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Abstract
Pancreatoblastoma (PB) is a rare tumor of the pancreas. In case of metastases, the treatment options are sparse and targeted 
approaches are not developed. We here evaluate MCL1 amplification as a putative target in PB.
Thirteen samples from adult (10/13) and pediatric patients (3/13) were collected. Three of these samples had been previously 
subjected to whole-exome sequencing (2 cases) or whole-genome sequencing (1 case) within a precision oncology program 
(NCT/DKTK MASTER), and this analysis had shown copy number gains of MCL1 gene. We established a fluorescence 
in situ hybridization (FISH) test to assess the copy number alterations of MCL1 gene in 13 formalin-fixed paraffin-embedded 
PBs, including the 3 cases assessed by genome sequencing. FISH analysis showed the amplification of MCL1 in 2 cases 
(both were adult PB), one of which was a case with the highest copy number gain at genomic analysis. In both cases, the 
average gene copy number per cell was ≥ 5.7 and the MCL1/1p12 ratio was ≥ 2.4. Our data support MCL1 as a putative 
target in PB. Patients with MCL1-amplified PB might benefit from MCL1 inhibition. Sequencing data is useful to screen for 
amplification; however, the established FISH for MCL1 can help to determine the level and cellular heterogeneity of MCL1 
amplification more accurately.
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Introduction

Pancreatoblastoma (PB) is a very rare cancer but the most 
common malignant pancreatic tumor in young children [1]. 
It can also occur in adults at an even lower rate. Although 
PB seems to derive from the fetal anlage of pancreatic aci-
nar cells and shows predominantly acinar differentiation, the 
exact origin of this tumor remains unclear [2]. Histologi-
cally, PB is a solid neoplasm with acinar differentiation and 
with the typical presence of squamoid nests, which represent 
its diagnostic hallmark. It is described as a slow-growing 
tumor [2] and the clinical presentation is unspecific with 
abdominal pain, mass effect, vomiting, and weight loss. 
When diagnosed, most tumors are rather large (> 5 cm) [1]. 
As a biomarker, alpha-fetoprotein (AFP) may be useful [3].

Complete surgical resection is the primary goal of the 
initial treatment which is feasible in the majority of cases 
[1]. Due to the high recurrence rate [4] and the fact that 
17–35% of patients have metastases at the time of diagnosis 
[4, 5], (neoadjuvant) systemic chemotherapy is the therapy 
of choice. Most authors recommend cisplatin and doxoru-
bicin (so-called PLADO schedule) based on anecdotal refer-
ence only given the rarity of the disease [1, 3].

Metastatic PB is associated with a dismal prognosis. 
Metastases primarily occur in the liver and less frequently 
in the lungs or regional lymph nodes [4]. The overall sur-
vival rates at 5 years for patients without metastases at 
presentation are 49% (95% confidence interval [CI], 31–66) 
and with metastases 25% (95% CI, 0–63). Post resection 
metastatic disease was associated with a significantly lower 
5-year overall survival (21% [95% CI, 0–41] vs. 91% [95% 
CI, 83–100]). Collectively, these data demonstrate the need 
for additional therapeutic options. However, due to the rarity 
of this disease, clinical trials evaluating targeted therapies 
are neither feasible nor available.
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Using next-generation sequencing (NGS) for metastatic 
PB from four adult patients (two samples were assessed by 
whole-exome sequencing, one sample by whole-genome 
sequencing, and one sample by targeted next-generation 
sequencing), Berger et al. identified molecular alterations 
that affected the FGFR signaling in three out of four patients 
which is potentially targetable and under current evalua-
tion for different tumors [6]. The comprehensive sequenc-
ing identified a high-level amplification of MCL1 encod-
ing induced myeloid leukemia cell differentiation protein 1 
(MCL1) in three patients. MCL1 belongs to the anti-apop-
totic group of Bcl-2 (B-cell lymphoma 2) proteins regulating 
apoptosis. It has been well characterized in several tumor 
entities [7, 8], and MCL1 inhibitors have shown efficacy in 
preclinical trials for hematological neoplasms [9, 10] and 
solid tumors [11–13]. The prevalence of MCL1 amplification 
in PB is unknown and might offer a rationale for targeted 
approaches with MCL1 inhibitors.

We here describe the analysis of MCL1 amplification 
using FISH in 13 assessable cases to estimate the prevalence 
of MCL1 amplification as potential biomarker in PB.

Materials and methods

Sample collection

This retrospective study was conducted on 13 formalin-fixed 
paraffin-embedded (FFPE) tumor samples from 13 patients 
with PB (Table 1). Three samples were obtained from the 
NCT/DKTK MASTER (Molecularly Aided Stratification 
for Tumor Eradication Research) cohort and previously 

published [6]. For whole-genome (patients 1 and 2), whole-
exome (patient 3), or whole-transcriptome (patients 2 and 
3) sequencing, fresh-frozen tissue specimens from the pri-
mary tumors of patients 1 and 3 as well as from a metastatic 
lesion of patient 2 were collected according to the standard 
protocols of the NCT/DKTK MASTER program [14, 15]. 
DNA extracted from buffy coats served as germline controls 
for the patients 3 and 2; a whole-blood sample was used 
for patient 1. Patients of the NCT/DKTK MASTER cohort 
gave written informed consent under protocol S-206/2011, 
which has been approved by the Ethics Committee of the 
University of Heidelberg. The present study was approved 
by the local Ethics Committee of the University Duisburg-
Essen (20–9337-BO).

Next‑generation sequencing and computational 
processing

The fresh-frozen tissue samples from patients 1 and 2 were 
subject to whole-exome sequencing (WES); the sample 
from patient 3 to whole-genome sequencing (WGS). In 
addition, we performed whole-transcriptome sequencing 
on the tumor/metastasis samples from patients 2 and 3. 
Library preparation, Illumina next-generation sequencing, 
and computational processing were carried out as described 
before [16].

Fluorescence in situ hybridization (FISH)

FFPE samples were processed by using the ZytoLight FISH-
Tissue Implementation Kit and SPEC MCL1/1p12 Dual 
Color Probe (Zytovision-Z-2173–200, ZytoVision GmbH, 

Table 1   Characteristics of cohort

n.a., not available. Total copy numbers (TCN) were obtained from whole exome or whole genome sequencing. Average gene copy numbers 
(avGCN) and MCL1/1p12 ratios were obtained by fluorescence in situ hybridization (FISH)

Case # Group Age (years) Gender Total copy num-
bers (TCN)

Average gene copy 
number (avGCN)

MCL1/1p12 
ratio

FISH results Year of 
sample 
fixation

1 Adult 32 F 5.83 2.7 1.4 Negative 2013
2 Adult 18 M 6.72 5.7 2.4 Positive 2011
3 Adult 30 M 3.09 2 1.3 Negative 2016
4 Pediatric 3 F n.a 2.0 0.9 Negative 1995
5 Pediatric 6 M n.a 2.1 1.1 Negative 2003
6 Adult 55 M n.a 2.8 0.9 Negative 2003
7 Adult 59 M n.a 6.7 2.6 Positive 2005
8 Adult 32 W n.a 2.3 1.2 Negative 2007
9 Adult 49 M n.a 1.8 1.1 Negative 2008
10 Adult 63 F n.a 1.6 1.3 Negative 2020
11 Adult 65 F n.a 1.0 1.5 Negative 2013
12 Adult 69 M n.a 1.0 1.6 Negative 2006
13 Pediatric 8 F n.a 2.3 1.3 Negative 2018
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Bremerhaven, Germany). FISH assays were basically per-
formed as previously described [17]. Pepsin digestion was 
used for proteolysis. For FISH evaluation, the entire tumor 
area was scanned for amplification hot spots. If MCL1 sig-
nals showed a homogenous distribution, random areas were 
used for reading the slides. Twenty contiguous tumor cell 
nuclei from three areas, either hot spots or from randomly 
selected regions, resulting in a total of 60 nuclei, were indi-
vidually evaluated by counting green MCL1 and orange 
1p12 signals. MCL1/1p12 ratio and the average MCL1 
copy number per cell were calculated and percentages of 
tumor cells with ≥ 4.0, ≥ 5.0, and ≥ 15.0 MCL1 copies were 
recorded. All FISH assays were evaluated by one reader 
(HUS) and who was blinded to sequencing results. Based 
on the observed distribution of parameters within our cohort 
and comparison with sequencing data (see below), MCL1 
amplification was defined by a MCL1/1p12 ratio ≥ 2.0 and/
or an average MCL1 copy number per tumor cell ≥ 5.0.

Results

High‑level amplification of MCL1 
in pancreatoblastoma in adult patients

The NCT/DKTK MASTER (Molecularly Aided Stratifica-
tion for Tumor Eradication Research), a multicenter, pro-
spective observational study, analyzes tumors of advanced 
stage of young patients and rare tumors in search of poten-
tial therapeutic approaches [14, 15]. To date, four PBs 
were included and fresh-frozen tissue of three tumors was 
assessed by WES/WGS [6]. Analyzing all PB samples within 
NCT/DKTK MASTER for MCL1 alterations, copy number 
gains of MCL1 were observed in all three PBs with total 
copy numbers (TCN) of 5.83, 6.74, and 3.09 for patients 1 to 
3, respectively. The chromosomal region corresponding with 
MCL1, 1q21.2 [18], was one of the most amplified regions 
in patient 3 and the highest in patients 1 and 2 (see Fig. 1).

To further assess the amplification status of MCL1 in PB, 
we collected twelve additional cases, totaling eleven adult 
and four pediatric cases. Patients’ characteristics and FISH 
results are summarized in Table 1. FISH was performed on 
13 samples (10 adult, 3 pediatric cases). Two samples were 
found to be positive for MCL1 amplification based on our 
established FISH criteria (see Fig. 2).

Assessing the NCT/DKTK MASTER samples, the 
sample with the highest TCN of 6.74 (patient 2) based on 
sequencing in the NCT/DKTK MASTER cohort also had 
a positive FISH result. MCL1/1p12 ratio was 2.5, average 
gene copy number was 5.7 per cell, and 80% of evaluated 
nuclei contained 5 or more MCL1 gene signals (93% ≥ 4.0 
gene signals) (Fig.  1B). However, large signal clusters 
(≥ 15.0 gene signals per tumor cell) were not seen. Although 

the other two samples with sequencing data had TCN of 3.09 
(patient 3) and 5.83 (patient 1), suggesting MCL1 amplifi-
cation, the FISH were negative. Percentages of tumor cells 
with ≥ 4.0 gene copies were 2% and 20%, respectively, but 
MCL1/1p12 ratio was < 2.0 and average gene copy number 
was < 3.0 in both samples.

Analyzing the other ten samples without sequencing data, 
another sample fulfilled FISH criteria for MCL1 amplifi-
cation (patient 10) with a MCL1/1p12 ratio of 2.6 (aver-
age gene copy number: 6.7, tumor cells with ≥ 4.0, ≥ 5.0, 
and ≥ 15.0 gene signals were 88%, 82%, and 0%, respec-
tively). Signal distribution showed moderate to marked het-
erogeneity among tumor samples and between tissue blocks.

Overall, 2 out of 10 (20%) samples of adult patients were 
positive for MCL1 amplification, while no pediatric tumor 
showed amplification of MCL1 with the caveat that only 
few pediatric cases were included in our cohort. We are not 
aware of any association of MCL1 amplification with the 
clinical presentation including syndromal versus sporadic 
occurrence. Based on the NCT/DKTK MASTER inclu-
sion criteria, patients with WES/WGS analyses were young 
adults (age range 18 to 50 years).

Discussion

Metastatic PB lacks therapeutic options. Identifying genetic 
biomarkers might help to find novel targeted treatment strat-
egies. Here, we assessed a series of 13 PBs for MCL1 ampli-
fication by FISH after identification of amplified MCL1 in 
cases from the NCT/DKTK MASTER cohort. We show 
that two out of 13 samples (15%) were FISH positive for 
MCL1 amplification. Considering only samples from adult 
patients, the proportion of FISH positive cases increases to 
20% (2/10). The exact frequency of MCL1 amplification 
among various clinical settings of PB patients still needs to 
be prospectively determined.

Currently, chemotherapy is the main therapeutic option 
in metastatic PB. The most common agents include cisplatin 
and doxorubicin [1, 3] whereas FOLFOX/FOLFIRINOX 
(folinic acid, fluorouracil, oxaliplatin with or without irinote-
can) is also administered to adult patients with metastatic 
disease [6]. Although targeted agents are lacking, reported 
therapeutic targets include the Wnt/ß-catenin pathway, IGF2, 
and the R-spondin/LGR5/RNF43 module [19]. Berger et al. 
detected FGFR alterations in three out of four patients and 
thus inhibition of FGFR signaling pathway might be a rea-
sonable therapeutic approach with reported efficacy in some 
other cancer entities with FGFR aberrations [20–23].

MCL1 could be a candidate for targeted therapies cur-
rently evaluated in clinical trials (i.e., NCT04178902, 
NCT02992483). Preclinical evidence showed promising 
results in hematologic neoplasia such as acute myelogenous 
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leukemia [9, 24] and multiple myeloma [24] as well as in 
some solid cancers [25]. In lung cancer, the combination of 
trametinib (MEK inhibitor) and AM-4907 (MCL1 inhibitor) 
showed tumor regression in xenograft tumors [11]. Adding 
AM-4907 to docetaxel or trastuzumab prolonged survival 
and induced tumor regression in two triple-negative and one 
HER2-amplified PDX breast cancer models [26]. Given our 
results of two identified cases with high-level MCL1 ampli-
fication, MCL1 inhibitors might be a reasonable approach 
in MCL1-amplified PBs. Additionally, MCL1 inhibitors can 
be offered to patients where targeted therapies for the above-
mentioned Wnt/ß-catenin pathway and R-spondin/LGR5/
RNF43 module are lacking.

There remains uncertainty concerning the true propor-
tion of PBs with MCL1 amplification, although our cohort 
comprising 13 analyzable patient samples can be regarded 
as one of the larger series for this very rare tumor. The rarity 
of PB renders comprehensive analyses in large cohorts dif-
ficult. Bigger consortia on rare cancers such as the EXPeRT 
[1] or the Italian TREP project [27] might help to determine 
the frequency. As most biomaterial in our sample set was 
considerably older, only basic clinical parameters could be 
retrieved.

FISH is an established and straight-forward applicable 
technique in clinical routine diagnostics for the detection of 
amplifications with the potential of prognostic or predictive 
biomarkers in various cancer entities [28–32], e.g., ERBB2 
in breast and gastric cancer [33–35]. Criteria for amplifica-
tion obtained by FISH need to be carefully established and 
are dependent on and specific for (i) the gene of interest 
and (ii) the tumor subtype. One approach to establish FISH 
positivity criteria is to analyze larger cohorts of a tumor 
entity and to describe the unbiased distribution of param-
eters. Thus, unequivocal amplification levels can be defined 
[28]. In this study, a larger cohort of PB samples was inves-
tigated by MCL1 FISH. Based on our observations, criteria 
for FISH positivity in PB could be defined (MCL1 amplifi-
cation: MCL1/1p12 ratio ≥ 2.0 and/or average gene MCL1 
count per tumor cell ≥ 5.0). By applying these criteria, we 
could identify two MCL1-amplified cases among ten evalu-
able PB samples from adult patients. One of these two FISH-
positive samples was also sequenced in the NCT/DKTK 
MASTER cohort and had the highest total copy number for 
MCL1 of all sequenced PB samples. Although sequencing 
data showed higher TCN for MCL1 in the other two samples 
from the NCT/DKTK MASTER cohort, the MCL1 FISH 

did not confirm these results. First, lower values of TCN in 
patients 1 and 3 might be a reason. Second, technical issues 
might interfere with the analyses as fresh frozen tissue has 
to be strictly kept at less than − 80 °C and even short periods 
of more than − 80 °C might lead to degradation of the tis-
sue. Moreover, another bias might come from the different 
tissues analyzed as the NGS data were acquired from fresh 
frozen tissue whereas the FISH analyses were performed on 
FFPE tissue. Third, other contributing factors may include 
sensitivity differences, clonal heterogeneity, sampling bias, 
and different tumoral ploidy. Intratumoral heterogeneity has 
been demonstrated in PB as well, and genetic heterogeneity 
seemed to be associated with morphologic differentiation 
lineages in a reported case of a PB patient [36]. We observed 
MCL1 amplification in cellular areas with more basophilic 
appearance. Further evaluations of larger case series, how-
ever, are needed to clarify potential associations between 
differentiation lineages and MCL1 amplification.

Based on our findings, we suggest utilizing WES/WGS 
or FISH for detecting MCL1 high level amplification in PBs 
to identify patients as potential candidates for a clinical trial 
or individual personalized treatment with MCL1 inhibitors. 
Also, other NGS applications including hybrid capture and 
amplicon-based NGS may be used if carefully established 
and validated on FFPE materials. If FISH is applied, we pro-
pose a potential definition for assay positivity. As a caveat, 
the predictive value of our approach remains to be validated 
with clinical treatment data. FISH as a technology has some 
clinical advantages since it is fast and works usually reliably 
with FFPE material even if tissue blocks contain only few 
tumor cells. Intratumoral heterogeneity was observed, which 
requires careful screening of tumor samples for amplification 
hotspots. Thus, we regard our definition of MCL1 FISH pos-
itivity as preliminary and a subject to potential adjustments. 
However, NGS-based findings should be validated by FISH 
analysis. This is why we suggest MCL1/1p12 ratio ≥ 2.0 and/
or average MCL1 gene count per tumor cell ≥ 5.0 as reason-
able selection criteria for potential targeted treatments since 
these criteria reflect the highest unequivocal amplification 
level based on our data from a larger series of adult and 
pediatric PBs. In contrast to sequencing methods, especially 
comprehensive ones such as whole-genome or whole-exome 
sequencing, FISH is a robust, cheap, fast, and easily applica-
ble method which may be useful to identify patients poten-
tially benefitting from targeted therapy.

In summary, FISH criteria were established and MCL1 
amplification was identified in a subset of adult patients with 
PB. Given available MCL1 inhibitors, our study supports the 
rationale to test MCL1 amplification in a clinical setting to 
evaluate targeted treatment approaches.
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Fig. 2   MCL1 FISH. a Pancreatoblastoma sample from an adult 
patient (H&E, original magnification: × 200). b MCL1 FISH. Orange 
signals label the reference locus on the short arm of chromosome 1 
(1p12), green signals label a 575 kb chromosomal region on the long 

arm of chromosome 1 (1q21.3) including the MCL1 gene. This sam-
ple shows amplification of the MCL1 region. Non-neoplastic cells 
contain one or two orange or green signals
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