01010

01010

(Y] information

Article

May the Source Be with You: On ChatGPT, Cybersecurity,
and Secure Coding *

Tiago Espinha Gasiba L*@ Andrei-Cristian Iosif 12(2, Ibrahim Kessba 10, Sathwik Amburi 3(2, Ulrike Lechner 2
and Maria Pinto-Albuquerque *

check for
updates

Citation: Espinha Gasiba, T.;

Tosif, A.-C.; Kessba, I.; Amburi, S.;
Lechner, U.; Pinto-Albuquerque, M.
May the Source Be with You: On
ChatGPT, Cybersecurity, and Secure
Coding. Information 2024, 15, 572.
https://doi.org/10.3390/
inf015090572

Academic Editor: Aneta Poniszewska-

Maranda

Received: 24 July 2024
Revised: 16 August 2024
Accepted: 3 September 2024
Published: 18 September 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Siemens AG, 81739 Munich, Germany; andrei-cristian.iosif@siemens.com or andrei.iosif@unibw.de (A.-C.L);
ibrahim.kessba@siemens.com (I.K.)

Wirtschaftsinformatik, Institut ftir Schutz und Zuverlassigkeit, Universitdt der Bundeswehr Miinchen,
85579 Munich, Germany; ulrike.lechner@unibw.de

TUM School of Computation, Information and Technology, Technische Universitat Miinchen,

85748 Munich, Germany

4 Instituto Universitario de Lisboa (ISCTE-IUL), ISTAR, 1600-189 Lisboa, Portugal;
maria.albuquerque@iscte-iul.pt

Correspondence: tiago.gasiba@siemens.com

This article is a revised and expanded version of a paper entitled [I'm Sorry Dave, I'm Afraid I Can’t Fix Your
Code: On ChatGPT, CyberSecurity, and Secure Coding], which was presented at [the 4th International
Computer Programming Education Conference (ICPEC 2023), Vila do Conde, Portugal, 26-28 June 2023].

Abstract: Software security is an important topic that is gaining more and more attention due to
the rising number of publicly known cybersecurity incidents. Previous research has shown that
one way to address software security is by means of a serious game, the CyberSecurity Challenges,
which are designed to raise awareness of software developers of secure coding guidelines. This
game, proven to be very successful in the industry, makes use of an artificial intelligence technique
(laddering technique) to implement a chatbot for human-machine interaction. Recent advances in
machine learning have led to a breakthrough, with the implementation and release of large language
models, now freely available to the public. Such models are trained on a large amount of data and
are capable of analyzing and interpreting not only natural language but also source code in different
programming languages. With the advent of ChatGPT, and previous state-of-the-art research in
secure software development, a natural question arises: to what extent can ChatGPT aid software
developers in writing secure software? In this work, we draw on our experience in the industry,
and also on extensive previous work to analyze and reflect on how to use ChatGPT to aid secure
software development. Towards this, we conduct two experiments with large language models. Our
engagements with ChatGPT and our experience in the field allow us to draw conclusions on the
advantages, disadvantages, and limitations of the usage of this new technology.

Keywords: education; training; secure coding; industry; cybersecurity; capture the flag; game
analysis; CyberSecurity Challenges

1. Introduction

According to ISO 25000 [1], one critical aspect of software development is security.
Software security has gained significant attention over the last decade due to the increasing
number of cybersecurity incidents resulting from poor software development practices.
Consequently, industrial standards such as IEC 62443 [2] mandate the implementation of a
secure software development lifecycle to address and reduce the number of vulnerabilities
in products and services. The development of secure software is not only vital for the
industry, particularly in critical infrastructures, but it is also a significant subject taught in
many engineering and informatics courses at various universities.

There are several established methods to improve the quality of software. These
include performing secure code reviews, using static application security testing (SAST),

Information 2024, 15, 572. https:/ /doi.org/10.3390/info15090572

https:/ /www.mdpi.com/journal/information

https://doi.org/10.3390/info15090572
https://doi.org/10.3390/info15090572
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-1462-6701
https://orcid.org/0000-0003-1867-1542
https://orcid.org/0000-0001-9297-7502
https://orcid.org/0000-0002-6139-5048
https://orcid.org/0000-0002-4286-3184
https://orcid.org/0000-0002-2725-7629
https://doi.org/10.3390/info15090572
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15090572?type=check_update&version=1

Information 2024, 15, 572

2 of 26

and employing security testing techniques such as unit testing, penetration testing, and
fuzzing. These methods generally rely on the principle that software should comply with
secure coding guidelines, which are policies aimed at minimizing vulnerabilities and bugs
in software. One way to ensure adherence to secure coding guidelines is through the use
of static application security testing tools. However, not all secure coding guidelines are
decidable [3]. This means that there exist certain secure coding guidelines for which no theo-
retical Turing machine can be constructed to determine compliance or non-compliance with
the guidelines. This theoretical limitation raises an immediate issue: the full automation of
secure coding is not possible. Therefore, software developers are ultimately responsible for
the security of the code they write. In a 2019 survey of more than 4000 software developers
from the industry, Patel [4] demonstrated that more than 50% of them cannot recognize
vulnerabilities in source code.

To address this problem, raising awareness of secure coding among software develop-
ers is crucial. Similarly to Patel, Gasiba [5] has shown that industrial software developers
lack awareness of secure coding guidelines. He extended the work by Hénsch et al. [6] to
the field of secure coding, defining secure coding awareness in three dimensions: percep-
tion, protection, and behavior. A recent study by the Linux Foundation [7] also highlighted
the importance and need to train software developers to develop secure software.

Artificial intelligence (AI) technology has garnered significant attention and traction in
recent years, with integration into various fields, including cybersecurity. However, there
are growing concerns about the security, privacy, and ethical implications associated with
Al applications as indicated by the standardization efforts of governments in the EU and the
USA [8,9]. In the industrial sector, security vulnerabilities can lead to severe consequences,
ranging from financial losses to threats to human life. Al has experienced several cycles
of hype and disillusionment, often referred to as ‘Al winters” and ‘Al summers’, respec-
tively [10]. We believe we are currently in an ‘Al summer” due to the rampant integration
experiments with generative Al (genAl). Furthermore, we believe that Al will play a major
role in the field of secure software development as is already being demonstrated by several
companies, products, and services emerging in this field.

However, previous studies that highlight the advantages, disadvantages, and expected
performance of using Al for software development are scarce. Therefore, new techniques
to assist software developers in writing secure code, along with a scientific evaluation,
are a fruitful area of research. Gasiba et al. [11] in their work demonstrated that artificial
intelligence could be used to raise awareness among software developers. The authors
devised an intelligent coach using an Al technique known as the laddering technique,
which is commonly used in chatbots [12]. The intelligent coach, facilitating human—machine
interaction (HMi) in a controlled environment (the Sifu platform), was shown to be very
effective in raising awareness of secure coding guidelines among software developers in
the industry.

In this work, we extend the previous research by exploring the use of ChatGPT [13]
as a means of HMi. ChatGPT, released in November 2022, is built on the GPT-3 family
of large language models and was developed by the American research laboratory Ope-
nAl The language model has been fine-tuned with both supervised and reinforcement
learning techniques.

Given the authors’ experience, previous work, and the theoretical limitations inherent
to the field of secure coding, this work aims to broaden the understanding of the extent
to which ChatGPT can aid software developers in writing secure code. This research
seeks to answer the following questions: RQ1. To what extent can ChatGPT recognize
vulnerabilities in source code? RQ2. To what extent can ChatGPT rewrite code to eliminate
present security vulnerabilities?

The authors have chosen ChatGPT for experimentation over other existing generative
models, particularly those trained specifically for cybersecurity, because ChatGPT is widely
available to the public and allows users to maintain a conversation with context, taking
previous requests and answers into account. This study presented in this work is composed

Information 2024, 15, 572

30f26

of two parts: in the first part, the authors conduct interactions with ChatGPT based on
five exercises from the serious game CyberSecurity Challenges (CSC) and an analysis of
the responses in terms of secure coding; in the second part, the authors extend this work
through additional and more extensive interactions, and using a more recent model of
ChatGPT compared to the first experiment. The first experiment has been partially reported
in previous work [14].

This work provides significant contributions to both academia and industry by of-
fering a nuanced analysis of Al models in an industrial context and drawing on our
extensive experience in teaching secure coding. For academia, our study highlights the
practical advantages and limitations of Al, addressing often overlooked issues such as
code maintainability and the prevention of undesired functionalities. These insights go
beyond traditional statistical evaluations, presenting a comprehensive view that can inform
future academic research into the role of Al in secure software development. For indus-
try, our research facilitates a reflective assessment of Al integration, helping practitioners
leverage tools like ChatGPT effectively while developing strategies to mitigate potential
risks. By exploring the advantages, disadvantages, and limitations of human—machine
interactions in raising secure coding awareness, we enrich the discourse on secure coding
practices and Al applications. This work also highlights a new and rich field of research:
using machine learning algorithms and Generative Al to enhance secure coding awareness
through human-machine interactions, fostering a deeper understanding and improved
implementation strategies in both domains.

The rest of this paper is organized as follows: Section 2 discusses previous work that
is either related to or served as inspiration for our study. Section 3 briefly discusses the
experiment setup followed in this work to address the research questions. In Section 4,
we provide a summary of our results, and in Section 5, we conduct a critical discussion of
these results. Finally, in Section 6, we conclude our work and outline future research.

2. Related Work

The use of Al in secure software development is an emerging area of research that has
garnered significant attention in recent years. This section reviews the relevant standards,
frameworks, and practical implementations that inform our understanding of how Al can
be leveraged to enhance software security. We also examine studies and case studies that
highlight both the potential and the limitations of Al tools in this context and explore the
role of Al in secure software development, to illustrate the current state of the field.

The industry fosters the creation and adoption of standardization efforts because
they ensure quality assurance as well as the facilitation of regulatory compliance. In
the following, we will mention the standards most relevant to our work, which concern
themselves with information security in the context of the software development lifecycle.

The IEC 62443 standard by the International Electrotechnical Commission provides
guidelines for securing industrial automation and control systems (IACSs) [2]. It encom-
passes system security, risk assessment, and management, as well as secure development
and lifecycle management of components. While the standard outlines processes that could
benefit from Al, such as vulnerability mitigation and dynamic security measures, it is
important to underscore that, at the time of writing, the standard has not yet been updated
to address the fulminant advances in Generative Artificial Intelligence (GenAl). As such, Al
should be considered one component of a broader, multifaceted approach to cybersecurity
when considering IEC 62443 compliance.

Governmental bodies are adapting to the GenAl revolution as well. The European
Union Artificial Intelligence Act focuses on regulating Al systems to align with EU values
and fundamental rights, classifying Al systems into risk categories and setting requirements
for high-risk categories to ensure transparency and data governance [8]. The U.S. initiative,
Al.gov, serves as a central resource for federal Al activities, promoting Al innovation and
public trust through coordination across various agencies, focusing on policy, research, and
education [9]. Furthermore, The National Institute of Standards and Technology (NIST)

Information 2024, 15, 572

4 of 26

has released four draft publications intended to help improve the safety, security and
trustworthiness of Al System, together with an Al Risk Management Framework [15,16].
These resources aim to guide organizations in the ethical and technical considerations of
Al systems.

ISO/IEC 27001 [17] and ISO/IEC 27002 [18] are internationally recognized standards
for information security management [17]. ISO/IEC 27001 provides a framework for estab-
lishing, implementing, maintaining, and continuously improving an information security
management system (ISMS). ISO/IEC 27002 offers guidelines and best practices for initi-
ating, implementing, and maintaining information security management. As such, these
standards ensure that organizations can effectively manage and protect their information
assets, which is essential when integrating Al into secure software development processes.

ISO/IEC 25000 [1], also known as the Software Product Quality Requirements and
Evaluation (SQuARE) series, focuses on software quality. It provides a comprehensive
framework for evaluating the quality of software products and includes standards such
as ISO/IEC 25010, which defines quality models for software and systems. These models
include characteristics like security, reliability, and maintainability, which are essential
for assessing the quality of code, regardless of whether they are Al generated or not. By
adhering to the ISO/IEC 25000 standards, developers can ensure that Al tools contribute
positively to software quality and security.

At the technical level of secure software development, several frameworks and stan-
dards guide developers toward safer software development practices. For example, the
MITRE Corporation’s Common Weakness Enumeration (CWE) releases a secure coding
standard containing more than 1200 secure coding guidelines for different programming
languages. MITRE also releases the CWE Top 25, which highlights twenty-five guidelines
out of the entire catalog which are considered very important in addressing security in
software, i.e., it ranks the top 25 “most dangerous software weaknesses” that could lead to
serious vulnerabilities if left unaddressed. This list helps developers prioritize their security
efforts based on the potential risks and impacts of these weaknesses across different types
of software development projects.

Similarly, the OWASP (Open Worldwide Application Security Project) offers various
Top 10 lists, updated periodically, across different domains. With the rise in popularity
of large language models (LLMs), OWASP has expanded its scope by releasing a Top 10
specifically for LLMs. This resource aims to educate developers, designers, architects,
managers, and organizations on the potential security risks associated with deploying and
managing LLMs [19]. MITRE, through the ATLAS Matrix project [20], has also adapted its
ATT&CK matrix, a resource on attacker tactics and techniques that covers machine learning
(ML) techniques.

Furthermore, the ISO/IEC TR 24772-1 [21] provides a taxonomy of software vulner-
abilities, offering guidance on avoiding common mistakes in a variety of programming
languages. This technical report is part of a series that aids developers in understanding
how to implement secure coding practices effectively. It covers vulnerabilities related to
language-specific issues and provides mitigation strategies that are essential for developing
robust, secure applications.

Driven by innovations in machine learning and deep learning, GenAl models are
designed to generate content, such as text and images. Notable examples include generative
adversarial networks (GANSs) and transformer-based models like GPT (Generative Pre-
trained Transformer) [22]. The latter has demonstrated capabilities in natural language
understanding and generation, facilitating tasks ranging from automated content creation to
complex problem-solving. Next, we will mention the most notable models available today.

ChatGPT, part of the GPT series by OpenAl, has gained widespread attention for its
conversational abilities and versatility in handling diverse queries. Its application ranges
from customer service to educational tools and beyond [23]. In the context of software
development, ChatGPT’s ability to understand and generate human-like text provides a
unique opportunity to assist developers. Another model that is gaining traction both in

Information 2024, 15, 572

50f 26

industry and also academia is LLaMA (Large Language Model-based Automated Assistant),
which its parent company, Meta, has made openly available [24]. However, since these
models are probabilistic in nature, their usage and performance in the field of secure
software development still lacks understanding. In contrast, our work contributes to the
understanding of using Al as a means to assist software developers in writing secure code.

Russel et al. [25] have explored the potential of Al to revolutionize industries by
enhancing efficiency, accuracy, and innovation. However, they also highlighted critical
challenges such as ethical considerations, security risks, and the need for robust valida-
tion mechanisms. Shen et al. [26] also showed that, in software development, Al tools
show promise in automating repetitive tasks, improving code quality, and identifying
vulnerabilities. Yet, these studies also caution about the over-reliance on Al without proper
oversight, which can lead to unintended consequences, including the introduction of new
security flaws.

Fu et al. [27] introduced LineVul, a Transformer-based method for line-level vulner-
ability prediction, improving upon the IVDetect approach of Li et al. [28]. In their study
with over 188,000 C/C++ functions, LineVul significantly outperformed existing methods,
notably achieving up to 379% better F1-measure for function-level predictions and reducing
effort by up to 53% for achieving 20% recall. Notably, concerning the CWE Top-25, LineVul
is very accurate (75-100%) for predicting vulnerable functions. This highlights Al tools’
potential to become more efficient and effective in vulnerability detection in real-world
applications, similar to how SAST tools are integrated today in the development lifecycle.

GitHub CoPilot, developed in collaboration with OpenAl, is a developer productivity
tool. It utilizes Al to provide real-time code suggestions and auto-completions within
integrated development environments (IDEs). CoPilot can predict and generate code
snippets, thereby accelerating the coding process [29]. However, concerns have been raised
about its potential to inadvertently propagate insecure coding practices and vulnerabilities,
necessitating a closer examination of its impact on secure software development. Not only
that, concerns have also been raised about privacy and intellectual property, with GitHub
Copilot having been found to leak secrets in the past [30].

Although increasingly explored as a tool to improve secure software development
practices, Perry et al. [31] conducted a comprehensive user study on how individuals use
an Al Code assistant for security tasks in various programming languages. Their findings
revealed that participants using the Al, specifically OpenAl’s codex-davinci-002 model,
generally wrote less secure code than those who did not use the Al Furthermore, those
with Al access often overestimated the security of their code. Notably, the study found that
participants who were more critical of the Al and adjusted their prompts produced code
with fewer vulnerabilities. Similarly, Pearce et al. (2022) [32] systematically investigated the
prevalence and conditions that can cause GitHub Copilot, a popular Al coding assistant,
to recommend insecure code. The authors analyzed code generated in Python, C, and
Verilog with CodeQL [33] and through manual inspection, focusing on the MITRE CWE
Top-25 [34]. According to their findings, roughly 40% of the programs produced in their
experiments were found to be vulnerable.

In the domain of software development, Al is being explored in the Test Driven
Development (TDD) style, where Al generates code based on predefined tests, improving
coding efficiency and adhering to the principles of TDD [35].

3. Experiment

In this section, we describe two experiments designed to explore the effectiveness of
large language models (LLMs) in identifying and mitigating software vulnerabilities, which
were carried out in two steps. The Preliminary Study with GPT-3 served as an exploratory
phase, conducted during the initial release of ChatGPT, to assess the basic capabilities
of the GPT-3-based version in detecting and addressing code vulnerabilities. This work
was initially published in [14]. The present work builds and extends on this foundation
through an additional analysis using the GPT-4 model. Our extended study allows us to

Information 2024, 15, 572

6 of 26

evaluate the improvements in code analysis and vulnerability mitigation achieved with the
GPT-4 model.

3.1. Preliminary Study with GPT-3 Model

The Preliminary Study aimed to assess the capabilities of GPT-3 in identifying and
mitigating common software vulnerabilities. To achieve this, we selected five distinct
challenges from the CyberSecurity Challenges available on the Sifu platform, focusing
on C/C++ vulnerabilities. These challenges were chosen based on their prevalence in
real-world scenarios and their alignment with the authors’ extensive experience in teaching
cybersecurity. The study was conducted using the version of ChatGPT available on 13
January 2023, which is based on GPT-3. Table 1 shows a summary of the selected challenges
and the corresponding CWE identifier.

Table 1. Selected challenges from Sifu platform, according to CWE ID.

ID Vulnerability Description

C1l CWE-121 Stack-Based Buffer Overflow

C2 CWE-758 Reliance on Undefined, Unspecified, or Implementation-Defined Behavior
C3 CWE-242 Use of Inherently Dangerous Function

C4 CWE-190 Integer Overflow or Wraparound
C5 CWE-208 Observable Timing Discrepancy

The first challenge involved a C function that contains a stack-based buffer overflow
vulnerability, which was evident through the use of the strcpy function. The second
challenge, written in C++, included a vulnerability based on undefined behavior, which
could produce different results depending on the compiler. In the third challenge, the
code utilized the deprecated and unsafe gets function, which has been removed in the C11
standard due to its risks. The fourth challenge presented an integer overflow vulnerability,
which could be triggered by passing large integer values to the function. The fifth and final
challenge focused on a side-channel leakage vulnerability, where the function’s runtime
depends on its input values, allowing for the potential leakage of sensitive information
based on execution time. The last chosen challenge is more typical in embedded systems.

Listing 1 shows the source code corresponding to the fifth challenge. The issue with the
code is that the function’s runtime depends on its inputs, potentially leaking side-channel
information. Specifically, the for loop will break depending on the contents of the input a
and input b. If a difference is found, the loop breaks and the function returns 1. If both
arrays contain the same values, the loop will take the longest time to run, dependent on the
length of the arrays. The Sifu platform also provides information that inputs a and b are of
the same length, equal to len.

Listing 1. Vulnerable Code Snippet Containing CWE-208 (C5).

int is_equal(const char* a, const char* b, size_t len) {
for (size_t i = 0; i < len ; i++) {
if (alil !'= b[il)
return 1;
}

return O;

For this example, the desired answer from the player corresponds to the code shown
in Listing 2. In this listing, the function does not return immediately when the first unequal
values are observed. The runtime of the function is constant, depending only on the length
of the arrays. Since the comparison’s returned value does not depend on the contents of
the input arrays a and b but only on their length, no information is leaked through the

Information 2024, 15, 572

7 of 26

algorithm’s execution time. Thus, an attacker manipulating one of the inputs cannot gain
information about the other input based on the time the algorithm takes to run.

Listing 2. Desired Challenge Solution for C5.

int is_equal(const char* a, const char* b, size_t len) {
if (a == NULL || b == NULL) return -1;

int result = 0

([

for (size_t i 0; i < len; i++) {
= i

alil -~ blil;

result |

3

return result;

Figure 1 illustrates the process of interacting with ChatGPT to evaluate its ability to
identify and correct software vulnerabilities. For each of the five selected challenges, a
different code snippet S containing a specific vulnerability was provided. To assess the
model’s (LLM) effectiveness, we simulated multiple interactions with ChatGPT, testing
its performance in recognizing the vulnerability, providing an accurate diagnosis, and
proposing a suitable fix for each code snippet S.

S Q, A

Code Snippet f—p Huma!’\ p— ChatGPT
Interaction

1

Figure 1. Interaction with ChatGPT.

Interactions with ChatGPT were conducted through multiple sessions, each involving
a sequence of questions (Q,) and corresponding answers (A;) as shown in Figure 1. These
interactions aimed to evaluate GPT-3’s ability to correctly identify, explain, and rectify the
presented vulnerabilities Table 2.

Table 2. Human interactions with ChatGPT (GPT-3).

Nr. Question Expected Answer
1 Z:T;}: éi ;he vulnerability present in the following code Correct vulnerability identification
2 What is the corresponding CWE number? CWE number according to Table 1
3 Please fix the code Correct fix of the code
4...15 There is still a vulnerability in the code, please fix it Improved code
>15 The code contains vulnerability XXX, please fix it Improved code

The strategy for asking questions was as follows: in the first question, we asked
ChatGPT to identify the vulnerability by name. Given ChatGPT’s verbosity, we expected it
to provide a detailed description of the problem. In the second question, we asked for the
corresponding CWE number to see if it matched our design. The purpose of these questions
was to evaluate how well ChatGPT could support a software developer in identifying and
understanding secure code problems. The questions and expected answers are detailed in
Table 2.

In the next phase (starting with Question 3), we asked ChatGPT to fix the code based
on its previous answers. Our expectation was that the fixed code would correctly address
the challenge’s vulnerability. We also posed additional questions (4 ... 15), claiming that
there were still vulnerabilities present and requesting ChatGPT to fix them. The goal was to

Information 2024, 15, 572

8 of 26

see how well the model could detect further issues and iteratively improve the code. Finally,
in the sixteenth question, we claimed that the code contained the intended vulnerability
and asked ChatGPT to fix it.

The experiments were conducted through the online interface of ChatGPT on 15
January 2023. The study involved a total of 43 interactions with the ChatGPT user interface,
comprising 5 for CWE-121, 5 for CWE-758, 5 for CWE-242, 11 for CWE-190, and 17 for
CWE-208. The version of ChatGPT used was “ChatGPT 9 Jan Version”.

3.2. Extended Analysis with GPT-4 Model

This section extends the initial experiment by using the GPT-4 version of the LLM
employed by ChatGPT. This additional work aims to further understand how LLMs
perform in identifying and mitigating vulnerabilities within code snippets, building on
the foundational insights gained from the GPT-3-based Preliminary Study. This study was
conducted in May of 2024. This phase of the experiment was conducted in two steps. In
the first step, we evaluated vulnerable code snippets by extending the Preliminary Study.
In the second step, we looked at all the obtained results and analyzed them further. During
the first step, we used two sets of code snippets as detailed in the following:

1. Set1: SANS Top 25 Snippets—These snippets include vulnerabilities from the SANS
Top 25, representing some of the most common and critical security flaws found
in software. This set serves as a benchmark for evaluating the model’s ability to
recognize well-documented and frequently occurring issues.

2. Set 2: Curated Code Snippet—A single code snippet that covers a range of common vul-
nerabilities, aiming to test the models’ generalization abilities across a broader spectrum
of potential security issues. This Curated Code Snippet consists of 18 vulnerabilities and
2 secure coding malpractices.

The SANS Top 25 snippets were obtained by scrapping the MITRE website [36]
for good and bad code examples for the different vulnerabilities. Each code snippet
corresponds to one CWE from the SANS Top 25. A list of the used CWEs is present
in Table 6. Listing 3 shows the additional Curated Code Snippet that was used in the
experiment. The authors developed this code snippet based on their experience in the
industry and in teaching secure coding to industrial software developers. The reasoning
behind the development of this Curated Code Snippet is for it to represent several potential
vulnerabilities present in industrial code all together in a single snippet, thus with the
intent to stress the LLM in the identification of vulnerabilities.

Listing 3. Curated Code Snippet Issues.

import sqlite3, random
from flask import Flask, abort, request, jsonify
from flask_cors import CORS

app = Flask(__name__) #!! Bad Initialization Order
CORS (app)
database = ’./login.db’ #!! Hardcoded database path

def create_response(message): #!! Use type annotations
response = jsonify({’message’: messagel)
response.headers.add(’Access -Control -Allow-0Origin?’, ’*’)
#!! Avoid wildcard CORS
TODO Ticket: id91263 #!! Remove TODO comments from public code
return response #!! Use make_response for compliance

Q@app.route(’/setup’, methods=[’POST’])
def setup():

connection = sqlite3.connect(database) #!! No exception handling
SECRET_PASSWORD = "letMeln!"; #1! Hardcoded credentials
THIS_IS_A_VARIABLE = "WBneKJwlfHch8Qd3XFUS"; #!! Unused variable

print ("Super Secret Password SSH,,Server Password; to,,10.10.10.1:22: "
+ SECRET_PASSWORD) #!! Avoid logging secrets

Information 2024, 15, 572

9 of 26

connection.executescript (?>CREATE_ TABLE_IF NOT EXISTS,login(username,
TEXT,,’
’NOT,NULL_UNIQUE, password TEXT ,NOT,NULL) ;)
#1! No field 1limits
connection.executescript (?>INSERT_,0R,,IGNORE_ INTO login’
>VALUES ("user_1","123456") ;)
#!! Hardcoded credentials
return create_response (’Setup done!’)

Q@app.route(’/login’, methods=[’P0ST’])
def login():

username = request.json[’username’]

password = request.json[’password’] #!! Password in plaintext

connection = sqlite3.connect(database) #!! No exception handling

cursor = comnnection.cursor ()

cursor .execute (> SELECT*_ FROM_,login WHERE _ username =_"%s",’
>ANDpassword ="%s"’ % (username, password))

#!! SQL injection risk

user = cursor.fetchone ()

if user:

response = create_response(’Logingsuccessful!’)

response.set_cookie (’SESSIONID’,
str (random.randint (1,99999999999999999999999)),
httponly=False, secure=False) #!! Insecure
cookies
response.set_cookie (’TESTID1’>, str ("TESTSTRING1"),
httponly=True, secure=True)
response.set_cookie (?TESTID2’, str ("TESTSTRING2"))

#!! Insecure defaults
return response #!! Use jsonify
else:
response = create_response(’Logingfailed!’)
response.delete_cookie(’username’) #!! Nonexistent cookie

return response, 401

if __name__ == "__main__":
app.run(host=0.0.0.0’, port=8080, debug=True)
#!! Debug mode in production, listening on all interfaces

In this phase of our experiment, we used 26 code snippets as compared to 5 in the
Preliminary Study. Due to the number of code snippets used in Set 1, we decided to make a
small adaptation of our setup to enable the automatic querying of the OpenAl interface
through the Azure service. Figure 2 details the setup that was used to evaluate the Set 1 code
snippets for the SANS Top 25 vulnerabilities. Each code snippet is processed sequentially
through a series of prompts, and responses are automatically recorded for evaluation.

' |
: :
1 Code Snippet .
| ! Q,+S A
i qp ' E— GPT4 API P Human Evaluation
' |
!
! Prompt r
1
!
1
!
1
!
1

Figure 2. Experiment setup used in the extended analysis of the SANS Top 25 vulnerabilities.

While we used automation for the code snippets in Set 1 and for the Curated Code
Snippet in Set 2, we decided to use the same setup as in the Preliminary study, which
is detailed in Figure 1. The reason for this is that the authors wanted a fine and manual
control of the experiment. Note that the code snippet used for the evaluation of the
LLM did not include the comments as detailed in Listing 3, except for the TODO Ticket

Information 2024, 15, 572

10 of 26

1d91263 comment. This was done in order not to give any hits to the LLM where the code
vulnerabilities were located. However, leaving the TODO comment was done intentionally
to understand if the LLM would identify this as a coding issue.

In this Extended Analysis, we also extended the original prompts as shown in Table 3.
The reason for modifying the prompts was not only to obtain the information obtained in
the Preliminary Study but also to obtain additional information about the analysis provided
by the LLM. Therefore, these prompts not only mirror and extend the structure used in the
Preliminary Study with GPT-3 but also allow for a direct comparison of the results.

Table 3. Prompts for the additional experiment (using GPT-4).

Prompt Nr Prompt

P1 Please explain what this code does.

P2 Is there a vulnerability in this code? Yes or No?

P3 What is the vulnerability in this code? Please provide the CWE number if possible.

P4 Please suggest a fix for this code.

P5 Are there any other vulnerabilities in this code? If yes, please explain and suggest fixes.

The different prompts were designed based on our experience. The aim of these
prompts, which were used to query the LLM, was to (P1) understand code functionality,
(P2) detect vulnerabilities, (P3) obtain details on the vulnerability, (P4) suggest a fix for the
vulnerable code, and (P5) comprehensive vulnerability detection. Table 4 outlines prompts
together with the design goals and evaluation criteria for individual prompts.

Table 4. Evaluation based on prompts (GPT-4).

Nr. Prompt Evaluation Criteria and Details
Understanding Code Functionality:
P1 Please explain what this code does. * Correctness and depth of the models’
explanations.
. Clarity of explanation.
Initial Vulnerability Detection:
P2 Is there a vulnerability in this code? Yes or No? * Identification of presence or absence of
vulnerabilities.
. Consistency across different code snippets.
Specificity and Detail:
P3 WhaF is the vulnerability ir.1 this gode? Please . Specificity and Correctness in identifying
provide the CWE number if possible. and describing vulnerabilities.
. Diagnostic accuracy.

Relevance and Feasibility of Proposed Fixes:

P4 Please suggest a fix for this code. ¢ Applicability and practicality of the fixes
suggested.
o Effectiveness of the fixes.

Comprehensive Vulnerability Detection:
Are there any other vulnerabilities in this code? P Y

If yes, please explain and suggest fixes. . Ability to detect multiple vulnerabilities.
. Depth of analysis.

P5

While evaluating the results for each prompt, we used our experience to determine if
the answers provided by the LLM fulfilled or did not fulfill the prompt criteria as defined
in Table 4.

Furthermore, we conducted a second step with the aim of having a more holistic
understanding of the usage of the LLMs in secure software development. This analysis
was conducted based on three different aspects: correctness, completeness, and relevance.
We have defined these aspects as follows:

¢ Correctness: Does the LLM correctly identify and describe vulnerabilities, focusing
on the accuracy and relevance of the identified issues?

Information 2024, 15, 572

11 of 26

e Completeness: Does the LLM have the ability to identify all relevant security issues
within the code?

* Relevance: Are the suggested fixes proposed by the LLM applicable and practical for
an industrial environment?

The analysis of these aspects was conducted manually and through discussions with
five additional industrial cybersecurity experts. Our results entail a report on our view
of these aspects. Analysis of the correctness aspect was evaluated through P1, P2, and
P3. The analysis of the completeness was based on P3 and P5. Finally, the analysis of the
relevance aspect was based on P4 and P5. This analysis was conducted for Set 1 and Set 2 of
the experiment.

4. Results

In this section, we provide the results that were obtained during the Preliminary Study
and the Extended Analysis Study as detailed in Section 3.

4.1. Results for Preliminary Study with GPT-3

Table 5 summarizes the challenges (C1 to C5) and the vulnerabilities identified by
ChatGPT. The model used by ChatGPT for these challenges is the GPT-3 model as discussed
in the experiment section. We compared these findings with the vulnerabilities described
in the challenges, noting that the CWE categories identified by ChatGPT did not always
match exactly with those in the challenges. Instead, we assessed the closeness of ChatGPT’s
answers to the correct vulnerabilities.

For the first three challenges, we found that while the challenge’s CWE described a
more general vulnerability, ChatGPT identified a more specific type of the same vulner-
ability. This means ChatGPT’s answers were precise and acceptable, as they effectively
pinpointed the vulnerabilities in more detail.

Table 5. Vulnerabilities identified by ChatGPT (GPT-3).

Designed ChatGPT Assessment
ID Challenge Identified Is Description

Vulnerability Vulnerability Acceptable?
1 CWE-121 CWE-120 YES Correctly identified that buffer overflow occurs due to copying string
2 CWE-758 CWE-835 YES Correctly identified an infinite loop due to undefined behavior
3 CWE-242 CWE-121 YES Technically correct assessment, but failed to identify that gets is deprecated
4 CWE-190 CWE-835 NO Assessment of problem misses the major issue, in favor of smaller detail
5 CWE-208 CWE-121 NO While technically correct, the assessment is wrong due to missing context

For the fourth and fifth challenges (CWE-190 and CWE-121), ChatGPT did not correctly
identify the problem with the code. For the CWE-190 challenge, ChatGPT found another
problem, which, although correct, was not the major problem with the code. Since the major
problem with the code was not identified, we decided not to accept ChatGPT’s solution.
For the CWE-208 challenge, ChatGPT completely missed the problem. Even though we
asked several times (4 ... 15) to find and fix vulnerabilities in the code, ChatGPT could
not identify it. In the 16th iteration, we told ChatGPT that the code had the CWE-208
vulnerability and that ChatGPT should solve the code.

Due to the interesting nature of this special case, we present the solution from ChatGPT
for Question 16. Listing 4 shows the solution presented by ChatGPT. In this case, ChatGPT
used the CRYPTO_memcmp from OpenSSL to solve the problem.

Listing 4. ChatGPT Solution to CWE-208 Challenge (using OpenSSL).

#include <openssl/crypto.h>

int is_equal(const char* a, const char* b, size_t len) {

Information 2024, 15, 572

12 of 26

if(a == NULL || b == NULL) return -1;

size_t a_len = strnlen(a, len);

size_t b_len = strnlen(b, len);

if (len == || len > a_len || len > b_len) {
len = a_len < b_len 7 a_len : b_len;

}

if (ala_len] !'= °\0’ || blb_len] != °\0’) {

return -1;
}
return CRYPTO_memcmp(a, b, len);

Since we were not expecting that ChatGPT would use an external library, on iteration
17, we asked ChatGPT to provide us with a solution without using OpenSSL. The answer
from ChatGPT is presented in Listing 5.

Listing 5. ChatGPT Solution to CWE-208 Challenge (without using OpenSSL).

int is_equal(const char* a, const char* b, size_t len) {

if(a == NULL || b == NULL) return -1;

size_t a_len = strnlen(a, len);

size_t b_len = strnlen(b, len);

if (len == |l len > a_len || len > b_len) {
len = a_len < b_len 7 a_len : blen;

}

if (ala_len] != °\0’ || bl[b_len] !'= >\0’) {
return -1;

}

int result = 0;

for(size_t i = 0; i < lem; i++) {
result |= al[il -~ bl[il;

}

return result;

In this listing, we can see that the desired solution (see Listing 2) is present in the code.
However, additional tests are performed in relation to the length of the input arrays, which
is unnecessary given the context in which the function is used. Furthermore, ChatGPT has
assumed that both inputs represent a string and, therefore, tests for the case that the inputs
are null terminated. We note that these modifications to the source code introduced by
ChatGPT change the semantics of the function.

4.2. Results for Extended Analysis with GPT-4

In this section, we cover the analysis of LLM responses for GPT-4, which were con-
ducted in the Extended Analysis experiment. We provide the results on the code snippets
of used in Set 1 and Set 2. Note that while the individual results from the SANS Top 25
(Set 1) also relate to individual CWEs, the Curated Code Snippet used in Set 2 relates to
twenty individual CWEs.

Table 6 presents the results of the Set 1 code snippets based on the automated prompts.
As detailed in Section 3, the results are based on the fulfillment or non-fulfillment of
the individual-defined evaluation criteria. Additionally, we provide an evaluation of the
coverage of each prompt toward its criteria in the last row of the table.

Our results show that the LLM fulfills the criteria of code understanding (P1) with
100%. In terms of vulnerability detection (P2), our results show a coverage of 88%. The
same percentage value is also obtained for code fix suggestions (P4) and comprehensive
vulnerability detection (P5). In terms of the obtainment of details on the vulnerability, our
results show a coverage of 56%.

Information 2024, 15, 572

13 of 26

Table 6. Results for SANS Top 25 CWE (Set 1) for GPT-4 experiment.

=
[y
<
N
o)
w
=
=
=
qi

CWEID Short Description

CWE-787 Out-of-bounds Write (4 (4 (4 (4 (4
CWE-79 Cross-site Scripting v 4 v v v
CWE-89 SQL Injection v v v v v
CWE-416 Use After Free v v v (4 (4
CWE-78 OS Command Injection v (4 - (4 v
CWE-20 Improper Input Validation v v - v v
CWE-125 Out-of-bounds Read v v (4 (4 (4
CWE-22 Path Traversal v v v (4 (4
CWE-352 Cross-Site Request Forgery v v v v v
CWE-434 Unrestricted Dangerous File Upload v v v v v
CWE-862 Missing Authorization v -

CWE-476 NULL Pointer Dereference (4 v (4 (4 (4
CWE-287 Improper Authentication v v v v v
CWE-190 Integer Overflow or Wraparound v v - v v
CWE-502 Deserialization of Untrusted Data v v v v 4
CWE-77 Command Injection (4 v - (4 (4
CWE-119 Buffer Overflow v v - v 4
CWE-798 Use of Hard-coded Credentials 4 v - v v
CWE-918 Server-Side Request Forgery 4 v v v v
CWE-306 Missing Critical Function Authentication v - - -
CWE-362 Race Condition (4 - (4 - v
CWE-269 Improper Privilege Management 4 v - 4 4
CWE-9%4 Code Injection 4 v - (4 v
CWE-863 Incorrect Authorization (4 v - (4 v

AN

CWE-276 Incorrect Default Permissions

Coverage 100% 88% 56% 88% 88%

As described in the experiment section, we also evaluated the overall correctness of
the results. In P1, GPT-4 consistently provided clear and accurate explanations of the
code functionality across all 25 code snippets, demonstrating a robust understanding of
diverse coding constructs. The model’s explanations were generally precise, highlighting
its capability to interpret and articulate code operations effectively. For P2, which inquired
about the presence of vulnerabilities, GPT-4 accurately identified vulnerabilities in 22 out
of 25 cases, reflecting an 88% success rate in initial vulnerability detection. Notably, it suc-
cessfully flagged critical vulnerabilities such as CWE-787 (Out-of-bounds Write), CWE-79
(Cross-site Scripting), and CWE-89 (SQL Injection). However, the model exhibited deficien-
cies in accurately identifying vulnerabilities in cases like CWE-862 (Missing Authorization)
and CWE-276 (Incorrect Default Permissions), suggesting areas where the model’s training
data might need refinement or where the inherent complexity of these vulnerabilities poses
challenges (such as lack of context). For P3, which required specifying the vulnerability
and providing the CWE number, GPT-4 correctly identified and described the vulnerabili-
ties, including the correct CWE number, in 14 out of 25 cases (56%). This demonstrates a
limitation in specificity and detail, as the model often struggled with assigning the correct
CWE numbers, particularly for vulnerabilities such as CWE-78 (OS Command Injection)
and CWE-20 (Improper Input Validation).

In terms of completeness, we observed that GPT-4’s performance in identifying multiple
vulnerabilities was variable. For 56% of the code snippets, the LLM successfully detected
additional vulnerabilities beyond the primary one. For instance, in cases like CWE-125
(Out-of-bounds Read) and CWE-434 (Unrestricted Dangerous File Upload), the model

Information 2024, 15, 572

14 of 26

provided comprehensive analyses, indicating a thorough understanding of these vulner-
abilities and their potential impacts. However, it often missed secondary vulnerabilities
in more complex scenarios, such as CWE-862 (Missing Authorization), CWE-190 (Integer
Overflow or Wraparound), and CWE-77 (Command Injection). The ability to detect multi-
ple vulnerabilities is crucial for comprehensive code security analysis, and GPT-4’s 56%
coverage rate indicates significant room for improvement in this area.

In terms of the relevance aspect, our results show that GPT-4 provided relevant and
practical fixes for many identified vulnerabilities. As an example, the suggested fixes for
SQL injection (CWE-89), cross-site scripting (CWE-79), and use after free (CWE-416) were
appropriate and effective, directly addressing the identified issues. These suggestions
were typically clear and implementable, showcasing GPT-4’s potential as a useful tool for
developers. However, there were instances where the proposed fixes were less practical
or introduced unnecessary complexity. In the case of CWE-78 (OS Command Injection)
and CWE-20 (Improper Input Validation), the suggested fixes sometimes failed to fully
address the issues or introduced new complexities, which could potentially lead to further
vulnerabilities. Overall, the relevance of fixes showed coverage of 88%, indicating that while
GPT-4 is generally capable of suggesting practical and effective fixes, there is still a need
for improvement to ensure all proposed solutions are fully relevant and comprehensive.

Table 7 shows the results pertaining to prompts P1 through to P5 obtained for the Set
2 code snippet, i.e., the Curated Code Snippet.

Table 7. Results for Curated Code Snippet (Set 2) vs. GPT-4 experiment.

CWE ID Short Description P1 P2 P3 P4 P5
Multiple CWE’s Curated Code Snippet v v - - -

When evaluating the GPT-4 model’s response for correctness on the Curated Code
Snippet, the results were less impressive compared to its performance on the SANS Top
25 snippets (Set 1). Out of the twenty issues present in the snippet, GPT-4 identified
only eight issues. This result indicates that GPT-4 had issues identifying less common
vulnerabilities, particularly when requiring a nuanced understanding of context and secure
coding practices. When prompted about the identification of vulnerabilities (P3), the GPT-4
LLM correctly identified a single vulnerability, namely, the SQL injection vulnerability,
which is present in the Curated Code Snippet. The GPT-4 LLM also failed to correctly
identify issues that, according to the authors” experience, are important to address in the
industrial context in P3, namely, hardcoded credentials and relative database file paths.
The LLM model also overlooked critical problems like declaring the Flask app globally, as
this issue can lead to unpredictable initialization. However, when asked if there were any
additional vulnerabilities (P5), the model identified 7 additional issues out of the remaining
19. Additionally, we noted that the model generated false positives in P5 by identifying
vulnerabilities that did not actually exist. This problem is also known as hallucination.
In this regard, our experiment also showed that the model hallucinated random CWE
numbers and descriptions when prompted with P3, only giving correct CWEs 56% of the
time. Furthermore, we note that the LLM failed to identify 12 out of the 20 vulnerabilities
present in the script.

The completeness of GPT-4’s responses for the results obtained in Set 2 in identifying
vulnerabilities was inconsistent. While the model managed to identify several critical
vulnerabilities, the overall identification rate was lower than for Set 1. In particular, we
again highlight that, out of the 20 issues present in the code snippet, GPT-4 identified only 8,
thus having a negative impact on completeness. In particular, the GPT-4 failed to identify the
risk of disabling Cross-Origin Resource Sharing (CORS) in responses, which can increase
the risk of cross-site scripting (XSS) attacks and information leakage. We also observe that,
although the LLM correctly identified the SQL injection vulnerability in Set 2, it missed
critical issues such as declaring the Flask app globally, using hardcoded database paths.
It also overlooked improper exception handling for database operations, which can lead

Information 2024, 15, 572

15 of 26

to application crashes or inconsistent database states. Additionally, it missed identifying
the use of insecure random number generation for session IDs, which can make session
hijacking attacks more likely.

In terms of the relevance aspect for Set 2, the results varied considerably. Our results
show that the GPT-4 model correctly suggested securing cookies by setting the httponly and
secure flags, mitigating the risk of session hijacking. Upon further prompting (P5 and more),
the GPT-4 also identified the need to fix hardcoded credentials and suggested removing
sensitive information from console logs to prevent exposure. Additionally, we observed
incomplete proposals for fixes of identified vulnerabilities, e.g., the advice on remediation
for SQL injection and insecure cookie handling vulnerabilities. In this case, the LLM failed
to address issues such as improper initialization and the use of hardcoded database paths.
The authors’ opinion is that these fixes are crucial for ensuring the security and robustness
of the application; however, they were not identified or suggested by the GPT-4 model.

5. Discussion

In this section, we provide a critical discussion of the results obtained in the Preliminary
Study and the Extended Analysis study. The focus of our discussion is on the two guiding
research questions of the present work, namely, the following: RQ1. To what extent can
ChatGPT recognize vulnerabilities in source code? RQ2. To what extent can ChatGPT rewrite
code to eliminate present security vulnerabilities?. We also draw conclusions on the practical
implications of using LLMs for secure software development in an industrial context.
Additionally, we provide an authors’ view on the perceived advantages and disadvantages
of using LLMs for secure software development and provide practical recommendations
for industrial practitioners.

5.1. Critical Discussion of the Results

In terms of the capability to recognize vulnerabilities (RQ1), our Preliminary Study
of GPT-3 revealed notable potential in identifying security vulnerabilities and providing
remediation, especially in smaller code snippets (under 40 lines). GPT-3 successfully
pinpointed underlying issues and suggested appropriate fixes in over 60% of cases despite
the inherent challenges in secure coding. This result is encouraging, particularly given the
non-decidable nature of many secure coding problems.

Additionally, GPT-3 demonstrated a capacity to explain its reasoning, offering accurate
descriptions of vulnerabilities in about three-fifths of the analyzed cases. This suggests that
LLMs like ChatGPT could be a valuable teaching tool for secure coding, helping developers
understand not only what needs to be fixed but also why it needs to be fixed.

Despite these strengths, several limitations became evident in the Preliminary Study.
GPT-3 often struggled to maintain the correct context of the code, leading to unnecessary
corrections or changes that altered the intended semantics (RQ2). This is particularly
concerning for safety-critical systems, where even subtle changes can have serious repercus-
sions. Additionally, GPT-3 sometimes generated unnecessarily complex code compared to
the original, potentially introducing performance inefficiencies and maintainability issues.

Building upon the foundation established by GPT-3, we carried out an Extended
Analysis Study with a newer LLM model, namely, GPT-4. Our results show significant
improvements in terms of the usability of the tool as a means to assist the development of
secure software in the industry. The ability to detect vulnerabilities by GPT-4 was better
than GPT-3. In particular, we observed that our Set 2 of SANS Top 25 vulnerabilities
achieved an overall accuracy of 88%, compared to 60% obtained with GPT-3. While this
result shows an improvement in the detection capability, it also shows that about one in ten
vulnerabilities are not identified. This means that vulnerability handling in secure software
development cannot be fully covered by this tool. Nevertheless, the LLM model identified
common vulnerabilities such as SQL injection (CWE-89), cross-site scripting (CWE-79), and
out-of-bounds write (CWE-787). We believe that this showcases the models’ effectiveness
in handling well-known and well-documented security issues. The authors believe that the

Information 2024, 15, 572

16 of 26

results highlight the usage of LLM as a valuable tool for practitioners to detect frequently
encountered vulnerability issues in code.

However, GPT-4’s performance on Set 2 (Curated Code Snippet) was less consistent
in the identification of code vulnerabilities compared to Set 1 (SANS Top 25), resulting
in a lower detection rate in Set 2 compared to Set 1. We attribute this discrepancy to the
fact that the identification of code vulnerabilities in Set 2 requires additional contextual
knowledge compared to Set 1. This result suggests that while GPT-4 excels with well-known
vulnerabilities that have ample training data, it can struggle when faced with less common
or context-dependent issues. This also highlights a potential critical challenge for the model
and researchers alike: expanding and diversifying the models’ training data is essential to
improving its generalizability and robustness across a broader range of vulnerability types.

Moreover, GPT-4, like GPT-3, showed limitations in reliably identifying and classifying
vulnerabilities in the Curated Code Snippet. We observed identification mistakes, such as
misidentifying issues or generating false claims about vulnerabilities that do not actually
exist, a problem known as “hallucinations”. Furthermore, our results hint that the model
can exhibit issues when connecting vulnerabilities to CWE numbers. We note that, due
to the nature of CWEs, this result was expected. However, these issues contribute to
reducing the model’s reliability for practical usage. The results also highlight the need for
well-trained software developers in secure coding who can cover the gaps in the LLM, i.e.,
to aid in the LLM gaps in accuracy and usefulness, human experts need to be involved.
Integrating GPT-4 into security workflows, where people can review, interpret, and correct
their findings, has the potential to significantly enhance its reliability and effectiveness.

The differences in performance between the Set 1 vulnerabilities and those of Set 2 fur-
ther underscore GPT-4’s limitations. While our engineered Curated Code Snippet contains
18 vulnerabilities and 2 security practice issues, the GPT-4 model only identified 8 issues.
This result highlights that LLMs can produce less reliable results on software vulnerabilities
that appear less in practice compared to higher reliable results for well-known and more
frequent vulnerabilities found in practice. It is the authors’ understanding that this result
can also be tied to the context-specific nature of security flaws; however, this requires
further study. Our results show that the LLM failed to reliably handle vulnerabilities such
as SQL injection, particularly in its recommendations on how to fix the code. These kinds
of omissions are likely dependent on the models’ comprehensiveness of their training data.
This result also highlights the importance of the continuous refinement of the training of
the model.

Despite these challenges, we observed a notable improvement in the results offered by
GPT-4 compared to those of GPT-3 in terms of accuracy and vulnerability identification.
This improvement likely stems not only from the structured nature of the SANS Top
25 snippets but also their likely inclusion in the model’s training data. According to
recent research results, this effect can indeed likely be tied to the quality and diversity
of its training data [37] as well as to the higher number of model parameters of GPT-4
compared to GPT-3. Nevertheless, the authors noticed reliability issues of GPT-4 in more
complex and context-specific scenarios (Set 2). The authors also noticed false-positive
suggestions by the LLM model. Thus, we believe that integrating GPT-4 into secure coding
practices requires careful knowledge, understanding, and consideration of its limitations. In
particular, we advocate for the need for human validation of its findings to avoid potential
misidentifications or oversights.

Another limitation of these models is the potential reliance on outdated training data.
This may prevent the model from recognizing emerging threats and vulnerabilities or
provide outdated solutions for code fixes. This also highlights the essential need for contin-
uous updates and refinement to ensure the model remains relevant in the face of evolving
security challenges. Additionally, industry practice has shown that the model’s capacity to
learn from user interactions introduces additional risks in industrial environments. Not
only could incorrect data lead to flawed recommendations but the leakage of intellectual
property could also become a serious issue. We believe that implementing safeguards to pre-

Information 2024, 15, 572

17 of 26

vent the model from learning inaccurate information and leaking intellectual information
is crucial, particularly in critical infrastructure settings.

Both GPT-3 and GPT-4 demonstrated potential in suggesting fixes for identified vul-
nerabilities, though with varying effectiveness (RQ2). Some proposed solutions were
creative and well suited to the problems, such as securing cookies by setting the ‘httponly”
and ‘secure’ flags. However, the models also introduced overly complex fixes that could
negatively impact code maintainability and performance—a critical aspect for industrial
software. Inconsistencies in addressing security concerns such as hardcoded database
paths or improper initialization highlight the need for further development to ensure that
remediation suggestions are both accurate and comprehensive.

Our experiment shows that GPT-4 effectively suggested securing cookies and fixing
hardcoded credentials; however, it failed to suggest the restriction of the network inter-
face exposure. This lapse by the LLM can result in an increased risk of unauthorized
system access.

Additionally, GPT-4 failed to identify the presence of hardcoded credentials, which
not only are problematic due to their nature of being hardcoded but could also be easily
guessed or brute-forced by an attacker. This result reveals additional gaps in the analysis of
the vulnerabilities by the LLM.

Our view is that while both GPT-3 and GPT-4 show potential as tools for improving
existing secure coding practices, their usage still has additional considerations that need
attention. Our experience shows that the GPT-3 model excels in providing creative solutions
and clear explanations for small code snippets and that it is a valuable tool to teach software
developers about secure coding vulnerabilities. However, its lack of context and inability
to provide consistently semantic-preserving fixes limit its practicality in industrial settings.

However, our results show inconsistencies with less common issues and the mod-
els’ susceptibility to hallucinations. While GPT-4 demonstrates considerable potential
in aiding software developers with secure coding practices, its limitations in detecting
multiple vulnerabilities and assigning correct CWE numbers indicate areas where further
refinement is needed by the research community. Ensuring that all suggested solutions
are fully comprehensive and do not introduce new complexities also remains a challenge,
underscoring the importance of ongoing improvements in AI models like GPT-4 to enhance
their effectiveness in supporting secure software development.

5.2. Advantages and Disadvantages

In this section, we discuss the authors” view on the advantages and disadvantages
of using LLM for secure software development as a result of our own experience and
discussions with additional five industrial experts in the field and resulting from the
context in which this study was conducted. The authors believe it is crucial to highlight and
raise awareness about both the advantages and disadvantages of using LLMs like ChatGPT
in secure software development, as these will be used more and more in the future.

The results of the discussions are summarized in two tables, describing the advan-
tages and disadvantages, respectively. Table 8 provides details on the authors’ perceived
advantages of using LLMs to assist in secure software development. Our results include au-
tomation, reproducability, lower barrier, rapid prototyping, creativity, ease of use, lowered workload,
and increased efficiency. Table 9 provides details based on the authors’ perceived disadvan-
tages of using LLMs to assist in secure software development. Our results include skill,
over-reliance, code quality, insecure code generation, context, non-decidability, copyright, privacy,
semantics, and bias.

Information 2024, 15, 572 18 of 26

Table 8. Advantages of LLM.

Advantage Description
Automation in software development and cybersecurity has advanced
significantly with the integration of LLMs. These models streamline
vulnerability identification and mitigation, reducing manual workload
and human error. By automating the detection of both subtle and

Automation complex vulnerabilities, LLMs enhance development efficiency and
allow teams to concentrate on strategic tasks like designing security
architectures and developing innovative solutions. This leads to a more
secure software development lifecycle with fewer overlooked
vulnerabilities [38—42].

An advantage of using LLMs in software development is their
consistency and reproducibility. Unlike human developers, who may
produce variable results due to fatigue, context switching, and
subjective judgment, LLMs offer a standardized approach to

Reproducible Results vulnerability detection and code correction. This consistency is crucial
for maintaining high software quality and security standards and
facilitates easier audits and compliance checks. It builds trust among
stakeholders by ensuring uniformity and dependability in security
measures.

The use of LLMs in software development democratizes the field,
allowing less-skilled developers to contribute effectively by providing
real-time suggestions and best practices [43,44]. This capability helps
bridge the skill gap by accelerating the learning curve for novice
developers and fosters innovation by integrating diverse perspectives
into the field.

Lowers Barrier

LLMs facilitate rapid prototyping, a crucial aspect of modern software
development. They help developers quickly generate and refine code
snippets, speeding up the creation and testing of functional product

Rapid Prototyping versions. This accelerates the development cycle, allowing teams to
experiment with multiple solutions and incorporate feedback promptly.
The speed and flexibility provided by LLMs are essential for staying
competitive in fast-paced technology markets [45].

LLMs serve as a sparring partner for experienced developers, boosting
creativity and innovation during code reviews and problem-solving. By
suggesting alternative approaches and highlighting potential
improvements, LLMs encourage developers to think creatively and
explore new methodologies. This interaction fosters a collaborative
environment, challenges assumptions, and inspires developers to
enhance their skills and adopt advanced practices, ultimately
improving the quality and security of software products.

Encourages Creativity

The advent of ChatGPT has made it much easier to access LLMs.
OpenAlI has simplified the process, so these technologies are now
available with minimal setup. Additionally, new tools are being created
that are simple to use and can easily be integrated into popular
development environments like GitHub Co-Pilot. GitHub Co-Pilot, for
example, enables 55% faster task completion and improves quality in
many areas [46]. From our experience and what we see in the industry,
this ease of use is likely to significantly enhance the software
development process, making advanced tools more accessible and
valuable to developers.

Ease of Use

Information 2024, 15, 572

19 of 26

Table 8. Cont.

Advantage

Description

Lowering Workload

We expect that the usage of LLMs in secure software development will
considerably lower software developers’ workload in writing code. LLMs
lend themselves very well to not only generating boilerplate code but also
aiding in rewriting existing code, e.g., through the introduction of
additional security checks. While no prominent studies have been carried
out to study the maintainability of code generated by LLM, our practical
experience clearly indicates that developers can write secure code faster
than without using LLM. We note that additional studies are needed to
determine the impact and effect of software developers’

security-related stress.

Increased Efficiency

The use of LLMs can help experienced developers write secure code more
efficiently. Our experience shows that LLMs can accelerate code
development and improve functionality implementation. Evaluation of
GPT-4’s performance on the Curated Code Snippet reveals that while it
effectively identifies and fixes well-documented vulnerabilities, it
struggles with less common or context-dependent issues.

Table 9. Disadvantages of LLM.

Disadvantage

Description

Lack of Skill

Inexperienced developers might generate poor software that can slip
through checks. While LLMs provide valuable assistance, they
cannot replace a solid understanding of secure coding principles and
can be misused by inexperienced users, which may result in insecure
or suboptimal code. Over-reliance on Al suggestions without
grasping the security implications can result in vulnerabilities that
are not immediately apparent [47-49]. Proper training is essential to
use Al tools effectively as a supplement to developer expertise.

Over-reliance

Excessive dependence on Al without understanding secure coding
principles can lead to incorrect results and missed vulnerabilities [48].
Al systems are not infallible and may produce erroneous outputs.
Developers must critically evaluate Al suggestions to avoid accepting
flawed solutions and ensure that subtle vulnerabilities are

not overlooked.

Poor Code Quality

Al-generated code may suffer from issues related to maintainability,
readability, and performance [48,49]. Although syntactically correct,
such code can be poorly structured or complex, making it hard for
developers to understand and maintain. This can lead to long-term
technical debt and performance issues, especially in
resource-constrained environments.

Insecure Code
Generation

Al-generated code can sometimes introduce security vulnerabilities if
the model generates code snippets that are insecure or non-compliant
with best practices. This can occur because AI models might lack
awareness of the latest security standards or fail to recognize
context-specific vulnerabilities. GitHub Copilot has been reported to
sometimes suggest insecure coding practices. According to a report
by Snyk [47,50]. Al models can propagate and amplify security flaws
if not carefully monitored. Developers must remain vigilant and
continuously review Al-generated code to ensure it adheres to best
security practices [47,48].

Lack of Context

Al lacks detailed context about the code, such as internal APIs and
processes, leading to incomplete or inaccurate solutions. LLMs
generate code based on patterns from their training data, which may
not align with the specific project’s architecture or standards,
requiring additional human intervention to adapt and correct

the code.

Information 2024, 15, 572

20 of 26

Table 9. Cont.

Disadvantage

Description

Non-decidable
Problems

Some cybersecurity problems are non-decidable, meaning they
cannot be solved universally by algorithms. While Al can offer
heuristics, it cannot provide complete solutions for all security issues
due to fundamental theoretical limitations. Developers must use Al
as a tool to complement their efforts, not as a definitive answer to all
security challenges.

Copyrighted Code

Al might inadvertently use or generate copyrighted code, raising
legal concerns. Training datasets may include copyrighted material,
so developers need to be cautious about the legal implications of
Al-generated code and ensure they do not infringe on intellectual
property rights.

Privacy Issues

There is a risk of information leakage when using Al tools, as
highlighted by incidents like the Samsung data leak [51]. AI tools can
expose sensitive information if not properly secured. Implementing
stringent data protection measures and ensuring compliance with
privacy regulations is crucial to safeguarding sensitive data.

Change in Semantics

Al models can exhibit biases based on their training data, leading to
skewed detection and remediation suggestions. This bias can be
intentional, such as focusing a model on specific topics or training it
with company-internal code, or the poisoning of the model by an
attacker. However, it can also arise inadvertently from unbalanced
real-world data. Such biases can result in suboptimal or unfair
recommendations and potentially overlook certain vulnerabilities.
The careful curation of training data and continuous monitoring are
necessary to mitigate these biases and ensure balanced and effective
Al-assisted security practices.

Bias in Detection and
Recommendations

Al-generated code may alter the behavior of the original code,
introducing new issues. Changes made by Al tools can subtly affect
functionality or introduce bugs. Thorough testing and review are
necessary to ensure that Al-generated code preserves the intended
semantics and does not create new vulnerabilities or regressions.

As a result of the discussions on the advantages and disadvantages of using LLM
for secure software development, the following additional notes and observations have
emerged related to reproducibility:

* Reproducibility can be difficult due to the model being provided by an external com-
pany, which prevents local running and testing and proper access to versioned releases.

* Results can vary based on stochastic variables, such as the “temperature” parameter,
making it necessary to conduct extensive studies for comprehensive insights.

* The future availability of models is uncertain, as OpenAl might not make them
accessible in the long term, impacting the ability to reproduce results over time.

* The evolution of LLMs over time may also affect reproducibility, as advancements
and changes in models could alter results.

We would like to further highlight the fact that these discussion results present the au-
thors’ view on the subject matter, and their experience in the industrial context. Additional
future research is needed to further explore and validate these findings individually.

5.3. Further Considerations and Recommendations

The increasing generation of code by Al and the subsequent training of new LLMs on
this Al-generated code can lead to what is known as model collapse or an Al feedback loop [52].
In such scenarios, the performance of these models may incur degradation over time. This
effect might be influenced by the following factors: (1) loss of human nuance and creativity
in code, (2) propagation and amplification of errors, (3) homogenization of coding styles
and solutions, and (4) decreased adaptability to new programming paradigms.

Information 2024, 15, 572

21 of 26

Firstly, the excessive use of Al for code generation can potentially lead to a loss of
human nuance and creativity when developing new software. Secondly, training and
retraining LLMs on insecure code can lead to the amplification of vulnerabilities. Third, the
perceived generalization of LLM-produced code can potentially impact coding styles and
solutions, which, by itself, might lead to a negative impact on code review and lead to a
corresponding increase in vulnerabilities. Fourth, training LLMs on LLM-generated code
rather than up-to-date programming languages and paradigms would lead to decreased
adaptability. These consequences can lead to a significant impact in the usability of LLM
for secure software development.

Human creativity remains essential in software development to prevent the collapse
of LLM models. Therefore, it is crucial to balance leveraging Al for efficiency and ensuring
human oversight and creativity in the development process.

To minimize the limitations and effects of model collapse or Al feedback loops, a
multifaceted approach is necessary. First, organizations should implement robust human
oversight mechanisms to ensure that Al-generated code undergoes thorough review by
experienced developers. Second, diversifying Al training data with high-quality, human-
written code is crucial for maintaining variety and best practices. Third, continuous
validation processes, including rigorous testing and security audits, should be standard
practice. Fourth, investing in developer education on Al limitations and ethical use is essen-
tial. Finally, regularly updating AI models with carefully curated datasets that incorporate
the latest human-developed coding practices will help maintain the relevance and quality
of Al-assisted development.

The authors believe that, by adopting these measures, the software industry can har-
ness the benefits of Al while addressing the risks of over-reliance and quality degradation.
The authors also recommend the following general actions as highlighted in Table 10.

Table 10. Recommendations.

Recommendation Description

Ensure that the output of Al-generated code is reviewed by experienced
developers. Establishing a quality-gate process, where Al-generated code
undergoes thorough review by seasoned developers is crucial. These reviews

Quality-Gate can catch potential security flaws, inefficiencies, and logical errors that Al may
miss. By incorporating human oversight, organizations can maintain high
standards of code quality and security, ensuring that Al serves as a beneficial
tool rather than a source of vulnerabilities.

Use comprehensive unit tests (not developed by Al) to validate Al-generated
code. Relying on unit tests is essential to verify the correctness and
functionality of Al-generated code. Experienced developers should create
Unit Tests these tests to ensure they cover a wide range of scenarios and edge cases.
Comprehensive testing helps identify defects early in the development
process, reducing the risk of deploying flawed software. It also provides a
safety net that can detect unintended changes introduced by Al modifications.

Apply formal verification methods to check the output from Al Formal
verification involves mathematically proving the correctness of algorithms
with respect to a certain formal specification. By applying these rigorous
methods to Al-generated code, developers can ensure that the code meets
specified requirements and behaves as intended. This is particularly
important for critical systems where errors can have severe consequences.
Formal verification adds an extra layer of assurance beyond traditional
testing techniques.

Formal Verification

Use local LLMs to prevent internal data leakage. To mitigate the risk of
sensitive information leakage, it is advisable to deploy local instances of LLMs.
These local environments should be kept separate from broader networks and
other systems to prevent unintended data sharing. By using local LLMs,
organizations can better control the data that these models access and
generate, thereby safeguarding proprietary and confidential information.

Isolated/Local LLMs

Information 2024, 15, 572 22 of 26

Table 10. Cont.

Recommendation Description

Limit the use of Al to generating boilerplate code until more is understood
about its implications. Until the broader implications of Al-generated code are
fully understood, it is prudent to restrict its use to generating boilerplate and

Restricted Usage routine code segments. Boilerplate code, which often involves repetitive and
standard tasks, is less likely to introduce complex vulnerabilities. This
cautious approach allows developers to leverage Al’s efficiency while
minimizing the risks associated with its broader application.

Implement threat and risk modeling to evaluate Al-generated code.
Incorporating threat and risk modeling into the development process helps
identify potential security risks Al-generated code poses. This proactive

Threat and Risk Modeling approach involves assessing how Al-generated components might be
exploited and determining the potential impact of such exploits. By
understanding and mitigating these risks early, developers can enhance the
security posture of their applications.

Raise awareness among developers about Al, including prompt engineering
and understanding Al limitations. It is essential to educate developers about
the strengths and limitations of Al tools. Training should cover topics such as
Developer Awareness prompt engineering, which involves crafting effective inputs for Al systems,
and recognizing the boundaries of Al capabilities. By fostering a deep
understanding of Al, developers can use these tools more effectively and
responsibly, ensuring they augment rather than replace human expertise.

Highlight the risks of using AI within the security community. Engaging with
the broader security community to discuss and address the risks associated
with Al is vital. By sharing knowledge and experiences, security professionals
can collectively develop best practices and guidelines for the safe use of Alin
software development. This collaborative effort can lead to more robust
defenses against the unique challenges posed by Al technologies [19].

Community Engagement

Advocate for laws and standards to ensure due diligence in using Al The
rapid advancement of Al technologies necessitates the development of
regulatory frameworks to ensure their responsible use. Advocacy for laws and

Regulation standards can help establish clear guidelines for AI deployment, ensuring that
organizations exercise due diligence in managing risks. Regulatory oversight
can also promote transparency and accountability, fostering public trust in
Al applications.

5.4. Threats to Validity

The authors recognize the limitations in the present study, which may impact its
validity. One such limitation is the small sample size and simplified code snippets used in
the experiments. This limitation underscores the need for further extensive research to fully
assess ChatGPT’s utility in both instructional and practical contexts. However, the authors
are confident in the presented results, as they match their own experience in the field.

Another limitation is that the Set 2 evaluation utilized code snippets from the well-
known SANS Top 25 CWE list. Since this is highly available information on the internet,
it is reasonable to think that these code snippets might have been included in GPT-4’s
training data. The effect of this is the potential influence and inflation of the model’s
performance. To counter this effect, the authors utilized Set 2 and observed, as expected,
lower performance. Therefore, vulnerability identification highly depends on whether the
code snippets used in the evaluation have also been used in the training set—this is not
only a threat to the current work but to any work in this field.

As LLMs are rapidly evolving, some of our results might not be reflected in later
versions of ChatGPT. This could potentially limit or partially invalidate the conclusions
obtained in the present study. While the authors believe that generative Al technology
will experience significant advancements, potentially leading to better results than those
presented here, we also contend that there are fundamental theoretical limitations that will
impose constraints on its usefulness and practical applicability.

Information 2024, 15, 572

23 of 26

6. Conclusions

This study provides a comprehensive evaluation of ChatGPT’s capabilities in identi-
fying and mitigating software vulnerabilities, with a particular focus on its performance
with the SANS Top 25 and a Curated Code Snippet. The results demonstrate that ChatGPT
version GPT-4 significantly improves upon the GPT-3 earlier model, especially in its ability
to detect common vulnerabilities. Specifically, ChatGPT achieved an accuracy rate of 88%
when identifying vulnerabilities from the SANS Top 25 list, effectively recognizing issues
such as SQL injection, cross-site scripting, and out-of-bounds write errors. This result
underscores ChatGPT’s potential as a valuable tool in automated vulnerability detection.

Software security is not only a critical aspect of software development but has also
gained increasing attention in recent years due. This increase in attention is due to the
observed growing number of cybersecurity incidents, which have significant consequences
for society in general. Poor coding practices are often the root cause of these incidents, high-
lighting the importance of teaching and employing best practices in software development.
Traditionally, these practices are taught in academic settings or through industry training
programs. In this context, ChatGPT has the potential to play a dual role: assisting software
developers in writing secure code and raising awareness of secure coding practices.

Addressing RQ1, the extent to which ChatGPT can recognize vulnerabilities in source
code is substantial when dealing with well-known and frequently occurring issues. How-
ever, the study highlighted critical limitations, particularly when ChatGPT was confronted
with random code snippets or more obscure and context-specific vulnerabilities. In the cu-
rated code snippet analysis, which included 18 vulnerabilities and 2 security practice issues,
ChatGPT was only able to identify 8 issues. This indicates that while ChatGPT is effective
in handling common vulnerabilities, it remains less reliable in detecting less frequent or
complex security flaws and is prone to generating false positives or “hallucinations”.

Regarding RQ2, ChatGPT has shown potential in rewriting code to eliminate present
security vulnerabilities, but its success is largely dependent on the complexity of the vulner-
abilities. For well-known vulnerabilities identified in the SANS Top 25, ChatGPT was able
to provide accurate and relevant fixes, improving the security of the code. However, when
dealing with less common vulnerabilities or those requiring deep contextual understanding,
ChatGPT’s rewrites were less effective, sometimes failing to address the root cause of the
issue. Furthermore, we have identified additional issues not necessarily related to the code
security but which are crucial for industrial code, such as issues with code maintainability.

The present work also investigates and reflects on the advantages and disadvantages
of using generative Al for secure software development, based on the authors’ opinion
rooted in their experience in the field. While ChatGPT and similar models show clear
potential as aids in software development, there are practical and theoretical limitations to
their use. One of the major contributions of this work is an in-depth discussion on the use
of ChatGPT. Based on these discussions, we provide insights relevant to both academia
and industry practitioners, highlighting not only potential future research avenues but also
practical advice on the use of large language models (LLMs).

In conclusion, while ChatGPT represents a significant advancement in the use of LLMs
for software security, its limitations necessitate careful application and continued refine-
ment. The model’s strong performance with the SANS Top 25 vulnerabilities demonstrates
its potential to assist in automated security processes, but the gaps in its detection and code
rewriting capabilities, particularly with more complex or context-specific issues, indicate
that ChatGPT should be used in conjunction with traditional security practices and expert
oversight. Future research should explore the extent to which ChatGPT and similar models
can be used to evaluate software quality and assist in code review, as well as addressing
the validity of the advantages and disadvantages identified in this study.

Information 2024, 15, 572

24 of 26

References

Author Contributions: TE.G., A.-C.I, LK. and S.A. wrote the manuscript. U.L. and M.P-A. re-
viewed the manuscript and contributed with valuable discussions on the content. TE.G. and S.A.
conducted the experiments with ChatGPT, collected the results and analyzed them. T.E.G., A.-C.I.
and LK. conducted internal discussions with colleagues that are experts in the field to enhance their
understanding and validate their own reported experiences. All authors have read and agreed to the
published version of the manuscript.

Funding: This research task was partially supported by Fundagao para a Ciéncia e a Tecnologia, I.P. (FCT)
[ISTAR Projects: UIDB/04466/2020 and UIDP/04466/2020]. Ulrike Lechner acknowledges funding by
dtec.bw for project LIONS and dtec.bw is funded by the European Union—NextGenerationEU and for
project CONTAIN by the Bundesministerium fiir Bildung und Forschung (FKZ 13N16581). Tiago
Gasiba and Andrei-Cristian Iosif acknowledge the funding provided by the Bundesministerium fiir
Bildung und Forschung (BMBF) for the project CONTAIN with the number 13N16585.

Informed Consent Statement: Informed consent was obtained from all cybersecurity experts involved
in discussions that lead to the conclusions of our study.

Data Availability Statement: Most of the data is contained within the article. Additional data
can be found in the following Github repository: https://github.com/Sathwik- Amburi/mdpi-1lm-
evaluation, accessed on 1 September 2024.

Acknowledgments: The authors would like to thank their work colleagues who took time from their
busy work schedules to discuss and criticize the conclusions that the authors present in this work.
The authors would also like to thank the anonymous reviewers who provided suggestions which led
to a significant improvement of the manuscript.

Conflicts of Interest: The authors declare that this study received funding from Bundesministerium
fiir Bildung und Forschung and Fundagédo para a Ciéncia e a Tecnologia. The funder had the
following involvement with the study: Tiago Gasiba, Andrei-Cristian Iosif, Ulrike Lechner and Maria
Pinto-Albuquerque.

Abbreviations

The following common abbreviations are used in this manuscript:
GenAl Generative Artificial Intelligence

CORS Cross-Origin Resource Sharing

HTTP Hypertext Transfer Protocol

httponly ~ HTTP Only

LLM Large Language Model

SAST Static Application Security Testing

CWE Common Weakness Enumeration

OWASP Open Worldwide Application Security Project
LLMs Large Language Models

GANs Generative Adversarial Networks

GPT Generative Pre-trained Transformer

HMi Human-Machine Interaction

IACS Industrial Automation and Control Systems
NIST National Institute of Standards and Technology
ISMS Information Security Management System
SQUARE Software Product Quality Requirements and Evaluation
TDD Test Driven Development

IDEs Integrated Development Environments

XSS Cross-Site Scripting

CORS Cross-Origin Resource Sharing

1. ISO/IEC 25000:2014; Systems and Software Engineering—Systems and Software Quality Requirements and Evaluation (SQuaRE)—
Guide to SQuaRE. International Organization for Standardization: Geneva, Switzerland, 2014.

2. DIN EN/IEC 62443-4-1:2018; Security for Industrial Automation and Control Systems—Part 4-1: Secure Product Development
Lifecycle Requirements. International Electrotechnical Commission: Geneva, Switzerland, 2018.

3. Bagnara, R.; Bagnara, A.; Hill, PM. Coding Guidelines and Undecidability. arXiv 2022, arXiv:2212.13933.

https://github.com/Sathwik-Amburi/mdpi-llm-evaluation
https://github.com/Sathwik-Amburi/mdpi-llm-evaluation

Information 2024, 15, 572 25 of 26

10.

11.

12.

13.
14.

15.
16.

17.

18.

19.

20.
21.

22.

23.

24.

25.
26.

27.

28.

29.
30.

31.

32.

Patel, S. 2019 Global Developer Report: DevSecOps Finds Security Roadblocks Divide Teams. Available online: https:
/ /about.gitlab.com/blog/2019/07/15/global-developer-report/ (accessed on 18 July 2020).

Gasiba, T.E. Raising Awareness on Secure Coding in the Industry through CyberSecurity Challenges. Ph.D. Thesis, Universitat
der Bundeswehr Miinchen, Neubiberg, Germany, 2021.

Hénsch, N.; Benenson, Z. Specifying IT Security Awareness. In Proceedings of the 25th International Workshop on Database and
Expert Systems Applications, Munich, Germany, 1-5 September 2014; pp. 326-330. [CrossRef]

Linux Fountation. Secure Software Development Education 2024 Survey. Available online: https:/ /www.linuxfoundation.org/
research/software-security-education-study (accessed on 24 July 2024).

EU Artificial Intelligence Act. Available online: https://artificialintelligenceact.eu/ (accessed on 8 May 2023).

Al.gov: Making AI Work for the American People. Available online: https:/ /ai.gov/ (accessed on 8 May 2023).

Toosi, A.; Bottino, A.G.; Saboury, B.; Siegel, E.; Rahmim, A. A Brief History of AI: How to Prevent Another Winter (A Critical
Review). PET Clin. 2021, 16, 449-469. [CrossRef] [PubMed]

Gasiba, T.; Lechner, U.; Pinto-Albuquerque, M. Sifu—A CyberSecurity Awareness Platform with Challenge Assessment and
Intelligent Coach. Cybersecurity 2020, 3, 24. [CrossRef]

Rietz, T.; Maedche, A. LadderBot: A Requirements Self-Elicitation System. In Proceedings of the 2019 IEEE 27th International
Requirements Engineering Conference (RE), Jeju, Republic of Korea, 23-27 September 2019; pp. 357-362. [CrossRef]
OpenAILP. ChatGPT. Available online: https://chat.openai.com/ (accessed on 23 January 2023).

Espinha Gasiba, T.; Oguzhan, K.; Kessba, I.; Lechner, U.; Pinto-Albuquerque, M. I'm Sorry Dave, I'm Afraid I Can’t Fix Your Code:
On ChatGPT, CyberSecurity, and Secure Coding. In Proceedings of the 4th International Computer Programming Education
Conference (ICPEC 2023), Vila do Conde, Portugal, 26-28 June 2023; Peixoto de Queirés, R.A., Teixeira Pinto, M.P,, Eds.; Dagstuhl:
Wadern, Germany, 2023; Volume 112, pp. 2:1-2:12. [CrossRef]

Artificial Intelligence at NIST. Available online: https:/ /www.nist.gov /artificial-intelligence (accessed on 8 May 2024).

Al Risk Management Framework. Available online: https://www.nist.gov/itl/ai-risk-management-framework (accessed on 8
May 2024).

ISO/IEC 27001:2013; Information Technology—Security Techniques—Information Security Management Systems—Requirements.
International Organization for Standardization: Geneva, Switzerland, 2013.

ISO/IEC 27002:2022; Information Security, Cybersecurity and Privacy Protection—Information Security Controls. International
Organization for Standardization: Geneva, Switzerland, 2022.

OWASP Foundation. OWASP Top 10 for LLMs. 2021. Available online: https://owasp.org/www-project-top-10-for-large-
language-model-applications (accessed on 24 May 2024).

MITRE Corporation. ATLAS Matrix. 2023. Available online: https://atlas.mitre.org/matrices/ATLAS (accessed on 24 July 2024).
ISO/IEC 24772-1:2019; Programming Languages—Guidance to Avoiding Vulnerabilities in Programming Languages—Part 1:
Language-Independent Guidance. International Organization for Standardization: Geneva, Switzerland, 2019.

Radford, A.; Narasimhan, K. Improving Language Understanding by Generative Pre-Training. In Proceedings of the Improving
Language Understanding by Generative Pre-Training, Pre-Print 2018, Available online: https://hayate-lab.com/wp-content/
uploads/2023/05/43372bfa750340059ad87ac8e538c53b.pdf (accessed on 6 September 2024).

Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P,; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. In Proceedings of the 34th International Conference on Neural Information Processing
Systems (NIPS "20), Red Hook, NY, USA, 6-12 December 2020.

Meta. LLaMA: Large Language Model-Based Automated Assistant. J. AI Res. 2022 Available online: https://llama.meta.com
(accessed on 3 August 2024).

Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, Global Edition; Pearson Education: London, UK, 2021.

Shen, Z.; Chen, S. A Survey of Automatic Software Vulnerability Detection, Program Repair, and Defect Prediction Techniques.
Secur. Commun. Netw. 2020, 2020, 8858010. [CrossRef]

Fu, M.; Tantithamthavorn, C. LineVul: A transformer-based line-level vulnerability prediction. In Proceedings of the 19th
International Conference on Mining Software Repositories, Pittsburgh, PA, USA, 23-24 May 2022; pp. 608-620. [CrossRef]

Li, Y.; Wang, S.; Nguyen, T.N. Vulnerability detection with fine-grained interpretations. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2021), New York, NY, USA, 23-28 August 2021; pp. 292-303. [CrossRef]

GitHub. GitHub Copilot. 2021. Available online: https://copilot.github.com/ (accessed on 3 August 2024).

Niu, L.; Mirza, S.; Maradni, Z.; Popper, C. {CodexLeaks}: Privacy leaks from code generation language models in {GitHub}
copilot. In Proceedings of the 32nd USENIX Security Symposium (USENIX Security 23), Anaheim, CA, USA, 9-11 August 2023;
pp. 2133-2150.

Perry, N.; Srivastava, M.; Kumar, D.; Boneh, D. Do Users Write More Insecure Code with AI Assistants? In Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications Security (CCS ’23), Melbourne, Australia, 5-9 June 2023.
[CrossRef]

Pearce, H.; Ahmad, B.; Tan, B.; Dolan-Gavitt, B.; Karri, R. Asleep at the Keyboard? Assessing the Security of GitHub Copilot’s
Code Contributions. In Proceedings of the 2022 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 22-26
May 2022; pp. 754-768. [CrossRef]

https://about.gitlab.com/blog/2019/07/15/global-developer-report/
https://about.gitlab.com/blog/2019/07/15/global-developer-report/
http://doi.org/10.1109/DEXA.2014.71
https://www.linuxfoundation.org/research/software-security-education-study
https://www.linuxfoundation.org/research/software-security-education-study
https://artificialintelligenceact.eu/
https://ai.gov/
http://dx.doi.org/10.1016/j.cpet.2021.07.001
http://www.ncbi.nlm.nih.gov/pubmed/34537126
http://dx.doi.org/10.1186/s42400-020-00064-4
http://dx.doi.org/10.1109/RE.2019.00045
https://chat.openai.com/
http://dx.doi.org/10.4230/OASIcs.ICPEC.2023.2
https://www.nist.gov/artificial-intelligence
https://www.nist.gov/itl/ai-risk-management-framework
https://owasp.org/www-project-top-10-for-large-language-model-applications
https://owasp.org/www-project-top-10-for-large-language-model-applications
https://atlas.mitre.org/matrices/ATLAS
https://hayate-lab.com/wp-content/uploads/2023/05/43372bfa750340059ad87ac8e538c53b.pdf
https://hayate-lab.com/wp-content/uploads/2023/05/43372bfa750340059ad87ac8e538c53b.pdf
https://llama.meta.com
http://dx.doi.org/10.1155/2020/8858010
http://dx.doi.org/10.1145/3524842.3528452
http://dx.doi.org/10.1145/3468264.3468597
https://copilot.github.com/
http://dx.doi.org/10.1145/3576915.3623157
http://dx.doi.org/10.1109/SP46214.2022.9833571

Information 2024, 15, 572 26 of 26

33.
34.

35.
36.
37.
38.
39.
40.

41.
42.

43.

44.
45.

46.

47.

48.

49.

50.

51.

52.

GitHub. CodeQL. 2024. Available online: https://codeql.github.com/ (accessed on 7 July 2024).

MITRE Corporation. CWE Top 25 Most Dangerous Software Weaknesses. 2023. Available online: https://cwe.mitre.org/top25/
(accessed on 24 July 2023).

AI TDD: You Write Tests, Al Generates Code. Available online: https://wonderwhy-er.medium.com/ai-tdd-you-write-tests-ai-
generates-code-c8ad41813c0a (accessed on 8 May 2024).

MITRE. Common Weakness Enumeration. Available online: https://cwe.mitre.org/ (accessed on 4 February 2020).

Badshah, S.; Sajjad, H. Quantifying the Capabilities of LLMs across Scale and Precision. arXiv 2024, arXiv:2405.03146

Omar, M. Detecting software vulnerabilities using Language Models. arXiv 2023, arXiv:2302.11773.

Shestov, A.; Levichev, R.; Mussabayev, R.; Maslov, E.; Cheshkov, A.; Zadorozhny, P. Finetuning Large Language Models for
Vulnerability Detection. arXiv 2024, arXiv:2401.17010.

Jensen, R.LT,; Tawosi, V.; Alamir, S. Software Vulnerability and Functionality Assessment using LLMs. arXiv 2024,
arXiv:2403.08429.

Li, Z.; Dutta, S.; Naik, M. LLM-Assisted Static Analysis for Detecting Security Vulnerabilities. arXiv 2024, arXiv:2405.17238.
Tamberg, K.; Bahsi, H. Harnessing Large Language Models for Software Vulnerability Detection: A Comprehensive Benchmarking
Study. arXiv 2024, arXiv:2405.15614.

Tarassow, A. The potential of LLMs for coding with low-resource and domain-specific programming languages. arXiv 2023,
arXiv:2307.13018.

Jalil, S. The Transformative Influence of Large Language Models on Software Development. arXiv 2023, arXiv:2311.16429.

Hou, X.; Zhao, Y,; Liu, Y,; Yang, Z.; Wang, K.; Li, L.; Luo, X.; Lo, D.; Grundy, J.; Wang, H. Large Language Models for Software
Engineering: A Systematic Literature Review. arXiv 2024, arXiv:2308.10620.

GitHub. Measuring the Impact of GitHub Copilot. 2024. Available online: https://resources.github.com/learn/pathways/
copilot/essentials /measuring-the-impact-of-github-copilot/ (accessed on 16 August 2024).

Pearce, H.; Ahmad, B.; Tan, B.; Dolan-Gavitt, B.; Karri, R. Asleep at the Keyboard? Assessing the Security of GitHub Copilot’s
Code Contributions. arXiv 2021, arXiv:2108.09293.

Tambon, E; Dakhel, A.M.; Nikanjam, A.; Khombh, F.; Desmarais, M.C.; Antoniol, G. Bugs in Large Language Models Generated
Code: An Empirical Study. arXiv 2024, arXiv:2403.08937.

Fang, C.; Miao, N.; Srivastav, S.; Liu, J.; Zhang, R.; Fang, R.; Asmita; Tsang, R.; Nazari, N.; Wang, H.; et al. Large Language
Models for Code Analysis: Do LLMs Really Do Their Job? arXiv 2024, arXiv:2310.12357.

Degges, R. Copilot Amplifies Insecure Codebases by Replicating Vulnerabilities in Your Projects. Snyk Blog 2024 . Available online:
https:/ /snyk.io/blog/copilot-amplifies-insecure-codebases-by-replicating-vulnerabilities/ (accessed on 13 August 2024).
Sawers, P. Samsung Bans Use of Generative Al Tools Like ChatGPT after April Internal Data Leak. TechCrunch 2023 . Available
online: https:/ /techcrunch.com/2023/05/02/samsung-bans-use-of-generative-ai-tools-like-chatgpt-after-april-internal-data-
leak/ (accessed on 13 August 2024).

Franzen, C. The Al Feedback Loop: Researchers Warn of "Model Collapse” as Al Trains on Al-Generated Content. VentureBeat
2023. Available online: https:/ /venturebeat.com/ai/the-ai-feedback-loop-researchers-warn-of-model-collapse-as-ai-trains-
on-ai-generated-content/ (accessed on 16 August 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://codeql.github.com/
https://cwe.mitre.org/top25/
https://wonderwhy-er.medium.com/ai-tdd-you-write-tests-ai-generates-code-c8ad41813c0a
https://wonderwhy-er.medium.com/ai-tdd-you-write-tests-ai-generates-code-c8ad41813c0a
https://cwe.mitre.org/
https://resources.github.com/learn/pathways/copilot/essentials/measuring-the-impact-of-github-copilot/
https://resources.github.com/learn/pathways/copilot/essentials/measuring-the-impact-of-github-copilot/
https://snyk.io/blog/copilot-amplifies-insecure-codebases-by-replicating-vulnerabilities/
https://techcrunch.com/2023/05/02/samsung-bans-use-of-generative-ai-tools-like-chatgpt-after-april-internal-data-leak/
https://techcrunch.com/2023/05/02/samsung-bans-use-of-generative-ai-tools-like-chatgpt-after-april-internal-data-leak/
https://venturebeat.com/ai/the-ai-feedback-loop-researchers-warn-of-model-collapse-as-ai-trains-on-ai-generated-content/
https://venturebeat.com/ai/the-ai-feedback-loop-researchers-warn-of-model-collapse-as-ai-trains-on-ai-generated-content/

	Introduction
	Related Work
	Experiment
	Preliminary Study with GPT-3 Model
	Extended Analysis with GPT-4 Model

	Results
	Results for Preliminary Study with GPT-3
	Results for Extended Analysis with GPT-4

	Discussion
	Critical Discussion of the Results
	Advantages and Disadvantages
	Further Considerations and Recommendations
	Threats to Validity

	Conclusions
	References

