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Abstract 
Purpose  Adherence to the Mediterranean diet is associated with beneficial health effects, including gastrointestinal disor-
ders. Preclinical studies suggest that omega-3 polyunsaturated fatty acids (n-3 PUFAs), found in Mediterranean foods like 
nuts and fish, improve intestinal barrier integrity. Here, we assessed possible effects of n-3 PUFAs on barrier integrity in a 
randomized controlled trial.
Methods  We studied 68 women from the open-label LIBRE trial (clinicaltrials.gov: NCT02087592) who followed either a 
Mediterranean diet (intervention group, IG) or a standard diet (control group, CG). Study visits comprised baseline, month 
3, and month 12. Barrier integrity was assessed by plasma lipopolysaccharide binding protein (LBP) and fecal zonulin; fatty 
acids by gas chromatography with mass spectrometry. Median and interquartile ranges are shown.
Results  Adherence to the Mediterranean diet increased the proportion of the n-3 docosahexaenoic acid (DHA) (IG + 1.5% 
[0.9;2.5, p < 0.001]/ + 0.3% [− 0.1;0.9, p < 0.050] after 3/12 months; CG + 0.9% [0.5;1.6, p < 0.001]/ ± 0%) and decreased 
plasma LBP (IG − 0.3 µg/ml [− 0.6;0.1, p < 0.010]/ − 0.3 µg/ml [− 1.1; − 0.1, p < 0.001]; CG − 0.2 µg/ml [− 0.8; − 0.1, 
p < 0.001]/ ± 0 µg/ml) and fecal zonulin levels (IG − 76 ng/mg [− 164; − 12, p < 0.010]/ − 74 ng/mg [− 197;15, p < 0.001]; 
CG − 59 ng/mg [− 186;15, p < 0.050]/ + 10 ng/mg [− 117;24, p > 0.050]). Plasma DHA and LBP (R2: 0.14–0.42; all p < 0.070), 
as well as plasma DHA and fecal zonulin (R2: 0.18–0.48; all p < 0.050) were found to be inversely associated in bi- and 
multivariate analyses. Further multivariate analyses showed that the effect of DHA on barrier integrity was less pronounced 
than the effect of fecal short-chain fatty acids on barrier integrity.
Conclusions  Our data show that n-3 PUFAs can improve intestinal barrier integrity.
Trial registration number: The trial was registered prospectively at ClinicalTrials.gov (reference: NCT02087592).
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Introduction

The intestinal barrier is a complex anatomical structure, 
protecting the host against gut microbes, food antigens, and 
toxins present in the gastrointestinal tract. A functioning 
intestinal barrier is required for gut health, whereas intesti-
nal barrier impairment has been associated with numerous 
diseases such as cardiovascular disease, cancer, type 2 dia-
betes, and inflammatory bowel disease [1, 2].

Intestinal barrier function is affected by several endog-
enous and exogenous factors including diet, stress, exces-
sive body weight, and low or extreme physical activity [1, 
3, 4]. Previous findings have determined that the intestinal 
barrier plays a central role in disease occurrence, yet the 
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mechanisms by which the barrier function is regulated are 
not well known. Dietary factors might play an important 
role here. We and others have shown that short-chain fatty 
acids, derived from bacterial fermentation of dietary fib-
ers, improve intestinal barrier function [5–7]. Also, vita-
mins, minerals, amino acids and polyphenols might have an 
effect [8, 9]. Furthermore, several preclinical studies suggest 
that diet-derived omega-3 polyunsaturated fatty acids (n-3 
PUFAs) improve intestinal barrier integrity [10, 11] yet to 
date there is no data including human subjects regarding 
this.

The Mediterranean diet describes the traditional dietary 
pattern in south Italy and Greece in the mid 1950s, which 
was characterized by a high intake of n-3 PUFAs like alpha-
linolenic acid and docosahexaenoic acid (DHA) due to a 
regular consumption of seafood and nuts [12]. Such n-3 
PUFAs have been shown to be cardioprotective mainly due 
to beneficial effects on atherosclerosis, arrhythmias, inflam-
mation, and thrombosis [13]. Furthermore, there is evidence 
that they improve endothelial function, lower blood pressure, 
and significantly lower triglycerides [13]. Adherence to the 
Mediterranean diet has been associated with primary and 
secondary prevention of diseases, which are also linked to 
intestinal barrier impairment, including cardiovascular dis-
ease [14, 15], cancer [16–18], and type 2 diabetes [19]. Also, 
this diet has been shown to be effective in the prevention 
of and improvement of gastrointestinal disorders, including 
intestinal barrier impairment [5, 20].

In the present study, we aimed to assess possible asso-
ciations between the Mediterranean diet, plasma fatty acid 
composition, and intestinal barrier integrity for the first time 
in a human study. We hypothesized that n-3 PUFAs improve 
intestinal barrier function, assessed by the two validated bio-
markers plasma lipopolysaccharide binding protein (LBP) 
and fecal zonulin [21].

Materials and methods

Study design

Data for the present exploratory study derived from the ran-
domized controlled LIBRE (Lifestyle Intervention Study in 
Women with Hereditary Breast and Ovarian Cancer) trial. 
The LIBRE study was a randomized (1:1 ratio), prospec-
tive, open-label, two-armed controlled multicenter trial, con-
ducted in Germany. It aimed to test the effect of a structured 
lifestyle intervention program focussing on the Mediterra-
nean diet and increased physical activity on cancer-relevant 
outcomes. The study included women at high risk for breast 
and ovarian cancer due to a pathogenic germline mutation 
in the BRCA1 and/or BRCA2 genes. BRCA mutations have 
been shown to be associated with an altered intestinal barrier 

function [5, 20] and it is suggested that intestinal barrier 
impairment is linked to breast cancer initiation and progres-
sion [22].

In the present explorative analyses we included all 68 
participants from the completed LIBRE-1 study [23], which 
started in 2014. The LIBRE-1 study was a feasibility study 
with the number of participants who successfully completed 
the first 3 months of lifestyle intervention used as primary 
endpoint. A rate of 70% adherence or more was considered 
as success. Secondary endpoints comprised body mass 
index (BMI), physical activity, which is measured objec-
tively by spiroergometry and is expressed as the ventilatory 
threshold (VT1), the analyses of omega fatty acids, and fecal 
metabolites. VT1 is an objective marker of physical fitness 
and represents the level of physical activity at which blood 
lactate accumulates faster than it can be cleared in spiroer-
gometry. The sample size in LIBRE-1 was adjusted to this 
goal but was not calculated based on statistical assumptions 
and tests [23]. The main focus of the present analysis was 
to assess possible changes in the plasma fatty acid com-
position, especially in the proportion of n-3 PUFAs upon 
intervention. Considering the mean increase in the propor-
tion of n-3 PUFAs in the plasma fatty acids between base-
line and month 3, a post-hoc power calculation showed a 
power of 77% given an alpha error of 5% (intervention group 
1.8% ± 2.3% [mean ± SD]; control group 0.3% ± 2.3%). The 
LIBRE-2 confirmatory study, which aims to include 600 
women, started 2015 and recruitment is ongoing [24].

In LIBRE, women with a history of breast cancer prior 
to study start as well as women without previous breast can-
cer were included. Inclusion criteria were female sex, age 
between 18 and 69 years, a pathogenic BRCA1/2 mutation 
and written informed consent. Exclusion criteria comprised, 
among others, a BMI below 15 kg/m2, neoplastic diseases 
currently in treatment, as well as food allergies and/or die-
tary patterns which prevent the implementation of the Medi-
terranean diet, like veganism [23].

Individuals from the intervention group (n = 33) received 
a structured lifestyle-intervention program, consisting of a 
three-month intensive phase with bi-weekly group classes 
on the Mediterranean diet as well as professionally guided 
sport training, focussed on endurance-oriented exercises. 
The intensive phase was followed by a nine-month less 
intensive phase with monthly meetings. The control group 
(n = 35) were lectured once on the dietary recommendations 
of the German Nutrition Society (DGE) and once on the 
beneficial effects of regular physical activity on breast can-
cer incidence, prognosis, and recurrence at the beginning of 
the study. Study visits were at baseline, as well as 3 months 
(time point V1) and 12 months (time point V2) after base-
line. Details on the enrolment, randomization, drop-outs, 
and available data for each time point are shown in the CON-
SORT flow chart in Supplementary Fig. 1.
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The ethics review board of the Klinikum Rechts der Isar 
of the Technical University of Munich approved the study 
protocol (reference 5686/13) which was in accordance with 
the ethical standards laid down in the 1964 Declaration of 
Helsinki and its later amendments. The trial was registered 
at ClinicalTrials.gov (reference: NCT02087592).

Dietary measurements

Two validated questionnaires were used to assess dietary 
habits. The Mediterranean Diet Adherence Screener 
(MEDAS), developed in the Prevención con Dieta Medi-
terránea (PREDIMED) studies [25], is a validated tool to 
measure adherence to the Mediterranean diet. As part of 
the LIBRE-1 study, we translated the original version into 
German and validated the German version again [26]. The 
MEDAS consists of 14 dichotomous questions, focussing 
on food consumption and typically Mediterranean dietary 
habits. Each question is scored with either 0 or 1, with 1 
representing the answers that are related to the Mediterra-
nean diet. Therefore, the MEDAS-Score ranges from 0 to 
14, with 14 points representing the highest adherence to the 
Mediterranean diet. Two MEDAS questions imply meat con-
sumption (#5 & #13, [26]) and were occasionally left out by 
vegetarians. Therefore, we calculated the MEDAS-Score as 
the percentage of the achieved score related to the achievable 
score (e.g. 7/14 = 50%; 7/13 = 54%).

In addition to the MEDAS, participants were asked to 
complete a 33-page long semi-quantitative Food Frequency 
Questionnaire (FFQ) established and validated by the Euro-
pean Prospective Investigation into Cancer and Nutrition 
(EPIC) consortium [27]. The EPIC-FFQ contains various 
questions asking qualitatively and quantitatively about food 
and beverage consumption, covering the previous 12 months 
(baseline), the previous 3-month-intervention phase (V1), or 
the previous 9-month-intervention phase (V2). Data input 
and data evaluation were performed using the study manage-
ment system for health research, which has been developed 
by the Department of Epidemiology of the German Insti-
tute of Human Nutrition. The EPIC-FFQ provides the daily 
intakes of food groups (e.g. fruits, vegetables, nuts) and 
nutrients (e.g. fats, carbohydrates, protein). In the EPIC-FFQ 
results, vegetable oil refers to the sum of all vegetable oils 
consumed; processed meat refers to meat and meat products 
which have been processed by e.g. salting, curing, fermenta-
tion, smoking, and/or the addition of chemical preservatives 
(including e.g. bacon, ham, and sausages); red meat refers to 
unprocessed meat of red color, e.g. beef and pork.

Data from the EPIC-FFQ were adjusted for energy intake 
in accordance to Willett et al. [28]. Since the EPIC-FFQ 
does not per se measure adherence to the Mediterranean 
diet, we calculated the Mediterranean Diet Score (MedD-
Score), a commonly used score established by Trichopoulou 

et al. [29]. Thus, in the present analyses, we included two 
independent scores which determine adherence to the Medi-
terranean diet, i.e. the MEDAS-Score and the MedD-Score. 
Dietary data for all variables and all time points is shown in 
Supplementary Table 1.

Blood and fecal sample collection

Blood and fecal samples were collected in 2014 and 2015 at 
the participating study centers and sent to the University of 
Hohenheim overnight. All samples were stored at −80 °C 
and were analyzed in 2017 and 2018.

Plasma fatty acid composition

Plasma fatty acids were transferred into fatty acid methyl 
esters (FAME) and were determined by gas chromatography 
with mass spectrometry (GC/MS). Afterwards, the propor-
tion (%) of each fatty acid in the total fatty acid composi-
tion (= 100%) was determined. Therefore, each fatty acid is 
shown as the proportion of the respective fatty acid (%), as 
shown in Supplementary Table 2.

In detail, blood samples were collected in ethylenedi-
aminetetraacetic acid (EDTA)-coated tubes. To separate the 
plasma, the samples were centrifuged at 500g for 7.5 min 
at 15 °C. Plasma fatty acid composition was assessed simi-
lar to a method used for fatty acid analysis in erythrocyte 
membranes, which was described previously [30]. In brief, 
0.05 ml of plasma was supplemented with a solution con-
taining 2 µg the internal standard 10,11-dichloro-undeca-
noic acid (DC 11:0) which was synthesized according to 
Thurnhofer and Vetter [31]. Transesterification (60 min at 
80 °C) was carried out by adding 2 ml methanol with 1% 
sulphuric acid according to Wendlinger et al. [32]. Finally, 
2.5 μg of the second internal standard, myristic acid ethyl 
ester (14:0 EE), was added to the resulting solution with 
the fatty acid methyl esters. This internal standard, which 
does not interfere with the fatty acid methyl esters in the 
samples, was used to level off variations in the instrumental 
performance between the individual measurements [33]. The 
final sample solutions were analyzed by GC/MS on a 5890 
series II/5972A system (Hewlett-Packard, Waldbronn, Ger-
many) equipped with a 60 m × 0.25 mm i.d. capillary column 
coated with 0.1 µm film thickness 10% cyanopropylphenyl, 
90% bis-cyanopropyl polysiloxane (Rtx 2330, Restek, Bela-
fonte, PA, USA) operated in selected ion monitoring (SIM) 
mode according to Thurnhofer et al. [34].

Intestinal barrier biomarkers

All intestinal barrier biomarkers were analyzed using 
enzyme-linked immunosorbent assays following the manu-
facturer’s protocols. Zonulin was measured in fecal samples 
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(K5600; Immundiagnostik AG, Bensheim, Germany). LBP 
was measured in plasma (REFs: DY870-05 and DY008; Bio-
Techne GmbH, Wiesbaden, Germany).

Short‑chain fatty acids

To analyze fecal short-chain fatty acid (SCFA) levels, 
400–500 mg feces were first diluted 1:4 in water. Then, 
0.1 ml of 50% ortho-phosphoric acid (AppliChem GmbH, 
Darmstadt, Germany) was added before the samples were 
homogenized and filtered using polyester syringe filters 
(REF: 729033; Macherey–Nagel GmbH & Co. KG, Düren, 
Germany). Afterwards, 1 µl filtrate was analyzed using a 
capillary gas chromatograph (HP6890 Series; Hewlett 
Packard Corp., Paolo Alto, California, USA) with a flame 
ionization detector using the column OPTIMA-FFAP (REF: 
726344.10; Macherey–Nagel GmbH & Co. KG, Düren, 
Germany) with standards for all SCFAs (Merck Schuchardt 
OHG, Hohenbrunn, Germany). Fecal dry mass was assessed 
by drying 300–500 mg feces overnight at 103 °C [35]. The 
SCFA data are expressed in relation to dry mass to overcome 
bias due to differing fecal water contents.

Statistical analyses

Prior to analyses, normal distribution was tested for all vari-
ables using Shapiro–Wilk tests, showing that 76% of the 
variables were not normally distributed. Hence, non-par-
ametric tests were used for all uni- and bivariate analyses. 
Differences between the intervention and control groups 
were tested using Fisher’s exact test for categorical varia-
bles or Mann–Whitney U tests for quantitative data. Within-
group differences over time were assessed using Wilcoxon 
matched-pairs signed rank tests. To assess changes over time 
we calculated the shift for each parameter (baseline [BL] 
values subtracted from the respective values at time point V1 
and V2, shown as ∆V1-BL and ∆V2-BL). Correlations were 
determined using Spearman's rank coefficient. Multivariate 
analyses were performed using multiple regressions. Before 
performing multiple regressions, the variables were tested 
for intercorrelation (intercorrelations were defined as Spear-
man’s correlation coefficient > 0.8) showing no significant 
results. A p ≤ 0.07 was considered as a trend, a p < 0.05 was 
considered as statistically significant.

As these analyses are not confirmatory and rather to 
generate hypotheses to be further analysed in studies with 
larger populations, e.g. LIBRE-2, we did not perform post-
hoc adjustment for multiple testing. Also, in order to try to 
compensate for random findings in the analyses, we only 
draw conclusions based on results, which were found (i) 
consistently for the intervention group and the control group 
and/or (ii) consistently for both shifts ∆V1-BL and ∆V2-
BL. All statistical analyses were performed using GraphPad 

Prism version 9.1.0 (GraphPad Software, San Diego, CA, 
USA). Data are shown as medians with interquartile ranges 
(25th; 75th percentiles).

Results

Baseline characteristics

At baseline, the intervention and control groups had similar 
numbers of women with previously diagnosed breast cancer, 
vegetarians, and smokers, and did not differ in age, BMI 
(Table 1), and physical fitness (data not shown).

At baseline, both groups showed similar adherence to 
the Mediterranean diet according to the MedD-Score, yet 
the MEDAS-Score was slightly higher in the intervention 
group compared to the control group (50% [36%;59%] 
vs 42% [29%;50%], p = 0.045) (Supplementary Table 1). 
Besides the small difference in the MEDAS-Score, there 
was no baseline difference in diet. The baseline propor-
tion of eicosanoid acid (20:0) in the plasma fatty acids was 
higher in the control group compared to the intervention 
group (0.2% [0.1%;0.2%] vs 0.1% [0.1%;0.2%], p = 0.043), 
while the proportion of linoleic acid (18:2, n-6) was higher 
in the intervention group compared to the control group 
(30% [26%;32%] vs 28% [26%;30%], p = 0.039). All other 
fatty acids as well as the levels of the intestinal barrier bio-
markers LBP and zonulin did not differ between the groups 
at baseline (Supplementary Table 2).

The effect of the LIBRE intervention program 
on dietary and physical outcomes

As described elsewhere [30], adherence to the Mediter-
ranean diet, assessed by both the MEDAS-Score and the 
MedD-Score, increased markedly in the intervention group 
for at least 1 year (all p < 0.01) (Supplementary Table 1). In 

Table 1   Patient characteristics at baseline

BMI body mass index. Statistics: Fisher’s exact test (categorical vari-
ables) and Mann–Whitney U test (numerical data)
a Between group difference
b Previously diagnosed with breast cancer. Total numbers and per-
centage (diseased, vegetarians, smokers) or median and interquartile 
ranges (age, BMI) are shown

Parameters Intervention group Control group p valuea

(n = 33) (n = 35)

Diseasedb [n (%)] 23 (69.7) 23 (65.7) 0.799
Vegetarians [n (%)] 2 (6.1) 4 (11.4) 0.674
Smokers [n (%)] 4 (12.1) 4 (11.4) 0.999
Age [years] 42 (35;49) 41 (35;50) 0.843
BMI [kg/m2] 23 (21;28) 24 (21;28) 0.485
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the control group, there was a mild but significant increase 
in the MEDAS-Score and the MedD-Score between baseline 
and V1 (all p < 0.001), which was absent at month 12 (all 
p > 0.05).

Data derived from the EPIC-FFQ showed that partici-
pants from the intervention group increased the intake of 
the typically Mediterranean food groups nuts and seafood 
(Fig. 1a, b), vegetables, legumes, fruits, olives, and vegeta-
ble oil (Fig. 1c) (all p < 0.05) (Supplementary Table 1). At 
the same time, the intake of processed meat (p < 0.05 for 

∆V1-BL and ∆V2-BL) and red meat (p = 0.070 for ∆V1-
BL) decreased in the intervention group, but not in the 
control group (Fig. 1d,e). The participants from the control 
group decreased the intake of lignin and total diet-derived fat 
in the first three months and decreased the intake of animal- 
and plant-derived protein, total fibers, and total diet-derived 
fat over the 12 month-period (all p < 0.05). Dietary data for 
all time points is shown in Supplementary Table 1.

Physical fitness, assessed objectively in spiroergom-
etry as the ventilatory threshold 1 (VT1), did not change 

Fig. 1   Effect of the intervention 
on dietary habits. a–e Shown 
are data for baseline (BL), as 
well as after month 3 (V1) and 
month 12 (V2) for the intake of 
typical Mediterranean foods. 
Tukey boxplots with median, 
whiskers (1.5 × interquartile 
ranges), and outliers are shown 
in green (intervention group; 
BL: n = 31, V1, V2: n = 26) 
and orange (control group; 
BL: n = 33, V1: n = 31, V2: 
n = 29). Within group differ-
ence to baseline is indicated by 
asterisks (*p < 0.05; **p < 0.1; 
***p < 0.001; Wilcoxon signed-
rank test). This figure summa-
rizes data shown in Supplemen-
tary Table 1
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in the intervention group, and showed a slight but signifi-
cant decrease in the control group between baseline and V1 
(−12 W [−62 W;3 W], p = 0.020) but not between baseline 
and V2 (p > 0.05). The mean BMI did not change in the 
intervention group and increased mildly in the control group 
between baseline and V1 (+ 0.32 kg/m2 [− 0.1 kg/m2;0.8 kg/
m2], p = 0.013) and increased by trend between baseline and 
V2 (+ 0.27 kg/m2 [− 0.5 kg/m2; 0.7 kg/m2] p = 0.062) (Sup-
plementary Table 1).

Effect of the Mediterranean diet on plasma fatty 
acid patterns and intestinal barrier biomarkers

After the 3-month intensive intervention phase, we observed 
several changes in the plasma fatty acid composition in both 
study arms. For example, in the first 3 months the propor-
tion of the n-3 PUFA DHA (22:6) increased in both groups, 
while the proportion of the n-6 PUFA arachidonic acid 
(20:4) decreased (all p < 0.001) (Fig. 2a, b). After 1 year, 
these changes were still present in the intervention group 
(all p < 0.05), but not in the control group. Accordingly, the 
total n-3/n-6 ratio increased in the intervention group (all 
p < 0.05) (Fig. 2c). Compared to baseline, the proportion 
of oleic acid (18:1, n-9) increased mildly in the first three 
months (+ 0.2% [−1.3%;1.2%], p = 0.062) and increased 
markedly after 1 year (+ 1.3% [0.2%;0.4%], p = 0.001) in 
the intervention group (Fig. 2d). There was no change in the 
proportion of plasma oleic acid in the control group. In both 
study arms there was a decrease in the proportion of total 
saturated fatty acids (SFAs) for at least 1 year (intervention 
group, all p < 0.001; control group, all p < 0.05) (Fig. 2e).

Both biomarkers of intestinal barrier function decreased 
in the intervention group in the first 3 months (LBP −0.3 µg/
ml [−0.6 µg/ml; 0.1 µg/ml], p = 0.007; zonulin −76 ng/mg 
[−164 ng/mg; −12 ng/mg], p = 0.006). In the control group, 
both biomarkers decreased in the first three months (LBP 
−0.2 µg/ml [−0.8 µg/ml; −0.1 µg/ml], p < 0.001; zonulin 
−59 ng/mg [−186 ng/mg; 15 ng/mg], p = 0.023) but returned 
to baseline levels after 1 year (Fig. 2f,g). All data on plasma 
fatty acid composition and the gut barrier biomarkers is 
shown in detail in Supplementary Tables 1 and 2.

Omega‑3 polyunsaturated fatty acids and intestinal 
barrier integrity

As a first step, we analyzed correlations between diet, 
plasma fatty acids, and the intestinal barrier biomarkers. 
Here, we first calculated the shift for each parameter that 
was significantly altered during the study (see Supplemen-
tary Tables 1 and 2).

As shown in Table 2, the increase in adhering to the 
Mediterranean diet correlated with the increase in the pro-
portion of DHA and the Omega-3-Index. The increase in 

the adherence to the Mediterranean diet was furthermore 
inversely correlated with the proportion of n-6 PUFAs. 
These associations were found consistently in the inter-
vention and control groups. In the intervention group, the 
MedD-Score correlated with the proportion of the n-9 oleic 
acid at ∆V1-BL.

The intake of nuts was associated with the proportion 
of DHA, and the intake of processed meat was associated 
with the proportion of SFAs. These associations were found 
consistently for both ∆V1-BL and ∆V2-BL in the interven-
tion group. The intake of vegetable oils correlated strongly 
with the proportion of oleic acid in the intervention group 
for ∆V2-BL but not the other time points. As shown in 
Fig. 3a, the decrease in the proportion of SFAs correlated 
with the decrease in the plasma levels of the intestinal bar-
rier biomarker LBP for both ∆V1-BL and ∆V2-BL in the 
intervention group as well as for ∆V1-BL in the control 
group. Also, the increase in the proportion of DHA cor-
related with the decrease in plasma LBP (Fig. 3b) and fecal 
zonulin (Fig. 3c). All results from the correlation analyses 
are shown in Table 2.

To further investigate the observed associations between 
the plasma fatty acid composition and the intestinal per-
meability biomarkers, we ran multiple regression models, 
including BMI, physical fitness, and previous cancer dis-
ease state as possible confounders. As shown in Supple-
mentary Table 3, these multivariate analyses confirmed the 
initial correlation analyses to a large degree. In detail, the 
association between the proportion of SFAs and plasma 
LBP was also significant in the intervention group for ∆ 
V1-SE (p = 0.048, R2 = 0.45), but was not significant at the 
other time points and not in the control group. Furthermore, 
the multivariate analyses confirmed the inverse associa-
tion between the proportion of DHA and plasma LBP for 
∆ V1-SE both in the intervention and the control groups 
(intervention group: p = 0.070, R2 = 0.42; control group: 
p = 0.023, R2 = 0.37). Also, the regression models confirmed 
the inverse association between the proportion of DHA and 
fecal zonulin in the intervention group (∆ V1-BL: p = 0.049, 
R2 = 0.40; ∆ V2-BL: p = 0.040, R2 = 0.42).

Taken together, the initial correlation analyses as well 
as the subsequent multivariate analyses showed an inverse 
association between the proportion of DHA in the plasma 
fatty acids and the two intestinal barrier biomarkers LBP 
and zonulin. Furthermore, the results showed an association 
between the proportion of SFAs and LBP.

Intestinal short‑chain fatty acids have a greater 
effect on intestinal barrier integrity than plasma 
omega‑3 polyunsaturated fatty acids

We have previously shown that fecal short-chain fatty acids 
(SCFAs) are key mediators for the favorable effects of the 
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Fig. 2   Effect of the intervention 
on plasma fatty acid compo-
sition and intestinal barrier 
biomarkers Shown are data for 
baseline (BL), as well as after 
month 3 (V1) and month 12 
(V2) for the proportion (%) of 
docosahexaenoic acid (DHA), 
arachidonic acid (ARA), oleic 
acid (OA), and total saturated 
fatty acids (SFAs) in the total 
plasma fatty acid composition 
(plasma FAs) (a–e), and for 
the intestinal barrier biomark-
ers plasma lipopolysaccharide 
binding protein (LBP) and 
fecal zonulin (f, g). Tukey 
boxplots with median, whiskers 
(1.5 × interquartile ranges), and 
outliers are shown in green 
(intervention group; BL: n = 33, 
V1: n = 26–33, V2: n = 23–29) 
and orange (control group; 
BL: n = 35, V1: n = 29–35, V2: 
n = 28–32). Within group differ-
ence to baseline is indicated by 
asterisks (*p < 0.05; **p < 0.1; 
***p < 0.001; Wilcoxon signed-
rank test). This figure summa-
rizes data shown in Supplemen-
tary Table 2
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Mediterranean diet on intestinal barrier integrity [5]. In 
this previous article we showed strong inverse associations 
between fecal levels of the SCFAs propionate and butyrate 
and the intestinal barrier biomarkers plasma LBP and fecal 
zonulin.

As a final step in the present analysis, we compared the 
effect size of the association between the proportion of DHA 
in the plasma fatty acids and the two intestinal barrier bio-
markers (plasma LBP and fecal zonulin) with the effect size 
of the association between fecal SCFAs (propionate and 
butyrate) and the two intestinal barrier biomarkers.

First, we ran correlation analyses, including the fecal 
amounts of the SCFAs propionate and butyrate (mg SCFA/g 
fecal sample) and the levels of the intestinal barrier biomark-
ers plasma LBP and fecal zonulin. As shown in Table 2 and 
summarized in Fig. 4a, b, the effect size (R2) was markedly 

higher for the association between fecal SCFAs and the 
intestinal barrier biomarkers (R2 0.37–0.57; all p < 0.0001) 
compared to the effect size of the association between the 
proportion of DHA in the plasma fatty acids and the intesti-
nal barrier biomarkers (R2 0.14–0.32; all p ≤ 0.070).

Subsequently, we ran multivariate regression analyses to 
verify our findings from the correlation analyses with BMI, 
physical fitness, and previous cancer disease state as pos-
sible confounders. As summarized in Fig. 4c, d, these mul-
tivariate analyses supported the results from the correlation 
analyses, showing that fecal SCFAs had a more pronounced 
effect on the intestinal barrier biomarkers than the propor-
tion of DHA (SCFAs and barrier biomarkers: R2 0.60–0.71; 
DHA and barrier biomarkers: R2 0.37–0.42; all p ≤ 0.070). 
All results from the multiple regression models are shown 
Supplementary Table 3.

Table 2   Correlation analyses 
between the shifts in diet, 
plasma fatty acid composition, 
intestinal barrier biomarkers, 
and fecal short-chain fatty acids 
(SCFAs)

Shown are the data for the shift between baseline (BL) and month 3 (∆ V1-BL) and for the shift between 
BL and month 12 (∆ V2-BL). Only correlations with parameters which changed during the study are 
shown in this table (see Supplementary Tables 1 and 2)
Statistics: Spearman correlation (#p ≤ 0.070; *p < 0.050; **p < 0.010; ***p < 0.001). Intervention group (∆ 
V1-BL: n = 25–26; ∆ V2-BL: n = 21–26), control group (∆ V1-BL: n = 29–31; ∆ V2-BL: n = 27–29). Fur-
ther abbreviations: DHA docosahexaenoic acid; LBP lipopolysaccharide binding protein; MEDAS Mediter-
ranean Diet Adherence Screener; MedD Mediterranean Diet Score; n Omega; n-3-Index Omega-3-Index; 
SCFAs short-chain fatty acids; SFA saturated fatty acids; Veg vegetables. Correlations which were found (i) 
consistently for the intervention group and the control group and/or (ii) consistently for the two shifts ∆V1-
BL and ∆V2-BL are highlighted in boldface. There were no significant results in the control group for ∆ 
V2-BL

1. Variable 2. Variable Intervention group Control group

∆ V1-BL ∆ V2-BL ∆ V1-BL

∆ ∆ r (R2) r (R2) r (R2)

MEDAS n-3-Index 0.547 (0.30)* 0.417 (0.17)*
MedD n-3/n-6 ratio 0.512 (0.26)** 0.535 (0.29)*
MedD 22:6 0.404 (0.16)* 0.710 (0.50)** 0.383 (0.15)*
MedD Total n-6 −0.460 (0.21)* −0.402 (0.16)*
MedD 18:1 0.431 (0.19)*
MEDAS Total SFAs −0.477 (0.23)*
Nuts 22:6 0.415 (0.17)* 0.487 (0.24)*
Fish 22:6 0.408 (0.17)*
Nuts 20:2 −0.484 (0.23)*
Veg. oils 18:1 0.670 (0.45)**
Proc. meat Total SFAs 0.422 (0.18)* 0.481 (0.23)*
LBP DHA −0.368 (0.14)# −0.570 (0.32)**
LBP n-3-Index −0.507 (0.26)**
Zonulin DHA −0.426 (0.18)* −0.463 (0.21)*
Zonulin n-3-Index −0.394 (0.16)# −0.481 (0.23)*
Zonulin n-3/n-6 ratio 0.450 (0.20)#

LBP Total SFAs 0.574 (0.33)** 0.430 (0.18)* 0.371 (0.14)*
LBP Butyrate −0.748 (0.56)*** −0.752 (0.57)***
LBP Propionate −0.731 (0.53)*** −0.739 (0.55)***
Zonulin Butyrate −0.632 (0.40)*** −0.719 (0.52)***
Zonulin Propionate −0.611 (0.37)*** −0.736 (0.54)***
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Fig. 3   Omega-3 polyunsatu-
rated fatty acids improve intes-
tinal barrier integrity. Shown 
are the correlations between 
the proportion (%) of saturated 
fatty acids (SFAs) in the total 
plasma fatty acid composition 
(plasma FAs) and plasma levels 
of lipopolysaccharide binding 
protein (LBP) (a); the propor-
tion of the omega-3 polyun-
saturated docosahexaenoic acid 
(DHA) and plasma levels of 
LBP (b); and the proportion of 
DHA and fecal levels of zonulin 
(c). Spearman correlations were 
conducted for the interven-
tion and the control groups 
(n = 33/35) using shift values 
(baseline [BL] values subtracted 
from the respective values after 
month 3 [V1] and month 12 
[V2]. This figure summarizes 
the main findings shown in 
detail in Table 2

Fig. 4   Omega-3 polyunsatu-
rated fatty acids improve intes-
tinal barrier integrity—albeit to 
a lesser degree than fecal short-
chain fatty acids. Shown are the 
comparisons of the effect sizes 
(R2) of the correlation between 
the proportion (%) of the 
omega-3 polyunsaturated fatty 
acid (n-3 PUFA) docosahex-
aenoic acid (DHA) in the total 
plasma fatty acid composition 
and the fecal short-chain fatty 
acids (SCFAs) propionate and 
butyrate with plasma lipopoly-
saccharide binding protein 
(LBP) (a), and fecal zonulin (b). 
Panels c, d show the compari-
sons of the effect sizes of the 
multiple linear regressions 
(MLR) between the proportion 
of DHA and the fecal SCFAs 
propionate and butyrate with 
plasma LBP (c) and fecal zonu-
lin (d). #p < 0.07; *p < 0.05; 
**p < 0.01; ***p < 0.001; n.s. 
not significant. This figure 
summarizes the main findings 
shown in detail in Table 2 and 
Supplementary Table 3
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Discussion

Intestinal barrier dysfunction is a major cause that drives 
low-grade inflammation found in numerous chronic dis-
eases, including cardiometabolic diseases like type 2 dia-
betes, and cancer [2, 36]. Adherence to the Mediterranean 
diet, on the other hand, shows beneficial effects on these 
chronic diseases [14–18]. In the present study, we show 
that an increase in the proportion of n-3 PUFAs in the 
plasma fatty acids, derived from adherence to the Mediter-
ranean diet, improves intestinal barrier dysfunction.

In a randomized controlled trial, we assessed the effect 
of a 1-year Mediterranean diet on plasma fatty acid levels 
and intestinal barrier integrity in a cohort of women with 
mild barrier impairment due to BRCA germline mutations 
[5, 20]. Our data show that adherence to the Mediterranean 
diet changes the plasma fatty acid composition, increasing 
the proportion of anti-inflammatory n-3 PUFAs and n-9 
MUFAs, while decreasing the proportion of SFAs and pro-
inflammatory n-6 PUFAs.

Thus far, it has been largely unclear how adherence 
to the Mediterranean diet exerts its beneficial effects on 
chronic diseases. Preclinical studies suggested that diet-
derived organic acids like ferulic acid found in grains [37], 
but especially n-3 PUFAs might be of major relevance 
here. For the first time in a clinical setting, we show that 
n-3 PUFAs improve intestinal barrier function, which has 
so far only been shown in cell lines and animal models. 
Using bi- and multivariate analyses we found that n-3 
PUFAs, especially DHA found in fat fish like salmon, 
improved intestinal barrier function, while SFAs, found 
in confectionery and fast food, were associated with bar-
rier dysfunction. Of note, we found no association between 
the proportion of n-6 PUFAs or n-9 MUFAs in the plasma 
fatty acids and the two barrier biomarkers, indicating that 
an effect of omega fatty acids on barrier integrity is exclu-
sive for n-3 PUFAs.

Marine-derived n-3 PUFAs like eicosapentaenoic acid 
(EPA) and DHA are incorporated into cell membranes, 
including intestinal epithelial cell membranes, and exert 
several biological effects. The best-known mechanisms 
comprise the induction of anti-inflammatory eicosa-
noids derived from EPA and docosanoids derived from 
DHA [38], which are linked to lower cancer incidence 
[39]. Also, recent studies showed that marine-derived n-3 
PUFAs improve intestinal barrier function, which has been 
shown in cell lines [40–47] and rodents [43, 48–56].

According to in vitro and in vivo studies, n-3 PUFAs 
affect tight junction proteins, including occludin and 
zonula occludens-1 (ZO-1), which are essential for effec-
tive cell–cell connections, which are necessary to prevent 
uncontrolled paracellular permeability. In detail, in vitro 

studies [44–46] and rodent models [50, 51, 57] showed 
that long-chain n-3 PUFAs (eicosapentaenoic acid and 
DHA) improved gut barrier stability via an increased 
expression of occludin and ZO-1 in cell membranes and 
decreased cellular degeneration. Furthermore, n-3 PUFAs 
induce the G-protein coupled receptor 120, which exerts 
anti-inflammatory effects and increases tight junction sta-
bility [10, 58, 59]. For the first time in a clinical setting, 
our data show a barrier-stabilizing effect of n-3 PUFAs 
in humans, using two validated barrier biomarkers LBP 
and zonulin.

Intestinal barrier function is affected by numerous exog-
enous and endogenous factors, including lifestyle factors 
like diet, physical activity, alcohol intake or smoking, but 
also gut microbiota composition and function [2, 3, 60]. As 
shown by our data, n-3 PUFAs have a significant influence 
on barrier integrity. However, barrier-stabilizing effects are 
not limited to n-3 PUFAs. Early and recent research showed 
that SCFAs, derived from bacterial fermentation of dietary 
fibers in the colon, improve intestinal barrier function [2, 
60, 61], exert anti-inflammatory effects [62, 63], and might 
regulate cancer progression [64]. In the present study, we 
assessed fecal SCFA levels to compare the effect size of n-3 
PUFAs on intestinal barrier integrity with the effect size of 
SCFAs on barrier integrity. To the best of our knowledge, 
this is the first clinical study to investigate this. Our data 
suggest that the effect of fecal SCFAs on barrier function 
is more pronounced than the effect of n-3 PUFAs on bar-
rier function. Obviously, the LIBRE study design does not 
allow to draw conclusions regarding the underlying molecu-
lar mechanisms, as extensive phenotyping would be neces-
sary to do so. We assume, however, that several aspects play 
a role here. Most importantly, SCFAs are produced in the 
colon and are metabolized to a large degree by enterocytes 
where SCFAs directly improve barrier integrity [2, 60]. On 
the other hand, n-3 PUFA intake is regulated in proximal 
parts of the small intestine. Therefore, only smaller amounts 
of n-3 PUFAs reach enterocytes via the bloodstream which 
might lessen the effect size of n-3 PUFAs. Future studies 
should assess whether n-3 PUFAs applicated rectally or via 
capsules which release n-3 PUFAs in more distal parts of the 
intestinal tract increase the effect of these PUFAs on intesti-
nal barrier function. Furthermore, the effect of food compo-
nents other than fatty acids, fibers, and SCFAs, e.g. vitamins, 
minerals, amino acids and polyphenols, which might also 
affect intestinal barrier integrity, should be evaluated [8, 9].

Limitations and strengths

Our study has both limitations and strengths. A limitation 
of our study is that we only included women with BRCA 
mutations, which implies an associated mild intestinal bar-
rier dysfunction. To what extent our finding will also hold 
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true for other populations with or without intestinal bar-
rier dysfunction needs to be explored in future studies. A 
strength of our study is that our findings on the effects of 
omega-3 polyunsaturated fatty acids in the Mediterranean 
diet on intestinal barrier function is based on a rigorous 
approach in the statistical analyses. To omit reporting 
random findings, we only show results which were found 
consistently in the two study groups and/or found for more 
than one time point.

In conclusion, our data show that n-3 PUFAs, derived 
from typical Mediterranean foods like fatty fish, improve 
intestinal barrier function. However, the effect of gut 
bacteria-derived SCFAs on intestinal barrier function 
was more pronounced than the effect of diet-derived n-3 
PUFAs. Our study offers new insights in the interplay 
between dietary components and intestinal health.
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