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Abstract
Efficient sampling ofmany-dimensional andmultimodal density functions is a task of great interest inmany research fields.We
describe an algorithm that allows parallelizing inherently serial Markov chainMonte Carlo (MCMC) sampling by partitioning
the space of the function parameters into multiple subspaces and sampling each of them independently. The samples of the
different subspaces are then reweighted by their integral values and stitched back together. This approach allows reducing
sampling wall-clock time by parallel operation. It also improves sampling of multimodal target densities and results in less
correlated samples. Finally, the approach yields an estimate of the integral of the target density function.

Keywords MCMC Parallelization · Probability and statistics · Integral estimation

1 Introduction

Markov chain Monte Carlo (MCMC) is a technique that
allows generating samples with a distribution proportional
to a given target density function1. This technique is widely
used in Bayesian statistics, statistical mechanics, computa-
tional biology, and many other fields or research. One of the
major strengths of this technique is that it can converge to the
target density even if target functions are highly multidimen-
sional andmultimodal. Amajor difficulty is that convergence
is reached only asymptotically, and approaching the station-
ary distribution can require a very large number of sampling
steps.

AMarkov chain, by definition, consists of a series of con-
secutive steps that move a point or a set of points across
the parameter space, which is an inherently serial process. A
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proposed displacement, by definition of the Markov process,
does not depend on the history that led to the current loca-
tion. Determining whether to accept a displacement involves
evaluating the target density at the proposed location. For
many real-world applications, evaluation of a target density
can be very computationally costly, and there is usually a
limit to how far a single target evaluation can be parallelized
efficiently; this canmakeMCMCsamplingvery costly.A fur-
ther complication stems from the fact that a large number of
burn-in steps (the steps necessary for theMCMC to reach the
stationary distribution) need to beperformed for eachMCMC
chain before representative samples can be generated. The
burn-in duration can even exceed the sampling time, espe-
cially for target densities that have a complex shape. While
separate MCMC chains can be run independently and in par-
allel, simply increasing their number while producing fewer
samples from each chain is therefore not an effective par-
allelization strategy as the length of the burn-in process for
each chain would not change.

Significant research has been conducted to enhance the
efficiency of MCMC methods. The developments in this
field can be divided into several categories (Robert 2018).
The first is based on exploiting the geometry of the target
density function. Hamiltonian Monte Carlo (Duane 1987)
(HMC) belongs to this category and it introduces the auxil-
iary variable, called momentum, which is refreshed by using
the gradient of the density function. Symplectic integrators
of different orders of precision are developed to approxi-
mate Hamiltonian equation (Leimkuhler and Reich 2004;
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Blanes et al. 2014). The HMC provides less correlated sam-
ples than theMetropolis-Hastings (MH) algorithm; however,
the gradient of the density is not always readily available or
cannot be computed in reasonable time. The second approach
of accelerating MCMC is based on improving the proposal
function. Techniques such as simulated tempering (Geyer
1991; Marinari and Parisi 1992), adaptive MCMC (Douc
2007), and multi-proposal MCMC (Liu et al. 2000; Béedard
et al. 2012) are available and have been shown to be effec-
tive for many applications (Laloy and Vrugt 2012; Neal
1996; Xie et al. 2010; Carter and White 2013; Nampally
and Ramakrishnan 2014). The third approach is based on
breaking initially complicated problems into simpler pieces.
For example, separate MCMC chains explore the parame-
ter space in parallel and the resulting samples are merged
together (Mykland et al. 1995; Neiswanger et al. 2013). As
discussed earlier, this approach does not simplify conver-
gence of chains to the stationary distribution.

It is also possible to partition the data space (Neiswanger
et al. 2013; Scott 2016; Wang and Dun 2013) or parame-
ter space (VanDerwerken and Schmidler 2013; Hallgren and
Koski 2014; Basse et al. 2016) into simpler pieces that can be
processed independently. The latter is the approach we pur-
sue in this paper. An effective partitioning of the parameter
space can change the task from sampling from a complicated
target distribution to sampling frommany, simpler target dis-
tributions. In our approach, any sampling algorithm can be
used to generate samples in the subspaces, and all subspaces
can be sampled independently and in parallel. This allows
for massively parallel and distributed execution on multiple
processors of multiple computer systems. After sampling,
the integrated density of each subspace is calculated and the
samples for each subspace are re-weighted correspondingly.

The general approach of parallelization of MCMC algo-
rithms by partitioning parameter space is not entirely newand
it has been studied in VanDerwerken and Schmidler (2013),
Hallgren and Koski (2014), Basse et al. (2016), Kim and
Lee (2020). The differences between our approach and those
presented earlier are in the way we perform the space par-
titioning and in the way we reweight samples, and it will
be discussed further below. But the common idea of these
approaches results in increased MCMC sampling efficiency,
yielding samples with reduced correlations. It also reduces
the requiredMCMC burn-in time significantly since the pos-
sibly multiple modes of the full target density will ideally
lie in separate subspaces; each chain will then only have
to sample a unimodal density. In combination, these bene-
fits result in a shorter total sampling time for each MCMC
chain (including burn-in), which makes this approach of run-
ning many chains distributed over many subspaces efficient,
whereas runningmany chains over the full density is not (due
to constant burn-in overhead).

We start with a brief review of Bayesian data analysis, as
this is the primary application that we aim for. In Sect. 3, the
general idea of the algorithm and our implementation of it
are described. In Sect. 4, we discuss differences between
our approach and those presented in earlier literature. In
Sect. 5, the performance of the algorithm is shown using
two examples with the target functions given by a mixture
of multivariate normal distributions. Finally, Sect. 6 sum-
marizes developments presented in this paper and discusses
further directions.

2 MCMC for bayesian data analysis

For the given model M , parameters λ, and the dataD, Bayes’
theorem is defined as

P(λ|D, M) = P(D|λ, M)P0(λ|M)

P(D|M)
, (1)

where P(D|λ, M) denotes the likelihood that is used to
update the prior probability density P0(λ|M) of λ to the pos-
terior probability density P(λ|D, M). The denominator is
usually called ‘evidence’ or ‘marginal likelihood’ and it is
given by the Law of Total Probability

P(D|M) =
∫

P(D|λ, M)P0(λ|M)dλ. (2)

MCMC methods do not require knowledge of the normal-
ization constant, P(D|M), to generate samples with the
correct distribution. However, we require the normalizing
constant in each subspace in order to reproduce the correct
target distribution by patching together samples from dif-
ferent subspaces. Our approach thereby relies on being able
to accurately calculate Pi (D|M), where i labels one of the
subspaces. A variety of techniques that allow estimating the
evidence ofmodels exist, an overview summary can be found
in Gelfand and Smith (1990), Friel and Wyse (2012). These
typically require a re-sampling of the target probability den-
sity function once modes have been identified and only a
few of the methods can be used in a post processing step
based on existing samples. We use the recently published
AHMI algorithm (Caldwell 2020) to evaluate the integrals in
each subspace directly from the samples. This provides the
user with the correctly weighted samples, and allows for a
simple calculation of the evidence for the full target distri-
bution. This is relevant for evaluating, amongst other things,
the Bayes factor used in model comparisons.
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3 Sampling parallelization via space
partitioning

3.1 Overview

We consider generating samples according to a target density
function f (λ) where λ ⊂ R

m and Ω is the support of the
function. To illustrate ourmethod, wewill use as example the
sum of four bivariate normal distributions with λ = (λ1, λ2):

f (λ) =
4∑

i=1

ai · N (λ|μi ,Σi ), (3)

where a1 = a2 = 0.48, a3 = a4 = 0.02, μi =
(±3.5,±3.5), Σ1 = Σ2 = (0.33, 0.17; 0.17, 0.33), and
Σ3 = Σ4 = (0.019,−0.003;−0.003, 0.017). Each bivari-
ate normal distribution is individually normalized. Two, in
the upper-right and lower-left quadrants, have large weights
(0.48) and the other two, in the other quadrants, have
small weights (0.02). The covariances are relatively small
compared to the separations of themodes,making this a chal-
lenging target distribution to sample from for many MCMC
algorithms. Probability contours of this test function are
shown in Fig. 1a.
Our approach consists of the following four steps:

1. Generate a set of Nexp exploration samples
{
λ∗
i

}
i=1..Nexp∈ Ω , distributed amongst Nchains , where Nexp is a small

number compared to the desired number of final MCMC
samples and Nchains is the number of chains. The chains
should havedifferent (possibly randomly chosen) starting
points and can be run in parallel. The samples are used to
find regions of the parameter space with a high density
and the MCMC chains are not required to converge. An
initial sampling of our example function with Nexp =
500 generated using Nchains = 25 with 20 samples per
chain is shown in Fig. 1a.

2. Partition the parameter space into Nsp mutually exclusive
subspaces

{ωk}k=1..Nsp ∈ Ω (4)

in such a way that ∪ωk = Ω , ωk ∩ ωm =ø if k �= m
(see also Fig. 1b). While in general, the boundaries of
the subspaces could be arbitrary shapes, in the following,
‘N space partitions’ will refer to N cuts along different,
single parameter axes. This splits the parameter space
into N + 1 rectangular subspaces.

3. Generate Nk
samp samples

{
λk
i

}
i=1..Nk

samp
∈ ωk in each

subspace k with the distribution proportional to f (λ)Iωk

(λ), where Iωk (λ) denotes the so-called ‘indicator func-
tion’ that returns a 1 when λ is in ωk and 0 otherwise

(see Fig. 1c). There are no particular requirements for
the choice of the sampling algorithm, so any sampler
that will faithfully sample the truncated target density
can be used. Note that each sampler has to perform its
burn-in cycle only in the reduced subspace ωk , which
significantly reduces tuning time.
If the sampling algorithm failed for some reason in one
of the subspaces, e.g., ω j , generate an additional parti-

tion in that subspace using the existing samples N j
samp.

Afterward, generate new samples in each of two result-
ing subspaces,ω j,1, ω j,2. Repeat this procedure until the
convergence criteria is passed in each subspace or a max-
imum number of recursive iterations is reached.

4. Determine the integrated density of the target distribution
in each subspace by computing Ik = ∫

ωk
f (λ)dλ and

assign the following weights to the sample of subspace k

wk ∝ Ik
Nk
samp

.

5. Stitch the nowweighted samples together resulting in the
final sampling distribution (see Fig. 1d).

There are many ways of implementing the described
idea based on choices of samplers, integrators and space
partitioning strategies. In the following, we describe our
implementation that is also made available in the Bayesian
Analysis Toolkit (BAT.jl) package (Schulz 2021).

3.2 Implementation

3.2.1 Exploration samples

Exploration samples play an important role in this algo-
rithm, since the parameter space is partitioned based on them.
If exploration samples represent the structure of the target
density closely enough - for example indicating the pres-
ence of multiple modes by clusters of spatially neighboring
points - then the space partitioning algorithm can capture
these features and generate partitions in such a way to split
those clusters. This simplifies the target density in each sub-
space and thus allows for much faster burn-in and tuning
procedures. In our implementation, we generate exploration
samples by running a large number of MCMC chains, where
each chain generates a few hundred samples. There is no
tuning or convergence requirement for these chains, but a
small set of samples are initially used to set the parameters
of the proposal functions for each chain. Some knowledge
of the form of the target distribution is useful in determining
how many chains and how many samples will be necessary.
While the morphology of the resulting sample clouds should
resemble that of the target density as closely as possible, this
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Fig. 1 Color maps displaying
the steps in the partitioned
sampling approach. (1) The 500
samples from the exploration
step for the target density
defined in Eq. 10. The red
dashed lines demonstrate
contours of the true density. (2)
The result of partitioning the
parameter space into 30
subspaces. The black lines
demonstrate the boundaries of
subspaces. (3) The 104 samples
in each subspace from the
individual MCMC chains. (4)
The weighted samples displayed
in the full space. (Color figure
online)

initial exploration should be fast compared to the following
sampling time in the partitioned space.

3.2.2 Space Partitioning

Given the discussed exploration samples, we partition our
parameter space into rectangular subspaces in such a way as
to split clusters of spatially neighboring samples. To do so,
a binary tree is used where each node is determined by a cut
that is orthogonal to parameter axes. For the sake of illustra-
tion,we consider a one-dimensional problem and exploration
samples {λ} (see upper histogram in Fig. 2). The cut position
perpendicular to the λ axis is denoted as λ̃ and it is selected
by finding the minimum of the following cost function:

λ̃ = inf
a
[W (a, λ)] = inf

a⎡
⎣∑

λi<a

∣∣λi − 〈λ〉λ<a

∣∣2 +
∑
λi>a

∣∣λi − 〈λ〉λ>a

∣∣2
⎤
⎦ , (5)

where 〈λ〉 denote the mean of samples. This cost function
represents second moments weighted by the number of sam-
ples on each side of the cut position, and it corresponds to the
well-known k-means cost function (Lloyd 1982) for k = 2.

Fig. 2 Illustration of the space partitioning algorithm using 5 ·103 one-
dimensional exploration samples λ∗ with a distribution demonstrated
in the upper left histogram. The red dashed lines demonstrate the first
three cut positions λ̃. The blue lines show the value of W (a, λ) as a
function of the cut position for 3 iterations of space partitioning. The
gray dashed lines show the value of the cost function at its minimum
for each iteration. The bottom right subplot illustrates the dependence
of W as a function of the number of cuts. (Color figure online)

It was empirically observed that it allows obtaining a reason-
able division of the parameter space, i.e., cutting multimodal
densities into subspaces of unimodal densities, and prioritiz-
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ing those dimensions of the multivariate distribution where
multimodality is present.

The partitioning process is repeated iteratively until the
desired number of partitions is reached. The blue lines in
Fig. 2 demonstrate how this cost function depends on the cut
positions for 3 partitioning steps. The partitioning procedure
is ended when a minimal change in the cost function results
from further partitioning or amaximumnumber of subspaces
is reached. The evolution of the cost function for our example
is also shown in Fig. 2.

The partitioning procedure is analogous for higher dimen-
sional space. If, for instance, a sample vector is M-
dimensional, then we evaluate Eq. 5 for every dimension
which results in proposed cut positions λ̃i with correspond-
ing cost valuesWi (ai , λ̃i ) for dimension i = (1, ..., M). The
minimum cost value is selected and the cut along the corre-
sponding dimension is accepted. Additionally, if preliminary
knowledge about the structure of the target density is present,
the user can specify manually along which parameters parti-
tioning of the parameter space should be performed.

3.2.3 Sampling

Sampling in the subspaces is performed independently and
does not require communication betweenMCMC processes.
It can therefore be trivially divided into tasks and exe-
cuted in parallel on multiple processors using distributed
computing. In the following, we define a ‘worker’ as a com-
puting unit (this can either be a node of a cluster, networked
machine, or a single machine) that consists of multiple
CPU cores used to perform one task; i.e., sample the tar-
get density in one subspace. All the cores that belong to
one worker are called threads and are used to run multi-
ple MCMC chains in parallel within one subspace. Running
multiple chains within one subspace is necessary for deter-
mining convergence of theMCMC process, which we test by
using the Brooks-Gelman criteria (Gelman and Rubin 1992).
Our implementation allows running subspaces on multiple
remote hosts using Julia’s support for compute clusters, and
MPI/TCP/IP protocols for communication between workers
can be used. By default, we use theMH algorithm to generate
samples on each subspace because this sampler is more gen-
eral and does not require gradient information. However, one
can usemany other sampling algorithm, and in the following,
we showcase an example that uses the HMC sampler.

It is possible that one or more modes of the target distri-
bution were missed in the exploration step, or that the space
partitioning algorithm did not choose the optimal mode sep-
aration locations. If the convergence criteria is not met in
one or more of the subspaces, then these subspaces are fur-
ther subdivided. The cut position is defined by using the
already generated samples. These samples contain much
more information about the target density structure than the

initial exploration samples and thus can be used as a more
accurate approximation of the target density. This procedure
is repeated until samplers in all subspaces report success-
ful convergence tests, or a maximum number of partitioning
cycles is reached.

We want to emphasize that by increasing the number of
MCMC chains, we are increasing the chance to detect those
modes that were missed during the initial exploration phase.
If one of such new modes is detected by at least one chain,
the convergence criteria will not be met and the algorithm
will perform additional partition. Therefore, it is generally
required to use a sufficient number of chains per subspace to
make sure that all modes are discovered.

3.2.4 Reweighting

Samples that originate from different subspaces have dif-
ferent, and a priori unknown, normalizations with respect to
each other. In order to correctly stitch those together, aweight
proportional to the integral of the target density within the
subspace needs to be applied. Given that samples are drawn
from the target function

{
λk

} ∼ f (λ) in each subspace k,
we approximate the following integrals

Ik =
∫

ωk

f (λ)dλ (6)

using a recently developed AHMI algorithm (Caldwell
2020). In the following, we provide a brief description of
the AHMI algorithm and we refer the reader to the original
publication for more detailed information.

The central idea of the AHMI algorithm lies in construct-
ing special rectangular subspaces2 Δ ∈ ω and computing
reduced harmonic mean estimates within these subspaces,
i.e.

E

[
1

f (λ)

]
fΔ(λ)

=
∫

Δ

1

f (λ)
· fΔ(λ)dλ

=
∫

Δ

1

f (λ)
· f (λ)

IΔ
dλ = VΔ

IΔ
, (7)

where we denote fΔ(λ) = f (λ)
IΔ

, and VΔ defines a volume of
the subspace. The estimator of this expectation value can be
written as

X̂ = 1

NΔ

∑
λi∈Δ

1

f (λi )
= VΔ

ÎΔ
. (8)

We scale the integral from the reduced subspace IΔ to the
integral I over ω by saying that r = I/IΔ and estimate it

2 For notational convenience, we avoid subscript k in this paragraph
and consider integration within one subspace
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as r̂ = N/NΔ, where N denotes the number of samples per
subspace ω. Given this, the integral estimator can be written
as

Î = ÎΔ
r̂

= NΩVΔ∑
λi∈Δ

1
f (λi )

. (9)

The crucial point of the AHMI algorithm is to define sub-
spaces Δ in such a way as to prevent the estimator X̂ —
which requires evaluation of a possibly unstable 1/ f (λ) —
from divergence. This adaptive procedure of finding optimal
Δ is performed by changing the size ofΔ and controlling that
the ratio fmax/ fmin is smaller than the given threshold. After
multipleΔ are determined, integral estimates associatedwith
each region are computed and their values are combined to
get the final estimate and its uncertainty. The AHMI algo-
rithm converges to the truth if the samples generated on each
subspace ω has converged to the target distribution restricted
to ω.

We want to stress that there exist alternative approaches to
evaluate normalization constants of the target density (e.g.,
bridge sampling Gelman and Meng 1998; Meng and Wong
1996; CUBA Hahn 2005). The main advantage of AHMI is
that it estimates the integral of the function acting on the
existing samples as a postprocessing step, with no require-
ments to reevaluate the target density. This can be especially
beneficial if the evaluation of the target density is computa-
tionally challenging or not possible.

3.2.5 Final sample

Once the sampling andweighting are performed, theweighted
samples from multiple subspaces are concatenated and
returned to the user. The total integral of the function f (λ)

is then estimated by summing the weights of the subspaces
I = ∑

k=1..Nsp
Ik .

Our implementation was used to generate the results
shown in Fig. 1.

4 Previous work on sampling with space
partitioning

As mentioned above, the idea to parallelize MCMC algo-
rithms using space partitioning was already studied in a few
earlier publications. For example,VanDerwerken andSchmi-
dler (2013) proposed using adaptive Voronoi partitioning to
divide the space into multiple non-overlapping subspaces,
sample these subspaces using MH algorithm, and estimate
weights of each subspace using bridge sampling or adaptive
importance sampling. Another study, by Hallgren and Koski
(2014), suggests dividing parameter space into overlapping
regions and using the intersections to evaluate integrals.

In this study, the sampling was performed using a Particle
Marginal MH sampler (Andrieu et al. 2010), and the main
challenge of this approach was is in finding a good space par-
tition. A further improvement was presented by Basse, Smith
and Pillai in Basse et al. (2016), where the authors proposed
a general way to construct space partition using spectral clus-
tering. As suggested in the paper, this space partitioning can
work in some cases where the Voronoi algorithm fails; the
reweighting of the samples in this approach was performed
using bridge sampling and individual subspaces were sam-
pled using theMH algorithm. A recent study byKim and Lee
(2020) demonstrated that sampling can also be significantly
sped up if one uses a random rectangular partition scheme
and explores each subspace using a constrained HMC algo-
rithm. Similar to other techniques, this approach uses bridge
sampling to reweight samples from different subspaces.

Our algorithmdiffers from the aforementioned approaches
in a way (a) we partition parameter space and (b) reweight
samples from different subspaces. A summary of key dif-
ferences between our approach and those presented in the
literature are highlighted in Table 1. Namely, we divide the
space into non-overlapping rectangular subspaces that are
constructed based on the initial exploration of the parameter
space. Our space partitioning approach divides multimodal
space into unimodal subspaces (sharing similarities with
VanDerwerken et al. and Basse et al. approaches); but also
we uses rectangular partitions (sharing similarities with an
approach by Kim and Lee) because their complexity scale
linearly with the number of dimensions, they allow for the
trivial definition of the subspace boundaries and easy recur-
sive partitioning. The rectangular subspaces are also well
suited for algorithms like HMC since by appropriate param-
eters transformations they can be transformed into infinite
spaces that are desirable for gradient-based samplers.

Another difference in our approach is that we do not
require additional computation of the target density to
reweight samples from different subspaces. The correspond-
ing weights can be estimated acting on the existing samples
within the subspace as a post-processing step. In addition, our
approach allows recursive repartitioning of those subspaces
that did not pass the convergence test. It is implemented as an
open-source easy-to-use algorithm that utilizes the capabili-
ties of Julia’s distributed computing, allowing to run parallel
sampling on a computing cluster with no additional code.

5 Performance

5.1 Example 1

In this example, we evaluate the performance of our algo-
rithm on a more complicated test density function. The
function was chosen in such a way to (a) have a known
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Table 1 Differences between
previously illustrated
approaches for sampling with
space partitioning. The first
three studies proposed to use any
convenient sampling/integration
methods, but we present here the
algorithms they use in their
showcase examples

Method Space partition Sampling Reweighting

VanDerwerken et al. Voronoi partition MH Importance/bridge sampling

Hallgren et al. Overlapping partition PMMH From partition overlaps

Basse et al. Spectral clustering MH Bridge sampling

Kim et al. Random rectangular HMC Bridge sampling

Current proposal Adaptive rectangular MH/HMC AHMI

Fig. 3 One and two dimensional distributions of the density function
given by Eq. 10. Histograms are constructed using 105 i.i.d samples

analytic integral, (b) allow generating independent and iden-
tically distributed (i.i.d) samples, and (c) have multiple
modes inmany dimensions and thus be challenging for a clas-
sicalMH algorithm.With this aim, we have chosen amixture
of four multivariate normal distributions in 9-dimensional
space:

f (λ) =
4∑

i=1

aiN (λ|μi ,Σi ), (10)

where all ai = 1/4 andμ andΣ are randomly assignedmean
vector and a covariance matrix. The full parameter set used
for this performance test are given in the Appendix. Figure 3
illustrates one and two dimensional distributions of 105 i.i.d
samples drawn from this density.

There are two primary points that we demonstrate in this
section. The first one is the ability to improve the wall-clock
time spent on sampling by utilizing efficiently computational
resources. The second one is the ability to improve the quality
of samples once we increase the number of space partitions.
Measurements of the performancewere evaluated as follows:

– Weuse avaryingnumber of subspaces S = (1, 2, 4, 8, 16,
32). Sampling and integration in different subspaces are
executed in parallel using 1 worker per subspace with
10 CPU cores per worker. All the CPU cores that are
available for the worker are used for multithreaded chain
execution.

– In addition, we also vary the wall-clock time that work-
ers can spend on generating samples, considering time
intervals of 3, 7, 11, and 15 seconds.

– For every combination of space partitions and wall-clock
times, we repeat the sampling process 3 times to evaluate
statistical fluctuations.

The overall number ofMCMC runs is 72. An example run
is: 8 subspaces and 8 workers with 10 CPU cores each are
used to sample 10 chains for 11 seconds of wall-clock time,
after which samples are integrated and returned; sampling
with this setting is repeated 3 times.

5.1.1 Sampling Rate

A summary of the benchmark run is demonstrated in Fig. 4.
We used the MPCDF HPC system DRACO3 with Intel
‘Haswell’ Xeon E5-2698 processors (880 nodes with 32
cores @ 2.3 GHz each) to perform parallel MCMC execu-
tions. While sampling with space partitions, each subspace
requires a different amount of time on sampling and integra-
tion, depending on the complexity of the underlying density
region. The time of the slowest one is reported in Fig. 4. It
can be seen that, by changing the number of subspaces from
1 to 32 (and the number of total CPU cores from 10 to 320),
the number of generated samples increases almost two orders
of magnitude while the wall-clock time remains constant.

Figure 4 can be rearranged into a slightly different form in
order to demonstrate the sampling rate. We define N0 as the
number of samples that the sampler with no space partitions
has generated during the time interval Δt0 = tstop − tstart
(tstop is the wall-clock time when integration has finished
and tstart is the wall-clock time when sampling on subspace
has started). We further denote as N the total number of

3 https://www.mpcdf.mpg.de/services/computing/draco/about-the-
system
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Fig. 4 Summary of the benchmark runs for the target density function
given by Eq. 10. The different colors represent runs with different num-
bers of partitions; the number of subspaces is denoted by S. The vertical
axis is common for all subplots and gives the ratio of the total number
of samples generated per single run to the number of samples that are
generated if no space partition is performed (Nref = 3.3 · 104). Left
subplot: The horizontal axis shows the ratio of the time spent on sam-
pling and integration to the time that a single worker spent if no space
partition is performed (tre f = 14.5 s). The lines are from linear fits of
measurements. Middle subplot: The horizontal axis shows the ratio of
the integral to the true value; error bars are obtained from the integra-
tion algorithm. Right subplot: The horizontal axis illustrates the ratio of
the effective number of samples (separately for each dimension) to the
total number of samples. An effective number of samples is estimated
per dimension and the error bars represent the standard deviation across
dimensions. Dashed colored lines represent the average fraction over
the runs with the same number of space partitions. (Color figure online)

samples generated on k subspaces, and the time spent on
each subspace as Δtk . The sampling rate is defined as

S = N

Δtk,max
· Δt0
N0

, (11)

where we denote by Δtk,max the longest run time among
all subspaces. Intuitively, this equation compares how much
wall-clock time was needed to generate one MCMC sample
with and without space partitioning. We, however, do not
refer to it as a speedup because during the fixed time we
were tracking the number of generated samples, and not the
time for the generation of a certain number of samples.

In addition to the wall-clock time, we also measure a CPU
time spent on sampling and integration on each subspace4.
We denote it as τi , where i is the subspace index, and τ0 is a
CPU time when no space partitions are used. The per-chain

4 Measurement of the CPU time is performed using the CPUTime.jl
package. A detailed information about how the CPU time is defined
and computed can be found in the package documentation.

Fig. 5 Thefigure illustrates sampling rate (upper subplot) and per-chain
sampling rate (lower subplot) versus the number of space partitions. The
gray lines represent average over 3 runs. (Color figure online)

sampling rate is defined as

Sper−chain = N∑
i=1..k τi

· τ0

N0
, (12)

and it intuitively measures how much CPU time was needed
to generate one MCMC sample with space partitioning
compared to the sampling without space partitioning. Equa-
tions 11 and 12 do not include time spent on the generation of
exploration samples and construction of the partition tree. A
time spent on the generation of exploration samples depends
primarily on the complexity of a likelihood evaluation, and
for our problem, it is equal to 4 seconds. The time required
to generate the space partition tree primarily depends on the
number of exploration samples, it is about 2 seconds for our
problem.

The sampling rate and the per-chain sampling rate versus
the number of space partitions are presented in Fig. 5. The
figure shows that the sampling rates are improved for both
cases. Improvements in the per-chain sampling rate indicates
that by partitioning the parameter spacewe simplify the target
density function resulting in faster tuning and convergence
(tuning and convergence are occurring in every subspace).
While improvement in the sampling rate is expected due to
the scaling of the number of CPU cores, its faster-than-linear
behavior can be explained by a superposition of the improved
per-chain sampling rate and the linear sampling rate.

5.1.2 Density Integration and Effective Sample Size

Another important characteristic to track is the integral esti-
mate of the target density function. If, for example, samples
are not correctly representing the target function, then the
integral will deviate from the truth. By partitioning the
parameter space we are simplifying tasks for both the sam-
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pler and integrator; the complicated problem has been split
into a number of simpler ones. This results in better integral
estimates, which can be seen in Fig. 4 (middle subplot).

Samples that originated from one MCMC chain are cor-
related. A degree of sample correlation depends on the
acceptance probability, number of chains, complexity of the
target density function, etc. The effective number of samples
can be estimated as

Nef f = N

τ̂
, (13)

where N is the number of samples and τ̂ is the integrated
autocorrelation time, estimated via the normalized autocor-
relation function ρ̂(τ ):

τ̂k = 1 + 2
∞∑

τ=1

ρ̂k(τ ) (14)

ρ̂k(τ ) = ĉk(τ )

ĉk(0)
(15)

ĉk(τ ) = 1

N − τ

N−τ∑
n=1

(
λk,i − λ̂k

) (
λk,i+τ − λ̂k

)
(16)

where k refers to the one of the M dimensions of the multi-
variate sample λi = {λ1,i , ..., λM,i } and λ̂k is the average of
the k-th component of all the N samples. In order to compute
the sum given by Eq. 14, we use a heuristic cut-off given by
Geyer’s initial monotone sequence estimator (Geyer 1992).
This technique allows us to calculate an effective sample
size for each dimension Nef f ,k = N

τ̂k
. As it is shown in Fig. 4

(right subplot), the effective number of post-burn-in samples
increases with the number of space partitions. It can also be
seen that in our example there is no increase of the fraction
of effective samples when the number of subspaces exceeds
8.

5.1.3 Summary of Scaling Performance

A summary of the performance enhancement from parti-
tioning and sampling in parallel is presented in Fig. 6. The
accuracy of the integrals of the function for different num-
bers of subspaces as a function of sampling wall-clock time
is shown in the left panel. There, we see that even with the
longest running times tested, the integral estimate without
partitioning deviates considerably from the correct value.
Good results are seen already for the shortest running times
with 4 subspaces, and running on 32 subspaces gives excel-
lent results in all running times tested.

The right panel in Fig. 6 shows the average number of
effective samples for different combinations of numbers of
subspaces and running times. We find a dramatic increase
in the number of effective samples: the factor achieved in

Fig. 6 The ratio of the integral to the true value (left panel) and the aver-
age number of effective MCMC samples (right panel) for the different
numbers of subspaces and sampling times. In the right panel, the values
are referenced to the average effective number of samples generated for
one subspace and a running time of 3 seconds: Nref = 267

the effective number of samples is an order of magnitude
larger than the increase in the computing resources (number
of processors). This is due to the much simpler forms of the
distributions sampled in the subspaces.

Both of these results show that a strong scaling of the
performance is achieved using the partitioning scheme that
we have outlined.

5.1.4 Sampling Accuracy

Since our algorithm requires the weighting of samples from
different subspaces and stitching them together, we test
whether this results in a smooth posterior approximating
the true target density function. For comparison, we also
approximate the true density by directly generating i.i.d
samples. In the following, we will use the two-sample
Kolmogorov-Smirnov test (Klotz 1967) and a two-sample
classifier test (Lopez-Paz and Oquab 2016) as a quantitative
assessment of how close our MCMC samples are to the i.i.d
ones.
Kolmogorov-Smirnov Test The two-sample Kolmogorov-
Smirnov test is used to test whether two one-dimensional
marginalized samples come from the same distribution. P-
values from this test for every marginal and different number
of space partitions are shown in Fig. 7. We use the effective
number of samples to calculate p-values for theKolmogorov-
Smirnov test. If two sets of samples stem from the same
distribution, then the Kolmogorov-Smirnov p-values should
be uniformly distributed. It can be seen that for a small num-
ber of space partitions p-values are peaking around 0 and 1.
Peaks close to 1 indicate that the effective number ofMCMC
samples is likely underestimated, demonstrating that sam-
ples are very correlated. In contrast to this, the peaks near
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Fig. 7 The plot illustrates histograms of the p-values from the two-
sample Kolmogorov-Smirnov test to verify whether MCMC and i.i.d
samples come from the same distribution. Different colors represent
different numbers of space partitions. One set ofMCMCsamples results
in 9 p-values for every dimension. (Color figure online)

p-values of zero indicate that marginals of i.i.d and MCMC
distributions deviate from each other. When using more than
4 partitions, p-values are uniformly covering the range from
0 to 1, indicating that marginals of i.i.d and MCMC samples
are in a good agreement.
ClassificationTestAsecondapproach todeterminingwhether
two samples are similar to one another uses a binary clas-
sifier aiming at distinguishing them. A training dataset is
constructed by pairing MCMC and i.i.d samples with oppo-
site labels. If samples are indistinguishable, the classification
accuracy on the test dataset should be close to that obtained
from a random guess. To train a classifier, we use a sim-
ple neural network model with two dense layers with sizes
9 × 20 and 20 × 2, and the sigmoid activation function. To
construct training and testing datasets, we generate MCMC
and i.i.d sampleswith equalweights.Bydefault, i.i.d samples
come with weight one. For our weighted MCMC however,
we generate 3 · 104 samples with unit weights by using
ordered resampling implemented in Schulz (2021). In total,
4 · 104 samples are used for training and 2 · 104 for testing
with an equal fraction of MCMC and i.i.d samples. Train-
ing is performed for every MCMC run that is described in
Fig. 4 individually and results are presented in Fig. 8. The
left subplot in Fig. 8 shows the modified receiver operating
characteristic (ROC), where the vertical axis is a difference
between true positive rate (TPR) and false positive rate (FPR)
for different MCMC runs. If the classifier cannot distinguish
two samples, then the line will fluctuate around zero. The
right subplot in Fig. 8 shows the integral under the ROC
curve (expected to be close to 0.5 for indistinguishable dis-
tributions) versus the number of MCMC samples (before
resampling was performed). It can be seen that even though
the training datasets consist of the same number of MCMC

Fig. 8 The figure illustrates the results of the classifier two-sample
test performed to distinguish i.i.d samples and MCMC samples with
space partitioning. The left subplot shows a modified receiver operating
characteristic (ROC) where TPR stands for true positive rate and FPR
for false positive rate. Different lines correspond to a different number
of subspaces (S). The right subplot shows area under the ROC curve
versus the number of samples. (Color figure online)

samples, there is a difference in their distinguishability. Sam-
ples obtained from the runs with a large number of space
partitions haveROCcurve integralsmuch closer to 0.5. Itwas
not possible to detect this difference in the 1d Kolmogorov-
Smirnov tests.

5.1.5 Comparison to Other MCMCMethods

Now, we would like to demonstrate how our sampling
approach improves well-established MCMC algorithms,
such as MH and HMC, by calculating the expectation values
of the first three moments. We first sample the target den-
sity given by Eq. 10 using MH and HMC algorithms without
space partition5. We then repeat the sampling using 10 space
partitions, where the sampling within each subspace is per-
formed using MH or HMC algorithm, and the exploration
sampling is performed using the MH algorithm. The number
of final samples generated by each sampling approach is kept
constant, and we use the same convergence criteria for the
four approaches. For the sake of illustration, we also present
the expectation values estimated using i.i.d samples, which
show the upper limit of the possible estimate accuracy.

We consider evaluation of the first three moments of the
target probability density f (λ) given by

μ(1) = 〈λ〉 ,

μ(2) =
〈
(λ − 〈λ〉)2

〉
,

μ(3) =
〈
(λ − 〈λ〉)3

〉
.

(17)

5 Detailed information about the implementation of these algorithms
can be found in BAT.jl’s documentation (Schulz 2021).
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Fig. 9 Estimation of the expectation values of the first three moments
using five sampling algorithms: (HMC) Hamiltonian Monte Carlo with
no space partition, (MH) Metropolis-Hastings with no space partition,
(SP-HMC) Hamiltonian Monte Carlo with 10 space partitions, (SP-

MH)Metropolis-Hastingswith 10 space partitions, (IID) i.i.d sampling.
Error bars represent the standard error of the mean estimated from 20
repetitions
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Fig. 10 The left subplot shows the samples of the target density given
by Eq. 18 obtained using the partitioned sampling. The gray lines show
the boundaries of the subspaces. The horizontal and vertical histograms
compare i.i.d and space partitioned samples. The area enclosed by a
green color is zoomed in the upper left corner. The right subplot shows
the density integral normalized by truth for 100 runs, and the error-
bars show one standard deviation (that should satisfy the normality
assumption due to the central limit theorem). The orange region shows
the mean error, and the gray region shows the standard deviation of the
means. (Color figure online)

Their true values are known analytically, and they can be used
to compare estimates and the truth. Figure 9 demonstrates
the results of the benchmark runs. We consider three sample
sizes, 105, 7×105, 14×105, and we repeat each run 20 times
to account for statistical fluctuations. As shown in Fig. 9,
the accuracy and the precision of the estimates generated by
four methods increases with the number of samples. In our
implementation, MH slightly outperforms the HMC in terms
of accuracy. By performing 10 space partitionswhile keeping
the same number of final samples, we were able to achieve
a significantly better accuracy and precision of the estimates
for both MH and HMC samplers. Namely, the algorithms
without space partition needs to generate approximately 14
times more samples to reach the same accuracy as with 10
space partitions.

5.2 Example 2

In this example, we consider a problem in which the algo-
rithm needs to detect subspaces where the convergence test
was not passed and simplify and resample these subspaces
until convergence is reached. We construct a target density
function as a mixture of eleven bivariate normal distribu-
tions, in which covariances scale exponentially. The density
function is defined as

f (x, y) =
10∑
i=0

aiN (x, y|μx,i , μy,i ,Σi ), (18)

where

μx,i = e0.35i cos i,

μy,i = e0.35i sin i,

Σi = diag(0.45
√

μ2
x,i + μ2

y,i , 0.45
√

μ2
x,i + μ2

y,i ),

(19)

and weights ai are assigned randomly such that they are non-
negative and their sum is equal to one. As in the previous
example, this target density allows for i.i.d sampling, it is
challenging for the MH algorithm, and the true value of the
density integral is known.

We test our algorithm by first drawing exploration sam-
ples with 30 chains and 700 samples per chain. The chains
typically get trapped in one of themodes of the target density,
and their samples do not represent the entire space correctly.
Our algorithm generates 17 initial space partitions using
the exploration samples. Due to imperfect exploration sam-
pling, some of these subspaces contain regions with multiple
modes. We find that in repeated testing, typically 3 addi-
tional subspaces are generated due to a convergence failure.
An example of posterior samples from one run and a sum-
mary of 100 runs are shown in Fig. 10. It can be seen that the
marginals of the MCMC and i.i.d samples overlap, indicat-
ing that the target density was sampled accurately. Also, the
density integral for 100 runs is close to the true value, with
a small average underestimation of 0.1%, and the error bars
have coverage of 48%.

6 Conclusions

We have presented an approach to both improve and acceler-
ate MCMC sampling by partitioning the parameter space of
the target density function into multiple subspaces and sam-
pling independently in each subspace. These subspaces can
be sampled in parallel and the resulting samples then stitched
together with appropriate weighting. The scheme relies on a
good space partitioning,whichwe achieve using a binary par-
titioning algorithm, that can recursively generate new space
partitions in those subspaces where convergence tests of the
samplers were unsuccessful; and a good integrator for deter-
mining the weights assigned to the samples in the different
subspaces. The integrations in our examples were performed
using the AHMI (Caldwell 2020) algorithm. The parallized
MCMC sampling algorithm described in the paper has been
implemented in theBayesianAnalysisToolkit (Schulz 2021).
This approach provides the user with a normalization con-
stant of the target density function - the Bayesian evidence
is provided at no extra cost.

We have benchmarked this technique by evaluating the
quality of samples and the sampling rate for a mixture of four
multivariate normal distributions in 9-dimensional space.We
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demonstrate that the space partitioning allows us to obtain a
50-fold increase in the sampling rate while increasing the
number of CPUs by a factor 32. This increase is a superposi-
tion of two effects: a linear scaling with the number of CPU
cores, and a CPU-time reduction due to the simplification of
the target density function. In addition to the increase in the
sampling rate, sampling with space partitioning also resulted
in an increased quality of MCMC samples by reducing their
correlations. This was evidenced in particular by more accu-
rate integral values of the target density, and more accurate
estimates of the moments of the distribution.

We have evaluated the correctness of the resulting sam-
pling distributions by comparing the MCMC samples with
i.i.d samples using a two-sample Kolmogorov-Smirnov test
and with a two-sample classifier test. Both show that increas-
ing the number of space partitions leads to a better agreement
between MCMC and i.i.d samples.

We have also demonstrated an example of a recursive
partitioning scheme using a target density with exponen-
tially scaled covariances. In this problem, the algorithm was
repartitioning recursively those subspaces where theMCMC
chains failed convergence tests. The estimated evidence aver-
aged over 100 runs is consistent with the true value.
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Appendix 1

Covariance matrices used in Eq. 10 are diagonal with the size
9 × 9 and are equal to

Σ1 = diag(12.64, 12.64, ..., 12.64),

Σ2 = diag(10.48, 10.48, ..., 10.48),

Σ3 = diag(33.03, 33.03, ..., 33.03),

Σ4 = diag(27.45, 27.45, ..., 27.45).

(20)

Mean vectors are

μ1=(4.6, 14.8, 12.7, 0.4,−7.3, 14.5,−14.0,−9.8,−12.3),

μ2 = (2.5, 2.9, 2.7, 8.7,−1.6,−11.0,−14.0,−7.5,−8.7),

μ3 = (−4.8, 0.68,−12.0,−5.0, 4.4,−0.45, 8.7,−4.5, 2.8),

μ4 = (−1.1, 4.8, 3.3, 13.0,−4.6, 0.99,−9.5, 14.0, 11.0).
(21)
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