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Abstract
This article investigates the approximation quality achievable for biobjective minimization
problems with respect to the Pareto cone by solutions that are (approximately) optimal with
respect to larger ordering cones. When simultaneously considering α-approximations for all
closed convex ordering cones of a fixed inner angle γ ∈ [

π
2 , π

]
, an approximation guarantee

betweenα and 2α is achieved,which depends continuously on γ . The analysis is best-possible
for any inner angle and it generalizes and unifies the known results that the set of supported
solutions is a 2-approximation and that the efficient set itself is a 1-approximation. Moreover,
it is shown that, for maximization problems, no approximation guarantee is achievable in
general by considering larger ordering cones in the described fashion,which again generalizes
a known result about the set of supported solutions.
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1 Introduction

Multiobjective optimization problems, i.e., optimization problems with more than one objec-
tive function, are of growing interest in bothmathematical optimization theory and real-world
applications. In these problems, solutions optimizing all objectives simultaneously usually
do not exist. Therefore, if no prior information about preferences is available, every so-
called efficient solution is a possible candidate for an optimal solution. A solution is said to
be efficient if any other solution that is better in some objective is necessarily worse in at
least one other objective. One of the major challenges in multiobjective optimization is the
overwhelming number of different images of efficient solutions that typically exist.

Additional preference information reduces the number of solutions that qualify as optimal.
A common way to model such preferences is via ordering cones, which describe, for each
solution, which other solutions are guaranteed to be worse. In the case of minimization
problems, the case of no prior information described above corresponds to the ordering cone
being the nonnegative orthant of the objective space (also called the Pareto cone in this
context). A larger ordering cone means more preference information and, thus, a smaller
set of possible optimal solutions. Prominent special cases are weighted sum scalarizations,
which correspond to the ordering cones being half spaces. If the weights for a weighted sum
scalarization are given, this means that the complete preference information is available.

Another important approach for dealing with large numbers of required solutions is the
concept of approximation, where every solution only has to be covered up to a multiplicative
tolerance in each objective function, thus reducing the number of needed solutions drastically.

In this article, we study relations between these two approaches. More precisely, we study
approximation properties (with respect to the Pareto cone) of solutions that are (approxi-
mately) optimal with respect to larger ordering cones. Our main focus lies on the case of
biobjective minimization problems.

1.1 Related work

The field of study of mathematical optimization with respect to vector-valued objective
functions and general preference relations is known as vector optimization. An introduction
to the concepts of vector optimization can be found in [8, 15]. Multiobjective optimization
is a subfield of vector optimization in which preferences are defined by the componentwise
ordering on R

p .
The use of cones to model preferences is a well-studied topic in multiobjective optimiza-

tion [7, 14, 23] and their investigation as dominance cones was initiated by Yu [22]. He gives
an in-depth study of the equivalence of properties between orderings and cones in multiob-
jective and vector optimization theory. Conditions under which multiobjective optimization
problems using alternative ordering cones can be reduced to the standard case of the compo-
nentwise ordering are studied in [17]. An overview about results on properties of ordering
cones in multiobjective optimization and the corresponding literature can be found in [21].

Vanderpooten et al. [19] introduce a general framework modeling a variety of notions of
approximation in the context of general ordering cones, including the concepts considered
here. They provide conditions under which an approximation with respect to some cone
is an approximation with respect to some other cone containing it. Engau and Wiecek [9]
characterize an additive notion of approximation using the theory of dominance cones.

The systematic study of the theory of approximation in multiobjective optimization in
the multiplicative sense considered here started with the seminal work of Papadimitriou and
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Yannakakis [18]. They show that, under weak assumptions, approximations of polynomial
cardinality are guaranteed to exist and that the problem of finding an approximation can be
polynomially reduced to solving an approximate version of the decision problem associated
with the multiobjective optimization problem. Subsequent articles focus on sufficient con-
ditions for the computability of approximations and their cardinality [2, 5, 6, 12, 16, 20].
A survey on literature about approximation methods for general multiobjective optimiza-
tion problems and for several specific multiobjective combinatorial optimization problems
is given in [13].

The weighted sum scalarization (see, e.g., [7]) as a special case of alternative ordering
cones has been a widely studied tool for computing approximations in multiobjective opti-
mization problems: Glaßer et al. [10] study howmultiobjective optimization problems can be
approximated using a norm-based approach. Most notably, they show that, for p-objective
minimization problems, for any ε > 0, a (p + ε)-approximation can be computed using
the weighted sum scalarization. A specific algorithm using the weighted sum scalarization
for computing approximations in biobjective minimization problems is given in [11]. For
biobjective optimization problems with convex feasible sets and linear objective functions,
an efficient algorithm for computing (1 + ε)-approximations is studied in [4]. For an exten-
sive study of the approximation quality achievable by the weighted sum scalarization for
multiobjective minimization and maximization problems in general, see [3].

1.2 Our contribution

We consider multiplicative approximation using general ordering cones for the special case
of biobjective minimization problems. More specifically, we investigate how optimal (or
approximately optimal) solutions with respect to general ordering cones can be used to
achieve an approximation guarantee with respect to the usual Pareto cone. In contrast to
the results by Vanderpooten et al. [19] about approximation guarantees carrying over from
smaller to larger ordering cones, we show that an approximation with respect to some fixed
ordering cone containing the Pareto cone does not straightforwardly yield an approximation
with respect to the Pareto cone (i.e., in the classical sense). We introduce the concept of γ -
supportedness as a generalization of both supportedness and efficiency. For some angle γ ∈[

π
2 , π

]
, a solution is called γ -supported if it is optimal with respect to some (arbitrary)

ordering cone of inner angle γ (see Fig. 1 on Page 6 for an illustration of such a cone).
Thus, the definitions of a π

2 -supported solution and a π-supported solution coincide with
the definition of an efficient solution and a supported solution, respectively. We show that
this characterization of ordering cones by their inner angle provides structural results on
the approximation guarantee that is achievable for the Pareto cone by solutions that are
approximately optimal with respect to larger cones. Our main result (Theorem 3.2) naturally
generalizes existing approximation results for the weighted sum scalarization as well as for
the Pareto cone and unifies them in a general statement about approximability by a family
of cones specified by their inner angle. Moreover, we show that the achieved approximation
guarantees are best possible for every inner angle γ ∈ [

π
2 , π

]
, including the previously

known cases. Finally, we show that considering families of cones of the same inner angle does
not yield an approximation guarantee for maximization problems, which, again, generalizes
known results for the weighted sum scalarization to general ordering cones.
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2 Preliminaries

In this section, we first repeat some important concepts and definitions from multiobjective
optimization theory in the classical sense. Then we briefly recall how to generalize multiob-
jective optimization problems to more general ordering relations via cones and provide some
basic properties of this generalization.

We introduce a new framework that allows us to describe biobjective minimization prob-
lems with respect to general ordering relations and to define γ -supportedness. Finally, we
provide a formal definition of approximation for multiobjective optimization problems with
respect to general ordering cones.

2.1 Multiobjective optimization and scalarizations

We use the usual notation R
p
� := {

y ∈ R
p : 0 � y

}
, where 0 ∈ R

p is the p-dimensional

zero vector and � is the weak componentwise order:

y � y′ ⇔ yi ≤ y′
i , i = 1, . . . , p

Multiobjective optimization problems can be formally defined as follows:

Definition 2.1 (Multiobjective Minimization/Maximization Problem) For p ≥ 1, a p-
objective optimization problem � is given by a set of instances. Each instance I = (

X I , f I
)

consists of a (finite or infinite) set X I of (feasible) solutions and a vector f I =
(
f I1 , . . . , f Ip

)

of p objective functions f Ii : X I → R for i = 1, . . . , p. In a minimization problem, all
objective functions f Ii should be minimized, in a maximization problem, they should be
maximized.

The solutions of interest are those for which it is not possible to improve the value of one
objective function without worsening the value of at least one other objective. Solutions with
this property are called efficient solutions:

Definition 2.2 For an instance I = (
X I , f I

)
of a p-objective minimization (maximization)

problem, a solution x ∈ X I dominates another solution x ′ ∈ X I if f I (x) �= f I (x ′) and
f I (x) � f I (x ′) ( f I (x) � f I (x ′)). A solution x ∈ X I is called efficient if it is not dominated
by any other solution x ′ ∈ X I . The set X I

E ⊆ X I of all efficient solutions is called the efficient
set.

In the following, we usually drop the superscript I indicating the dependence on the
instance in X I , f I , etc. The majority of the results of this paper are only applicable for
minimization problems. Therefore, we introduce some of the concepts in this chapter for
minimization problems only, even though they easily transfer to the case of maximization.
Some of the formal definitions for maximization problems are given in Sect. 4.

In the remainder of this paper, it is assumed that, in any instance I = (X , f ) of a p-
objective minimization problem, the set f (X)+R

p
� is closed, i.e., the set f (x) is R

p
�-closed

[7]. Note that this is, in particular, the case if f (X) is compact, which holds, for example,
if f (X) is finite or a polytope. Additionally, it is assumed that all objective functions only
attain positive values fi (x) > 0 for all x ∈ X and i = 1, . . . , p. This allows for a reasonable
notion of approximation (see Sect. 2.3). These assumptions imply external stability [7]: for
any feasible solution x ∈ X that is dominated by another feasible solution x ′ ∈ X , there also
exists an efficient solution x ′′ ∈ XE dominating x .
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When dealingwithmultiobjective optimization problems, it is common to consider scalar-
izations, where related single objective optimization problems are considered in order to gain
information about the multiobjective problem at hand. Here, we consider only scalarizations
where the feasible set remains unchanged. We call an instance of a single objective optimiza-
tion problem that shares the feasible set X with a given multiobjective optimization problem
instance I (and whose solutions yield some information about the multiobjective instance) a
scalarization of I .

Two of the most important kinds of scalarizations are weighted sum scalarizations and
weighted max-ordering scalarizations.

Definition 2.3 For an instance I = (X , f ) of a p-objective minimization problem
and weights wi > 0 for i = 1, . . . , p, the weigthed sum scalarization of I with
weights w1, . . . , wp is the single objective instance

min
x∈X w1 · f1(x) + · · · + wp · f p(x).

It is well-known that, for any multiobjective optimization problem instance I and
weights wi > 0 for i = 1, . . . , p, any solution x ∈ X that is optimal for the weighted
sum scalarization of I with weights w1, . . . , wp is efficient (for I ). On the other hand, there
might exist efficient solutions that are not optimal for any weighted sum scalarization. Solu-
tions that are optimal for some weighted sum scalarization are called supported solutions.

Definition 2.4 For an instance I = (X , f ) of a p-objective minimization problem and
weights wi > 0 for i = 1, . . . , p, the weighted max-ordering scalarization of I with
weights w1, . . . , wp is the single objective instance

min
x∈X max

{
w1 · f1(x), . . . , wp · f p(x)

}
.

It is well-known that, for any multiobjective optimization problem instance I and
weights wi > 0, there exists some solution x ∈ X that is optimal for the weighted max-
ordering scalarization of I with weights w1, . . . , wp and also efficient (for I ). Moreover (if
f (x) > 0 for all x ∈ X as assumed here), each efficient solution x ∈ XE is optimal for the
weighted max-ordering scalarization with weights wi = 1

fi (x)
for i = 1, . . . , p.

2.2 Orderings and cones

Inmultiobjectiveminimization problems, where efficient solutions are of interest, it is implic-
itly assumed that the underlying preference relation is the weak componentwise order �: A
solution x ∈ X is efficient if and only if, for any x ′ ∈ X with f (x ′) � f (x), we also
have f (x) � f (x ′). However, this can be generalized to other reasonable ways of defining
“optimal” solutions.

A binary relation R on R
p that is reflexive, transitive, compatible with addition (i.e.,

for any y, y′, z ∈ R
p with yRy′, we have (y + z)R(y′ + z)), and compatible with scalar

multiplication (i.e., for any y, y′ ∈ R
p with yRy′ and any λ > 0, we have (λ · y)R(λ · y′)) is

called a vector preorder. It iswell-known that any closed vector preorder R onR
p corresponds

to exactly one closed convex cone C ⊆ R
p via yRy′ ⇔ y′ − y ∈ C and vice versa [7].

In multiobjective optimization, the relations that are of interest additionally adhere to the
so-calledPareto axiom [17]: If a solution is at least as good as another solution in all objective
functions, it should also be at least as good in the multiobjective sense, and if a solution is
not better than another solution in any objective function and strictly worse in at least one

123



398 Journal of Global Optimization (2023) 86:393–415

Fig. 1 Illustration of the cone Cϕ
γ � R

2

objective, it should be worse in the multiobjective sense. For multiobjective minimization
problems, this means that a closed vector preorder 
 only qualifies as a meaningful way to
describe multiobjective preferences if we have R

p
� ⊆ C
 and −R

p
� ∩ C
 = {0}.

In the two-dimensional case, the situation is particularly simple: Any closed convex cone
C ⊆ R

2 (except for the empty set and subspaces of R
2) can be uniquely described by

its inner angle γ ∈ [0, π ] and its rotation ϕ ∈ [0, 2π) with respect to some direction of
reference. For cones containing R

2
�, the inner angle γ has to be within

[
π
2 , π

]
and the angle

of rotation ϕ can vary within an interval of length γ − π
2 (without loss of generality, the

interval
[
0, γ − π

2

]
since we can choose the direction of reference accordingly). Note that,

if the inner angle of a cone containing R
2
� is smaller than π , it does not contain any point

from −R
2
� \ {0}. There exist exactly two cones of inner angle π that contain R

2
� and are not

disjoint from −R
2
�\{0}, namely

{
(y1, y2) ∈ R

2|y1 ≥ 0
}
and

{
(y1, y2) ∈ R

2|y2 ≥ 0
}
. Thus,

in a closed convex coneC ⊆ R
2, if the inner angle γ is smaller than π , we haveR

p
� ⊆ C and

−R
p
� ∩ C = {0} if and only if the angle of rotation ϕ lies in the closed interval

[
0, γ − π

2

]
.

If the inner angle γ is equal to π , we have R
p
� ⊆ C and −R

p
� ∩ C = {0} if and only if ϕ

lies in the open interval
(
0, π

2

)
. Given γ ∈ [

π
2 , π

]
, we can write the allowed interval for ϕ

shortly as
[
0, γ − π

2

] \ {
γ − π, π

2

}
. This yields the closed interval

[
0, γ − π

2

]
for γ < π

and the open interval
(
0, γ − π

2

) = (
0, π

2

)
for γ = π .

Hence, the following definition, which is illustrated in Fig. 1, covers exactly all closed
convex cones C ⊆ R

2 for which R
p
� ⊆ C and −R

p
� ∩ C = {0}.

Definition 2.5 For γ ∈ [
π
2 , π

]
and ϕ ∈ [

0, γ − π
2

] \ {
γ − π, π

2

}
, we define

ϕ′ := γ − π

2
− ϕ.
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In the following, if the values of γ and ϕ are clear from the context, we always use this
convention. We define a linear mapping T ϕ

γ : R
2 → R

2 via

T ϕ
γ (y) :=

(
sin γ (− cos γ )

0 1

) (
cosϕ (− sin ϕ)

sin ϕ cosϕ

)
· y =

(
cosϕ′ sin ϕ′
sin ϕ cosϕ

)
· y.

Using this notation, we define a cone

Cϕ
γ :=

{
y ∈ R

2 : T ϕ
γ (y) � 0

}

and the corresponding vector preorder �ϕ
γ on R

p by

y �ϕ
γ y′ ⇐⇒ y′ − y ∈ Cϕ

γ .

For γ ∈ [
π
2 , π

]
, we define ϕ̄γ to be the value of ϕ ∈ [

0, γ − π
2

] \ {
γ − π, π

2

}
for which

ϕ′ = ϕ:

ϕ̄γ := γ

2
− π

4

It is easy to see that Cϕ
γ � R

2 is a closed convex cone with inner angle γ containing R
2
�,

and that the extreme directions ofCϕ
γ include angles of ϕ and γ − π

2 −ϕ with the first axis and
second axis, respectively (see Fig. 1): The first 2×2-matrix in the definition of T ϕ

γ rotates the
first axis by an angle of γ while the second axis remains unchanged. The second 2×2-matrix
is a rotation matrix with rotation angle ϕ.
Moreover, the following lemma holds for �ϕ

γ :

Lemma 2.1 For y, y′ ∈ R
2, we have y �ϕ

γ y′ if and only if T ϕ
γ (y) � T ϕ

γ (y′).

Proof We have

y �ϕ
γ y′ ⇔ y′ − y ∈ Cϕ

γ ⇔ T ϕ
γ (y′ − y) � 0 ⇔ T ϕ

γ (y′) � T ϕ
γ (y)

by the definitions of �ϕ
γ and Cϕ

γ and by linearity of T ϕ
γ . ��

We summarize the facts obtained in this subsection so far in the following proposition:

Proposition 2.1 Let C ⊆ R
2. The following statements are equivalent:

1. C = Cϕ
γ for some γ ∈ [

π
2 , π

]
and ϕ ∈ [

0, γ − π
2

] \ {
γ − π, π

2

}
.

2. C is a closed convex cone with R
2
� ⊆ C and −R

p
� ∩ C = {0}.

3. C = C
 for a closed vector preorder 
 on R
2 for which y � y′ implies y 
 y′, and

y � y′ and y �= y′ imply y′
� y for all y, y′ ∈ R

2.

Given some γ ∈ [
π
2 , π

]
, ϕ ∈ [

0, γ − π
2

] \ {
γ − π, π

2

}
, and an instance (X , f ) of a biob-

jective minimization problem, we can define a biobjective minimization problem instance
with the same feasible set X and objective function f , but using �ϕ

γ instead of � as the
underlying vector preorder. Proposition 2.1 states that any reasonable way to define mini-
mization of f over X can be described like this. Moreover, from Lemma 2.1, we know that,
for any biobjective minimization problem instance (X , f ), using �ϕ

γ is equivalent to using
the weak componentwise order � for the objective function T ϕ

γ ◦ f : X → R
2.
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Definition 2.6 For γ ∈ [
π
2 , π

]
, ϕ ∈ [

0, γ − π
2

] \ {
γ − π, π

2

}
, and an instance I = (X , f )

of a biobjective minimization problem �, we define I ϕ
γ := (

X , T ϕ
γ ◦ f

)
:

min
x∈X T ϕ

γ ( f (x))

In a biobjective minimization problem instance I = (X , f ), we say that a solution x ∈ X is
optimal with respect to �ϕ

γ if x is efficient in I ϕ
γ , i.e., if there does not exist a solution x ′ ∈ X

such that f (x ′) �= f (x) and f (x ′) �ϕ
γ f (x).

Note that, for any γ ∈ [
π
2 , π

]
and ϕ ∈ [

0, γ − π
2

] \ {
γ − π, π

2

}
, if f (x) > 0, then also

T ϕ
γ ( f (x)) > 0. Thus, I ϕ

γ indeed always satisfies our assumption of positive-valued objective
functions. Moreover, this implies that our assumption of f (X) + R

2
� being closed also

transfers to I ϕ
γ .

The above reasoning implies that solving a biobjective minimization problem instance
with respect to any reasonable closed vector preorder can be reduced to applying a linear
mapping and solving the resulting instance with respect to the usual componentwise order.
Thus, for any γ ∈ [

π
2 , π

]
and ϕ ∈ [

0, γ − π
2

] \ {
γ − π, π

2

}
, any known result that holds for

biobjective optimization problems in the usual sense can also be applied to I ϕ
γ as long as all

of the corresponding conditions are satisfied. However, one has to be careful when applying
algorithmic results to I ϕ

γ since basic requirements like, e.g., polynomial computability of the
objective function, do not trivially hold for

(
T ϕ

γ ◦ f
)
even if f is polynomially computable

as the matrix describing T ϕ
γ might contain irrational entries.

Obviously, T 0
π
2
is the identity mapping, so, for any instance I of a biobjectiveminimization

problem, we have I 0π
2

= I . Thus, in the special case γ = π
2 and (thus) ϕ = ϕ′ = 0, the

optimal solutions with respect to �ϕ
γ are exactly the efficient solutions. In the other extreme

case, where γ = π and ϕ ∈ [
0, γ − π

2

] \ {
γ − π, π

2

} = (
0, π

2

)
, the definition of I ϕ

γ yields
the single objective optimization problem instance

min
x∈X sin ϕ · f1(x) + cosϕ · f2(x),

i.e., the weighted-sum scalarization of I with (positive) weights sin ϕ and cosϕ.
Recall that, in a multiobjective optimization problem, a solution x ∈ X is called supported

if there exists a nonnegative vector of weights such that x is an optimal solution of the
weighted sum scalarization with these weights. Equivalently, using the fact that weighted
sum scalarizations correspond to the case of the inner angle γ being equal to π , we can say
that a solution is supported if and only if it is an optimal solution of I ϕ

γ for γ = π for some
ϕ ∈ (

0, π
2

)
. We generalize this idea to arbitrary values of γ ∈ [

π
2 , π

]
in the following way:

Definition 2.7 Let I = (X , f ) be a biobjective optimization problem and let γ ∈ [
π
2 , π

]

be given. We say that a solution x ∈ X is γ -supported if there exists some ϕ ∈[
0, γ − π

2

] \ {
γ − π, π

2

}
such that x is optimal with respect to �ϕ

γ .

Hence, the definition of a supported solution coincides with the definition of a π-supported
solution. Moreover, the definition of an efficient solution is exactly the definition of a π

2 -
supported solution. Thus, the concept of γ -supportedness generalizes and connects the
concepts of efficiency and supportedness. Note that, if γ1, γ2 ∈ [

π
2 , π

]
such that γ1 ≤ γ2,

then every γ2-supported solution is γ1-supported. In particular, for any γ ∈ [
π
2 , π

]
, every

supported solution is γ -supported and every γ -supported solution is efficient.
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2.3 Approximation

Next, we define approximation for biobjective minimization problems (the definition for
maximization problems is analogous). Here,we generalize the usual notion of approximation,
which is based on the componentwise order, to arbitrary ordering relations on R

2. The usual
definition of approximation (see [13]) is obtained by replacing �ϕ

γ by � in the following
definition.

Definition 2.8 Let I = (X , f ) be a biobjective minimization problem instance such that
f1(x), f2(x) > 0 for all x ∈ X . Let γ ∈ [

π
2 , π

]
and ϕ ∈ [

0, γ − π
2

] \ {
γ − π, π

2

}
be given.

For a scalar α ≥ 1, we say that x ′ ∈ X is α-approximated by x ∈ X with respect to �ϕ
γ if

f (x) �ϕ
γ α · f (x ′). A set Xα ⊆ X is called an α-approximation with respect to �ϕ

γ if any
feasible solution x ∈ X is α-approximated with respect to �ϕ

γ by some solution x ′ ∈ Xα .
In single objective minimization problem instances, we say that a solution is α-

approximate if it α-approximates any other feasible solution (in the single objective sense,
where x ′ is α-approximated by x if f (x) ≤ α · f (x ′)).

Obviously, for any biobjective minimization problem instance, the efficient set is a 1-
approximation. Note that, in the special case of �, an approximation is also referred to
as an “approximate Pareto set” in the literature [2].

Definition 2.8, togetherwithLemma2.1, states that a solution x ′ ∈ X isα-approximated by
another solution x ∈ X with respect to�ϕ

γ ifT ϕ
γ ( f (x)) � T ϕ

γ (α· f (x ′)).Note that, by linearity
of T ϕ

γ , this is equivalent to T ϕ
γ ( f (x)) � α·T ϕ

γ ( f (x ′)). Thus, x ′ ∈ X isα-approximated by x ∈
X with respect to �ϕ

γ in I if and only if x ′ is α-approximated by x (with respect to �) in I ϕ
γ .

Recall that, in the biobjective case, optimizationwith respect to any closed vector preorder can
be reduced to the componentwise order via T ϕ

γ . The above reasoning states that the concept
of approximation is consistent with this reduction. In fact, this equivalent characterization of
approximationwould be a different straightforward way to define approximationwith respect
to�ϕ

γ .However, the definition as stated inDefinition 2.8 directly generalizes to arbitrary cones
for more than two objectives while the alternative characterization is universally applicable
only in the biobjective case. A very general definition of approximation in multiobjective
optimization with respect to arbitrary cones and a further characterization of when the two
mentioned definition approaches are equivalent are given by Vanderpooten et al. [19]. They
also present various results generalizing the following observation about approximations:

Observation 1 Consider γ1, γ2 ∈ [
π
2 , π

]
, ϕ1 ∈ [0, γ1]\

{
γ1 − π, π

2

}
, and ϕ2 ∈ [0, γ2]\{

γ2 − π, π
2

}
such that ϕ1 ≤ ϕ2 and ϕ′

1 ≤ ϕ′
2, i.e., such that

Cϕ1
γ1

⊆ Cϕ2
γ2

.

For α ≥ 1, if x ′ ∈ X is α-approximated by x ∈ X in I ϕ1
γ1 , then x ′ also α-approximated by

x in I ϕ2
γ2 . Thus, any α-approximation in I ϕ1

γ1 is an α-approximation in I ϕ2
γ2 . In particular, for

any γ ∈ [
π
2 , π

]
and ϕ ∈ [

0, γ − π
2

]
, if x ′ ∈ X is α-approximated by x ∈ X in I then x ′ is

also α-approximated by x in I ϕ
γ and any α-approximation in I is an α-approximation in I ϕ

γ .

3 Structural results

Observation 1 states that, for any α ≥ 1, γ ∈ [
π
2 , π

]
, and ϕ ∈ [

0, γ − π
2

] \ {
γ − π, π

2

}
,

any α-approximation for I is also an α-approximation for I ϕ
γ . Vice versa, suppose that we
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Fig. 2 Illustration of Example 3.1. The solution x2 is not optimal with respect to �ϕ
γ and not α-approximated

by x1 (with respect to �)

can identify an approximation (or even the efficient set) for I ϕ
γ for some γ ∈ (

π
2 , π

]
and

ϕ ∈ [
0, γ − π

2

] \ {
γ − π, π

2

}
. Does this yield an α-approximation for I for some α? It is

easy to see that the answer to this question is “no” in general:

Example 3.1 Let α > 1, γ ∈ (
π
2 , π

]
, and ϕ ∈ (

0, γ − π
2

] \ {
π
2

}
. Consider the following

instance I of a biobjective minimization problem (see also Fig. 2): Let the feasible set consist
of exactly two solutions x1, x2 such that f1(x1) = 1, f2(x1) = (α−1)·tan ϕ, f1(x2) = α, and
f2(x2) = α−1

α+1 · tan ϕ. Then the efficient set of I ϕ
γ is {x1}, but {x1} is not an α-approximation

for I . However, {x2} is an α-approximation for I .

We obtain the following proposition:

Proposition 3.1 For any γ ∈ (
π
2 , π

]
and ϕ ∈ [

0, γ − π
2

] \ {
γ − π, π

2

}
, and any α ≥ 1,

there exists an instance I of a biobjective minimization problem such that the set of optimal
solutions with respect to �ϕ

γ is not an α-approximation.

Proof For α > 1 and ϕ �= 0, the claim follows from Example 3.1. If α > 1 and ϕ = 0, we
have ϕ′ �= 0, since γ �= π

2 . Thus, we can simply exchange f1 and f2 and replace ϕ by ϕ′ in
Example 3.1 to obtain the claim. The claim for α = 1 is a direct implication of the claim for
any α > 1. ��

Proposition 3.1 states that the set of optimal solutions with respect to �ϕ
γ for a single

fixed pair of parameters (γ, ϕ) does not yield any approximation guarantee for I . This is
unsurprising: If the set of optimal solutions with respect to �ϕ

γ yielded any approximation
guarantee, this would mean that, for the special case γ = π , where I ϕ

γ is a weighted sum
scalarization of I , the (often unique) optimal solution of this scalarization would already
yield an approximation guarantee in general.

In the case γ = π , one is typically more interested in the set of supported solutions, i.e.,
the set of solutions that are optimal with respect to �ϕ

π for some (arbitrary) ϕ ∈ (
0, π

2

)
. It

is well-known that, for any biobjective minimization problem instance, the set of supported
solutions is a 2-approximation [10]. We state this result using our terminology.

Theorem 3.1 (Glaßer et al. [10]) For any biobjective minimization problem instance I , let
XW ⊆ X be a set of solutions that, for any ϕ ∈ (

0, π
2

)
, contains one optimal solution with

respect to �ϕ
π . Then XW is a 2-approximation.

Our goal is to generalizeTheorem3.1 to arbitrary values ofγ ∈ [
π
2 , π

]
.More precisely,we

want to obtain a result about the approximation guarantee achievable by solutions that are opti-
malwith respect to�ϕ

γ for somefixed γ ∈ [
π
2 , π

]
but arbitraryϕ ∈ [

0, γ − π
2

] \ {
γ − π, π

2

}
.
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Fig. 3 Illustration of Example 3.2. The dominance cone of f (x2) in Iϕγ is illustrated for ϕ = 0 (dotted),
ϕ = ϕ̄γ (dashed), and ϕ = γ − π

2 (solid). The solution x1 is not dominated by x2 and is, thus, optimal with

respect to �ϕ
γ for any ϕ ∈ [

0, γ − π
2
]

Example 3.2 shows that, for γ ∈ (
π
2 , π

)
, it does not suffice to require a single arbitrary opti-

mal solution for each ϕ, as it is the case for γ = π .

Example 3.2 Let γ ∈ (
π
2 , π

)
and α ≥ 1. Consider the following instance of a biobjective

minimization problem (see also Fig. 3): The feasible set consists of exactly two solutions
x1, x2 with f1(x1) = α + 1, f2(x1) = 1, f1(x2) = 1, and f2(x2) = − cos γ

sin γ
· (α + 1) + 1.

Note that, for anyϕ ∈ [
0, γ − π

2

]
, we have 0 ≤ sin ϕ ≤ − cos γ , where the first inequality

is strict if ϕ �= 0 and the second inequality is strict if ϕ �= γ − π
2 , and we have 0 <

sin γ ≤ cosϕ, where, again, the second inequality is strict if ϕ �= γ − π
2 . Therefore, for any

ϕ ∈ [
0, γ − π

2

]
, the following holds for the second objective function of I ϕ

γ :

sin ϕ · f1(x1) + cosϕ · f2(x1) = sin ϕ · (α + 1) + cosϕ

≤ sin ϕ · (α + 1) + cosϕ + sin ϕ

≤ (− cos γ ) · (α + 1) + cosϕ + sin ϕ

≤ cosϕ

sin γ
· (− cos γ ) · (α + 1) + cosϕ + sin ϕ

= sin ϕ + cosϕ ·
(− cos γ

sin γ
· (α + 1) + 1

)

= sin ϕ · f1(x2) + cosϕ · f2(x2),

where, if ϕ �= 0, the first inequality is strict, and, if ϕ �= γ − π
2 , the second and third

inequalities are strict. Thus, x1 is optimal with respect to �ϕ
γ for any ϕ ∈ [

0, γ − π
2

]
. On the

other hand, x1 does not α-approximate x2 (with respect to �).

We now generalize Theorem 3.1 to arbitrary values of γ . We will see that, for any γ ∈[
π
2 , π

]
, the set of γ -supported solutions is an approximation. The approximation guarantee
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obtained from our result is equal to 1 for γ = π
2 , is equal to 2 for γ = π , and, interestingly,

increases continuously in between depending on γ .
Moreover, for any γ ∈ (

π
2 , π

]
and ϕ ∈ [

0, γ − π
2

] \ {
γ − π, π

2

}
, we provide a weighted

max-ordering scalarization of I ϕ
γ such that, for fixed γ , a set containing only one optimal

solution of this scalarization for each ϕ yields the same approximation guarantee (analogous
to Threorem 3.1). For γ = π , this scalarization naturally yields the (single objective) instance
itself, so, this result is indeed a generalization of Theorem 3.1. We further generalize this
result to approximate solutions of the provided scalarization.

First, note the following simple property of weighted max-ordering scalarizations:

Lemma 3.1 Let I = (X , f ) be a biobjective minimization problem instance, let α ≥ 1,
and let w1, w2 > 0 be given. Let x ∈ X be an α-approximate solution for the weighted
max-ordering scalarization of I with weights w1, w2 and let x ′ ∈ X be a solution such that
w1 · f1(x ′) = w2 · f2(x ′). Then x ′ is α-approximated by x in I .

Proof In the first component, we have

w1 · f1(x) ≤ max {w1 · f1(x), w2 · f2(x)}
≤ α · max

{
w1 · f1(x

′), w2 · f2(x
′)
}

= α · w1 · f1(x
′).

The approximation guarantee in the second component follows analogously. ��
The following lemma states that a solution x ∈ X that approximates another solution

x ′ ∈ X with respect to �ϕ
γ for some γ and ϕ also approximates x ′ with respect to � by

some factor. This factor depends on γ , ϕ, and f (x ′). Note that, by Proposition 3.1, we cannot
expect this factor to depend solely on γ and ϕ.

Lemma 3.2 Let γ ∈ [
π
2 , π

]
, ϕ ∈ [

0, γ − π
2

] \ {
γ − π, π

2

}
, α ≥ 1, and let I = (X , f ) be

a biobjective minimization problem instance. Let x ′ ∈ X be α-approximated by x ∈ X with
respect to �ϕ

γ . Then x approximates x ′ (with respect to �) with factor

α ·
(
1 + max

{
f1(x ′)
f2(x ′)

· tan ϕ,
f2(x ′)
f1(x ′)

· tan ϕ′
})

.

Proof In the first component, we obtain

f1(x) ≤ 1

cosϕ′ · (
cosϕ′ · f1(x) + sin ϕ′ · f2(x)

)

≤ 1

cosϕ′ · α · (
cosϕ′ · f1(x

′) + sin ϕ′ · f2(x
′)
)

= α ·
(
1 + tan ϕ′ · f2(x ′)

f1(x ′)

)
· f1(x

′).

Similarly, in the second component, we obtain

f2(x) ≤ 1

cosϕ
· (sin ϕ · f1(x) + cosϕ · f2(x))

≤ 1

cosϕ
· α · (

sin ϕ · f1(x
′) + cosϕ · f2(x

′)
)

= α ·
(
1 + tan ϕ · f1(x ′)

f2(x ′)

)
· f2(x

′).

This immediately yields the claimed approximation guarantee. ��
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Fig. 4 Illustration of the weighted max-ordering scalarization of Iϕγ with weights w1 =
√
sin ϕ√
cosϕ′ +

√
cosϕ√
sin ϕ′

and w2 =
√
sin ϕ′√
cosϕ

+
√
cosϕ′√
sin ϕ

for given γ ∈ (
π
2 , π

]
and ϕ ∈ (

0, γ − π
2
)
. The solution x is optimal for this

scalarization so there does not exist any feasible point in the gray region. For this choice of weights, we have
d1
c1

= d2
c2

= 1 + √
tan ϕ · √

tan ϕ′ (see Proposition 3.2)

The next lemma states that, for γ ∈ (
π
2 , π

]
, ϕ ∈ (

0, γ − π
2

)
, and an instance I = (X , f ),

if we use the weights w1 =
√
sin ϕ√
cosϕ′ +

√
cosϕ√
sin ϕ′ and w2 =

√
sin ϕ′√
cosϕ

+
√

cosϕ′√
sin ϕ

for a weighted

max-ordering scalarization of I ϕ
γ , then any solution x ′ ∈ X for which f1(x ′)

f2(x ′) =
√

tan ϕ′√
tan ϕ

meets
the conditions of Lemma 3.1. This scalarization is illustrated in Fig. 4.

Lemma 3.3 Letγ ∈ ( π
2 , π ],ϕ ∈ (0, γ − π

2 ), and let I = (X , f )be abiobjectiveminimization

problem instance. Let x ′ ∈ X such that f1(x ′)
f2(x ′) =

√
tan ϕ′√
tan ϕ

.Moreover, letw1 =
√
sin ϕ√
cosϕ′ +

√
cosϕ√
sin ϕ′

and w2 =
√

sin ϕ′√
cosϕ

+
√

cosϕ′√
sin ϕ

. Then

w1 · (
cosϕ′ · f1(x

′) + sin ϕ′ · f2(x
′)
) = w2 · (

sin ϕ · f1(x
′) + cosϕ · f2(x

′)
)
.

Proof We know that f1(x ′) = √
tan ϕ′ · f2(x ′)√

tan ϕ
, so it suffices to show that

w1 ·
(
cosϕ′ · √

tan ϕ′ + sin ϕ′ · √
tan ϕ

)
= w2 ·

(
sin ϕ · √

tan ϕ′ + cosϕ · √
tan ϕ

)
.

Using the definition of w1, w2 and that tan = sin
cos , this is a simple computation:

( √
sin ϕ√
cosϕ′ +

√
cosϕ√
sin ϕ′

)
·
(
cosϕ′ · √

tan ϕ′ + sin ϕ′ · √
tan ϕ

)

= 2 · √
sin ϕ · √

sin ϕ′ + √
cosϕ · √

cosϕ′ + sin ϕ · sin ϕ′
√
cosϕ · √

cosϕ′

=
(√

sin ϕ′
√
cosϕ

+
√
cosϕ′

√
sin ϕ

)
·
(
sin ϕ · √

tan ϕ′ + cosϕ · √
tan ϕ

)
.
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��
The following proposition combines Lemma 3.1, Lemma 3.2, and Lemma 3.3. It first states
that, for x ′, ϕ, w1, and w2 as in Lemma 3.3, we can approximate x ′ not only in the corre-
sponding weighted max-ordering scalarization but also in I ϕ

γ . Then it states that we even
obtain an approximation factor for I . We will see that, for any solution x ′ ∈ X , the angle

ϕ satisfying f1(x ′)
f2(x ′) =

√
tan ϕ′√
tan ϕ

corresponds to x ′ in the sense that, in the maximum in the
approximation factor provided in Lemma 3.2, both terms are equal (a geometric explanation
for this is given in Fig. 4). Therefore, the approximation factor obtained for I depends only
on γ and ϕ and does not involve a maximum.

Proposition 3.2 Let α ≥ 1, γ ∈ (
π
2 , π

]
, ϕ ∈ (

0, γ − π
2

)
, and let I = (X , f ) be a biobjective

minimization problem instance. For a solution x ∈ X that is α-approximate for the weighted

max-ordering scalarization of I ϕ
γ with weights w1 =

√
sin ϕ√
cosϕ′ +

√
cosϕ√
sin ϕ′ and w2 =

√
sin ϕ′√
cosϕ

+
√

cosϕ′√
sin ϕ

, any solution x ′ ∈ X with

f1(x ′)
f2(x ′)

=
√
tan ϕ′

√
tan ϕ

(1)

(i) is α-approximated by x with respect to �ϕ
γ , and

(ii) is
(
α · (

1 + √
tan ϕ · √

tan ϕ′))-approximated by x (with respect to �).

Proof We first prove (i). Lemma 3.3 implies that

w1 · (
cosϕ′ · f1(x

′) + sin ϕ′ · f2(x
′)
) = w2 · (

sin ϕ · f1(x
′) + cosϕ · f2(x

′)
)
.

Thus, we can apply Lemma 3.1 to theweightedmax-ordering scalarization of I ϕ
γ withweights

w1, w2, which immediately yields that x ′ is α-approximated by x with respect to �ϕ
γ .

In order to prove (ii), we apply Lemma 3.2 to obtain that x ′ is approximated by x with
factor

α ·
(
1 + max

{
f1(x ′)
f2(x ′)

· tan ϕ,
f2(x ′)
f1(x ′)

· tan ϕ′
})

.

Since (1) holds, we know that

max

{
f1(x ′)
f2(x ′)

· tan ϕ,
f2(x ′)
f1(x ′)

· tan ϕ′
}

= max

{√
tan ϕ′

√
tan ϕ

· tan ϕ,

√
tan ϕ√
tan ϕ′ · tan ϕ′

}

= √
tan ϕ · √

tan ϕ′,

which yields (ii). ��
Proposition 3.2 states that, for given γ ∈ (

π
2 , π

]
, any solution x ′ ∈ X can be approximated

by a solution that is α-approximate for a specific weighted max-ordering scalarization of I ϕ
γ ,

if ϕ is chosen such that (1) holds. The achievable approximation factor depends on γ and
ϕ. The following lemma provides an upper bound on this approximation factor that solely
depends on γ . Its proof is given in Appendix A.

Lemma 3.4 Let γ ∈ [
π
2 , π

]
and ϕ ∈ [

0, γ − π
2

] \ {
γ − π, π

2

}
. Then we have

√
tan ϕ ·√

tan ϕ′ ≤ tan ϕ̄γ , where ϕ̄γ = γ
2 − π

4 .

We are now ready to prove our main result.
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Theorem 3.2 Let I = (X , f ) be a biobjective minimization problem instance and let γ ∈(
π
2 , π

]
. Let XQ ⊆ X be a set of solutions that, for any ϕ ∈ (

0, γ − π
2

)
, contains an

α-approximate solution for the weighted max-ordering scalarization of I ϕ
γ with weights

w1 =
√
sin ϕ√
cosϕ′ +

√
cosϕ√
sin ϕ′ and w2 =

√
sin ϕ′√
cosϕ

+
√

cosϕ′√
sin ϕ

. Then XQ is an
(
α · (1 + tan ϕ̄γ )

)
-

approximation (for I ), where ϕ̄γ = γ
2 − π

4 .

Proof Let x ′ ∈ X be any feasible solution. Chooseϕ ∈ (
0, γ − π

2

)
such that

√
tan ϕ√
tan ϕ′ = f1(x ′)

f2(x ′) ,

i.e., ϕ = arctan

(
1
q ·

(
s · tan γ +

√
1 + s2 · (tan γ )2

))
for q = f1(x ′)

f2(x ′) and s = 1
2 ·

(
q + 1

q

)
.

Then XQ contains an α-approximate solution for the weighted max-ordering scalarization of

I ϕ
γ with weights w1 =

√
sin ϕ√
cosϕ′ +

√
cosϕ√
sin ϕ′ and w2 =

√
sin ϕ′√
cosϕ

+
√

cosϕ′√
sin ϕ

. Proposition 3.2 states

that x ′ is
(
α · (

1 + √
tan ϕ · √

tan ϕ′))-approximated by x . Thus, by Lemma 3.4, x ′ is also(
α · (1 + tan ϕ̄γ )

)
-approximated by x . ��

Note that one can obtain Theorem 3.1 by setting γ = π and α = 1 in Theorem 3.2. Thus,
Theorem 3.2 is indeed a generalization of Theorem 3.1.

The following corollary collects several alternative formulas expressing the approximation
factor (α · (1 + tan ϕ̄γ )) obtained in Theorem 3.2. Its proof is given in Appendix B.

Corollary 3.1 The set XQ from Theorem 3.2 is an (α · (1 + S))-approximation, where

S = tan

(
γ − π

2

2

)
= 1 − sin γ

− cos γ
= − cos γ

1 + sin γ
= tan γ +

√
1 + (tan γ )2.

Theorem3.2 yields the following corollary. It provides the approximation factor achievable
by the set of γ -supported solutions in a biobjective minimization problem instance for any
inner angle γ ∈ [

π
2 , π

]
. Of course, the set of π

2 -supported solutions, i.e., the efficient set, is
a 1-approximation and the set of (π -) supported solutions is a 2-approximation. In between
π
2 and π , the approximation factor is continuous and strictly increasing in γ . See Fig. 5 for
an illustration.

Corollary 3.2 For any biobjective minimization problem instance and any γ ∈ [
π
2 , π

]
, the

set of γ -supported solutions is a (1 + tan ϕ̄γ )-approximation, where ϕ̄γ = γ
2 − π

4 .

Proof For γ = π
2 , the claim is obviously true as the set of efficient solutions is a 1-

approximation. For γ ∈ (
π
2 , π

]
, we know that, for any ϕ ∈ (

0, γ − π
2

)
and any weighted

max-ordering scalarization of I ϕ
γ , there exists a solution that is optimal for both the weighted

max-ordering scalarization of I ϕ
γ and for I ϕ

γ itself, and is therefore also γ -supported. Thus,
the set of γ -supported solutions contains an optimal solution for any weighted max-ordering
scalarization of I ϕ

γ for any ϕ ∈ (
0, γ − π

2

)
. The claim follows from Theorem 3.2 setting

α = 1. ��
Figure 5 shows that the increase of the approximation factor achieved by the set of γ -

supported solutions is quite close to linear in γ . In fact, it is slightly convex. Thus, a reasonable
rule of thumb is that the percentage at which the angle γ is between π

2 and π is the approxi-
mation accuracy that is lost by the set of γ -supported solutions compared to the efficient set.
The next corollary formalizes this rule of thumb.

Corollary 3.3 For any biobjective minimization problem instance and any γ ∈ [
π
2 , π

]
, the

set of γ -supported solutions is a 2γ
π
-approximation.
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Fig. 5 Approximation factor achieved by the set of γ -supported solutions due to Corollary 3.2 (solid) and
Corollary 3.3 (dashed)

Proof Note that, since tan is a convex function on [0, π
4 ], where tan 0 = 0 and tan π

4 = 1,
we have

tan ϕ̄γ = tan

(
4 · ϕ̄γ

π
· π

4

)
≤ 4 · ϕ̄γ

π
· tan π

4
= 4 · ϕ̄γ

π
.

Thus, by Corollary 3.2, the set of γ -supported solutions is a
(
1 + 4·ϕ̄γ

π

)
-approximation,

where 1 + 4·ϕ̄γ

π
= 1 + 2γ−π

π
= 2γ

π
. ��

The following proposition states that Theorem 3.2 and Corollary 3.2 are tight in the sense
that, for any inner angle γ (including the cases γ = π

2 and γ = π), no better approximation
guarantee than the one provided is achievable by approximations with respect to �ϕ

γ for
all ϕ ∈ [0, γ − π

2 ]\{γ − π, π
2 }.

Proposition 3.3 For any γ ∈ [π
2 , π ], any α ≥ 1, and any ε > 0, there exists an instance I =

(X , f ) of a biobjective optimization problem for which a set that is an α-approximation
with respect to �ϕ

γ for all ϕ ∈ [0, γ − π
2 ]\{γ − π, π

2 } is not an
(
α · (1 + tan ϕ̄γ ) − ε

)
-

approximation with respect to �.

Proof Define ε′ > 0 such that ε′ < min{ ε
α
, 1}. Consider the following instance I , which is

illustrated in Fig. 6: Let the feasible set consist of exactly three solutions, x1, x2, x3 such that

f1(x1) = α · (
1 + (1 − ε′) · tan ϕ̄γ

)
, f2(x1) = α · ε′,

f1(x2) = α · ε′, f2(x2) = α · (
1 + (1 − ε′) · tan ϕ̄γ

)
,

f1(x3) = 1, f2(x3) = 1.
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Then {x1, x2} is an α-approximation with respect to �ϕ
γ for all ϕ ∈ [0, γ − π

2 ]\{γ − π, π
2 }:

For ϕ ≤ ϕ̄γ , we have ϕ′ ≥ ϕ̄γ and, therefore, tan ϕ ≤ tan ϕ̄γ ≤ tan ϕ′. We can compute

cosϕ′ · f1(x1) + sin ϕ′ · f2(x1) = cosϕ′ · α · (
1 + (1 − ε′) · tan ϕ̄γ

) + sin ϕ′ · α · ε′

≤ cosϕ′ · α · (
1 + (1 − ε′) · tan ϕ′) + sin ϕ′ · α · ε′

= α · (
cosϕ′ + sin ϕ′)

= α · (
cosϕ′ · f1(x3) + sin ϕ′ · f2(x3)

)

and, since ϕ̄γ ≤ π
4 and, therefore, tan ϕ̄γ ≤ tan π

4 = 1,

sin ϕ · f1(x1) + cosϕ · f2(x1) = sin ϕ · α · (
1 + (1 − ε′) · tan ϕ̄γ

) + cosϕ · α · ε′

≤ sin ϕ · α ·
(
1 + (1 − ε′) · 1

tan ϕ̄γ

)
+ cosϕ · α · ε′

≤ sin ϕ · α ·
(
1 + (1 − ε′) · 1

tan ϕ

)
+ cosϕ · α · ε′

= α · (sin ϕ + cosϕ)

= α · (sin ϕ · f1(x3) + cosϕ · f2(x3)) .

Thus, for ϕ ≤ ϕ̄γ , x3 is α-approximated by x1 with respect to �ϕ
γ . Similarly, we can prove

that, for ϕ ≥ ϕ̄γ , x3 is α-approximated by x2 with respect to �ϕ
γ .

However, {x1, x2} is not an
(
α · (

1 + tan ϕ̄γ

) − ε
)
-approximation (with respect to�): We

have tan ϕ̄γ ≤ 1 and, thus,
(
α · (

1 + tan ϕ̄γ

) − ε
) · f1(x3) < α · (

1 + tan ϕ̄γ − ε′)

≤ α · (
1 + tan ϕ̄γ − ε′ · tan ϕ̄γ

)

= f1(x1).

Similarly, we have
(

α · (1 + − cos γ

sin γ + 1
) − ε

)
· f2(x3) < f2(x2).

Thus, x3 is not
(
α ·

(
1 + − cos γ

sin γ+1

)
− ε

)
-approximated. ��

4 Structural results for maximization problems

In this section, we investigate whether the results obtained in Sect. 3 can be transfered to the
case of maximization. It is known that obtaining approximations using the weighted sum
scalarization is more challenging for maximization problems than for minimization prob-
lems since the set of supported solutions does not yield any approximation guarantee in
general [3]. We will see that this is also the case when using general ordering cones to obtain
approximations. In contrast to the case of minimization problems, where the approxima-
tion guarantee that is achieved by the set of γ -supported solutions increases continuously
when γ is increased between π

2 and π , the set of γ -supported solutions does not yield any
approximation guarantee for any γ > π

2 in the case of maximization problems in general.
In this section, instead of the assumption that the set f (X) + R

p
� is closed, we assume

that f (X) − R
p
� is closed and that f (X) is bounded. The additional assumption of f (X)

123



410 Journal of Global Optimization (2023) 86:393–415

Fig. 6 Illustration of the instance I constructed in the proof of Proposition 3.3. The shaded region is α-
approximated by x1 or x2 with respect to �ϕ

γ for ϕ = ϕ̄γ . It is easy to see that for ϕ ≤ ϕ̄γ (i.e., if the
dominance cones are rotated counterclockwise in the picture), x3 is α-approximated by x1 with respect to�ϕ

γ ,
and, for ϕ ≥ ϕ̄γ (i.e., if the dominance cones are rotated clockwise), x3 is α-approximated by x2 with respect
to �ϕ

γ . Thus, {x1, x2} is an α-approximation with respect to �ϕ
γ for any ϕ ∈ [

0, γ − π
2
] \ {

γ − π, π
2
}

being bounded ensures external stability, i.e., that, also for maximization problem instances,
for any feasible solution x ∈ X that is dominated by another feasible solution x ′ ∈ X , there
also exists an efficient solution x ′′ ∈ XE dominating x . All other underlying concepts in this
section are analogous to the corresponding concepts for minimization problems introduced
in Sect. 2.

Observation 1 transfers directly to the case of maximization. However, results similar to
Sect. 3 do not hold for maximization. The set of γ -supported solutions does not yield any
approximation guarantee in general:

Theorem 4.1 For any γ ∈ ( π
2 , π ] and any α ≥ 1, there exists an instance I of a biobjective

maximization problem where the set of γ -supported solutions is not an α-approximation.

Proof For γ ∈ (
π
2 , π

]
andα ≥ 1, define the following instance of a biobjectivemaximization

problem (see also Fig. 7): Let the feasible set consist of exactly three solutions, x1, x2, x3
such that f1(x1) = 1, f2(x1) = α + 2 + 1

tan ϕ̄γ
· α, f1(x2) = α + 2 + 1

tan ϕ̄γ
· α, f2(x2) = 1,

f1(x3) = α + 1, and f2(x3) = α + 1. Then x3 is not γ -supported: If ϕ ≤ ϕ̄γ , we have

123



Journal of Global Optimization (2023) 86:393–415 411

Fig. 7 Illustration of the maximization problem instance I constructed in the proof of Theorem 4.1. The
dominance cones of x1 and x2 with respect to �ϕ

γ are illustrated for ϕ = ϕ̄γ . It is easy to see that x3 is
dominated by x1 for ϕ ≤ ϕ̄γ (if the dominance cones are rotated counterclockwise) and by x2 for ϕ ≥ ϕ̄γ (if
the dominance cones are rotated clockwise). Thus, x3 is not γ -supported. However, x3 is not α-approximated
by x1 or by x2 in I

tan ϕ̄γ ≤ tan ϕ′ and, therefore,

cosϕ′ · f1(x1) + sin ϕ′ · f2(x1) = cosϕ′ + sin ϕ′ · α + 2 · sin ϕ′ + sin ϕ′

tan ϕ̄γ

· α

> cosϕ′ + sin ϕ′ · α + sin ϕ′ + sin ϕ′

tan ϕ̄γ

· α

≥ cosϕ′ + sin ϕ′ · α + sin ϕ′ + cosϕ′ · α

= cosϕ′ · f1(x3) + sin ϕ′ · f2(x3).

Moreover, we have tan ϕ ≤ 1
tan ϕ′ ≤ 1

tan ϕ̄γ
by Lemma 3.4, which implies that

sin ϕ · f1(x1) + cosϕ · f2(x1) = sin ϕ + cosϕ · α + 2 · cosϕ + cosϕ

tan ϕ̄γ

· α

> sin ϕ + cosϕ · α + cosϕ + cosϕ

tan ϕ̄γ

· α

≥ sin ϕ + cosϕ · α + cosϕ + sin ϕ · α

= sin ϕ · f1(x3) + cosϕ · f2(x3).

Thus, x3 is dominated by x1 in I ϕ
γ . Similarly, if ϕ ≥ ϕ̄γ , the solution x3 is dominated by x2

in I ϕ
γ . On the other hand, {x1, x2} is obviously not an α-approximation. ��
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5 Conclusions and additional notes

This article studies approximation properties of general ordering cones containing the Pareto
cone for biobjective minimization problems. As expected, it does not suffice to consider the
set of optimal solutions (or an approximation) with respect to a single ordering cone in order
to achieve an approximation guarantee in the classical sense. Instead, we classify ordering
cones by their inner angle γ and consider sets that are optimal (or approximately optimal)
with respect to all closed convex ordering cones of inner angle γ simultaneously. These sets
then, in fact, achieve an approximation guarantee, which depends on γ . We introduce the
concept of γ -supportedness to describe solutions that are optimal with respect to at least
one ordering cone of inner angle γ . Since this concept incorporates both efficiency and
supportedness as special cases, our results are a generalization of the fact that the efficient set
is a 1-approximation and of known results about the approximation quality achievable by the
set of supported solutions. Our results are best possible in the sense that better approximation
guarantees than the ones shown are not generally achievable for any inner angle γ ∈ [π

2 , π].
Designing (polynomial-time) approximation algorithms based on general ordering cones

(other than weighted sum scalarizations) is possible but presents further challenges since
the resulting problems stay biobjective. Moreover, when attempting to compute, e.g., γ -
supported solutions via the definition of γ -supportedness, all values forϕ from the continuous
set [0, γ − π

2 ] \ {γ −π, π
2 } have to be considered. Finally, the fact that the matrix describing

the linear mapping T ϕ
γ typically contains irrational entries constitutes an additional obstacle

for algorithmic applications of the presented concepts.
An interesting direction for future research is the generalization of the presented results

to general ordering cones in more than two objectives. The equivalence between closed
convex cones containing R� and closed vector preorders satisfying the Pareto axiom also
holds for the more general case of three or more objectives. Also, most of the definitions
and observations stated in Sect. 2 easily transfer to the case of more than two objectives. For
details, we refer to [19].

Moreover, Proposition 3.1 can easily be generalized to p ≥ 3 objectives: For any closed
vector preorder 
 on R

p satisfying the Pareto axiom (except for �) and any α ≥ 1, there
exists a p-objective minimization problem instance where the set of optimal solutions with
respect to 
 is not an α-approximation with respect to �.

However, since, in three or more dimensions, a general closed convex cone cannot be
described by a finite number of scalar parameters, generalizing the positive results from
Sect. 3 is far from straightforward. One way to simplify the situation is the restriction to
polyhedral cones, which are cones that can be obtained from the nonnegative orthant via a
linear mapping. Nevertheless, even then, it is not obvious how to generalize the concept of
γ -supportedness, as there does not exist an unambiguous inner angle in a polyhedral cone in
three or more dimensions.
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Appendix A - Proof of Lemma 3.4

Proof If ϕ = 0 or ϕ′ = 0, the claim trivially holds, so we assume that γ > π
2 and ϕ ∈

(0, γ − π
2 ). First, note that

tan ϕ′ = tan(γ − π

2
− ϕ) = − 1

tan(γ − ϕ)
= −1 + tan γ tan ϕ

tan γ − tan ϕ
, (2)

where the second equality follows from the symmetry of the tan-function and the last equality
follows from the addition formula for tan, which states that, for any θ1, θ2 ∈ R for which
tan θ1, tan θ2, and tan(θ1 − θ2) are well-defined,

tan(θ1 − θ2) = tan θ1 − tan θ2

1 + tan θ1 · tan θ2
.

Define s := 1
2 ·

( √
tan ϕ√
tan ϕ′ +

√
tan ϕ′√
tan ϕ

)
. Then s ≥ 1, where s = 1 if and only if ϕ = ϕ′ = ϕ̄γ .

Moreover, we can write

tan ϕ + tan ϕ′ = √
tan ϕ · √

tan ϕ′ · tan ϕ + tan ϕ′
√
tan ϕ · √

tan ϕ′

= √
tan ϕ · √

tan ϕ′ ·
( √

tan ϕ√
tan ϕ′ +

√
tan ϕ′

√
tan ϕ

)

= 2s · √
tan ϕ · √

tan ϕ′.

Now, we reformulate (2) to obtain

tan ϕ · tan ϕ′ − tan ϕ · tan γ − tan ϕ′ · tan γ = 1.

This yields

1 + s2 · (tan γ )2 = tan ϕ · tan ϕ′ − (tan ϕ + tan ϕ′) · tan γ + s2 · (tan γ )2

= tan ϕ · tan ϕ′ − 2s · tan γ · √
tan ϕ · √

tan ϕ′ + s2 · (tan γ )2

=
(√

tan ϕ · √
tan ϕ′ − s · tan γ

)2

and, thus,

√
tan ϕ · √

tan ϕ′ =
√
1 + s2 · (tan γ )2 + s · tan γ. (3)
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By plugging the case that ϕ = ϕ′ = ϕ̄γ into (3) and using that s ≥ 1, we obtain

tan ϕ̄γ = √
tan ϕ̄γ · √

tan ϕ̄γ =
√
1 + (tan γ )2 + tan γ

≥
√
1 + s2 · (tan γ )2 + s · tan γ

= √
tan ϕ · √

tan ϕ′,

where the inequality holds since tan γ ≤ 0 and, therefore, the right hand side of (3) is
non-increasing in s. ��

Appendix B - Proof of Corollary 3.1

Proof By Theorem 3.2, we know that XQ is an (α · (1 + tan ϕ̄γ ))-approximation, where

tan ϕ̄γ = tan
( γ
2 − π

4

) = tan
(

γ− π
2

2

)
. The well-known half-angle formula for tan states that,

for any angle θ ∈ [0, π),

tan
θ

2
= sin θ

1 + cos θ
= 1 − cos θ

sin θ
.

Thus, on the one hand, we can write S as

S = tan

(
γ − π

2

2

)
= sin

(
γ − π

2

)

cos
(
γ − π

2

) + 1
= − cos γ

sin γ + 1

and, on the other hand, we can write S as

S = tan

(
γ − π

2

2

)
= 1 − cos

(
γ − π

2

)

sin
(
γ − π

2

) = 1 − sin γ

− cos γ
= 1

− cos γ
+ tan γ

=
√
1 + (tan γ )2 + tan γ,

where the last equality follows from the well-known identity

cos θ = − 1
√
1 + (tan θ)2

for θ ∈ ( π
2 , π]. ��
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