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Abstract

Early number skills represent critical milestones in children’s cognitive development and are shaped
over years of interacting with quantities and numerals in various contexts. Several connectionist com-
putational models have attempted to emulate how certain number concepts may be learned, represented,
and processed in the brain. However, these models mainly used highly simplified inputs and focused
on limited tasks. We expand on previous work in two directions: First, we train a model end-to-end on
video demonstrations in a synthetic environment with multimodal visual and language inputs. Second,
we use a more holistic dataset of 35 tasks, covering enumeration, set comparisons, symbolic digits,
and seriation. The order in which the model acquires tasks reflects input length and variability, and
the resulting trajectories mostly fit with findings from educational psychology. The trained model also
displays symbolic and non-symbolic size and distance effects. Using techniques from interpretabil-
ity research, we investigate how our attention-based model integrates cross-modal representations and
binds them into context-specific associative networks to solve different tasks. We compare models
trained with and without symbolic inputs and find that the purely non-symbolic model employs more
processing-intensive strategies to determine set size.
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1. Introduction

For many adults, tasks such as counting objects or sorting a set of digits appear simple. For
children, however, early number abilities take several years to learn. Mastering these skills
involves developing a network of concepts that encompasses language, visuospatial abilities,
and executive functions (Zhang, 2016). This knowledge later forms the basis for more com-
plex capabilities, for example, arithmetic. Given the integral role of numbers in our daily lives,
questions surrounding the way we learn, represent, and process them have occupied cognitive
scientists, neuroscientists, and psychologists for decades, forming the multidisciplinary field
of numerical cognition.

In this field, connectionist computational models have long played an important part. Often
referred to as artificial neural networks, they take inspiration from the way information is
stored and processed in the brain via neurons and synapses. As such, they represent con-
crete implementations of ideas on how at least small subsystems in the brain acquire and
process concepts, which can be evaluated against behavioral and neural data. Connectionist
models are thus invaluable tools in elucidating critical aspects of learning processes. Their
outputs and behavior are inherently shaped by their architecture, training algorithms, and
hyperparameters. Additionally, and perhaps more insidiously, these characteristics are influ-
enced by the designers’ choice of input modalities as well as the complexity and variety of
tasks addressed.

As we show in a brief literature review in Section 2.1, numerical cognition researchers have
been able to reproduce observations from human experimental data using a wide range of
approaches. However, many previous computational models operate only on binary images
or vectors. When multiple modalities are involved, these are usually processed via special-
ized modules that are sometimes trained separately. Furthermore, computational modeling
studies have mainly focused on a single task type, such as comparing quantities or counting.
This setup contrasts with the way humans acquire number knowledge. Children learn through
interaction with complex multimodal environments where they encounter number and mag-
nitude concepts in various contexts (Fuson, Richards, & Briars, 1982).

Faithfully reconstructing a child’s brain and experiences is, of course, outside our current
abilities. Still, using overly abstracted inputs may artificially impose a stricter separation of
input pre-processing and task solving than would naturally occur. Furthermore, considering
only isolated skills neglects the interactions between concepts that characterize natural learn-
ing and information processing. The main purposes of this work are to introduce a greater but
still controlled realism into the modeling of early number abilities and to analyze the points
of similarity and difference with empirical research and other models in the literature. Our
approach entails training a model on 35 tasks related to enumeration, set relations, symbolic
digits, and seriation. Our goal is not to optimize model accuracy or training times on these
tasks—in fact, we are precisely interested in where the model struggles or learns more slowly.
The tasks draw inspiration from a suite of tests designed to assess young children’s early num-
ber abilities, which includes hypothesized and empirically validated learning trajectories to
serve as comparisons. The model learns end-to-end from video demonstrations in a synthetic
environment with visual and language inputs.
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Specifically, we examine the following questions: (1) In which order does the model
acquire tasks, and how does this compare with findings from educational psychology? (2)
On a behavioral level, how do the model’s outputs and error patterns compare with human
data and previous computational modeling studies? (3) On a mechanistic level, to what extent
does input modality or task specialization emerge in the model? (4) On a behavioral and
mechanistic level, what is the effect of removing tasks involving symbolic numbers from
the model’s training data? We begin with an overview of previous connectionist models in
numerical cognition.

2. Background and related work

2.1. Computational models in numerical cognition

Most early connectionist models in numerical cognition focused on numerosity detection
and comparison. One of the first such studies was that of Dehaene and Changeux (1993). Their
modular architecture processed simple non-verbal visual and auditory inputs using hand-
crafted connections and accounted for several psychophysical effects observed in humans.
Peterson and Simon (2000) conducted a computational study on enumeration and proposed
two models, one based on the Adaptive Character of Thought-Rational (ACT-R) theory
(Anderson, 1983) and one a feedforward architecture, which provided good qualitative fits
to results obtained in empirical studies. Ahmad, Casey, and Bale (2002) introduced a multi-
network modular system and also focused on determining input numerosity. The architec-
ture used various independently trained neural network types, including recurrent connec-
tions and self-organizing maps, and showed some adherence with experimental data from
children. Verguts and Fias (2004) and Verguts, Fias, and Stevens (2005) studied the mental
representation of numbers using connectionist models inspired by neuroscientific findings.
They proposed a number representation system using place coding, linear scaling, and con-
stant variability on the mental number line, reproducing error patterns similar to humans on
number comparison tasks.

Several computational studies have also focused on spatial aspects of numerical cognition.
Mareschal and Shultz (1999) designed a modular cascade-correlation generative network
for sorting arrays of numbers. Similar to children, the model showed soft stage transitions
and variation in performance within stages. Gevers, Verguts, Reynvoet, Caessens, and Fias
(2006) extended the work of Verguts et al. to study the interaction between number and space
representations in parity judgment and number comparison tasks. Their model exhibited the
Spatial-Numerical Association of Response Codes (SNARC) effect (Dehaene, Bossini, &
Giraux, 1993), a phenomenon where people tend to respond faster to small numbers located to
their left and large numbers located to their right. Chen and Verguts (2010) further expanded
the model, adding hand-crafted biologically inspired layers to explicitly represent space and
associate numbers with it. The resulting model simulated various experimental data and
effects related to spatial attention and dysfunction. Finally, McGonigle-Chalmers and Kusel
(2019) proposed a set of models that combined aspects of Bayesian, dynamical systems,
and cognitive architectural approaches to model the shift in children’s size sequencing and
ordinal search competencies.
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Many initial computational models had relatively few parameters and sometimes involved
hand-crafted connections. Recently, researchers have increasingly embraced the paradigm of
“deep learning,” inspired by the complex, layered organization and functioning of the human
cerebral cortex. Stoianov and Zorzi (2012) investigated the emergence of visual number sense
using a deep neural network (DNN) trained on binary images. They observed that some neural
units acted as “emergent numerosity detectors,” resembling the response profiles of monkey
parietal neurons. Since then, several studies have found number-selective neurons even in
randomly initialized, entirely untrained DNNs (Kim, Jang, Baek, Song, & Paik, 2021; Nasr
& Nieder, 2021), suggesting that signals that covary with numerosity can emerge sponta-
neously from the statistical properties of bottom-up projections in multilayered architectures.
When explicitly trained on number tasks, a range of DNN models have been shown to esti-
mate numerosity at a level comparable to humans. Architectures proposed so far include
deep feedforward networks and differentiable recurrent attention models (Chen, Zhou, Fang,
& McClelland, 2018), stacked autoencoders (Testolin, Zou, & McClelland, 2020), recur-
rent neural networks (RNNs) (Sheahan, Luyckx, Nelli, Teupe, & Summerfield, 2021), deep
belief networks (DBNs), and hierarchical convolutional neural networks (CNNs) (Creatore,
Sabathiel, & Solstad, 2021).

The computational models discussed so far have been systems trained to classify or
reconstruct static inputs usually limited to one modality, such as vision. Several studies
have taken a more embodied approach to number learning, exploring the implications of
training agents that carry out actions in an environment. Most of these investigations have
been in the area of developmental cognitive robotics, where the main focus has been on the
benefits of gestures, such as pointing or finger counting, for learning number representations
faster, more accurately, and more in line with psychological phenomena observed in humans
(Di Nuovo, De La Cruz, Cangelosi, & Di Nuovo, 2014; De La Cruz, Di Nuovo, Di Nuovo,
& Cangelosi, 2014; Di Nuovo, Vivian, & Cangelosi, 2015; Di Nuovo, 2017, 2018; Di Nuovo
& McClelland, 2019; Rucinski, Cangelosi, & Belpaeme, 2011, 2012). Furthermore, Dulberg,
Webb, and Cohen (2021) trained an emergent symbol binding network on a subset counting
task using a two-step training curriculum. Although the model was not physically embodied,
it was trained by interacting with an environment via reinforcement learning.

Most closely related to our work is that of Sabathiel, McClelland, and Solstad (2020a).
Their model consisted of a long short-term memory (LSTM) and a convolutional LSTM
module and was trained on four tasks: counting objects, counting events, reciting numbers,
and counting out a subset. The model learned these tasks in a supervised manner in an
environment consisting of a 4 × 4 grid with two binary features at each location, denoting the
presence of an object and the agent’s hand, respectively. The network developed a strategy
of “mentally tagging” objects during counting (Sabathiel et al., 2020a) and abstract number
representations employed across tasks (Sabathiel, McClelland, & Solstad, 2020b). We follow
a similar approach in that we train a DNN on multiple number-related tasks from demonstra-
tions and investigate the model’s learned representations. However, we significantly expand
the number of tasks and use more complex visual inputs. Motivated by the recent successes
of attention-based models in processing sequential, multimodal data, we also use a different
architecture, namely, a transformer. We provide some background on transformers in the
following section.
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2.2. Transformers

Transformers are a family of deep learning architectures first proposed by Vaswani et al.
(2017). While they originated in natural language processing (NLP), transformers have since
spread to other domains; they are now applied to many non-textual forms of data, including
images, videos, audio signals, and protein structures (Paaß & Giesselbach, 2023). They also
form the backbone of the now ubiquitous large language models (LLMs). The main change
transformers introduced to the field was a shift from sequential to parallel processing of time
series data. Before transformers, most NLP models used RNNs. In an RNN, inputs, such as
tokenized words or characters, are added one after the other. The model then learns which
inputs and intermediate computation results to retain for how long in order to succeed on a
given task. To do this, it must update its hidden states after each time step, as they form the
inputs for any following calculations.

In contrast to RNNs, transformers receive an entire context window, such as a sentence
or paragraph, at a time. They maintain access to all the information in this window without
having to learn to “remember” it. Because a transformer essentially treats all time steps inde-
pendently, it can process them in parallel, leading to considerably faster computation than
the recurrent approach. The main units that carry out the input processing are a transformer’s
attention heads. As the following sections presuppose an understanding of the attention mech-
anism, we seek to provide some intuition on the topic in Box 1.

BOX 1 The attention mechanism

Fig. 1. Toy example illustrating the workings of a single attention head.
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In Fig. 1, we illustrate the workings of a single attention head with a toy task: The model
receives a visual input consisting of a circle, rectangle, or triangle, which may be red, blue, or
green. It is asked about this input’s shape or color. Let us assume that our inputs are a green
triangle and the question “What color is this?” We first translate language and vision inputs
into binary vectors ELang and EVis . Note that this is a simplification for illustrative
purposes, not how we encode visual inputs in our actual model (see Section 3.2). The binary
vectors serve as inputs to the attention head. One attention head consists of five single-layer
neural networks: WV , WK , WQ, WO, and WPred. The networks’ weights are initially random
and learned through training on question–answer pairs via backpropagation. In our illustra-
tion, model weights have already been optimized. Each network serves a different function.
WK receives language input and produces activation vectors K . WQ receives visual
input and produces an activation vector Q . Inspired by information retrieval terminology,
K and Q are referred to as “keys” and “queries” (Vaswani et al., 2017). Query vectors repre-
sent what the model is looking for, whereas keys act as signals to match against the queries.
Because WK and WQ have the same number of output neurons d = 64, K and Q have the
same dimensionality and can be combined via their inner product. This combination allows
the model to relate information from both modalities. We divide the key–query product by a
scaling factor

√
dk and apply a softmax function to keep values between 0 and 1. The result,

A(Q, K ) , is often referred to as an “attention heatmap” (Rush, Chopra, & Weston, 2015).
It shows the strength of the match between the query and each key. A(Q, K ) is specific to
the context, that is, combining the same question with another visual input would result in
a different heatmap. A(Q, K ) is combined with the output V (values) of the value net-
work WV . Analogous to how values in databases are the actual data associated with a
key, a “value” in the attention mechanism is a transformed representation of the input (in
this case ELang) that contains the actual content to be focused on. Multiplying A(Q, K ) with
V yields the attention output A(Q, K,V ) , which represents the weighted sum of values,
where the weights are determined by the attention heatmap. We pass A(Q, K,V ) through
the output network WO and feed the result to the prediction network WPred . This gives

us the correct answer to the question: “green” . While the activation vectors in Fig. 1
are not human-interpretable, we can translate them into intermediate predictions by directly
inputting them to WO and WPred. Doing this for V shows that each word in the question trig-
gers different answers . For example, the “color” vector activates the output “red.” This
pairing is arbitrary—with a different random weight initialization, “red” might, for exam-
ple, be maximally activated by “this.” If we linearly combine the activations according to
our attention heatmap [0.0 0.42 0.57 0.0], we obtain a vector that translates to the
correct output “green.” A(Q, K ) can thus be seen as a “selector” of the most likely answer
among the options encoded in V , based on the linguistic and visual context.
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3. Methods

3.1. Data

3.1.1. Tasks
Our dataset is based on a curriculum proposed by Resnick, Wang, and Kaplan (1973).

Inspired by Gagné’s framework of “learning hierarchies” (Gagne, 1968), the authors opera-
tionalized early number concepts as a suite of tasks, ordered by what they hypothesized to
be an optimal match for children’s natural sequence of acquisition. In two empirical stud-
ies, they turned many of these tasks into diagnostic tests, which they administered to 80–150
pre-kindergartners, kindergartners, and students in their second week of elementary school
(Wang, Resnick, & Boozer, 1971; Wang, 1973). The authors applied multiple scalogram anal-
ysis (Lingoes, 1963) to the test scores to identify dependencies in the relationships among
children’s abilities. They then compared the empirical patterns of acquisition they found
against their hypothesized learning hierarchies. Resnick, Wang, and Kaplan’s task suite con-
stitutes an excellent basis for our dataset, as it encompasses a wide range of skills related
to the concept of numbers, including hypothesized and, in part, psychometrically validated
results from human studies. The suite covers enumeration, set comparison, symbolic numer-
als, and sorting.

Table 1 gives an overview of the tasks we used, ordered by difficulty as hypothesized by
Resnick et al. (1973). Table 2 shows the developmental trajectories in children’s learning
found by Wang et al. (1971) and Wang (1973) for those tasks that were psychometrically
validated. The grouping into task families in Table 1 is not a perfect partition, and some
tasks may integrate skills from other task types. We distinguish between three numerical
concepts that may be involved in a task: quantity, rank, or label (Nieder, 2005). Quantity
refers to cardinality, that is, the number of elements in a set. Rank refers to the serial order
of an element. In label tasks, numbers are used categorically to identify an object. As can
be seen, the dataset encompasses all three usages of the number and some tasks that do not
explicitly involve numbers but are believed to support the acquisition of number concepts. We
go through the tasks in more detail in the following, starting with those related to enumeration.

The first three tasks introduce two important counting principles. A1 asks the agent to recite
the count list, starting and stopping at a specified number. Knowing the number sequence, the
so-called stable order principle (Gelman & Gallistel, 1986), is a crucial numerical concept
and arguably the first mathematical skill a child acquires (Sabathiel et al., 2020a). Children
typically learn this principle over several years, starting around age 2 and going up to age 6
(Mussolin, Nys, Content, & Leybaert, 2014). In A2, the agent must point at each object in a
set exactly once. A3 combines A1 and A2. It requires the agent to say the correct count word
as it touches each object—the so-called one-to-one principle (Gelman & Gallistel, 1986).
In the original curriculum, the child can remove objects as it counts them to decrease the
strain on working memory. In our computational implementation, objects disappear after
being grabbed and released.

The last four tasks involve the enumeration of fixed sets. A4 and A5 are analogous to A3,
except objects do not disappear after being tagged. The set is linearly arranged in A4, reducing
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Table 2
Comparison of hypothesized and observed developmental trajectories in children’s learning, based on Wang et al.
(1971) and Wang (1973). To be read from left to right. Only psychometrically validated tasks with direct counter-
parts in the current study are shown

Hypothesized Trajectory A1 A3 A4 A5 A6 A7 B1 B2 B9 B10 C1 C2 C3 C4 C5 C6 C7 D9

Empirical trajectory for
numbers zero to five

C1 A1 A3 A5 A4 B2 B1 B9* B10* C2 A7 A6 C3 C4 C5/C6† C7 D9

Empirical trajectory for
numbers six to ten

C1 A1 B1 B2 B9* B10* A4 A3 A5 A6 C2 C3 A7 C4 C7 C5/C6† D9

Note. ∗ Excluded because too few subjects mastered the task † Not distinguished in psychometric analysis

the difficulty of tracking which objects have been counted (Potter & Levy, 1968; Schaeffer,
Eggleston, & Scott, 1974). In A6, the agent must touch a stated number of objects without
uttering any number words, then stop. A6 is a version of the give-N task, which has been used
in previous studies of children (Sarnecka & Carey, 2008; Wynn, 1992) and neural networks
(Dulberg et al., 2021; Sabathiel et al., 2020a). In A7, the agent must point at a set of a given
size, selecting from two to five options. Unlike the other tasks in this unit, which are primarily
concerned with the rank of an element in the count sequence, A6 and A7 require determining
the cardinality of a set without counting aloud.

The second unit involves comparing quantities. In B1 and B2, the agent must point at one
of two sets containing more or fewer objects, respectively. Resnick et al. (1973) considered
B2 more challenging than B1, arguing that B2 requires finding a set with extra objects, then
choosing its counterpart. It thus involves negative information, which can be difficult for
young children. In B3 and B4, the agent receives a digit and an object set and must point
at whichever represents the higher (B3) or lower (B4) number. In B5 and B6, inputs consist
of five digits and one set. The agent must point at all digits denoting numbers larger (B5)
or smaller (B6) than the set. In B7 and B8, the agent must decide which of two rows of
objects contains more (B7) or fewer (B8) objects. This task is reminiscent of the Piagetian
number conservation test, where two sets are linearly arranged such that equivalence is easy
to determine via a 1-to-1 comparison. The arrays are then spaced differently to test whether a
child still recognizes the sets’ equivalence (Piaget, Gattegno, & Hodgson, 1952). B9 and B10
are analogous to B1 and B2 but involve three instead of two sets.

The third unit relates to symbolic numerals. Children have been shown to start recognizing
and manipulating Arabic digits at around 4 or 5 years of age (Gilmore, McCarthy, & Spelke,
2007; Kolkman, Kroesbergen, & Leseman, 2013; Li et al., 2018; Mussolin et al., 2014). In
the first three digit tasks, numbers serve a purely nominal role. In C1, the agent receives one
to five pairs of digits and needs to match them by placing corresponding digits atop each
other. In C2, the agent must point at one of five numerals denoting a stated number. In C3,
the agent is asked to state the name of a given digit. C4 is analogous to A7, except the subset
size specification is now given by a digit rather than a number word, connecting the numeral
to set cardinality for the first time. The following three tasks are ordinal tasks concerned with
relations between numbers. C5 and C6 require the agent to point at the larger and smaller of
two digits, respectively. In C7, the agent must sort two to four digits in ascending order by
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dragging them into the correct linear configuration. C8 is similar to A7, except for the set size
being denoted by a digit.

The last set of tasks is related to sorting, one of the skills thought to mark a child’s entrance
into the stage of concrete operations (Resnick, 1973). Although most tasks in this unit involve
magnitudes rather than numerosity, it has been suggested that seriation is an essential ability
for understanding the properties of numbers (Piaget, 1961). Sorting is generally considered a
difficult skill to acquire, learned around 7–8 years of age (Jeske, 1978; McGonigle-Chalmers
& Kusel, 2019). D1, D2, D5, and D6 require the agent to point at the largest, smallest, darkest,
or lightest object in a set, respectively. Resnick et al. (1973) considered these tasks prerequi-
sites for D3, D4, D7, and D8, where the agent must sort two to six objects according to size by
placing them in the correct order. In D3 and D7, objects differ only in the attribute according
to which they are to be sorted. In D4 and D8, they vary in more attributes, for example, shape,
size, and luminance. Adding irrelevant cues to objects should make seriation more challeng-
ing (Tomic & Kingma, 1997). D9 requires the agent to seriate two to four whole sets by their
size and thus involves both cardinality and rank. In D10, objects are arranged in one or two
rows. The agent must verbally specify the ordinal position of a pointed-to object.

3.1.2. Data generation
We translate the tasks of Resnick et al. (1973) into an environment of 259 × 259 pix-

els with 4×4 black panels, each of size 64×64. The panels are separated by white lines of
width 1 pixel and can contain 1–10 gray-scale objects or a digit from 1 to 10, depending on
the task. Objects can be rectangles, triangles, circles, or ellipses. They are randomly assigned
sizes, luminances, and positions. Sizes vary between 8 and 32 pixels in height or width. Lumi-
nances vary between 0.1 and 1.0 to ensure sufficient contrast with the background. Objects are
initially non-overlapping, but occlusion can occur as the agent moves them around. We rep-
resent the agent with the icon of a yellow hand spawned in the upper left corner of a random
panel at environment initialization. The hand can be in one of three states: open, pointing, or
grabbing. At each time step, there are a total of 24 output options.

The agent can move up, down, left, or right by either small, 8-pixel, or large, 64-pixel
steps (eight options). It can interact with its environment by grabbing or releasing an object,
grabbing or releasing a whole set, or pointing (five options). It can also output number words
from 1–10 and the word “stop” (11 options). Unlike previous work, where task IDs were
encoded via binary vectors, we prompt the agent with language inputs such as “sort the num-
bers” or “which row has fewer objects.” For each task, we collect 10,000 training examples,
1,000 test examples, and 500 validation examples using a solver which produces demonstra-
tion sequences deterministically.

The solver navigates to its target panel in 64-pixel steps, moving first to the correct row, then
to the correct column. If necessary, it moves on to its target object within the set, following the
same logic. In enumeration tasks, it targets the next untagged object that is closest horizon-
tally, then vertically. If two objects have the same absolute distance, it prioritizes objects to
the right, resulting in a row-wise tagging order. This is representative of linear spatial strate-
gies employed by older children (Shannon, 1978; Wellman, Fabricius, & Chuan-Wen, 1987)
and adults (Potter & Levy, 1968) in enumeration tasks. For tasks C1, B5, and B6, the solver
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targets the next eligible panel with the smallest Manhattan distance to the agent and prioritizes
panels below, above, to the right, and the left, in that order. When sorting objects (D3, D4,
D7, D8), it goes from darkest or smallest to lightest or largest and places them next to each
other at the top of the panel. It orders them from left to right, which is the preferred seriation
order in many industrialized groups (Pitt et al., 2021). When sorting whole panels (C7, D9),
it proceeds similarly, but may first have to remove any blocking panels from the top row in
the grid.

We programmatically checked for and removed any exact duplicates in the training, test,
and validation sets. For some tasks, such as A1 and C3, duplicates were unavoidable due to
the limited number of task configurations. In these cases, we held out certain combinations
that we only allowed to occur in the train, test, or validation split, respectively. We upsampled
these combinations such that the overall number of examples remained the same across
tasks. Depending on the task, we ensured a uniform distribution of set sizes, prompts, or the
number of non-empty panels. This runs counter to the suggestion of Piantadosi (2016) that
the developmental trajectory of number knowledge in children is influenced by the Zipfian
distribution of numbers they encounter in everyday experience. However, Testolin et al.
(2020) found that human-like psychophysical effects also occurred for DNNs trained with
flat number frequencies.

We constructed two additional datasets. The first consists of test tasks B1, B2, and D9,
with the difference that one set has 11–15 objects rather than 1–10. We use this to test the
model’s extrapolation on comparison tasks to larger set sizes. The second excludes all tasks
involving digits or number words. The construction of this dataset was motivated by pro-
posals in the literature that language plays a key role in learning numeracy skills (Hornburg,
Schmitt, & Purpura, 2018; Purpura & Reid, 2016; Toll & Van Luit, 2014) and is a prerequisite
for forming certain concepts (Carey, 2011; Gelman & Gallistel, 2004). Support for this idea
comes from studies of cultures without words for larger, exact quantities, such as the Pirahã,
the Mundurukú, the Tsimane, and Nicaraguan Homesigners. In adults from these cultures,
the ability to represent exact numbers has been found to be limited to the range for which
verbal labels are available (Pitt, Gibson, & Piantadosi, 2022). We are, therefore, interested
in the effect that training a model only on non-symbolic tasks has on its performance and
inner representations.

3.2. Model

Having described the tasks we aimed to solve, we now present the architecture we designed
to do so. Fig. 2 shows a visualization of the model. The example in Box 1 illustrated the work-
ings of a single attention head—our full model has 512: four attention blocks, each containing
eight so-called attention layers with 16 heads. Each head can be thought of as a specialized
unit that learns to focus on specific aspects of the input data during training. Using multiple
heads in an attention layer allows the model to focus, in parallel, on different aspects of the
input within one processing step (where a processing step is all the computations performed
in one attention layer). The outputs of all heads in an attention layer are concatenated and
then transformed linearly. This aggregation synthesizes the information from all heads.
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Fig. 2. Schematic of our attention-based model. Inputs consist of regions of interest extracted from each frame
in the demonstration videos and a language prompt. They are processed via four attention blocks, the first two of
which attend over a single time step. The third and fourth blocks take into account past inputs, compressed into
the special MEM token, and the model’s past actions, respectively.
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The result is passed through a feedforward block, which consists of a small two-layer neural
network. Inputs to the attention heads and the feedforward block first undergo normalization.
Normalization and feedforward block were omitted from the example in Box 1 for simplicity
but are commonly used components of attention layers in deeper models as they have been
found to stabilize training (Lin, Wang, Liu, & Qiu, 2022). We also employ so-called “residual
connections,” where the attention layer’s output is added to its original input before being
passed to the next layer (He, Zhang, Ren, & Sun, 2016). This approach allows later heads
to operate on both original inputs and results from previous heads. Multiple attention layers
in an attention block enable the model to learn increasingly abstract representations of the
input data.

Similar to our toy example, the model receives language and visual inputs. The language
input consists of a question or instruction. The visual input is a series of video frames show-
ing the demonstration sequence produced by the deterministic solver. To pre-process the lan-
guage input, we encode each word into a binary vector, analogous to the example in Fig. 1. To
pre-process the video frames, we extract regions of interest (ROIs), which may contain indi-
vidual objects, digits, or an entire panel of objects (Fig. 2 ). Such an ROI-based transformer
approach has previously been applied to tasks like visual navigation (Du, Yu, & Zheng, 2021).
We find our ROIs by identifying contours through morphological transformations and thresh-
olding. Specifically, we extract ROIs by eroding each video frame with a 2×2 kernel, dilating
it with a 1×1 kernel, and applying a binary threshold of value 15. Fifteen is the darkest Red,
Green, Blue (RGB) color value which objects can take in our task environment. We then apply
the Douglas–Peucker algorithm (Douglas & Peucker, 1973) to obtain object contours and their
bounding boxes. We found that this yields ROIs of sufficient quality for our task environment;
for more naturalistic inputs, CNN-based object detectors could be used. We resize all ROIs to
RGB patches of size 28 × 28 × 3, then flatten them into 2,352-dimensional vectors. We limit
the maximum number of ROIs per frame to 85 due to computational constraints.

Having converted our linguistic and visual inputs to vector form, we feed them into sepa-
rate embedding layers (Fig. 2 and ) with 60 and 48 output neurons, respectively. These
are single-layer neural networks, which produce an activation vector, or “embedding,” for
each input. So far, those vectors contain no positional information. Therefore, we concatenate
the visual embedding of each ROI with its central x and y coordinates and original width
and height. For each word embedding, we append a sinusoidal 16-dimensional encoding
(Vaswani et al., 2017) representing its relative position in the sentence. The result is a set
of 64-dimensional visual and linguistic embeddings. They are passed into the first attention
block alongside two special inputs: the class token CLS and the memory token MEM. The CLS
contains the model’s prediction, that is, which action to take. The MEM vector compresses rel-
evant information in each time step to be used later in the model. These are initially random,
“blank” vectors, which each attention layer can modify by adding its output to them.

The first two attention blocks integrate language and visual information for individual
frames. Similar to the example in Box 1, query networks in the first block’s first attention layer
receive visual input, and key and value networks receive language input (Fig. 2 ). Merging
multiple modalities in this way is referred to as cross-attention. A self-attention block follows
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(Fig. 2 ). Self-attention means that inputs do not come from different sources (e.g., vision
and language). Instead, query, key, and value networks all receive the same inputs—in this
case, the outputs from the first block. Up to this point, we process all frames in parallel but
separately. That is, each frame is treated independently from previous frames. However, many
tasks set out in Section 3.1 require knowledge of past time steps.

We address this need for a memory mechanism with the last two attention blocks. In the
third block (Fig. 2 ), we give the model access to inputs from past frames. The query
networks of this block’s first attention layer receive the CLS tokens output by the second block.
The key and value networks receive the MEM tokens, concatenated with temporal position
encodings (analogous to the word embeddings). We do this because there can be up to 85
ROIs in a frame and up to 100 frames in a video. Due to the quadratic complexity of the matrix
multiplications involved in the naive attention mechanism, attending over every object of
every previous frame would be computationally prohibitive. By forcing the model to compress
relevant information into a single MEM vector per time step, we only need to attend over up to
99 instead of 99×85 vectors.

In the last attention block, we give the model access to its past outputs. This information
is, for example, important for tasks that involve counting. Similar to the language input, past
actions are converted to binary vectors and processed by an embedding layer (Fig. 2 ) to
yield 48-dimensional embeddings, which we concatenate with 16-dimensional temporal posi-
tion encodings. These action embeddings serve as input to the key and value networks in the
fourth block’s first attention layer (Fig. 2 ). Query networks receive the CLS tokens output
by the third attention block (one for each time step). Finally, the CLS tokens are processed by
an output layer (Fig. 2 ), yielding a sequence of action predictions.

3.3. Training

We trained four models in total. The first three were trained on the dataset containing non-
symbolic and symbolic tasks. We used multiple models to determine whether they would
display similar final accuracies and training trajectories. The models shared the same archi-
tecture and training setup, but their random weight initialization differed. Due to the random
shuffling of the dataset, they also received training samples in a slightly different order. The
fourth model was trained on the dataset containing only non-symbolic tasks in order to inves-
tigate whether it would display differences in performance or internal representations.

All models were implemented in PyTorch (Paszke et al., 2019). They were trained to predict
the deterministic solver’s next output at each time step. This was done by minimizing cross-
entropy loss, which is a measure of the difference between model predictions ŷ and correct
answers y:

L(y, ŷ) = −
∑

i

yi · log(ŷi). (1)

We used the rectified Adam optimizer (Liu et al., 2020) and gradually adjusted the learn-
ing rate using a schedule with cosine annealing and warm restarts (Loshchilov & Hutter,
2017). The scheduler exponentially decayed the learning rate from an initial value of
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Table 3
Model accuracy on the test set. Tasks are considered solved correctly if the model’s predictions are identical to the
deterministic solver’s action sequence

Counting and Enumeration Set Comparison Numerals Seriation and Ordinal Position

ID S N-S ID S N-S ID S N-S ID S N-S

A1 0.99 ± 0.01 — B1 0.99 ± 0.00 0.99 C1 0.91 ± 0.00 — D1 0.93 ± 0.00 0.91
A2 0.97 ± 0.01 0.86 B1+ 1.00 ± 0.00 0.99 C2 1.00 ± 0.00 — D2 0.96 ± 0.00 0.95
A3 0.97 ± 0.01 — B2 0.99 ± 0.00 0.98 C3 1.00 ± 0.00 — D3 0.86 ± 0.01 0.79
A4 1.00 ± 0.01 — B2+ 1.00 ± 0.00 0.99 C4 0.80 ± 0.02 — D4 0.82 ± 0.01 0.74
A5 0.97 ± 0.01 — B3 1.00 ± 0.00 — C5 1.00 ± 0.00 — D5 1.00 ± 0.01 0.99
A6 0.95 ± 0.00 — B4 1.00 ± 0.00 — C6 1.00 ± 0.00 — D6 0.98 ± 0.00 0.98
A7 0.82 ± 0.02 — B5 0.91 ± 0.01 — C7 0.99 ± 0.01 — D7 0.99 ± 0.00 0.97

B6 0.88 ± 0.01 — C8 0.96 ± 0.01 — D8 0.98 ± 0.00 0.96
B7 1.00 ± 0.01 0.99 D9 0.83 ± 0.03 0.64
B8 1.00 ± 0.00 1.00 D9+ 0.84 ± 0.03 0.69
B9 0.96 ± 0.01 0.91 D10 1.00 ± 0.00 —

B10 0.95 ± 0.02 0.87

Note. S = models trained on symbolic and non-symbolic tasks N-S = model trained on non-symbolic tasks only B1+, B2+,
D9+ = datasets requiring extrapolation to larger sets of size 11–15

0.005–0.0002 over four passes through the dataset (epochs), after which it was kept con-
stant. This annealing scheme served to speed up initial training. To prevent the model
from memorizing the training data too much (overfitting), we used dropout. Dropout is a
technique where randomly selected neurons are temporarily disabled to prevent overreliance
on individual units. We used a dropout probability of 0.1. We also applied early stopping,
meaning we performed validations after every half epoch and stopped training if the model
had not improved over three checks. Performance usually stagnated after around 28 epochs.
We trained the models in batches of 512 samples at a time. Each epoch, including validation,
took ca. 7 h on a 16-core AMD EPYC 7282 server with six GeForce RTX 2080 GPUs.

4. Results

4.1. Performance

As shown in Table 3, the model performs well on most tasks, with an overall average accu-
racy of 93%. Variation across models trained on symbolic and non-symbolic tasks (denoted
as S in Table 3) is minimal, indicating that performance is not sensitive to weight initializa-
tion or batch ordering. When tested on comparison and seriation tasks with sets of larger size
than seen in training, performance is slightly higher, presumably because of the increased
contrast between set sizes. There are, however, tasks on which it consistently reaches lower
accuracies, namely, A7, B5, B6, C4, D3, D4, and D9.

A7, B5, B6, C4, and D9 all require the integration of several subskills: determining the
cardinality of, in the case of A7, C4, and D9, up to five sets and comparing them against either
a number or multiple other sets, as well as keeping track of already tagged or obscured panels.
Transformers have no recurrent connections; thus, their number of attention layers determines



16 of 41 A. Hein, K. Diepold / Cognitive Science 48 (2024)

the number of “reasoning” steps they can perform. While the model reaches high accuracy
on prerequisites such as, for example, comparing two sets (B1 and B2), the above-mentioned
tasks that require multistep combinations of such subtasks appear to strain its capacity.

The lower performance when sorting objects by size (D3, D4) seems to be due to an issue
with size discrimination as the model successfully sorts objects by luminance (D7, D8). In our
environment, an object’s size equals its surface area, and differences may be as minor as a few
pixels, whereas we enforced larger spacings for color. The model, therefore, needs to retain
very granular information about each shape. This may be why the model’s accuracy when
choosing the smallest or largest object (D1, D2) is 2–7% below its accuracy for choosing the
lightest or darkest object (D5, D6). Errors compound when the model has to compare up to
six objects during seriation.

The model trained only on non-symbolic tasks (denoted as N-S in Table 3) does about
as well as the model trained on the full dataset on most tasks related to object attributes,
namely D1, D2, D5, D6, D7, and D8. The lower performance on tasks D3 and D4 can again
be ascribed to an issue of size discrimination—while the accuracy on tasks D1 and D2 is
only 1–2% below the S model, the difference compounds in the case of seriation. The N-S
model also achieves similar accuracies as the S model on the two-set comparison tasks B1,
B2, B7, and B8, including in the case of extrapolation to sets of larger size. The fact that
its performance is not affected by a lack of symbolic training is in line with findings that
comparing the cardinality of sets without having mastered symbolic counting is feasible; see
studies on cultures with a smaller number lexicon (Pica, Lemer, Izard, & Dehaene, 2004),
non-verbal infants (Xu, 2003), animals (Brannon & Terrace, 1998; Dadda, Piffer, Agrillo,
& Bisazza, 2009; Hauser, Carey, & Hauser, 2000; Nieder, Freedman, & Miller, 2002), and
neural networks without counting knowledge (Dehaene & Changeux, 1993).

However, the N-S model achieves lower performance than the S model for pointing out all
objects in turn (A2), comparing three sets (B9, B10), and seriation by set size (D9). In the
case of A2, this drop might be because, without the inclusion of the enumeration tasks A3–
A6, the proportion of tasks that require going through a set one by one is lower, thus putting
less emphasis on this skill. In the case of B9, B10, and D9, part of the issue may be that,
without symbolic tasks, the model has less exposure to tasks that involve multiple non-empty
panels. We also hypothesize that the S model can more efficiently parse and use numerosity
information. We investigate this idea further in Section 4.4.

4.2. Training trajectories

In addition to the final accuracies reached by the model, we are interested in the order
in which the model’s performance progresses on the different tasks and whether this aligns
with findings from educational psychology. As mentioned in Section 3.3, our dataset was
randomly shuffled. While this contrasts with the sequential way children encounter tasks,
neural networks trained on multiple tasks simultaneously have been found to consistently
learn easier samples first (Graves, Bellemare, Menick, Munos, & Kavukcuoglu, 2017; Wu,
Dyer, & Neyshabur, 2021). This allows us to compare the “implicit curriculum” that emerges
for our models with the order of acquisition empirically found by Resnick within and across
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Fig. 3. Accuracy development across tasks in the course of training. Color encodes performance, while size
encodes the standard deviation between the three (architecturally identical) models. Task IDs are listed on the
left, and final model accuracy is listed on the right.

task families. We show the development of model performance for each task in the course of
training in Fig. 3.

4.2.1. Overview: All tasks
The order of acquisition for the enumeration tasks follows the order found by Wang et al.

(1971) for numbers from 6 to 10: the count list is learned first (A1), followed by counting
ordered objects (A4), movable objects (A3), unordered sets (A5), subsets (A6), and finally
choosing a set of specified size (A7). Wang et al. (1971) did not validate the task of touching
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each object in turn (A2), but this skill was hypothesized to emerge before tasks A4 and A3.
However, our model acquires A2 simultaneously with A5—likely reflecting the tasks’ similar
demands on memory, which plays less of a role in A3 and A4.

For set relation tasks, a direct comparison with human data is only possible in some cases,
as B3–B8 were not empirically validated. Regarding the tasks that were tested with children
(B1, B2, B9, B10), accuracies progress as expected: “More” tasks (B1, B7, B9) are learned
before “less” tasks (B2, B8, B10) (Resnick, 1973; Resnick et al., 1973), and two-set compar-
isons (B1, B2, B7, B8) are learned before three-set comparisons (B9, B10). In fact, three-set
comparisons were excluded from analysis by Wang et al. (1971) because too few subjects
mastered them. However, unlike children who first acquire non-symbolic comparisons, the
model begins by learning to select between a digit and a set. We discuss this in more detail
towards the end of the section. B5 and B6 are learned last, reflecting the higher demands
on the model: it needs to compare a set and multiple digits and keep track of tagged digits,
making the task more challenging than just navigating to a single panel and pointing.

For tasks involving numerals, training trajectories only partially align with those found by
Wang et al. (1971) and Wang (1973). Digit identification (C3) does precede digit compar-
ison (C5, C6), which precedes seriation (C7). However, matching digits (C1), which were
mastered by human subjects before any other numeral task, is acquired last by the model.
The reason may be that, in our setup, C1 is the only task of its kind and involves longer and
more complex navigational sequences. Learning to state (C2) and select digits (C3) is also
switched compared to children, likely because outputting a number word simply means acti-
vating a single node for our model. In contrast, speech production in humans involves more
complex articulatory coordination.

Seriation and ordinal position tasks were also not empirically validated by the authors of the
original curriculum. However, Jeske (1978) investigated prerequisite skills in children tasked
with ordering plastic strips of different lengths and found that the selection of the longest
strip preceded correct seriation. In line with these findings and the hypothesized training tra-
jectory, selecting the largest, darkest, lightest, or smallest object (D1, D2, D5, D6) is achieved
first, followed by object seriation (D3, D4, D7, D8), and finally, set seriation by cardinal-
ity (D9). Naming an object’s ordinal position (D10) is learned earlier than was hypothesized
by Resnick (1973). However, other studies have found ordinal concepts to precede cardinal
concepts (Brainerd, 1973) and seriation (Siegel, 1971) in children.

We now turn to the training trajectories across task families. The first tasks the model
learns are mostly symbolic (A1, C5, C6, C3, B3, B4, C2), followed by non-symbolic two-set
comparison (B1, B2, B7, B8), then enumeration and ordinal position tasks (A4, D10, A3, A2,
A5, A6, C8). Concurrently, the model learns to select single objects by a specified attribute
(D1, D5, D2, D6). The tasks that develop the latest require comparing or manipulating more
than two sets of objects (B9, B10, D3, D7, C1, B5, D4, D8, B6, D9, A7, C4). Training
trajectories show gradual development, characteristic of neural networks, and are consistent
with findings from various aspects of mathematical cognition (Mareschal & Shultz, 1999;
McClelland, Mickey, Hansen, Yuan, & Lu, 2016). Furthermore, students’ development of
early numerical competencies is not always linear, and their skill acquisition timelines may
differ (Powell & Fuchs, 2012). Similarly, a model’s performance on a task will sometimes
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Fig. 4. Accuracy development (smoothed) for the A6 task (give-N), grouped by subset size. Shaded regions indi-
cate standard deviation. The dashed line represents the threshold at which a learner is typically considered an
N-knower.

drop momentarily (see, e.g., A6), leading to a dip in average performance and an increased
standard deviation.

In general, the tasks acquired faster by the model are ones with less variability across
examples, shorter sequence length, fewer memory requirements, and more exposure—either
because there are limited task configurations that were upsampled or because there are very
similar tasks that can serve as a scaffold. These are features of most tasks involving number
words and digits, which is likely why they are acquired earlier than purely non-symbolic
ones. This contradicts the order observed in children, who typically develop non-symbolic
numerical representations before symbolic ones (Li et al., 2018; Matejko & Ansari, 2016;
Wang et al., 1971).

4.2.2. Spotlight: Give-N task
Having looked at training trajectories across the dataset, we now focus on a task that

has received considerable attention in the numerical cognition literature: The give-N task.
A prominent proposal for the developmental trajectory on this kind of task is a series of
six performance levels: pre-numeral-knower, one-knower, two-knower, three-knower, four-
knower, and cardinal-principle (CP) knower (Carey & Sarnecka, 2006; Sarnecka & Carey,
2008; Wynn, 1992). Pre-numeral-knowers will give random amounts in response to a give-
N instruction. One-, two-, three, and four-knowers can give out one, two, three, and four
objects, respectively, but fail at all other numbers. CP-knowers can solve any give-N task.
According to the knower-level theory, children learn the meanings of numbers one through
three or four one after the other. However, once they uncover the cardinal principle, tasks
with higher numbers are mastered simultaneously. Several studies support this view, although
some have questioned whether a true semantic inductive leap underlies the transition to CP-
knower (Davidson, Eng, & Barner, 2012). Others have found that early stages may be noisier
than previously assumed (Wagner, Chu, & Barner, 2019).

We show the training trajectory of our model on task A6 separately for each subset size in
Fig. 4. The order of acquisition goes from smallest to largest numbers. Performance on subset
size one increases first and remains high. The training trajectory for subset size two shows
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the same concave shape but with an accuracy gap of 10–25%, which is only closed towards
the end of training. Subset sizes three and four are learned relatively simultaneously, with
an almost linear development slope. Training trajectories for tasks with subsets of size five
and up form a group of convex-shaped curves. Although the graph shows no instantaneous
transitions, there is a point around epoch 18 during which the performance on subsets larger
than two begins to rise more steeply. This behavior is somewhat in line with the knower-
level stages observed in children. However, it may not necessarily reflect any realization
of a fundamental underlying principle. The training trajectories are likely also shaped by
sequence length and the fact that the “visuo-motor” routines needed to complete tasks with
smaller subsets are implicitly contained in those with larger subsets, leading to more training
exposure.

The CP trajectory has previously been modeled computationally. Instead of using a connec-
tionist approach, where knowledge is encoded in a set of weights, Piantadosi, Tenenbaum, and
Goodman (2012) proposed a model based on Bayesian program induction. The model learned
to combine pre-defined operations, a so-called language of thought, to count occurrences in
a set. Its training trajectory mimicked the proposed CP leap. The model by Sabathiel et al.
(2020a) also successfully learned a give-N task, although its learning curves did not follow
the CP trajectory. Dulberg et al. (2021) trained a reinforcement learning agent consisting of
specialized pre-trained modules to select N items from a binary vector using a curriculum
approach. Similar to our model, the agent showed a gradual progression characteristic of neu-
ral networks but did exhibit an inflection during training.

4.3. Analyzing model predictions

Having inspected the model’s training trajectories, we now turn to analyzing the trained
model on a “behavioral” level, that is, investigating its output predictions and error patterns.

4.3.1. Recognizing exact numerosity
Two core numerical systems are often distinguished in the literature on numerical cognition

(Feigenson, Dehaene, & Spelke, 2004): The object tracking system (OTS) and the approxi-
mate numerical system (ANS). The OTS is said to sustain the fast and precise enumeration of
sets with up to five objects without counting, an ability referred to as subitizing. The intuitive
estimation and approximation of larger sets are proposed to rely on the ANS. This dichotomy
has received support from many investigations of humans and non-human animals (Agrillo,
Piffer, Bisazza, & Butterworth, 2012; Burr, Turi, & Anobile, 2010; Hyde & Spelke, 2009;
Mandler & Shebo, 1982; Revkin, Piazza, Izard, Cohen, & Dehaene, 2008). However, it has
been challenged by some who suggest that a single system is responsible for both subitizing
and counting (Piazza, Mechelli, Butterworth, & Price, 2002). Whatever the underlying mech-
anisms, it has been widely shown that processing smaller numerosities is more precise than
processing larger numerosities.

To see whether this is also the case in our model, we let it interact with 1,000 instances of a
task environment requiring it to select a set of a given size (A7). We generate an equal number
of tasks for each prompt and plot the target set size against the size of the set chosen by the
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Fig. 5. Target set size plotted against the size of the set chosen by the model on 1,000 instances of the A7 task
environment (choosing a set of stated size).

model in Fig. 5. The model shows decreasing accuracy and broader response variability with
increasing target numerosity, in line with human experimental data. However, performance
increases again for larger numerosities. Creatore et al. (2021) trained a DBN on an enumer-
ation task and observed a similar effect. They noted that this was an artifact of the limited
range of numerosities used, which is also the likely explanation in our case.

4.3.2. Size and distance effects
In infants, adult humans, and a variety of animal species, numerosity comparisons are

characterized by size and distance effects: comparisons are faster and more accurate when
there is a larger difference between two numbers (distance effect) and when numbers are
smaller (size effect) (Dehaene, Dehaene-Lambertz, & Cohen, 1998). That is, comparing
1 versus 9 is less error-prone than 1 versus 2, and 1 versus 3 is easier than 7 versus 9. A
prominent explanation for this phenomenon is that numbers are stored on a “mental number
line,” where close-by numbers overlap, and their noise is proportional to their value (Verguts
& Fias, 2004). In humans, size and distance effects hold for symbolic and non-symbolic
stimuli (Lyons & Ansari, 2015), although they are minute for judgments on number symbols
(Buckley & Gillman, 1974).

We analyze whether our model displays symbolic and non-symbolic size and distance
effects by evaluating its performance on two-set (B1, B2) and two-digit comparison tasks
(C5, C6). Since the model performs very well on these tasks, accuracy is not a meaningful
metric to compare. Instead, we use the model’s cross-entropy loss on the test data, averaged
over time steps within a task. We plot this against the distance between the correct number
and its distractor, shown in Fig. 6. In both the symbolic (Fig. 6b) and non-symbolic (Fig. 6a)
cases, target size one has the lowest error and almost no variation, followed by target
sizes two to five. Errors and variations increase for target sizes six to nine, particularly in
non-symbolic tasks. Similar to task A7 (Section 4.3.1), performance increases for target
size 10—again, likely an artifact of the limited range of numbers used. In line with human
behavioral studies, the error range for non-symbolic comparisons is higher than for symbolic
comparisons.
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Fig. 6. The model’s cross-entropy loss on symbolic and non-symbolic comparisons, averaged over the time steps
within a task. Error bars indicate standard deviation. The distance between the correct set or digit and its distractor
is shown on the x-axis. Color and markers encode the correct size. We aggregate similar graphs by average for
better visibility but keep the individual plots in the background for completeness.

4.3.3. Applying the logit lens
As mentioned in Section 3.2, the special token CLS contains the model’s prediction. Each

attention head can contribute to CLS, gradually refining the prediction until it is translated to an
action by the model’s output layer. However, it is possible to directly read out the prediction’s
state in any intermediate attention layer. This approach has been dubbed the “logit lens” and
shown to provide relatively coherent internal prediction trajectories for LLMs such as GPT-2
(nostalgebraist, 2020). Although our model differs from purely text-based language models
in that it operates in multiple modalities, it shares the same architecture. It thus lends itself to
applying the logit lens.

We evaluate our model on each test task, decode the nascent prediction in CLS at every
attention layer, and log its accuracy. The result is shown in Fig. 7. We also include the logit
lens for the model trained without symbolic tasks, denoted as N-S. How early or late a task
reaches high accuracy can be seen as a measure of difficulty—analogous to reaction time
in humans: Some tasks require more processing steps, that is, attention layers, to arrive at a
solution. Alternatively, the model may resort to higher attention layers because information
about past inputs is only provided after the second attention block (see Fig. 2).

Outputs of attention layers in the first attention block indicate that they prime the model for
the type of answer called for by a prompt. For example, when asked for an ordinal position
(D10) or a digit’s name (C3), the initial prediction is a default number such as 5 or 2. For
tasks requiring recognition of a final state, the default output is “stop,” while for those calling
for selecting a panel or object, the default is to point. Any correct predictions in these first
attention layers are by chance, for example, when the agent starts off positioned correctly, then
points. The second attention block shows a decrease in correct default answers, suggesting the
involvement of inhibitory mechanisms at this stage.

The order of prediction trajectories mostly fits with the sequence of acquisition found in
Section 4.2. The fastest tasks to reach high accuracies are comparisons (B1, B2, B3, B4,
B9, B10, C5, C6) and pure digit tasks (C2, C3). In contrast, tasks involving comparing or
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Fig. 7. Performance of the model on each of the test tasks when cutting off the prediction process at a certain
attention layer, specified on the x-axis. The “S” in the y-axis labels denotes the model trained on all tasks, while
“N-S” denotes the model trained only on non-symbolic tasks. Accuracy is encoded via color.

manipulating multiple sets, objects, digits, or knowledge of past time steps require more
processing steps. This is generally congruent with event-related potential (ERP) studies
showing that comparison is associated with modulations of an early component while spatial
mappings are associated with later ERP components (Toomarian & Hubbard, 2018). Less
congruently, digit-set comparisons (B3, B4) are among the first tasks to reach high accuracy,
whereas studies show high switching costs when humans are asked to compare symbolic and
non-symbolic numbers (Finke et al., 2021; Lyons, Ansari, & Beilock, 2012).
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The N-S model requires more processing steps than the S model, even when the final accu-
racy on a task is similar, indicating differences in internal processing. Notably, the accuracy
progression in the N-S model is gradual for comparisons of two or three sets (B1, B2, B9,
B10). This contrasts with the S model’s prediction trajectories on these tasks, which show sud-
den performance increases between attention layers. However, on the ordinal position (D10)
and row comparison (B7 and B8) tasks, the S model’s accuracies increase more steadily. This
linear progression is particularly striking for D10, which also has the benefit of involving only
a symbolic output, making intermediate predictions more human-interpretable. We, therefore,
use this task to investigate the processing underlying such gradual prediction trajectories in
the following section.

4.3.4. Determining ordinal position
It has yet to be understood how humans and animals process non-verbal serial order infor-

mation. However, behavioral and neuronal data suggest an imprecise representation of dis-
crete numerical rank, similar to an analog magnitude mechanism proposed for cardinality
(Nieder, 2005). Studies in humans and macaques have identified brain areas similarly acti-
vated by numerical quantity and rank order information, suggesting a shared neural system
for these processes (Marshuetz, Smith, Jonides, DeGutis, & Chenevert, 2000; Nieder et al.,
2002; Ninokura, Mushiake, & Tanji, 2003, 2004).

Determining an object’s position in a sequence also seems to involve a mixture of cardinal
and ordinal number usage in our model. Fig. 8 shows two D10 example tasks and how the
model’s prediction changes after each attention layer of the third attention block. Predictions
take the form of probabilistic distributions centered on one or more outputs. These distri-
butions gradually move along the number line. Note that this happens “silently,” that is, the
model is not trained to output numbers at each time step, only to produce the final answer.
The strategy it develops to do so is evocative of an internal counting procedure. However, the
model does not necessarily go through the count list individually. In Fig. 8b, it starts directly
at the end of the first row with “5,” from where it moves up towards “8” (the correct answer),
essentially skipping over “6.” This behavior is similar to adaptive grouping strategies people
employ when enumerating larger groups of objects or solving number line estimation tasks
(Camos, 2003; Newman, Friedman, & Gockley, 1987; Starkey & McCandliss, 2014; Schnei-
der et al., 2018). The model may also start at the end of a row, following the number line in
reverse order (see Fig. 8a).

These examples indicate that the gradual internal progression found for D10 in Fig. 7 stems
from the model internally tagging one object (or group of objects) per processing step until it
has identified the requested ordinal position. To provide additional support for this assump-
tion, we plot the accuracy on the D10 test set throughout the third and fourth attention blocks
as a function of the target object’s distance from the nearest row start or end. The result
is shown in Fig. 9. The model internally reaches its conclusion faster on tasks with target
objects closer to a row’s edge and with target objects in the first row—consistent with the
hypothesis that tasks requiring less “internal counting” involves fewer processing steps.
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Fig. 8. Examples of the progression of an individual prediction on task D10 throughout the attention layers of the
model’s third attention block. Visual task input is shown at the top. The agent has to name the ordinal position of
the object to which the yellow hand is pointing. The x-axis shows the 10 number word outputs. The y-axis shows
the density of the probability distribution over these outputs, as predicted by the model, in each attention layer. A
dashed line marks the correct output.

Fig. 9. Accuracy on the D10 test set throughout the third and fourth attention blocks as a function of the target
object’s distance from the nearest row start or end. Tasks with target objects in the first and second rows are plotted
separately.

4.4. Analyzing model representations

In the previous sections, we looked at the model’s outputs and error patterns in the context
of human behavioral data. We now turn our attention to its internal representations.
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4.4.1. Integrating multiple modalities
Many neuroimaging and behavioral studies have investigated where and how the human

brain processes numerical inputs. One prominent proposal, the triple-code model (Dehaene,
1992), argues for three codes with which we mentally represent numbers: symbolic digits,
verbal number words, and non-symbolic quantity representations. The codes are thought to
depend on distinct neural substrates, with visual inputs such as Arabic numerals most likely
depending on ventral occipitotemporal structures, verbal representations depending on left
frontal and temporal language areas, and analog magnitudes depending on the parietal cortex
(Hubbard, Piazza, Pinel & Dehaene, 2005). However, functional magnetic resonance imaging
(fMRI) studies have shown that numerical tasks, even those involving only one representa-
tional format, activate a distributed network of areas, including the frontal and parietal lobes
(Hubbard et al., 2005).

In this section, we seek to analyze how our model processes and integrates information
from different modalities and whether a similar picture of specialized and integrative areas
emerges. We begin by creating isolated probes of input stimuli from different modalities. We
then feed these isolated inputs to the key, query, and value networks of every attention head
in the model and measure how strongly they react to each probe.

Our visual probes consist of 1,051 representative patches, including digits, different lumi-
nances, the agent’s hand in its three states, shapes of varying resolutions, and panels with
object sets of sizes 1–10. We apply the visual embedding layer (Fig. 2 ) to each probe but
do not add size or position information. Instead, we create separate size probes, spaced evenly
from 4×4 to 64×64, and position probes, spanning 65 locations across the input grid. The
language probes consist of 107 vectors representing every word in the vocabulary, encoded
by the language embedding layer (Fig. 2 ) and concatenated with each position at which a
word may appear in the task prompts. Probes for previous actions consist of all 24 possible
outputs encoded by the action embedding layer (Fig. 2 ) and 100 isolated temporal position
embeddings. Finally, we create probes that measure sensitivity to the state of the CLS token.
We translate all possible actions EPred back into internal model representations by applying
the output layer WPred (Fig. 2 ) “in reverse.” Specifically, we subtract WPred’s bias term bPred

from EPred and apply the pseudo-inverse W †
Pred:

W †
Pred(EPred − bPred)T .

For each network in each attention head, we record the 10 probes that evoke the largest
response, quantified as the sum of the network activations’ absolute values. In Fig. 10, we
show which modality these inputs belong to and the strength of the response they elicited.
The first two attention blocks integrate language and visual information. Query networks of
heads in the very first attention layer receive visual input. Key and value networks receive
language input. As might be expected, query networks in the first block mainly respond to
image patches, and key networks mainly respond to words. The value networks react to a mix
of language, visual, and output predictions (CLS). The partial sensitivity to nascent predictions
fits our observations from Section 4.3.3 that the model forms “default” outputs at this level.
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Fig. 10. Visualization of the sensitivity of every query, key, and value networks in the model to isolated probes
from different input modalities. Opacity indicates the strength of activation exhibited by a network in response to
the input probes.

Heads in the second attention block primarily integrate visual information, although some
exhibit sensitivity to words.

In the last two attention blocks, information from past time steps enters the picture. The
third block is of particular interest because the key and value networks in its first attention
layer receive MEM vectors, that is, the time step representations produced by model 2 ).
Fig. 10 shows that these compressed representations seem to contain a mix of visual, lin-
guistic, and output prediction information. We also see more sensitivity to output predictions,
which matches our finding from Section 4.3.3 that many tasks are already solved at this stage,
and predictions undergo little to no further refinement. In the last block, query networks pro-
cess a mix of linguistic, visual, and output prediction input, while key and value networks are
predominantly sensitive to previous actions.

Overall, Fig. 10 paints a picture of a distributed network of specialized processing units
integrating multimodal information. There are very few unimodal heads—primarily in
the second attention block. Most heads consist of an unimodal query network interacting
with key and value networks sensitive to different modalities. In a few heads, particularly
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in higher attention layers, single key, query, or value networks respond to inputs from
multiple modalities.

4.4.2. The effect of symbolic training
Having observed in Section 4.3.3 that set comparison tasks require more processing steps in

the N-S model than in the S model, we here investigate this finding further. We run both mod-
els on the test data for tasks B1 and B2 and collect the inputs to the third attention block, as
our analysis in Section 4.3.3 showed this to be the point where two-set comparison predictions
begin to form. We collect only the time step where the agent is positioned at the correct set but
has not yet selected it to facilitate cross-task comparison. We visualize the collected CLS and
MEM vectors using pairwise controlled manifold approximation (PaCMAP) (Wang, Huang,
Rudin, & Shaposhnik, 2021). PaCMAP is a method for transforming high-dimensional data
into a lower dimensional space while still preserving the data’s local and global structure.
Fig. 11 gives insight into the differences between the internal representations of the S and
N-S models and the role of MEM vectors. Proximity of points indicates similarity.

We begin with the CLS vectors, which encode the model’s predictions. For task B1, these
form distinct clusters according to the position of the target set relative to its distractor
(Fig. 11a). Within the clusters, tasks with similar number ratios, calculated as the smaller set
size divided by the larger set size, are grouped closer together. However, for the N-S model,
this stratification is slightly less pronounced. There is also a collection of “miscellaneous”
predictions that are not yet well clustered, indicating that further processing steps are needed.
CLS vectors for task B2 (Fig. 11c) are less neatly grouped than for B1, which fits with the
observation from Section 4.3.3 that “less” comparisons are solved in higher attention layers
than “more” comparisons. The PaCMAP for the N-S case is almost circular, reflecting that
many CLS tokens have few neighbors of high similarity. The arrangement indicates that, at
this stage, the vectors still contain perceptual details that have already been abstracted away
in the S model.

We now turn to the MEM vectors (Figs. 11b and 11d, which contain compressed information
the model deemed relevant enough to “remember” about a time step. The MEM PaCMAPs
closely resemble the CLS PaCMAPs in their differences between tasks B1 and B2 and S and
N-S models, as well as their stratification according to number ratio and target position. This
suggests that MEM and CLS contain similar information. To test this hypothesis, we evaluate
the models on tasks B1 and B2 as before but replace the MEM vectors with CLS vectors after
the second attention block. We see no decrease in performance, confirming that the two are
interchangeable, at least for set comparison. For other tasks, such as A5, doing this does cause
a significant accuracy drop from around 98% to 13%, showing that MEM vectors carry crucial
additional or complementary information in some cases.

We can conclude that set relations are implicitly quite well defined by attention layer 16,
although slightly less so for the N-S model. To quantify this gap further, we train two linear
regression models to predict the size of a task’s larger and smaller set based on the models’
B1 CLS and MEM vectors. We do this for each attention layer in the second attention block.
For the N-S model, the coefficient of determination goes from an average of 83% in the first
to 93% in the eighth attention layer. For the S model, it goes from 83% to 97%, suggesting
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Fig. 11. Pairwise controlled manifold approximation (PaCMAP) applied to the CLS and MEM representations pro-
duced by the models trained with both symbolic and non-symbolic tasks (S) and on non-symbolic tasks only (NS),
collected after the second attention block during the processing of two-set comparison tasks (B1 and B2).
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Fig. 12. A graph of the information flow in the style of Katz & Belinkov (2023) of the third attention layer of
the first attention block while processing one time step of a B4 task. Nodes represent groups of activated neurons.
Edges represent interactions, with width indicating interaction strength. Nodes are labeled with the most likely
prediction when processed by the model’s final output layer, except for keys, queries, and values, where we use
the probe from Section 4.4.1 eliciting the most similar activation. Node color represents whether activations, when
interpreted as predictions, have the correct action (pointing) as either the most likely (green) or second-most likely
(yellow) output. The graph should be read from left to right and omits the attention layer’s feedforward block for
simplicity.

that it produces slightly more precise representations of set cardinality earlier, on which its
higher levels can operate. In the N-S model, which appears to require more processing steps,
that is, attention layers, to determine set size, fewer attention layers are available for higher
level operations once cardinality information has been determined. This leads to a lower per-
formance on tasks like set seriation (D9).

4.4.3. Visualizing an information flow
The analyses presented so far have mostly looked at static model weights for one or more

entire task families. We now want to provide a glimpse into the dynamics that unfold while
processing a single task. We use an information flow graph in the style of Katz and Belinkov
(2023), who recently proposed this kind of visualization for LLMs. We adapt their tool to
our multimodal case to show a snapshot of the information flow in the model’s 11th attention
layer during one time step of the first B4 task in the test set (Fig. 12). We choose task B4 as it
is relatively simple but involves the comparison of a set size and a digit—in this case, a set of
size 10 and the numeral four (Fig. 12 ). This makes it an interesting case for investigating
the two number formats’ representations. We choose the 11th attention layer because it is
the first point in the feedforward pass in which the correct action enters the model’s top five
most likely predictions, indicating that the attention layers’ heads play a role in solving the
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task. Nodes represent groups of activated neurons. Edges represent interactions, with width
encoding interaction strength.

The attention layer receives the model’s current state as input. This state is a high-
dimensional vector that is not human-interpretable. However, we can translate it to an action
prediction by directly applying the model’s final output layer (Fig. 2 ). We show the five
most likely outputs as separate bars (Fig. 12 ). Length indicates certainty. The correct
answer is to point because the agent is in the right panel. This action is not yet among the
top outputs. The prediction undergoes normalization (Fig. 12 ), which has been found to
act as a “semantic filter” in LLMs by dampening the effect of common inputs and boosting
the signal of rare tokens (Katz & Belinkov, 2023). In our case, normalization does little except
increase the likelihood of the “stop” action.

What follows are the outputs of the key, query, and value networks in the attention layer’s
16 heads (Fig. 12 – ), each represented by a node. As we saw in Fig. 10, the networks
may encode linguistic or visual information. To “decode” their outputs, we compare their
activations with those they exhibited in response to the probes in Section 4.4.1 and use the
closest match as node labels. Labels are colored according to modality. We also translate each
network output to an action prediction, as we did for the attention layer input (Fig. 12 ).
The color of each node represents whether this translation yields the correct action (pointing)
as the most likely (green) or second-most likely (yellow) output. This color-coding indicates
whether a network contributes to the correct prediction.

The results of the interactions between keys, queries, and values pass through the heads’
output layers (Fig. 12 ). The individual heads’ outputs are aggregated into an updated pre-
diction (Fig. 12 ). This updated prediction is added to the attention layer’s original input and
processed by further normalization and a feedforward block, which we do not depict for sim-
plicity. The attention layer shown in Fig. 12 is a relatively early one, and the updated predic-
tion it produces is still almost uniform. However, the correct action, pointing, has now entered
the model’s top five predictions due to the contributions from the attention layer’s heads.

If we consider the mechanism formed by keys, queries, values, and outputs as an associa-
tive process, we see that the model retrieves relevant information, including representations
learned from other tasks. For example, there are activations for the visual digit 10, a pointing
hand, and the number words “10” or “4”—none of which are in the task’s immediate input.
Most heads output the action “point,” which modifies the model’s top five predictions to
include pointing. However, the output predictions “three,” “four,” or “five” also appear
across the attention head. This activation of surrounding number outputs can be explained by
looking at the weights in the model’s final output layer. Fig. 13 shows the cosine similarity
of the incoming weights for each possible output. Similarity for weights of neighboring
numbers is higher than for numbers further away, leading to a coactivation of close-by
numbers in line with Verguts & Fias (2004)’s proposal of a noisy mental number line. The
fact that various visual, spatial, and output prediction nodes appear in the graph also fits
well with Abrahamse, Braem, Notebaert, and Verguts (2016)’s proposal that performing a
task coactivates perceptual, motor, and goal representations in the brain, binding them into a
context-specific associative network which allows for cognitive control.
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Fig. 13. Cosine similarity of each output’s incoming weights in the model’s final output layer.

Fig. 14. Cosine similarity between aggregated activation trajectories for the four tasks in the dataset involving the
“more” relation, in each of the four attention blocks.

4.4.4. Comparing task-processing sequences
Our dataset spans a range of number concepts and task families, which enables us to com-

pare them from various perspectives. So far, we have looked at the order of acquisition during
training in Section 4.2 and within-model prediction trajectories in Section 4.3.3. Finally, we
want to compare the model’s internal activations while processing different tasks. We run
the model on all tasks in the test set and collect each attention layer’s 64-dimensional atten-
tion head outputs at every time step. We average the recorded activations over the time steps
of a single task and sum over the 1,000 tasks in a task family. We take the pairwise cosine
similarity for the aggregated activation vectors of each task family as a measure of similar-
ity between their activation trajectories. In Fig. 15, we present the results in a hierarchically
clustered heatmap.

Two over-arching clusters form—one cluster of mainly cardinal tasks that involve set com-
parisons or exact cardinality (upper left) and one of within-panel seriation and ordinal tasks
(lower right). Within the second cluster, there is a subcluster of set enumeration tasks (A3,
C8, A6, A4, A2, A5), object seriation tasks (D7, D8, D3, D4), and object selection tasks
(D5, D2, D1, D6). Notably, although sorting objects differing in one (D3, D7) and more than
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Fig. 15. Hierarchically clustered heatmap of the cosine similarity between aggregated activation trajectories for
each task in the dataset.

one (D4, D8) attribute showed different training trajectories, the activation trajectories in the
trained model are almost identical. The map also includes a small cluster of tasks with purely
verbal outputs (D10, A1, C3) and one cluster of tasks requiring the manipulation or selection
of multiple panels (D9, C7, B5, B6, C1).

Tasks that involve different number modalities but are otherwise identical show high simi-
larity. Examples include A7 and C4, C8 and A6, or D9 and C7. This suggests that the network
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has learned knowledge and procedures employed similarly in tasks involving different num-
ber formats. We investigate where the model processing diverges when solving versions
of the same task with different number representations in Fig. 14. The plot compares four
tasks involving the “more” relation (B9, B1, B3, and C5) broken down by attention block.
Activation trajectories diverge most in the lower attention layers, then form clusters according
to input representation formats: B9 and B1 involve only object sets, and C5 involves only
digits. B3, which involves objects and digits, shows equal similarity to both. Activations in
the fourth block are almost identical, most likely because its attention layers do not contribute
much to these tasks and are essentially skipped during processing (see Section 4.3.3).

Several neuroimaging studies have done comparable analyses to investigate activations in
the brain during tasks involving different number representations and magnitudes. Results
indicate that neural overlap depends on task demands (Lyons & Ansari, 2015) and that,
besides areas thought to represent numbers, numerical tasks activate more non-specific brain
areas related to, for example, general visuospatial skills (Hubbard et al., 2005). These find-
ings generally fit with the fact that clusters in activation trajectories in Figs. 14 and 15 in
part reflect number representation format and in part similarities in other visual inputs and
action sequences.

5. Conclusion

In summary, our work reinforces and amplifies previous findings that early number skills
can emerge from the general learning mechanisms of DNNs. The model’s training trajecto-
ries within and across tasks mostly fit with empirical findings from children, where available.
This “implicit curriculum” forms without imposing an order of task presentation or explic-
itly modeling maturational changes, which have been hypothesized to underlie transitions
in children’s learning (McGonigle-Chalmers & Kusel, 2019). In line with human behavioral
data, the model shows decreasing accuracy and broader response variability with increas-
ing target numerosity and non-symbolic and symbolic size and distance effects. It produces
these effects without an innate, spatially organized “mental number line,” a prevalent expla-
nation in humans (Harvey, Klein, Petridou, & Dumoulin, 2013; Zorzi, Priftis, & Umiltà,
2002).

Qualitative analysis of the model suggests an intricately entwined network of specialized
and more general processing units. Using isolated probes, we show where in the model infor-
mation is integrated via multimodal attention heads. We explore the interplay between atten-
tion heads in action by visualizing an exemplary information flow. The visualization illustrates
how attention heads retrieve cross-modal information related to, but not necessarily present
in, the model’s immediate input. We compare aggregated activations across tasks and find
that overlap in activation trajectories reflects similarities in inputs and task demands. This
functional organization emerges from objective-based training without enforcing topological
constraints on model connections. Of course, these findings do not preclude the presence of
certain neural structures supporting number skills in the brain. However, they demonstrate
that innate circuitry is not the only possible source of explanation.
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Inspired by discussions in the literature on the role of language in numerical cognition, we
train a model only on non-symbolic tasks. The model performs well on two-set comparisons
and tasks related to object attributes, in line with findings that some proto-quantitative skills
can develop without language. However, it performs less well on tasks involving more than
two sets. We compare the internal processing and embeddings of the models trained with and
without symbolic tasks. We conclude that the model trained without symbolic tasks requires
more processing steps to determine set sizes, leaving fewer capacities for more advanced oper-
ations involving multiple sets. This offers a concrete, computationally implemented demon-
stration of how differences in exposure to symbolic number tasks can give rise to differences
in internal representations and processing strategies.

Given that the model reaches high accuracy on most tasks, including comparisons requiring
extrapolation to larger set sizes, it could serve as a starting point for further in silico explo-
ration of hypotheses about the biological mind. Discrepancies between model and human
behavior are particularly interesting in this regard because they provide clues about factors at
play in human learning that may be missing in the setup (McClelland, 2009). For example,
our model learns symbolic tasks faster than non-symbolic ones. We attributed this to symbolic
tasks involving less variability and, often, shorter sequence length. A more realistic dataset
where digits vary in appearance and outputting number words requires producing individual
phonemes might thus lead to a more human-like acquisition order. Alternatively, introducing
symbolic tasks later in training or changes to the architecture may be needed. Furthermore,
future work could investigate hypotheses about the role of maturational changes in learning
by gradually increasing model capacity and comparing internal representations or processing
strategies to those emerging from a priori full-scale models. The model could also be ablated
to simulate hypotheses about developmental disorders.

On a broader level, we hope this work can serve as an example of how DNNs can be used
for cognitive modeling both despite and because of their inherent complexity. Many of the
studies outlined in Section 2.1 used comparatively small models, abstracted inputs, and few
specific tasks, as this was conducive to their goal of understanding model representations and
processing. In deep learning, models are trained on naturalistic data and evermore general
tasks. However, the focus is generally on performing well on benchmark datasets rather than
analyzing the models’ inner workings. While there is undoubtedly room and good reason for
both approaches, we have tried to find a middle ground: We use a large, relatively general-
purpose DNN but train it on the circumscribed domain of early number knowledge, then
analyze it in depth. Many of our analyses reveal representations and processing strategies that
could only emerge from a sufficiently complex setup. Despite this complexity, we hope we
have shown that DNNs are not the entirely impenetrable black boxes they are often made out
to be.

We believe that employing DNNs in smaller, controlled environments that capture essen-
tial properties of natural experience and focusing more on the “how” than the “how well”
can benefit both cognitive science and AI. Cognitive scientists can use AI developments to
broaden their models’ scope, allowing them to analyze phenomena that cannot emerge when
studying isolated concepts. For AI researchers, better insights into DNNs can yield a more
realistic assessment of model capabilities and motivate improvements in architectures or input
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data. For example, analyses of our model pointed to the limitations of its purely feedforward
nature, underscoring the importance of recent efforts to introduce recurrent weight sharing
and adaptive halting mechanisms to transformer-based architectures (Messina, Amato, Car-
rara, Gennaro, & Falchi, 2022; Cognolato & Testolin, 2022). As seen throughout this paper,
design decisions at every level significantly impact what a model can be taught. Even two
models with identical architectures and similar task performance may develop diverging inter-
nal processing mechanisms if trained on different inputs. Fields such as cognitive science and
developmental psychology have long studied the experiences that shape what and how we
learn. This expertise can inform the design of training inputs that induce more human-like
representations and processing in DNNs, ultimately making them more understandable and,
therefore, easier to trust.
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