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Abstract
Objective: Screening and early diagnosis of gastric cancer (GC) are crucial for
improved prognosis. However, gastroscopic screening is not feasible in large pop-
ulations due to its high cost and invasive nature. The detection of circulating
cell-free DNA (cfDNA) provides an attractive minimally-invasive alternative for
screening of GC. In this systematic review and meta-analysis, we evaluate the
diagnostic value of cfDNA-basedmarkers for GC, including the detection of total
concentration, mutations, and methylation alterations.
Methods: We performed a systematic search of four literature databases
(PubMed, Embase, Web of Science, and Cochrane Library) for articles published
before November 2022. The revised tool for the Quality Assessment of Diagnos-
tic Accuracy Studies (QUADAS-2) was used to evaluate the quality of included
studies. PROSPERO registration number: CRD42021210830.
Results: A total of 15 original articles involving 2849 individuals were included
in this meta-analysis, comprising five studies on concentration, nine studies
on methylation alterations, and one study on mutation biomarkers of cfDNA.
Among these studies, seven selected early-stage GC subjects. For the diagnoses
of overall stages and early-stage GC, the pooled sensitivities with 95% confidence
interval were 0.74 (0.66–0.82) and 0.64 (0.51–0.76), and the pooled specificities
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were 0.92 (0.84–0.96) and 0.94 (0.87–0.98) with summary areas under the curve
(SAUCs) of 0.89 (0.86–0.91) and 0.86 (0.83–0.89), respectively.
Conclusions: This meta-analysis suggests that cfDNA-based biomarkers show
diagnostic value for GC early detection.

KEYWORDS
circulating cell-free DNA, early diagnosis, gastric cancer, liquid biopsy

1 INTRODUCTION

Gastric cancer (GC) is the fifth most common cancer and
the fourth primary cause of cancer-related deaths glob-
ally according to the GLOBOCAN database 2020.1 The
5-year survival rate depends greatly on the stage at diagno-
sis. For advanced-stage patients, the 5-year survival rate is
6%–10.2% but for early-stage subjects 72%–77%.2,3 An early
detection followed by endoscopic resection of the tumour
can even elevate the 5-year survival rate to over 90%.4,5 The
insidious onset and asymptomatic early stage of GC result
in most clinical patients being diagnosed at advanced
stages with poor prognosis. Currently, the gold standard
for GC diagnosis relies on gastroscopic examination and
pathological analysis of biopsy tissue. However, it is diffi-
cult to implement large-scale gastroscopic screenings with
these methods because of their invasive nature, the neces-
sity for experienced endoscopists and pathologists, and
the high costs of the diagnostic procedure. Therefore, the
identification of novel biomarkers using minimally inva-
sive, and more effective and feasible methods is urgently
needed for large-scale screening of GC. In this regard, the
detection of biomarkers in blood has emerged as an inter-
esting alternative. However, biomarkers investigated for
GC screening, such as pepsinogen (PG) levels, gastrin-17
(G-17), and Helicobacter pylori antibodies, have not shown
sufficient sensitivity and specificity.6,7
Recent advances in liquid biopsy technology have

enabled the identification of novel biomarkers based on
circulating cell-free DNA (cfDNA), circulating tumour
cells (CTC), long non-coding RNA (lncRNA), or exo-
somes. CfDNA may contain DNA fragments released
from precancerous or tumor cells into the bloodstream
and therefore aid in monitoring local mucosal abnor-
malities in a non-invasive manner. Previous studies have
used chemiluminescence or fluorescence-based quantita-
tive polymerase chain reaction (PCR)8–11 or AluPCR12 to
evaluate the associations between cfDNA concentration
and tumours. Furthermore, the discovery of novel genetic
variations or epigenetic alterations, such as mutations or
methylation changes in cfDNA provides new possibilities
for non-invasive cancer biomarker investigation. Although

several studies have focused on the identification of cfDNA
markers of GC, the diagnostic value of cfDNA biomarkers
for GC screening has not been systematically evaluated.
In this review, we summarized the currently avail-

able studies on the three kinds of cfDNA biomarkers for
GC screening (concentration, methylation, and mutation
alterations) and comprehensively evaluated their perfor-
mance in diagnosing GC, especially early-stage GC.

2 METHODS

2.1 Literature search strategy

Using four major databases including PubMed
(https://pubmed.ncbi.nlm.nih.gov/), EMBASE
(https://www.embase.com/), Web of Science
(https://www-webofscience.com/), and Cochrane Library
(https://www.cochranelibrary.com/), we conducted a
comprehensive and systematic literature search for stud-
ies on cfDNA biomarker evaluation for GC screening
published before November 2022. Keywords and search
strategies are shown in Table S1.

2.2 Inclusion and exclusion criteria

The inclusion criteria for eligible studies were as follows:
(i) studies focusing on human patients (over 18 years old,
any gender) with confirmed GC; (ii) studies using serum
or plasma samples for cfDNA biomarker investigation; (iii)
studies focusing on biomarkers including cfDNA concen-
tration, methylation and mutation alterations; (iv) studies
concentrating on screening or early detection of GC; (v)
studies publishing sufficient data for direct or indirect cal-
culation of true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) statistics; and (vi)
studies with full text available in English or Chinese.
The exclusion criteria were: (i) studies not related to

GC; (ii) studies using tissue samples rather than plasma
or serum; (iii) studies that did not include cfDNA concen-
tration, methylation, or mutation biomarkers; (iv) studies

https://pubmed.ncbi.nlm.nih.gov/
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focusing on GC prognosis, efficacy assessment and recur-
rence monitoring; (v) studies that did not provide enough
parameters for the calculation of TP, TN, FP, and FN; (vi)
studies conducting only animal or in vitro experiments
without human cases; (vii) non-original studies, such as
reviews, conference abstracts or patents; (viii) duplicates.
cfDNA concentration is defined as the percentage of

cfDNA measured in the blood. A healthy individual has
a cfDNA concentration of 0−100 ng/mL, with a mean of
30 ng/mL, whereas the cfDNA concentration in cancer
patients varies between 0−1000 ng/mL with an average
of 180 ng/mL.13–15 cfDNA methylations are characterized
when a methyl group is added to the cytosine residues,
specifically at cytosine-guanine (CpG) dinucleotide sites
by DNA methyltransferases (DNMT).16

2.3 Data extraction and quality
assessment

The retrieved literature was imported into the reference
manager software EndNote (Clarivate). Two researchers
(Mona Wang and Xiaohan Fan) read the literature inde-
pendently, checked that inclusion and exclusion criteria
were met and extracted data from the studies finally
included. The view of a third investigator (Boyang Huang)
was sought if the opinions of the first two researchers
were inconsistent. Data extracted from the selected studies
included the name of the first author, year of publica-
tion, country, sample size, number of GC patients, number
of controls, type of samples, type of cfDNA biomarkers,
detection method for biomarker investigation, and statis-
tical parameters such as sensitivity, specificity, TP, FP, FN,
and TN. For a study with an independent validation set,
the corresponding values of TP, FP, FN, and TN from the
validation set were also extracted. For studies including
early GC cases, statistical parameters were calculated for
both early GC and all-stage GC subjects. If a study eval-
uated multiple biomarker combinations, the biomarker
combination with the best diagnostic performance was
chosen.

2.4 Study quality assessment

The quality of the included studies was evaluated using the
revised tool for theQualityAssessment ofDiagnosticAccu-
racy Studies (QUADAS-2).17 QUADAS-2 evaluates four
key aspects, including patient selection, index test, refer-
ence standard, and flow and timing. All components were
evaluated for “risk of bias” and “concerns regarding appli-
cability”. The risk of bias was determined as “low,” “high,”
or “uncertain” for each aspect of the study. All studies were

assessed independently by two investigators (Mona Wang
and Xiaohan Fan). Any discrepancies between the opin-
ions of the two investigators were discussed and reassessed
by the third investigator (Boyang Huang).

2.5 Statistical analysis

Statistical analysis was performed using RevMan 5.3 and
the Midas package of Stata 17.0 software to calculate sen-
sitivity, specificity, pooled positive likelihood ratio (PLR),
pooled negative likelihood ratio (NLR), pooled diagnos-
tic odds ratio (DOR), and corresponding 95% confidence
interval (CI) based on TP, FP, FN, and TN indicators.
The LRT_I2 (I-square) statistic and LRT_Q2 (Chi-square)
statistic were used to test the heterogeneity of the stud-
ies. A fixed-effect model was used when heterogeneity
was considered low (I2 ≤50% and p > 0.05). Otherwise, a
random-effects model was selected when the heterogene-
ity was high with I2≥50% and p < 0.05. The sources of the
heterogeneity were further explored by subgroup analy-
sis, sensitivity analysis, or meta-regression. The summary
receiver operating characteristic (SROC) curve was plotted
and the area under the curve (AUC) was calculated. Pub-
lication bias was analyzed using Deek’s funnel plot with
p < 0.10 indicating the presence of publication bias.

2.6 Subgroup analysis and
meta-regression analysis

Subgroup analysis by stage ofGC (early or all stage), aswell
as type of cfDNA biomarker (concentration and methyla-
tion), were conducted. All GC cases in stages I and II were
defined as early GC. No subgroup analysis of mutation
biomarkers was performed as only 1 associated publication
was eligible for inclusion.
Meta-regression analysis was performed to assess poten-

tial factors that may lead to heterogeneity and bias,
including the country where the study was conducted, the
type of samples, the type of biomarkers, the total sam-
ple size of the study, and the throughput of the detection
method (Table 1).

3 RESULTS

3.1 Baseline study characterization

Following the literature search strategy, 1217 publications
were preliminarily selected from the four databases. The
retrieved literature was imported into EndNote with 666
articles remaining after duplicates were removed. Accord-
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F IGURE 1 PRISMA flow chart of the literature selection process. 1217 studies were filtered from four different databases: PubMed,
Embase, Web of Science, and Cochrane. In the screening process, 551 duplicated studies and 547 studies not matching the inclusion criteria
were removed. The remaining 119 studies were screened for eligibility and 104 studies were removed after full-text screening. 15 studies were
included for qualitative analysis.

ing to the inclusion and exclusion criteria, 508 articleswere
initially excluded based on the title and abstract content,
and 104 articles were further excluded after subsequent
full-text intensive reading. Finally, 15 eligible studies
were selected for meta-analysis (Figure 1). All of the 15
studies investigated cfDNA biomarkers in GC subjects
in all stages, with eight publications further specifically
describing the diagnostic value of cfDNA biomarkers
for early GC. Among the 15 studies, 5 focused on cfDNA
concentration alterations,8–12 nine evaluated cfDNA
methylation biomarkers,18–27 and 1 reported mutation
variations.28
The publication years of the 15 studies ranged from

2009 to 2022. The sample sizes of the study population
were from 49 to 880, covering patients from nine different
countries (Iran, Japan, China, America, Denmark, Nether-
lands, South Korea, Bulgaria, and Lithuania). Six studies
included gastric tissue and plasma samples simultaneously

with the other nine studies applying only plasma or serum
samples. A total of 2849 study subjects, including 941 GC
patients and 1908 non-GC controls, were included in the
15 studies. The detection methods for the cfDNA biomark-
ers included PCR, methylation-specific PCR (MSP), and
high-throughput second-generation sequencing technolo-
gies. After intensive reading of the articles, TP, FP, TN, and
FN were extracted from early and other-stage GC subjects
(Table 2).

3.2 Quality of the included studies

Each selected study was assessed according to QUADAS-2
criteria for its Risk of Bias (RoB) and quality in four aspects,
namely Patient Selection, Index Test, Reference Standard,
and Flow and Timing (Figure 2). Concerns regarding the
reference standard in both RoB and applicability were
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F IGURE 2 Quality assessment of the selected studies by
Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2).
All studies were assessed by QUADAS-2 using the Revman tool. (A)
Risk of bias in all studies. (B) Risk of summary categorised as
“high”, “unclear” and “low” based on the rating of two independent
reviewers.

low (presented in green) since almost all studies used the
gold standard of endoscopic results for diagnosis. There
were a few applicability concerns regarding the Patient
Selection and Index Test as per the inclusion criteria of
the review. However, the selection of patients was char-
acterized as high RoB in eight studies because of the
high heterogeneity of the studies without randomization
in subject selection and case-control design. The RoB
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of the Index Test was described as high or unclear in
5 studies, which may be due to conducting and inter-
preting the index test after knowledge of the reference
standard. Nevertheless, the overall quality of the literature
included in this review is high and qualified for further
analysis.

3.3 Overall performance of cfDNA
biomarkers in predicting GC

The diagnostic value of cfDNA biomarkers for GC subjects
in all stages was evaluated using sensitivity and specificity.
After the heterogeneity test, we applied a random-effects
model for meta-analysis and revealed a pooled sensitivity
(95% CI) of 0.74 (0.66–0.82) and specificity (95% CI) of 0.92
(0.84–0.96). The combined parameters were further calcu-
lated, giving a pooled PLR (95% CI) of 9.67 (4.66–20.05),
pooled NLR (95% CI) of 0.28 (0.20–0.38), pooled DOR (95%
CI) of 34.82 (14.64–82.82), and AUC in SROC (95% CI) of
0.89 (0.86–0.91). Forest plots for the respective statistical
values are shown in Figure 3.

3.4 Diagnostic performance of cfDNA
biomarkers for early GC subjects

Seven studies included the subgroup of early GC sub-
jects. Accordingly, we analyzed the alterations of cfDNA
biomarkers in early GC subjects. Based on the results of
the heterogeneity test, we used a random-effects model for
the meta-analysis and calculated a pooled sensitivity (95%
CI) of 0.64 (0.51–0.76) and a pooled specificity (95% CI) of
0.94 (0.87–0.98) (Figure S1). Furthermore, the pooled PLR,
NLR, DOR, and AUC of SROC curve analysis were 11.41
(4.27–30.49), 0.38 (0.26–0.55), 30.27 (8.45–108.49), and 0.86
(0.83–0.89), respectively.

3.5 Diagnostic performance of cfDNA
methylation biomarkers for GC subjects

Among the included studies, nine evaluated cfDNAmethy-
lation biomarkers for GC diagnosis. The random-effects
model was selected for meta-analysis according to the
results of the heterogeneity test. Corresponding forest plots
in Figure S2 show a pooled sensitivity of 0.71 (0.57–0.81),
specificity of 0.90 (0.79–0.96), PLR of 7.34 (3.23–16.66),
NLR of 0.33 (0.21–0.50), DOR of 22.48 (8.22–61.51) and
AUC of SROC curve analysis of 0.87 (0.84–0.90), respec-
tively. The performance of cfDNAmethylation biomarkers
exhibited their applicability for GC diagnosis.

3.6 Diagnostic performance of cfDNA
mutation biomarkers for GC subjects

Only one article by Cohen et al. reported cfDNA muta-
tion biomarkers for early GC detection.28 The mutation
biomarkers in that study presented a sensitivity and speci-
ficity of 0.686 and 0.991, respectively, for early-stage GC
diagnosis.28 Taking all stages of GC diagnosis into consid-
eration, the sensitivity and specificity were increased to
0.72 and 0.99.28
In the study of Cohen, et al.28 a panel containing 16

genes was sequenced in both plasma and tissue samples.
Amongst all mutated genes, TP53 mutation was most fre-
quently detected in plasma samples and the mutation site
of TP53 K372fs presented the highest detection rate in
cfDNA. In tissue samples, the genes of TP53, PIK3CA,
KRAS, and CTNNB1 were most commonly mutated (cut-
off value = mutation frequency/ mutation count > 3.5%)
(Table S3). The mutation sites of PIK3CA E545K, KRAS
G12D, TP53 V272M, and PIK3CA H1047R were most fre-
quently observed in tissue samples amongst the cohort of
Cohen et al.28

3.7 Diagnostic performance of cfDNA
concentration for GC subjects

Of all included studies, five focused on the relationship
between cfDNA concentration and GC. Based on the
results of the heterogeneity test a random-effects model
was used for meta-analysis which showed a pooled sensi-
tivity and specificity of 0.78 (0.73–0.82) and 0.91 (0.75–0.97),
respectively (Figure S3). Furthermore, pooled PLR, NLR,
DOR, and AUC were 8.59 (2.82–26.23), 0.24 (0.19–0.31),
35.62 (9.83–129.09), and 0.80 (0.76–0.83), respectively.

3.8 Publication bias

The Deek’s funnel-plot asymmetry test was performed
on all 15 studies and indicated a symmetrical plot with
a regression curve of p = 0.18, suggesting no significant
publication bias in the included literature (Figure 4).

3.9 Meta-regression

According to the calculation of the I2 value in the Diag-
nostic Odds Ratio, considerably high heterogeneity was
detected across the total studies (100%). To reveal the
possible sources of heterogeneity, we performed a meta-
regression analysis assessing potential co-variates among
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F IGURE 3 Meta-analysis of cell-free DNA (cfDNA) markers in the diagnosis of gastric cancer (GC). Sensitivities (A), specificities (B),
positive likelihood ratios (C), negative likelihood ratios (D), diagnostic ratios (E), and areas under the curve (AUCs) (F) of cfDNA markers in
diagnosing GC. Horizontal lines indicate 95% confidence intervals.

these 15 studies. The potential co-variates included coun-
tries where the studies were conducted (China or other
countries), publication year (before or after 2015), types of
samples (plasma or serum), types of biomarkers (cfDNA
methylation or others), detection throughput (high or
low), GC patient size (number of GC subjects ≥50 or < 50)
and total study population size (total number of study
population ≥100 or < 100).

The meta-regression analysis found statistically signif-
icant relationships (p < 0.05) between the heterogeneity
of sensitivity and type of biomarker or total study popula-
tion size. However, no statistically significant relationships
were found between the heterogeneity of specificity and
all co-variates (Figure 5). Generally, three different types of
studies were included: cfDNA concentration, methylation,
and mutation. Amongst them, the majority were methyla-
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F IGURE 4 Deek’s funnel-plot analysis test. Deek’s funnel plot presented the symmetry of the effect size measure (diagnostic odds ratio)
over the range of sample sizes presented an unlikeliness of publication bias in this review.

tion studies (9/15). Other studies describing cfDNA con-
centration (5/15) and mutation (1/15) presented a higher
sensitivity compared tomethylation studies. Excepting the
study on mutation with 880 participants, the average pop-
ulation size for cfDNA concentration studies (127) was
lower than that for methylation studies (169). This obser-
vation is in accordance with the second finding of the
meta-regression analysis that studies with a smaller total
population size presented a higher sensitivity compared
to studies with a larger population size. Detailed analysis
found that most of the studies (3/5) on cfDNA concentra-
tion were published before 2015 and more studies focusing
on cfDNA methylation and mutation biomarkers (8/15)
were published after 2015, perhaps due to the development
of novel technologies. Other factors, such as the country
where the study was conducted and sample type, did not
show significant effects on heterogeneity (p > 0.05).

4 DISCUSSION

Early diagnosis is crucial for the prevention and treat-
ment of cancer, especially for cancers located in the
gastrointestinal tract. Early detection and treatment of
GC may increase the 5-year survival rate up to 90%.4,5
A non-invasive method for early diagnosis may be more
cost-effective and easier to conduct than conventional

upper GI endoscopy. The present systematic review and
meta-analysis summarized current advances in the early
detection of GC using cfDNA biomarkers. To our knowl-
edge, this is the first review analyzing the performance of
cfDNAbiomarkers for early detection ofGC in a systematic
and meta-analytical manner.
In recent decades, the frequently studied, non-invasive

cfDNA biomarkers for GC diagnosis can be divided into
three categories, including cfDNA concentration,methyla-
tion, and mutation changes. AUC of ROC curve analysis is
a commonly used assessment index for comparison of the
accuracy of diagnostic tests. In this systematic review, we
calculated overall AUCs forGC subjects in all stages aswell
as in the early stage, which reached 0.89 and 0.86, respec-
tively. This suggests that cfDNA biomarkers are potentially
efficient diagnostic tools for GC and early GC detection.
cfDNA biomarkers showed a high pooled sensitivity

(0.74, 0.66–0.82) and high pooled specificity (0.92, 0.84–
0.96) in diagnosing subjects at all GC stages. However,
in diagnosing GC in early-stage subjects, a high pooled
specificity (0.94, 0.87–0.98) but lower pooled sensitivity
(0.64, 0.51–0.76) was observed. The lower sensitivity of
the cfDNA biomarkers for early-stage GC detection may
be due to the limited amount of cfDNA released from
tumour tissue in early-stage development,29–31 a key hur-
dle for the clinical application of non-invasive biomarkers.
Thus, future use of cfDNA biomarkers for screening pop-
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F IGURE 5 Meta-regression forest plot showing sources of heterogeneity between studies. Selected publications were examined for the
source of high heterogeneity. The following covariates were analyzed for their significance in sensitivity (95% confidence interval [CI]) and
specificity (95% CI): Country of origin, Publication year, sample source, biomarker type, sequencing throughput, patient population, and total
study population. Statistical significance was determined with a two-way analysis of variance (ANOVA). *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,
****p ≤ 0.0001, and ns: no statistical significance.

ulations may require not only an improved selection of
biomarkers but also more sensitive detection technolo-
gies to capture trace cfDNA alterations. Benefiting from
novel developed technologies like NGS, multiple potential
cfDNA biomarkers have been investigated to date. Never-
theless, the specific functions and interplays of the great
number of biomarkers remain not fully understood.
With not enough credible mutation biomarkers identi-

fied, applying mutation biomarkers remains challenging,
particularly for early diagnosis of GC. In this system-
atic review, only one study on cfDNA mutation was
found eligible and provided statistical data. The other
studies showed no detailed sensitivity and specificity
information, making an accurate assessment of the can-
didate mutation biomarkers difficult. While comparing
this study with four other mutation publications, which
were not eligible for systematic analysis,32–35 we noticed
that only one study34 had tried to combine different
types of plasma biomarkers (methylation and mutation)
to improve the accuracy of GC diagnosis. Tomeva et al.34
applied cfDNAmethylation andmutation biomarkers, and

additional miRNA biomarkers to establish an integrative
non-invasive panel for GC screening. The comprehensive
performance of the integrative panel was optimized to an
accuracy of 95.4%, sensitivity of 97.9%, and specificity of
80%.34 Recently, a population-based cohort study explored
noninvasive multi-analytical biomarkers and constructed
integrativemodels for preliminary risk assessment andGC
detection.36 This study found that the integrated model
including methylation and mutation biomarkers showed
improved sensitivities (0.72 and 0.63) and AUCs (0.83 and
0.82) in training and test sets to discriminate GC from
IM/LGIN. The integrated GC model had better perfor-
mance in training and test sets compared to the traditional
model including PG ratio and H. pylori infection status
(AUCs, 0.60 and 0.68, p-values < 0.001 and 0.005, respec-
tively, DeLong test). The outstanding performance of the
multi-biomarker panel suggested a promising direction for
non-invasive GC screening studies.
Most cfDNA mutation studies, including the one ana-

lyzed in this systematic review, used targeted gene panels
containing 16–73 genes.28,33–35 Cristiano et al.32 performed
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whole genome sequencing analysis. The most frequently
reported mutated genes in plasma samples from GC sub-
jects included TP53, KMT2C, MUC16, RP1B, PIK3CA,
CTNNB3, KRAS, ERBB2, SMAD4, AR, EGFR, VHL, and
SYNE1. The most commonly detected mutated genes in
GC tissue samples were TP53, MUC16, KMT2C, PIK3CA,
SYNE1, KRAS, ARID1A, BRCA2, RNF43, PKHD1, RIMS2,
CTNNB1, FAT4, and ZIC4. Amongst all the mutations
found in cfDNA of GC subjects, the mutations of KMT2C
c.2652+62A > G, and c.5009-19C > T presented the high-
est detection rates,35 followed by EGFR L858R, FGFR3
Y375C, APC T1556N, TP53 K372fs, PIK3CA E545K, KRAS
G12D and ERBB2 R678Q, TP53 R248W, APC A381fs. In
the tissue of GC patients, the mutations RNF43 G659Vfs,
ACVR2A K437Rfs, KMT2C c.1012+76G > T, ARID1A
P146fs, MUC16 P13555C, PIK3CA E545K, TP53 G245S,
R248W, R282W, and KRAS G12D were most frequently
detected amongst all the 4 cohorts. High variations in the
most frequently detected mutations were observed across
different cohorts. These variationsmight partly result from
discrepancies in detection technologies, as well as dif-
ferences in study populations. To summarize, although
many prominent mutation biomarkers for GC have been
identified, there is still potential for improvement in
terms of addressing their heterogeneity, sensitivity, and
specificity.
In attempting to identify possible sources of hetero-

geneity in this systematic review, we found that the
number of GC patients or total study population may
greatly affect heterogeneity between the different stud-
ies. The most significant heterogeneity may derive from
different types of biomarkers, such as methylation or
non-methylation markers, which is reasonable consider-
ing the great discrepancies between genetic and epigenetic
mechanisms for GC development. On the other hand,
the significant heterogeneity between cfDNA methyla-
tion and non-methylation biomarker studies may suggest
the necessity to establish a multiple biomarker panel
for efficient early detection of GC. In addition to the
factors examined, heterogeneity may also be related to
factors such as gender, age, tumour size, histological
tumour type, and tumour, node, metastasis (TNM) stage
of patients, which could not be analyzed due to lack
of data. Another reason for the substantial variability in
this study could be the small number of included stud-
ies. Nevertheless, the possibility of publication bias is not
to be neglected, as it remains a prevalent issue in meta
-analyses.
Finally, although no significant differences were found

between the studies applying plasma or serum samples,
concordance analysis of biomarkers (methylation, muta-
tion, and concentration) between cfDNA and tumour

samples is important to discern alterations reflecting the
genomic landscape from the tumour itself.

5 CONCLUSION

In this study, we conducted a systematic review and meta-
analysis on the value of cfDNA concentration, methy-
lation, and mutations for GC diagnosis. Our findings
suggest that cfDNA biomarkers may show high sensitiv-
ity and specificity for GC diagnosis. However, for early
detection of GC, the sensitivity of cfDNA biomarkers still
needs further improvement. Most of the current stud-
ies only focus on one single cfDNA biomarker type,
such as methylation, mutation, or concentration. High-
quality, well-designed, multi-omics integration studies
are still needed for accurate GC screening and early
detection.
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