay one token using 
the slot provided (see Fig. 1) every time they wanted to test 
a new switch combination. Participants could therefore per-
form up to six tests, but could stop at any time before then 
if they felt they had found the target switch. At that point, 
they were then asked to indicate which switch they thought 
was broken/working. The experimenter tested this by turning 
that switch on and activating the box so they could observe 
the outcome. If the child’s selection was correct, the lights 
would come on in the Sparse condition or not come on in the 
dense condition, the experiment ended and they could keep 
their remaining tokens (each worth 0.50€). If not, they were 
given the option to perform more tests and guess again, or 
guess again right away, until they found the correct switch. 
The maximum reward was thus 2.50€, achievable if they 
were lucky enough to reach the solution after a single test 
trial. By following the ideal “split-half” strategy it was pos-
sible to achieve ≈ 1.90€ on average in the Sparse condition, 
while in the dense condition, the only effective strategy was 
to test one switch at a time, with an expected return of 1.25€. 
If they used up all their tokens, or got the answer wrong, 
children received a sticker as a compensation reward.

Task instructions, analysis code and data are available on 
the Open Science Framework.

Results

Analysis of the first intervention

The number of switches tested in the very first interven-
tion is crucially indicative of the way children approach 
the task in the different conditions. The number of children 
who tested one or multiple switches in each condition is 
shown in Table 1. We used Bayesian logistic regression 
to evaluate whether age group or condition influenced the 
tendency to test one versus multiple switches in the first 
intervention while also allowing as to assess support for the 
nulls if required (See S1. for detailed parameter settings and 

2317Psychonomic Bulletin & Review  (2022) 29:2314–2324

1 3



sensitivity analyses). Testing multiple switches was more 
common in older children (51 vs. 28%) and in the sparse con-
dition (50 vs. 29%). Both age group ( odds ratio [OR] = 2.24 , 
95% credible interval [95%CI] = [1.05, 4.9] ,  Probability 
of Direction [PD] = 98.09%, Bayes factor [BF] = 3.44 ) 
and condition ( OR = 0.47, 95%CI = [0.22, 1.01] , PD = 
97.25%, BF = 2.34 ) appeared to affect the proportion 
children testing a single switch in the first trial, but the 
data did not suggest that age group and condition interact 
( OR = 0.97, 95%CI = [0.3, 3.18] , PD = 52.30%,BF = 0.57 ), 
with the BF<1 suggesting anecdotal evidence against its 
existence (Jeffreys 1961). This suggests age and condition 
contributed independently to children’s propensity to test 
one switch with their first intervention such that children in 
both age groups were similarly sensitive to causal sparsity, 
while their default approach seemed to shift with age from 
testing one to testing multiple switches at a time. However, 
the size of the effects looking only at the first test were rela-
tively modest. Indeed, 3.3% of the posterior for age group 
and 5.3% of the posterior for condition falls within the 
region of practical equivalence with the nulls of no effect 
(ROPE, Kruschke et al. 2018).2 We then analyzed children’s 
sequences of interventions in more detail.

Strategy use

Twelve children were excluded from subsequent analyses 
because their intervention data was incomplete due to tech-
nical difficulties, leaving 92 participants for whom we have 
a complete record. In total, 46 7- to 9-year-olds ( M = 8.21 
years, SD = 0.55 , 20 female) and 46 10- to 13-year-olds 
( M = 11.18 years, SD = 1.34, 12 female) were included in 
the following analyses.

We classified children’s strategies into three types based 
on how many switches they turned on in each trial. For this, 

we focused on the trials in which there were at least four 
switches still in contention (216/283 trials). These were the 
trials in which testing multiple variables simultaneously was 
more effective than testing any one variable in the sparse 
condition:3

Test one denoted strategies in which exactly one switch 
was flipped on in each test. Test multiple denoted strategies 
in which more than one switch was flipped on in each test. 
Strategies which did not fit either of these criteria were clas-
sified as other. The Other classification included children 
who switched back and forth between a test one and a Test 
multiple strategy, but also children who started with a test 
multiple strategy before switching to Test one, or vice-versa. 
The proportion of children who used each strategy is shown 
in Fig. 2.

An ideal information-gain-maximizing learner would 
follow a Test multiple strategy in the sparse condition, spe-
cifically testing 2–4 switches with their first switches and 
exactly half of those still in contention with their second test 
(rounding up or down if this is an odd number). Meanwhile, 
an ideal participant in the dense condition would follow a 
test one strategy and furthermore choose a new switch to 
test with each test.

As with the analysis of the initial intervention, we used 
Bayesian logistic regression to model whether age group 
or condition impacted on strategy classification. Bolster-
ing our analyses of the first intervention, we found that 
older children were less likely to employ a test one strategy 
( OR = 0.45, 95%CI = [0.2, 0.99],PD = 97.7%,BF = 2.95 ), 
a n d  t h a t  t e s t  o n e  w a s  s i g n i f i c a n t l y 
m o r e  c o m m o n  i n  t h e  d e n s e  c o n d i t i o n 
( OR = 2.41, 95%CI = [1.1, 5.35],PD = 98.7%BF = 4.33 ). 
The data did not suggest that age group and condi-
t i o n  i n t e r a c t e d  OR = 0.83, 95%CI = [0.25, 2.75] , 
PD = 62.0% , BF = 0.66 . Older children were also more 
likely to employ a consistent Test multiple strategy 
( OR = 2.93, 95%CI = [1.21, 7.38] , PD = 99.2%,BF = 7.2 ), 
and this strategy was substantially less common in the 
dense  cond i t ion  (  OR = 0.23, 95%CI = [0.09, 0.58] , 
PD = 99.9%,BF = 55.8 ). Again, the data did not sug-
gest an interaction between age group and condition 
( OR = 0.88, 95%CI = [0.23, 3.3],PD = 57.5%,BF = 0.70).

Strikingly, 17/19 (89%) of the older children who classi-
fied as test multiple guessed the correct switch, while only 
3/7 (43%) of younger participants classified as test multiple 
did so (Fisher’s exact test, p = .003 ; Bayesian contingency 
analysis, BF = 7.7 ). In the sparse condition, these propor-
tions were 15/15 (100%) and 2/6 (33.3%), respectively (Fish-
er’s exact test, p = .002 , BF = 95). Thus, together with our 

Table 1   Counts and percentage of children testing one or multiple 
switches on first intervention

Age group Condition Test one (first trial) Test mul-
tiple (first 
trial)

Younger Sparse 15 (62.5%) 9 (37.5%)
Dense 23 (79.3%) 6 (20.7%)

Older Sparse 11 (39.3%) 17 (60.7%)
Dense 14 (60.9%) 9 (39.1%)

2  ROPE measures the proportion of the posterior density for an effect 
that falls within the 95% credible interval of what one would antici-
pate finding under the null of no effect.

3  With three potentially working switches left, testing one or two of 
these three is equally informative.
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analysis of children’s first intervention, these results suggest 
that all children were sensitive to causal sparsity, although 
only older children were able to learn effectively from the 
tests performed. This is consistent with several recent stud-
ies that find the ability to make reliable causal inferences 
develops separately, and indeed lags behind, the ability to 
perform appropriate interventions (Nussenbaum, Cohen, 
Davis, Halpern, Gureckis, & Hartley, 2020; Bramley & Rug-
geri, 2022; Meng, Bramley, & Xu, 2018).

Performance

In the sparse condition, 62% of younger participants (13/21) 
and 88% of older participants (23/26) identified the correct 
switch, having made a respective M = 3.0 ( SD = 1.5 ) and 
M = 2.8 ( SD = 1.3 ) interventions. In the dense condition, 
64% of younger participants (16/25) and 50% of older par-
ticipants (10/20) identified the correct switch, having made 
a respective M = 3.5 ( SD = 1.3 ) and M = 3.0 ( SD = 1.5 ) 
average interventions. Bayesian proportion analysis tests 
(Morey, & Rouder, 2011) comparing against an “eyes 
closed” chance accuracy level of 1/6, yielded Bayes factors 
>30 in all conditions.

Bayesian logistic regressions predicting perfor-
mance were practically indeterminate, with marginal 

anecdotal support for the null of no age group effect 
OR = 1.32, 95%CI = [0.59, 3.01],PD = 74.6%,BF = .50   , 
s l i gh t  suppor t  fo r  an  e f fec t  o f  cond i t ion 
OR = 0.49, 95%CI = [0.21, 1.11],PD = 95.7%,BF = 1.67 
a n d  s o m e  f o r  a n  i n t e r a c t i o n 
OR = 0.37, 95%CI = [0.11, 1.23],PD = 94.8%,BF = 2.33 . 
In no case did the credible interval of odds ratios exclude 
1. Bayesian Poisson regressions of the number of trials and 
the number of guesses children made with age group and 
condition as predictors also showed no meaningful effects 
(see Supplementary Materials S2).

Expected information gain of children’s selections

The effectiveness of children’s interventions can also be 
explored using expected information gain (EIG). EIG is 
a common measure for how valuable information-seek-
ing actions are to a learner, given their current state of 
uncertainty and learning goals (Nelson 2005). A detailed 
explanation of how EIG is calculated here can be found in 
Supplementary Materials S3. Here, the relative values of 
the available interventions are partly a function of learn-
ing condition. The sparse condition has a wider range of 
actions that are potentially informative: Any combination 
of between 1 and 5 switches is informative on the first test 
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Fig. 2   Bars show proportion of children in each age group classified 
as using each strategy in each condition. Numbers show the number 
of children in each bar and bracketed numbers show subset whose 

choices were additionally information-optimal across all the trials 
used in the strategy classification
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and many continue to be informative as the space of pos-
sibilities is narrowed, but within these options, choices that 
more evenly divide the remaining options are more informa-
tive than those that do so unevenly. In contrast, in the dense 
condition only a smaller range of interventions is informa-
tive—only those that turn on a single switch and have not 
already been performed.

To account for these differences, we computed the effi-
ciency of each participant’s interventions as a proportion 
of the most informative intervention available at that point 
from the perspective of an optimal learner that maximizes 
EIG at each step of the search process, accurately integrating 
the evidence from all the previous interventions. As base-
lines for comparison, we also simulated a set of learners 
that chose each intervention at random, flipping switches 
on with p = .5 but performing an equivalent total number 
of interventions as the participants. We also simulated pure 
test one learners, that always turned on one of the remain-
ing untested switches with each new intervention and pure 
Split-half learners who always turn on half the remaining 
possibly-working switches. Figure 3 shows the efficiency 
of participants’ interventions compared to those of the 
simulations.

We used Bayesian beta regression to assess 
whether efficiency differed between age groups and 

conditions. Efficiency did not appear to depend on age group 
OR = 0.86, 95%CI = [0.65, 1.16],PD = 83.75%,BF = 0.24 
o r  c o n d i t i o n 
OR = 1.03, 95%CI = [0.77, 1.38],PD = 57.7%,BF = 0.15 , 
but the data was consistent with an interaction such that 
older children performed worse in the dense condition 
OR = 0.68, 95%CI = [0.46, 0.99],PD = 97.8%,BF = 1.45 . 
We then asked whether participants’ interventions were more 
efficient than those of simulated random interveners, includ-
ing age group condition and their interaction as covariates.4 
This reveals that participants’ interventions were more effi-
cient than random choices OR = 0.52, 95%CI = [0.42, 0.64] , 
PD = 100%,BF > 1000 . Focusing on the sparse condition, 
we can ask if participants were additionally more efficient 
than simulated test one learners; 62% of participants were 
more efficient than Test one and a further 26% were equally 
efficient, while only 13% were less efficient. A Bayesian 
beta regression, including a participants vs. test one’ fac-
tor shows a clear advantage for participants over simu-
lated test one learners OR = 0.77, 95%CI = [0.7, 0.85] , 

Sparse Dense

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Older

Younger

Efficiency

Ag
eg

ro
up

Participants Test One Test Half Random

Fig. 3   Efficiency of interventions relative to optimal choice. Black = 
participants, red = Simulated pure test one learners, green = Simu-
lated pure Test half learners, blue = Simulated random interveners. 

Squares and error bars show group means± bootstrapped confidence 
intervals, and translucent points show individual participant averages

4  Since each simulation was paired to a participant in terms of the 
ground truth and number of tests performed, we also included a ran-
dom effect for subject ID.
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PD = 100%,BF > 1000 as well as support for the nulls 
with respect to there being any main effect of age group 
OR = 1.04, 95%CI = [0.84, 1.28] , PD = 63.4%,BF = 0.12 
o r  i n t e r a c t i o n  OR = 0.96, 95%CI = [0.79, 1.17]  , 
PD = 65.4%,BF = 0.11 . A more detailed analysis of chil-
dren’s strategy efficiency, which takes into account early 
stopping and unnecessary tests, is presented in S4.

Discussion

We investigated to what extent 7- to 13-year-olds can per-
form efficient causal interventions and learn from them 
without guidance. In particular, we examined whether and 
how children adapted their learning strategies to contextual 
knowledge about the causal sparsity of the system under 
investigation. We found that children did indeed intervene 
differently depending on the context they were presented 
with, being more likely to test multiple switches when they 
expected one switch to work, and test one switch at a time 
when they expected many to work. Thus, we show that in a 
setting with clear instructions, and consequently transparent 
background assumptions, children can implement a test one 
approach when it makes sense to do so. Our findings addi-
tionally suggest that children’s default active causal learn-
ing strategy may actually shift with age from testing causal 
relationships one at a time, towards testing multiple causal 
relationships simultaneously, with a greater proportion of 
younger children testing one switch at a time than older 
children in both conditions. Both these findings challenge 
the educational literature on CVS (Kuhn et al. 1995; Klahr 
et al. 2011), which has argued that children tend to manipu-
late multiple variables at once even when they should not 
Wilkening & Huber (2004), and require extensive training 
and instructions to eventually override this tendency. We 
think these results line up better with the idea that children 
are effective active learners from an early age (cf. Gopnik 
et al. 2001; Ruggeri et al. 2017, 2019; Lucas et al. 2014; 
McCormack et al. 2016).

In one condition of our task, testing multiple causal rela-
tionships simultaneously resulted in completely confounded 
evidence, while in the other, testing one at a time resulted in 
less evidence per test, and lower rewards (recalling children 
made 0.50€per remaining token, if correct). Both younger 
and older children showed similar amounts adaptivity, being 
more likely to test one switch at a time when they had reason 
to believe the system in question was dense enough to neces-
sitate this and more likely to test multiple switches at a time 
when it was advantageous. However, both age groups also 
exhibited some resistance, with some children still testing 
multiple variables at a time the dense condition and some 
still testing one at a time in the sparse condition. Our sug-
gestion is that children’s tendency to test multiple variables 

should not be taken as evidence that they are poor active 
learners, but rather indicate that they have learned a useful 
default strategy that is not CVS. Indeed, the value of test-
ing multiple is critical in domains like question asking, and 
becomes increasingly powerful as children become more 
able to reason about larger numbers of hypotheses. We thus 
suggest that the educational psychology community should 
think more carefully about why children struggle to perform 
unconfounded experiments in CVS paradigms while suc-
ceeding performing appropriate interventions in other tasks 
and domains.

One explanation for the incongruity that we find persua-
sive is that the ecological assumptions built into our task are 
a closer reflection of the generic active causal learning con-
texts that children face, compared to those in CVS tasks. The 
idea that the world is causally sparse has been floated a num-
ber of times in the cognitive science literature (Oaksford, 
& Chater, 1994; Lu, Yuille, Liljeholm, Cheng, & Holyoak, 
2008). Favoring sparse solutions is also a standard regulari-
zation principle for causal inference in statistics (Glymour, 
Zhang, & Spirtes 2019). As such, a ceteris paribus assump-
tion that any given action is unlikely to produce a desired 
effect might lead to the emergence of a default strategy to 
test enough potential causes so that the outcome of one’s test 
is maximally uncertain (lining up with “split-half” in our 
sparse condition). Of course, to succeed in the world, one 
must learn to apply strategies in a context-sensitive way. As 
one learns more about the world, one can use prior knowl-
edge to select and test only variables that have a good chance 
of playing a role in the outcome considered, so changing 
the sparsity of the resulting active learning problem. Argu-
ably, in the standard CVS setting, the variables involved fit 
this bill, having a relatively high probability of affecting the 
outcome under a mature understanding of the scenario, but it 
also seems plausible that this prior would be much stronger 
in adults, with at least a high-school level understanding of 
the biological and physical mechanisms used as scenarios. 
Our assumption-transparent box task minimizes the influ-
ence of such priors and so provides a more transparent win-
dow on children’s active learning.

Besides often only tacitly implying a causally dense envi-
ronment, CVS tasks are also set up such that it does not mat-
ter what values the other variables are held at, as long as they 
remain fixed while the putative cause is manipulated. This 
implies that the variables are not interacting. We agree that, 
if this holds, it would be appropriate to follow CVS. How-
ever, we disagree this is common, even for dense environ-
ments. Returning to our initial example, as adults, we know 
that no amount of fertilizer will impact the health of a plant 
it if is not also given at least some water. This means that a 
pure CVS user, who manipulated fertilizer while fixing water 
to zero, would fail to discover its causal role. More gener-
ally, in situations where the possibility of interactions and 
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arbitrary functional relationships is to be considered, a more 
complex, rich and exhaustive approach than CVS would be 
required to definitively identify the causal structure.

In the worst case, one would have to test all the level 
combinations of all variables to ensure one has not missed a 
causal influence that manifests only under particular settings 
of other variables. We mention this to highlight that there 
are other relevant tacit assumptions about the causal environ-
ment under consideration that determine whether and when 
CVS is sufficient as a causal discovery strategy.

The developmental trajectory we found here is extremely 
similar to that of children’s question-asking strategies. In 
20-Questions paradigms, children under the age of 7 almost 
exclusively test one hypothesis at a time (e.g., “is it this one 
parrot?”). Between the ages of 7 and 10, children begin to 
ask questions that target several hypotheses at once (e.g., 
“is it a bird?”), until this becomes the default strategy in 
adulthood (Mosher & Hornsby 1966; Ruggeri & Feufel 
2015; Herwig 1982). This parallelism suggests that chil-
dren’s learning strategies may reflect their learning abilities, 
broadly progressing from an ability to consider and reason 
about only one hypothesis at a time to being able to consider 
a range of hypotheses and their relationship with the out-
come. Indeed, children’s ability to update multiple entries 
in working memory improves with age (Pailian, Carey, Hal-
berda, & Pepperberg, 2020). On this view, it is plausible that 
younger children in our study may have favored Test one 
in part because a Test multiple strategy was too resource-
intensive rather than because it guards against confounded 
experiments (as it is motivated in the CVS literature).

An additional possible explanation for the developmen-
tal shift toward test multiple in children’s default strategies 
could be that older children brought stronger prior assump-
tions to the task—e.g., about how parallel and serial circuits 
might work—and that these conflicted with the disjunctive 
behavior of the switch box in the dense condition.

This might help explain the puzzling pattern that younger 
children performed slightly better than older children in the 
dense condition. That is, it could be that older children’s 
prior beliefs “drowned out” the context given by the instruc-
tions. Consistent with this interpretation, some older chil-
dren persisted with a Test multiple strategy in this condition, 
even though it was ineffective.

To conclude, our results suggest that previous conclu-
sions—that children have inherent difficulties and need 
extensive instruction to master the Control of Variables 
Strategy—may have undersold children’s causal reasoning 
and strategic abilities. Children, at least under the conditions 
investigated in this paper, demonstrate not only the ability to 
plan, perform and interpret controlled experiments without 
guidance, but also the flexibility and adaptiveness required 
to shift their reliance on different hypothesis-testing strate-
gies depending on the causal sparsity of the system under 

investigation. Designing a good experiment requires an 
understanding of the structure of the problem one wants to 
learn about (cf. Crupi, Nelson, Meder, Cevolani & Tentori, 
2018). In this sense, no learning strategy is always best—
not even CVS, a fact that might come as a surprise even to 
professional scientists.

Our findings highlight the crucial importance of con-
sidering children’s sensitivity to context, and consequent 
appropriateness of different strategies when teaching STEM 
subjects and scientific thinking. Children’s ecologically rea-
sonable prior beliefs may account for some resistance to 
applying a certain strategy to the problems they are pre-
sented with. This is especially true if care isn’t taken to get 
across the assumptions that warrant that specific strategy. 
It may be worthwhile to consider providing children with 
a toolbox of strategies and teaching them how and when to 
use each one, rather than focusing on training them to use 
and master one strategy in particular, which may fail them 
in many situations.
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