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Abstract
Predicting the long-term success of endovascular interventions in the clin-
ical management of cerebral aneurysms requires detailed insight into the
patient-specific physiological conditions. In this work, we not only propose
numerical representations of endovascular medical devices such as coils, flow
diverters or Woven EndoBridge but also outline numerical models for the pre-
diction of blood flow patterns in the aneurysm cavity right after a surgical inter-
vention. Detailed knowledge about the postsurgical state then lays the basis to
assess the chances of a stable occlusion of the aneurysm required for a long-term
treatment success. To this end, we propose mathematical and mechanical mod-
els of endovascular medical devices made out of thin metal wires. These can then
be used for fully resolved flow simulations of the postsurgical blood flow, which
in this work will be performed by means of a Lattice Boltzmann method applied
to the incompressible Navier–Stokes equations and patient-specific geometries.
To probe the suitability of homogenized models, we also investigate poro-elastic
models to represent such medical devices. In particular, we examine the valid-
ity of this modeling approach for flow diverter placement across the opening of
the aneurysm cavity. For both approaches, physiologically meaningful bound-
ary conditions are provided from reduced-order models of the vascular system.
The present study demonstrates our capabilities to predict the postsurgical state
and lays a solid foundation to tackle the prediction of thrombus formation and,
thus, the aneurysm occlusion in a next step.
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1 INTRODUCTION

Cerebral aneurysm (CAs) are abnormal focal outpouchings of large intracranial arteries that result from a structural weak-
ening of the arterial wall [26]. Their rupture leads to a severe type of intracranial hemorrhage, subarachnoid hemorrhage
(SAH), which is a severe subtype of stroke with a high mortality and morbidity resulting in a significant socioeconomic
burden [48, 68, 73]. In the European Union alone, there are an estimated 12.5 million individuals, or about 3% of the
population, who have one or more aneurysms. Approximately 0.5% of the world population die from aneurysm ruptures.
Patients, who survive subarachnoid hemorrhages, experience in 30% of all cases significant neurological impairments
and disabilities [80]. The development of aneurysms is influenced by various factors, including hemodynamic stress, the
degradation of arterial walls, and conditions that result in high blood flow, such as hypertension, smoking, or connective
tissue disorders [32].

Along with microsurgical clipping of aneurysms through an open craniotomy, endovascular interventions have
emerged as an essential technique for the treatment of aneurysms. In these minimally invasive procedures, medical
devices are inserted into the cerebral vessels and/or aneurysms through microcatheters to trigger the occlusion of the
aneurysm sac by thrombus formation [82]. After the surgical intervention, either the endothelium re-grows to complete
a successful CA occlusion within months after surgery or inflammatory processes and/or high stresses in the CA walls or
compaction of the thrombus can trigger a recanalization, manifesting a relapse for the patient.

Due to its impact on the homogeneity and stability of the thrombus, and thereby the risk of aneurysm regrowth, the
choice of medical devices highly influences the overall treatment success. Despite specialized endovascular procedures
and advanced imaging techniques, device selection is mostly governed by the personal experience of the neuroradiologist.
Furthermore, comparability of devices in specific geometries is limited due to intraindividual variability of the anatomy.
To support the neuroradiologists in their treatment planning and decision process, computer simulations before device
implantation would enable comparisons of different devices and insertion techniques on a patient-specific basis, which
could substantially support interventionalists in the preparation of the procedure and in the choice of the device for each
patient. Overall, assisting the neuroradiologist’s planning process through numerical simulations could have a substantial
influence on long-term treatment outcomes, especially in critical scenarios [80, 86].

So far, numerical models to analyze the blood flow in CAs are often restricted to computational fluid dynamics (CFD),
which can predict flow patterns in good agreement with postsurgery MRI scans [57, 85]. Various flow models (e.g., incom-
pressible Navier–Stokes) and discretization techniques (e.g., finite element method (FEM)) are available. Alternatively,
one can reconstruct the velocity and pressure field from the Lattice Boltzmann method (LBM) discretization of the Boltz-
mann equation [63]. In contrast, fluid/structure interaction (FSI) models take the vessel’s compliance into account, even
with advanced isotropic or anisotropic constitutive laws [97]. Various endovascular treatment strategies for CAs have
been modeled numerically so far, most often related to either stent placement or coiling. The novel Woven Endo Bridge
(WEB) device has not been studied in computer simulations, yet. For example, [66] perform a “virtual” coiling proce-
dure on a patient-specific CA geometry using Euler–Bernoulli beam finite elements for the wire model for computational
efficiency, yet assuming a rigid vessel wall and neglecting the blood flow.

Regarding constitutive modeling of blood, many preliminary studies use the simplifying assumption of a Newtonian
fluid. Yet, capturing the non-Newtonian character is crucial to mimic the shear-dependent viscosity of blood, for example
via the Casson or Carreau-Yasuda model (also applicable to the LBM [14, 49]).

To provide physiologically meaningful boundary conditions at the inflow and outflow cross sections, but simultane-
ously limit the computational effort to the necessary minimum, one does not represent the entire cardiovascular system
with fully resolved three-dimensional models, but rather resorts to networks of reduced-and mixed-dimensional models.
Such mixed-dimensional models, that is, the coupling of fully resolved 3D models with reduced-dimensional 1D and/or
0D models, allow to represent the effect of the entire vascular system with reasonable computational effort. While 3D mod-
els resolve details of the vessel of interest, flow within the remaining network of large vessels is represented by a 1D flow
model, that is, a coupled system of partial differential equations with just a single space variable [18]. The remainder of
the blood circulation and the heart are represented by ordinary differential equations and algebraic equations, hence their
naming as 0D models. The lower-dimensional models then supply the boundary conditions for the higher-dimensional
models. Coupled 0D–1D–3D models are well-established in modeling the human vascular system [3, 76]. In closed-loop
form, the 3D model is embedded into a reduced-dimensional model of the circulation in the entire vascular system, as
for example, proposed in [109] for mixed-dimensional simulation of flow information in the brain’s circle of Willis. In
open-loop models, flow quantities are prescribed at the inflow boundary, while the outflow boundary is coupled to a 0D
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Windkessel model [102] that needs to be calibrated to patient-specific data [53]. The class of 3D–1D models has been suc-
cessfully used for large arteries [33] as well as microvascular networks [29, 62]. 3D–0D models are widely established in
cardiovascular and pulmonary networks [52], along with 3D–1D models of flow and transport processes in vascularized
tissue [62, 98].

In this article, we will work towards the numerical modeling of different endovascular treatment options for CAs.
We tackle this topic at several fronts: On the one hand, we propose geometric and/or mechanical models of the different
endovascular devices, that is, coiling, flow diverter and WEB. For the coiling wire, a mechanical model will be derived
that accounts for the naturally nonstraight configuration of the coiling wire and, thus, represents the self-induced fold-
ing into a coil when the coiling wire is deployed from the catheter. For flow diverters and WEBs, we show geometric
descriptions of their reference configurations and outline a process to map them into patient-specific geometries. On
the other hand, we consider different continuum models to assess the state of the blood flow in CAs immediately after
device placement. For coiling, we generate a patient-specific coil geometry using our coil model and then study the
reduction in blood flow inside the aneurysm cavity through flow simulations using the LBM. As an alternative model-
ing approach, we represent the medical device and the blood volume by a poro-elastic medium with different porosity
and permeability characteristics and exemplarily study the impact of a flow diverter on the flow field inside the CA.
The results lay the basis for future model improvements as well as for the quantitative prediction of the thrombus for-
mation inside the CA to forecast the long-term quality and stability of the CA occlusion and, thus, of the treatment
success.

The remainder of this article is organized as follows: In Section 2, we discuss different types of CAs as well as their
individually appropriate treatment methods and devices from a medical point of view and list respective challenges and
opportunities where numerical simulation can assist in medical decision making. In Section 3, we then introduce our
simulation preprocessing pipeline to obtain three-dimensional geometries and computational domains and meshes from
the original medical imaging data. Section 4 proposes to sets of models and numerical methods for the simulation of
blood flow through cerebral vessels, namely the solution of the incompressible Navier–Stokes equations via a LBM and a
homogenized approach using poro-elastic media discretized with the FEM. In Section 5, we discuss concrete mechanical
and geometric device models for endovascular coils, WEBs and stents/flow diverters, which will then be used together
with the porous flow surrogates from Section 4 in numerical experiments in Section 6. Section 7 concludes this manuscript
with some final remarks.

2 MEDICAL RELEVANCE AND CHALLENGES

Aneurysms are focal bulges in arteries which can occur anywhere in the body. Clinically relevant aneurysms can form
in the aorta, coronary arteries and vessels supplying the brain. Pathophysiologically, these are bulges of the blood vessel
wall involving all wall layers as a result of mostly acquired wall weakness of the basal cerebral arteries caused by high
hemodynamic stress, atherosclerosis, or vasculopathies [96]. Preferentially, these arise in areas of high hemodynamic
stress. Predilection sites are bifurcations (e.g., the division of the anterior cerebral artery and the anterior communicating
artery, the division of the internal carotid artery and the posterior communicating artery, the bifurcation of the middle
cerebral artery, and the tip of the basilar artery) and large vessels with a small radius of curvature (e.g., in the region of the
carotid siphon). In 90% of cases, the anterior circulation of the circulus arteriosus Willisii (circle of Willis) in the stromal
area of the internal carotid artery is affected [91].

Aneurysm therapy started in the late 1930s with predominantly transcranial surgeries, where silver clips were first
used to eliminate aneurysms [30]. Since then, clipping, that is, the placing of titanium clips at the aneurysm neck, has
become a standard treatment for the occlusion of aneurysms [111]. In parallel, the first endovascular approaches to
aneurysm occlusion began as early as the 1960s, and were substantially improved, for instance by Guglielmi et al. [43,
44], who developed the first platinum coils [42, 80]. The treatment modality of aneurysms is nowadays dependent on
several factors, such as aneurysm location, size, and configuration, and is recommended individually for every patient
by interdisciplinary boards [82]. Due to recent innovations in the development of neurointerventional devices, however,
endovascular treatment can nowadays be offered to more and more patients [80].

In principle, there are three different options for endovascular aneurysm occlusion: coiling, flow diversion, and flow
disruption (see Figure 1).
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(A) (B) (C)
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F I G U R E 1 Pre- and post-operative angiography for different options of endovascular aneurysm occlusion with injected contrast
medium (Images taken from our data collection described in Section 3.1) (A) Aneurysm in the anterior circulation before coiling procedure.
(B) Aneurysm in the internal carotid artery before flow diverter (FD) implantation. (C) Aneurysm before WEB device implantation. (D)
Placement of five coils inside a nonruptured CA. (E) Enlarged internal carotid artery after FD implantation (FD highlighted for better
visibility). (F) WEB implantation in a basilar artery aneurysm.

2.1 Coiling

Intraaneurysmal occlusion by detachable platinum spirals, that is, coiling (see Figure 1), was the first method of endovas-
cular aneurysm occlusion and remains up to day the most commonly used technique, because it enabled for the first
time to insert, extract, or disconnect an embolic substance within the cerebral blood vessels, significantly enhancing the
safety of neuroradiological embolization procedures [80]. Nonetheless, coiling has a major drawback in comparison to
clipping, which is the recurrence of aneurysms caused by either coil compression or aneurysm expansion [82]. This has
also been shown in a systematic meta-analysis by Lecler et al. [67], who describe in approximately 3000 cases an aneurysm
recurrence in 11.4%, see also [80].

The optimal choice of coil material is therefore essential to prevent aneurysm recurrence. Additionally,
hydrogel-coated coils were developed which can expand after coil implantation and fill more of the aneurysm lumen,
which reduced rates of aneurysm recurrence in recent studies. A particular challenge for coiling is the treatment of
wide-neck aneurysms as coil loops can extend into the parent artery more commonly. Also, the risk of aneurysm recur-
rence is higher in these aneurysm shapes. In some cases, coils can therefore be combined with stents or balloons, which
can enable the use of coils in these cases. Ultimately, devices for flow diversion and flow disruption were developed to
address this challenge [80].



FRANK et al. 5 of 37

2.2 Flow diversion

Flow diverter (FDs) represent a new generation of stent-like devices that are placed along the wall of the parent vessel
(see Figure 1). FDs alter the course of blood flow into the parent vessel, leading to reduced blood movement within the
aneurysm and the formation of a blood clot, which eventually transforms into scar tissue. Over time, the aneurysm’s
neck may also become covered with a new layer of tissue, known as neointimal proliferation, ultimately sealing off the
aneurysm [17]. Contrary to microsurgical clipping and coil embolization, the aneurysm closure occurs gradually over the
course of 6 to 12 months after treatment [80, 92].

Flow diverters were initially used in aneurysms that are not suitable for coiling due to their size and shape, that
is, large/giant wide-necked aneurysms. Recently, their spectrum has extended also to fusiform aneurysms, dissecting
aneurysms and recanalized aneurysms, where coiling can only be performed with a high risk of failure. Furthermore,
flow diversion can also be used in very small aneurysms untreatable by standard coiling. Flow diverters cannot be used for
aneurysms that are located at vessel bifurcations due to the risks of side branch occlusion [78]. Currently, complications
are higher than after coiling. Possible risks include ischemic stroke, perforator infarctions, vessel- or aneurysm ruptures
or secondary flow diverter occlusion [80].

2.3 Flow disruption devices

Flow disruption is the newest endovascular approach for the occlusion of aneurysms. Here, an intrasaccular device is
strategically positioned to modify blood flow dynamics at the aneurysm’s neck. This modification induces the formation
of an aneurysmal thrombus, functioning in a manner conceptually similar to intravascular flow diversion. The most
commonly used device for flow disruption is the WEB device which was initially developed in 2010 [79]. The device
is predominantly used for medium to large wide-neck bifurcation aneurysms, but recent technological advancements
in the device have expanded its potential applications to more distal bifurcation aneurysms, sidewall aneurysms and
smaller aneurysms up to 2 mm (see Figure 1). Because the device is relatively new, there are only limited long-term results
available [80].

3 FROM IMAGING DATA TO COMPUTATIONAL GEOMETRIES

Since this work sets out to aid medical doctors in evaluating treatment options and predicting treatment outcome for indi-
vidual patients, the extraction of patient-specific vessel geometries with physiological relevant boundary conditions builds
the foundation for computational modeling. Hence, we outline our preprocessing pipeline to arrive at patient-specific
geometries suitable to be used in numerical simulations.

3.1 Case selection, medical imaging and segmentation

Patient-specific geometries were taken from patients with unruptured intradural aneurysms of the anterior or posterior
circulation treated at the Klinikum rechts der Isar, Technical University of Munich, between 2013 and 2018 and contin-
uous clinical and radiographic follow-up for ≥5 years. Written informed consent was waived by the local institutional
review board for this study because of its retrospective character and the analyses being based only on data acquired dur-
ing the clinical routine. Of all 314 patients, 267 aneurysms were coiled, 29 aneurysms were treated by implantation of a
flow diverter, and 18 with WEB device implantations.

The procedure to obtain accurate vessel geometries is given by the following workflow: First, one performs an
image acquisition of the ipsilateral vascular tree, beginning at the skull base with 3D rotational angiography. For
image acquisition, Klinikum rechts der Isar, Technical University of Munich, uses a Philips Azurion 7 Neuro Suite
(Philips Medical Systems, Netherlands). The resulting image exhibits a size of 384 × 384 × 384 pixels with a resolu-
tion of resolution 3.7 pixels/mm. In a second step, one performs semi-automatic segmentation of the intracranial
vasculature with ITK SNAP [108], a free, open-source, multi-platform software application used to segment struc-
tures in 3D and 4D biomedical images. Starting from a manual selection of a few seeds points to define the interior
of the vessels, a contour evolution algorithm expands the vessel contour to align it with the grey-scale contrast being
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(B)

(C)

F I G U R E 2 Preprocessing of vessel geometries: After extraction of the domain of interest, the inflow surface is extruded to create a flow
extension with a circular inflow cross section. For the perception of the used colors we refer the reader to the online version of the article. (A)
Original vascular tree from dataset, here #C0074b from [77]. (B) Domain of interest (red) with a flow extension (light blue). (C) Inflow
(orange) and outflow (green) surfaces (second outflow surface in the back not visisble in this perspective). A digital version of this data set is
available in [34].

present at the vessel-wall locations automatically ITK SNAP applies a contour-evolution algorithm to expand the vessel
contour to automatically align with the grey-scale contrast at the vessel wall locations. Finally, the mask of the seg-
mented vessels is exported in STL format, yielding a comprehensive representation of the vessel geometries for further
analysis.

3.2 3D Geometry preprocessing and meshing

3.2.1 Geometry extraction, adaption, and alignment

Besides the acquisition of patient-specific geometries as outlined in Section 3.1, we also rely on publicly available online
databases such as [77, 90, 106] for a rich set of different test-geometries, mostly available in .vtk, .stl, or .obj file
format. The vascular trees resolved in these datasets or by segmentation of angiographic imaging data are usually much
larger than the vessel portion to be simulated in full three-dimensional (3D) resolution. Consequently, we first truncate
the vessel geometry at roughly two aneurysm diameters up- and—depending on the available dataset—down-stream the
position of the aneurysm by a simple planar cut, see Figure 2, with its exact position being up to human decision. For this,
but also upcoming mesh manipulation tasks as well as final visualization results, we have found the software tools blender1

and Vascular Modeling Toolkit (vmtk)2 [56] extremely useful. If the segmentation mesh data is slightly noisy, contains
triangles with insufficient aspect ratio, or exhibits other forms of poor mesh quality, the Laplace-Taubin algorithm [94] for
smoothing the discrete arterial surface has proven to be effective. For a simple and optimal integration of the algorithm
into the workflow, the implementations in MeshLab3 [25] or vmtk [56] are used where for example the choice of the scale

1blender software webpage: https://www.blender.org/.
2vmtk software webpage: http://www.vmtk.org/.
3MeshLab software webpage: https://www.meshlab.net/.

https://www.blender.org/
https://www.blender.org/
http://www.vmtk.org/
http://www.vmtk.org/
https://www.meshlab.net/
https://www.meshlab.net/
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parameters 𝜆 = 0.5 and 𝜇 = −0.53, see [94] and the standard settings in MeshLab, for 10 refinement steps provides a good
starting point for a smooth arterial surface.

To simplify the imposition of physiologically meaningful inflow boundary conditions, we sometimes add flow exten-
sions to the inflow surface, such that the flow field is fully developed when it reaches the beginning of the truncated vessel
domain [72, 93]. These straight geometric extension are extruded in orthogonal direction of the original inflow surface
and gradually interpolate between the original, not necessarily circular cut-off opening of the vessel and the artificially
circular ending of the extension (light blue part in Figure 2), which will then constitute the inlet boundary of the simula-
tion model. Alternatively, we can prescribe arbitrary inflow profiles directly on the original cut-off boundary of the vessel.
An extension of outflow areas is sometimes beneficial for flow simulations.

We then rotate the entire geometry, such that the outward normal n′ of the inlet cross section is aligned with the
negative x-axis of the coordinate system and the geometric center c′ of the inflow cross section resides at 0, see Figure 2C.
Consequently, a prescribed inflow profile in positive x-direction implies an orthogonal inflow. The geometry’s translation
to map the inlet’s geometric center before translation c onto c′ = 0 is simply the addition of −c to each vertex coordinate
vector v of the vessels-surface triangulation. To define an unique and objective rotation, we use Euler’s finite rotation
formula (Rodrigues’ formula). For convenience of the reader we state it as Remark 1.

Remark 1. Let a,b ∈ R3 be two unit-vectors enclosing the angle 𝜗 = ∠(a,b) ∈ (0, 𝜋) between them. Defining

• w ∶= a × b,
• c ∶= cos(𝜗) = ⟨a,b⟩,
• s ∶= sin(𝜗) = ||w||2 and
• ŵ ∶= w∕s

the matrix representation R of the rotation by the angle 𝜗 around the rotational axis ŵ that maps a onto b
is given by:

R = I + s [ ŵ ]× + (1 − c) [ ŵ ]2×, with [ ŵ ]× ∶=

⎛
⎜
⎜
⎜
⎜
⎝

0 −ŵ3 ŵ2

ŵ3 0 −ŵ1

−ŵ2 ŵ1 0

⎞
⎟
⎟
⎟
⎟
⎠

. (1)

For the special cases 𝜗 = 0 (iff c = 1) and 𝜗 = 𝜋 (iff c = −1), one instead uses R = I and R = −I, respectively.

This formula (in different notation) was already known to Euler [22] and is nowadays also often used in the
differential-geometrical context of frames for space-curves [58, eq. 2.4], see Section 5.3 for such an application even in
this work. In the present case however, we can simply use it for the desired geometry rotation by choosing a = n to be
mapped onto b = (−1, 0, 0)⊤ and again apply the rotation matrix R to each vertex coordinate vector v of the vessel’s surface
triangulation.

3.2.2 Geometric measures of vessel and aneurysm

After obtaining a geometric representation of the vessel and its preprocessing, another important step in the geometry
acquisition is the measurement of the resulting geometry. This step can encompass for example the computation of the
vessel’s centerline together with its corresponding arc length, the extraction of the local vessel radius along the centerline,
or assessing the diameter or volume of the aneurysm itself. Such quantities are required for the correct choice of design
parameters and placement of devices in Section 5. In this regard, again the vmtk [56] package has proven helpful not only
for measuring cerebral aneurysms, but also for aortic aneurysms [99].

Measurement based on the centerline will become useful in geometric stent modeling (see Section 5.3). Geometric and
volumetric information about the aneurysm itself will be required for treatment options such as coiling or WEB-device
insertion. For coiling, it is required to compute the volume packing density, that is, the ratio of the volume occupied by
the coiling wire to the entire volume of the aneurysm sac (see Section 5.1), and hence occlusion ratio which can be used
as an indicator for the success of the coiling procedure.
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(A) (B)

F I G U R E 3 Left: Cartesian grid used for an LBM-simulation (left sector: voxel-based geometry, right sector: outward unit normal field
depicted by green arrows). Right: Zoom into the red marked region of Figure 3A to showcase the staircase approximation of curved
boundaries. Sector I shows the grid constructed inside the (orange) triangulation of the vessel surface. Sector II. illustrates normal vectors
originating from lattice- cells and surface mesh intersections, while Sector III. depicts the (continuous to mesh resolution) field of normal
vectors without the surface mesh. (For an improved visualization, only a random selection of cell normal vectors is shown. (A) Cartesian
lattice used for an LBM-simulation. (B) Close-up view into red rectangle with three sectors showing steps I, II, and III for the computation of
the outward unit normal vector field.)

To extract volume information from the geometrical model, we virtually separate the sac of the aneurysm from the
adjacent vessel and close it at the ostium with a triangulated surface patch, hence arriving at the capsulated aneurysm
shapes depicted in Figure 7. These then serve as “cages” for the coil-placement simulation. If we denote by  the set of
all triangles constituting the surface mesh of the (encapsulated) aneurysm and by  only the triangles used to close the
aneurysm at the ostium, then the surface and volume of the aneurysm-sack can then be computed as

S =
∑

T∈ ⧵
AT , with AT =

1
2
||(vT,2 − vT,1) × (vT,3 − vT,1)||2,

V = 1
3
∑

T∈
⟨vT,1,nT⟩ AT ,

where nT is the outward unit normal vector of triangle T ∈  and vT,i, i = 1, 2, 3 the spatial locations of the three vertices
of triangle T ∈  , also see [4, section IV.1].

3.2.3 Meshing

The acquisition of vessel geometries as outlined in Section 3.2.1 delivers a triangular mesh of the vessel’s surface. Such a
pure surface representation is sufficient for some types of analysis, for example for the simulations of the coil deployment
process (see Section 5.1). There, we will neglect the presence of the blood for simplicity, but will account for the contact
interaction between the coiling wire and the aneurysm wall.

When accounting for blood and its flow through the vessel and aneurysm, a pure surface representation is insufficient
and a volumetric representation of the lumen (volume covered by blood flow) along with a suitable computational mesh is
required. The actual choice of the computational mesh highly depends on the applied numerical methods. In this article,
we will employ the LBM and the FEM.

On the one hand, FEM can deal with a variety of mesh topologies and cell types. When aiming at tetrahedral meshes for
example, vmtk offers a capable mesh generator to setup the overall mesh structure of the vessel (see Figure 3), which is then
fine-tuned and completed for example, by assigning flags and extracting node-sets at the different boundary parts, in cubit4

[28]. Depending on the previous used segmented data, the boundary parts can be identified and assigned within cubit.
Additionally, cubit offers the capabilities to create and refine meshes from parametrized virtual geometry aneurysms, as
they will be used in Section 6.1.

On the other hand, LBMs require a structured, Cartesian lattice of cubes, that then represent any curved boundaries
via a staircase-approximation. Although cubit also offers such opens for example, via its sculpt functionality [75], we rely

4cubit software webpage: https://coreform.com/.

https://coreform.com/
https://coreform.com/
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on the built in meshing-tools of the LBM software of our choice, waLBerla5 [7–9]. This high-performance LBM solver gen-
erates and also partitions such a lattice into subdomains ready for parallel computing. A signed distance octree algorithm
delivers macro blocks assigned to each process, while their union covers the entire geometry, and distinguishes into two
separate structures of LBM-cells, namely fluid cells inside the geometry’s boundary and solid cells outside, respectively.
In this work, we focus on the fluid cells for LBM and just use the solid cells to define the boundary. See Figure 3 for a
depiction of an LBM-suited mesh also roughly depicting its construction process by “filling out” the surface triangular
mesh “from the inside.”

3.2.4 Calculation of surface normals

In FEM, the boundary fitted meshes facilitate a straightforward computation of a field of outward unit normal vectors n,
where the smoothness of this field only depends on the mesh resolution. In contrast, the computation of outward unit
normal vectors for arbitrarily oriented and shaped domain boundaries is far from trivial for the voxel-type grids used
within LBMs. In fact, due to the staircase approximation, LBMs a priori lack a smooth outward unit normal vector field n
at boundary cells, which is necessary for the evaluation of key quantities in the assessment of the flow state in biomedical
flows, for example the wall shear stress computed as WSS = 𝝈n − (n⊤𝝈n)n, respectively its norm WSS = ||WSS ||2 close
to the vessel and aneurysm wall (see Section 6).

In order to reconstruct such a smooth outward unit normal field, purely grid-based approaches often result in only
a finite number of different normal vectors, which often exhibit sharp changes in close proximity. As counter measure,
we instead aim to employ the underlying surface mesh of the original vessel geometry, that served as starting point for
the distance octree algorithm to create the LBM-grid (see Section 3.2.3). We follow the approach from [70], where an
outward-facing normal field n(x) can be obtained from intersecting boundary cells of the LBM grid with the original
surface mesh’s triangles and a subsequent averaging over these triangles individual normal values. Similar to the FEM,
the resulting field of normal vectors is again smooth up to the mesh resolution of the original vessel geometry. In Figure 3,
the intersection situation is depicted together with the resulting outward unit normal vector field n(x).

4 CONTINUUM-MECHANICS AND NUMERICS OF FLOW IN ANEURYSMS

We now introduce the analytical models and numerical methods for the simulation of hemodynamics within the ves-
sels. In this contribution, we work with two different continuum models and approaches: Section 4.1 introduces the
Navier–Stokes equations for incompressible fluid flow and their solution via Lattice Boltzmann methods (LBMs) on non-
deforming domains, that will be used to describe the blood flow if most geometrical features of medical devices are
resolved. Section 4.2 details the governing equations and finite element discretization of a poro-elastic model to repre-
sent treated aneurysms on a deforming domain in a homogenized manner, that is, without resolving geometrical details
of medical devices. Both formulations differ in the increased computational performance of the LBM and in the ability of
FEM to analyze deformable domains.

4.1 Free-flow fluid model w/o fully resolved endovascular devices

4.1.1 Governing equations

Velocity v and pressure p in the flow field are governed by the Navier–Stokes equations for incompressible fluid flow,
reading

𝜕v
𝜕t
+ (v ⋅ 𝛁)v + 1

𝜌
(𝛁p − 𝛁 ⋅ (2𝜇𝝐(v))) = f, (3a)

𝛁 ⋅ v = 0, (3b)

where 𝜌, 𝝐(v) = 1
2

(
𝛁v + 𝛁v⊤

)
, and f denote the density, strain rate tensor, and body force vector, respectively. We note

that (3a) is formulated such that it is extensible to non-Newtonian fluid models (see Section 4.1.2).

5waLBerla software webpage: https://walberla.net/.

https://walberla.net/
https://walberla.net/
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F I G U R E 4 Time-dependent pulsatile velocity amplitude profiles v(t)(t) and vessel radius pulsation r(t) from the 0D-1D model [35] over
one heart cycle in the basilar artery (vessel # 22 in fig. 1 in [1]).

To complete the system of equations in (3), we impose boundary conditions to the individual physical parts of the
computational domain’s boundary, in particular at the inflow, the outflow, and the interface to the vessel wall.

At the inlet cross section, we impose a Dirichlet condition on the velocity field, which might depend on space x and
time t, hence reading vin = v0(t, x). In the special case of a circular inflow boundary aligned with the x-coordinate axis as
obtained from Section 3.2, we can directly prescribe a radially symmetric generalized Poiseuille velocity profile v0(t, r),
where r denotes the radial distance from the inlet circle’s center point. Denoting the radius of the inlet-circle by R, the
profile takes the form

v0(t, r) = v(t)(t) ⋅
⎛
⎜
⎜
⎜
⎝

v⊥(r)
0
0

⎞
⎟
⎟
⎟
⎠

, with v⊥(r) =
𝛾 + 2
𝛾

(
1 −

( r
R

)𝛾)
, (4)

where 𝛾 is a shape parameter yielding the standard parabolic Poiseuille profile for the choice 𝛾 = 2, while larger values
such as 𝛾 = 9 are reported to fit well to experimental data [2, 88] and to resemble a non-Newtonian, more plug-like, flow
profile [18] (also see Section 4.1.2). Finally, v(t)(t) describes the time-dependent amplitude of the inflow velocity over the
course of a heartbeat. We obtain such a temporal pulsatile profile from a desired position within the cardiac cycle from
the 0D-1D model described in [35] with differences ranging from large oscillations in comparably also larger vessels up
to a nearly temporally constant flow in the small capillaries. In Figure 4, we plot such a velocity amplitude profile for the
basilar artery (vessel # 22 in fig 1 in [1]), where the pulsatile nature in the velocity amplitude is still clearly visible, while
the vessel radius pulsation is essentially negligible.

At any outlet cross-section, we impose a constant zero pressure boundary condition, meaning that the flow can freely
leave the domain.

For this pure flow model, all vessel and aneurysm walls are assumed to be rigid and to carry no-slip conditions for
the velocity, that is, v = 0 at all walls. While this rigidity assumptions poses a simplification, it reduces the complexity of
the model considerably and enables quick first insights into the flow in cerebral vessels and aneurysms. We will lift the
assumption of rigid vessel walls in Section 4.2. Similarly, medical treatment devices are represented by fully resolved, but
static solid obstacles (see Sections 5 and 6.2 for details). At their boundaries, we impose no-slip conditions as well. Admit-
tedly, the assumption of a static obstacle neglects effects such as coil compaction [59, 83, 87], which deserve a detailed anal-
ysis in a separate work due to their medical relevance for the recanalization and eventually regrowth risk of aneurysms.

4.1.2 Extension to non-Newtonian rheology modeling

In order to extend the constitutive behavior of the fluid model to account for the non-Newtonian shear-thinning nature
of (human) blood, we revisit the viscosity 𝜇 in (3a) and formulate it as a dependent quantity 𝜇 = 𝜇(�̇�) for decreasing shear
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rates �̇� . Herein, �̇� is defined as �̇� ∶= 2
√
𝝐(v) ∶ 𝝐(v)with 𝝐(v) ∶= 1

2

(
𝛁v + 𝛁v⊤

)
again being the symmetric strain rate tensor.

To recover the case of a viscous Newtonian fluid, the stress-strain rate relation adopts the form 𝝈 = 2𝜇𝝐(v), taking the
Frobenius-norm 𝜍 ∶=

√
𝝈 ∶ 𝝈 = 𝜇�̇� where 𝜇 ∈ R+ is just a constant. Starting from here, many different models for shear

rate dependent viscosity functions 𝜇(�̇�) do exists, yielding the nonlinear expression 𝜍 = 𝜇(�̇�)�̇� .
A common representative are power laws [15] of the form 𝜇(�̇�) = 𝜂�̇�n−1

, 𝜂 ∈ R+,n ≤ 1, where 𝜂 again takes the role
of the constant base viscosity in the Newtonian case n = 1. It should be noted that 𝜇∞ ∶= lim�̇�→∞ 𝜇(�̇�) = 0 and 𝜇0 ∶=
lim�̇�→0 𝜇(�̇�) diverges towards∞ for such power law models. Another model in this context is the Carreau-Yasuda model,
which allows to smoothly attain finite values in these limit situations. Here, the viscosity function is given by 𝜇(�̇�) =
𝜇∞ + (𝜇0 − 𝜇∞)[1 + (𝜆�̇�)a]

n−1
a [16]. A list of further classical non-Newtonian constitutive equations can be found in [23],

from which we choose the Casson model for the present work.
The Casson model assumes the existence of a yield shear stress value 𝜍Y of blood, which is explained by interaction

forces between red blood cells in [23]. In flow regimes with shear stress values below 𝜍Y , these interaction forces are not
overcome and the respective fluid parts behave solid-like with an apparent viscosity of ∞. Only once the threshold 𝜍Y
is exceeded, deformation in form of strain occurs. In the Casson model, the specific version of the stress-strain relation
known as Casson’s equation is given by:

√
𝜂�̇� =

{√
𝜍 −

√
𝜍Y , 𝜍 > 𝜍Y

0, else.

or, for a direct expression of the apparent viscosity 𝜇 or the strain rate �̇� :

𝜇(�̇�) =

{
𝜂 ⋅ 𝜍

(
√
𝜍Y+

√
𝜂�̇�)2

, 𝜍 > 𝜍Y ,

∞, else,
�̇� =

{
𝜍Y

(
√
𝜇(�̇�)−

√
𝜂)2
, 𝜍 > 𝜍Y ,

0, else.
(5)

A detailed account including the derivation of an analytical solution to a Casson model equivalent of a Hagen–Poiseuille
flow can be found in [36], being the aforementioned profile that (4) resembles for values of for example, 𝛾 = 9.

4.1.3 Numerical treatment via the Lattice Boltzmann method

Within this subsection, we will give a very brief account on the LBM to be applied to the presented model-problem. In
addition to the references given in this subsection, we refer the generally interested reader to the textbook [63] for an
in-depth introduction to a variety of aspects of the LBM.

Gasdynamical background
The first of our numerical methods to solve the hemodynamical fluid model equations (3) is the LBM. In contrast to
classical numerical schemes such as FEM or finite differences being based directly on the macroscopic quantities like
velocity v or density 𝜌 as well as the continuum-level equations like Navier–Stokes system (in weak or strong form),
the LBM operates on a mesoscopic level. While it is not yet dealing with individual particles as in molecular dynamics,
the central term of LBM are so called particle distribution functions f (t, x, 𝝃) depending on time t, spatial coordinates x
and particle velocity 𝝃 representing the probability to encounter a particle at time t at spatial location x with velocity 𝝃.
Boltzmann’s equation

df
dt
=
𝜕f
𝜕t
+ 𝝃 ⋅ ∇xf + G

𝜌
⋅ ∇𝝃f = Ω(f ) (6)

now describes the total change df∕dt within these populations due to external forces G as well as particle collisions that
are modeled by a highly complex collision operator Ω(f ), see for example, [45] for a derivation. Due to its complexity
in [13], a simplification J(f ) for Ω(f ) was proposed reading

Ω(f ) ≈ J(f ) = −1
𝜏
(f −M), with M = M(𝝃; 𝜌, v,T) = 𝜌

(
1

2𝜋RsT

)3∕2

exp

(

−
||𝝃 − v||22

2RsT

)



12 of 37 FRANK et al.

being the so called gas-dynamical Maxwell-equilibrium depending on absolute temperature T, the specific gas constant
Rs of the fluid as well as the macroscopic quantities 𝜌 and v which are related to the particle distribution functions via:

𝜌(t, x) =
∫

R3
f (t, x, 𝝃) d𝝃, v(t, x) = 1

𝜌(t, x) ∫R3
𝝃 f (t, x, 𝝃) d𝝃. (7)

Hence, the simplified collision operator J(f ) corresponds to a linearization around the equilibrium distribution M with 𝜏
being a relaxation time later to be related to the fluid’s viscosity 𝜇.

Discretization in LBM
Discretization within the LBM is applied in (d-dimensional) physical space by means of the aforementioned Cartesian
cube-lattice on the computational domain and in velocity space by means of a finite, discrete set of lattice velocities
ci, i = 0, 1, … ,n − 1 per grid-cell, which then forms the so-called DdQn-stencil. Most common representatives are the
D2Q9 and D3Q27 stencils in 2D and 3D, respectively. Neglecting force contributions (i.e., G = 0) for the moment, applying
a forward Euler discretization to the temporal derivative in (6) and a finite-difference approximation in direction 𝝃 for
the spatial gradient therein as well as restricting the velocity variable 𝝃 to the discrete set of lattice-velocities, equation
(6) – with the simplified collision operator and evaluated at time t in cell x – becomes:

fi(t + Δt, x + ciΔt) = fi(t, x) −
Δt
𝜏

(
fi(t, x) − f (eq)

i (t, x)
)
. (8)

Herein, fi is the particle distribution associated to the i-th lattice velocity and f (eq)
i the following, truncated after quadratic

order, approximation to the Maxwell-equilibrium from above:

f (eq)
i = wi𝜌

(

1 + ci ⋅ v
c2

s
+ (ci ⋅ v)2

2c4
s

− v ⋅ v
2c2

s

)

, (9)

where cs is the—in lattice units—speed of sound (in case of D2Q9 and D3Q27 it is 1∕
√

3, wi ∈ R, i = 0, 1, … ,n − 1 are
method-specific weights associated to the lattice-velocities and furthermore the continuous expressions for density 𝜌 and
macroscopic velocity v from (7) are replaced by the discrete versions:

𝜌 =
n−1∑

i=0
fi, v = 1

𝜌

n−1∑

i=0
cifi. (10)

The three equations (10), (9), and (8), inserted into each other in this order, then form one single time step and hence
the very core of an LBM-scheme, consisting of the collision step being the purely cell-local right hand side of (8) and
the streaming step, which involves only the direct neighborhood of a given cell and stands for the propagation of popu-
lation data, that is, the left hand side of (8). For the high-performant execution of these steps as well as their handling
in a parallel distributed memory and multi-processor architecture, we employ the software framework waLBerla6 [7–9]
developed at the FAU Erlangen. Finally, the link to the macroscopic Navier–Stokes system (3) is established via a so called
Chapman-Enskog analysis [21, 24, 84] which also relates the relaxation time parameter 𝜏 within (8) to the macroscopic
viscosity of the fluid 𝜇 within (3a) via

𝜇 = 𝜌

3
Δt
(
𝜏 − 1

2

)
. (11)

Boundary conditions in LBM
The boundary conditions specified in Section 4.1.1 are realized in the LBM framework as follows. For the no-slip bound-
ary conditions v = 0 at the vessel walls, as well as on all fully resolved medical device-surfaces are resolved by means
of a (simple i.e., with wall-velocity 0) bounce-back operator, that is, total reflection of all populations fi that would leave
the computational fluid domain. The bounce-back operator in a generalized form [64, 65, 107, 110] can also be used at

6waLBerla software webpage: https://walberla.net/.

https://walberla.net/
https://walberla.net/
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the inflow-boundary to incorporate the nonzero, for example, generalized Poiseuille velocity profile there, while at the
outlet for the pressure-condition anti-bounce-back scheme [39, 40, 55] is employed. For the generalized bounce-back
rule, an additional term is introduced with the prescribed velocity value to ensure the correct application of the bound-
ary condition. While the bounce-back operator reflects back the population leaving the domain, the anti-bounce-back
operator introduces antireflection by changing the sign for the corresponding populations. In order to incorporate the
given condition properly, as in the case of the generalized bounce-back scheme, extra terms are present in terms of the
distribution function.

Non Newtonian extension of the LBM
Within our short review about the LBM so far, we have assumed that the viscosity 𝜇, for example, in (3a) and (11)
is constant. Switching from a Newtonian to a non-Newtonian model now changes this from a constant to an actually
velocity-dependent viscosity, where (5) gives an expression for the shear rate �̇� evaluated from the Casson model. However,
following [24, 74], the current strain rate can also be directly computed from within the LBM via

�̇�LBM = 2
√
𝝐(v) ∶ 𝝐(v),

𝝐(v) = − 3
2𝜌𝜏

𝚷(𝜌, v),

𝚷(𝜌, v) =
n−1∑

i=0

(
fi − f (eq)

i (𝜌, v)
)

cic⊤i .

Equating these two expressions for �̇� into one equation—due to its quadratic nature—allows to solve it [74] for the
apparent viscosity 𝜇, which then by (11) allows to set the relaxation time parameter accordingly for the next time step
of the LBM, hence, step by step, adapting viscosity to the current flow situation as described by Casson’s law. A similar
approach but with a different non-Newtonian model, that is, the Carreau–Yasuda model instead of the Casson-model, is
given in [49].

4.2 Poro-elastic flow

To overcome the bottleneck of geometry (re-)construction of the devices—either being impossible due to a lack of
high-resolution medical images or being tedious to generate and mesh—the theory of deforming Porous Medium (PM) is
applied to analyze the flow behavior and deformation of the CA, the devices and the parent vessel in a homogenized sense.

PMs typically consist of a porous skeleton phase, where the intermediate spaces are filled with one or more fluid
phases. Additionally, one assumes that all pores are interconnected and no enclosed pores exist. For a fully saturated PM,
only a solid phase and one fluid phase is considered.

The exact and rather complex geometry of the fine pores on the microscale are generally hard to resolve and often
unknown. Luckily, such detailed knowledge at the pore scale is often not required to answer physically relevant questions.
The focus of the theory of deformable PM is to provide an estimate on the macro or continuum scale. Several techniques
as homogenization, volume averaging or asymptotic expansion exists to provide a relation between the different scales and
can be applied to obtain a formulation of the quantities of interest on the respective scale.

In the following a homogenization approach is considered, which smears the fluid and solid phase over the domain
and provides averaged quantities. This results in an overlapped continuum with the domain Ωp, where fluid and solid
phases consist simultaneously with an initial domain Ω0 and deformed domain Ωt. In fact, some quantities are defined
within both phases. To indicate whether a variable is attributed to the solid or fluid phase of the PM, we use the super-
scripts (•)s and (•)f , respectively. Consequently, the solid volume fraction is denoted with Ωs. The fluid volume fraction
of a domain Ωf is combined via the porosity 𝜙, to relate it with the deformed volume: 𝜙 dΩt = dΩf

t .

4.2.1 Governing equations

While a detailed derivation of the theory of PM can be found in [27] for example, we just briefly summarize the funda-
mental system of equations within an isothermal state and recite the balance equations with a constitutive law for PMs.
Thereby, we base our formulation on [20, 100], however keep a convective term of the fluid phase.
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In the following, we employ the shorthand notation ̇(•) = 𝜕(•)∕𝜕t to abbreviate time derivatives. Moreover, d,
vs = ḋ, F = 𝜕x

𝜕X
with J = det(F), S, bs, and 𝜌

s
0 denote the solid’s displacement, velocity, deformation gradient, second

Piola-Kirchhoff stress tensor, body force vector and density, respectively. Accordingly, vf , pf , 𝜌f , bf , 𝜇f , k, and 𝝈f
visc refer

to the fluid’s velocity, pressure, density, body force, kinematic viscosity, permeability tensor and stress tensor, respec-
tively. The porosity in the material configuration is denoted by 𝜙0 with its push forward to the spatial configuration
reading 𝜙 = J𝜙0. Then, poro-elastic medium is governed by the following coupled system of equations:

�̇� + 𝜙𝛁 ⋅ vs + 𝛁 ⋅
(
𝜙
(

vf − vs)) = 0 in Ωt × [ t0, te], (12a)

𝜌
f ̇vf + 𝜌f ((vf − vs) ⋅ 𝛁

)
vf + 𝛁pf − 𝜌f bf + 𝜇f

𝜙k−1 ⋅
(

vf − vs) − 1
𝜙
𝛁 ⋅

(
𝜙𝝈

f
visc

)
= 0 in Ωt × [ t0, te], (12b)

𝜌
s
0(1 − 𝜙0)v̇s − 𝛁0 ⋅ (FS) − 𝜌s

0(1 − 𝜙0)b − J𝜙F−T ⋅ 𝛁0pf − 𝜇f J𝜙2k−1 ⋅
(

vf − vs) = 0 in Ω0 × [ t0, te], (12c)

accompanied by appropriate initial conditions

ds = d̂
s
0 in Ω0 × [ 0] 𝜕ds

𝜕t
= v̂s

0 in Ω0 × [ 0], (12d)

vf = v̂f
0 in Ωt × [ 0] 𝜙 = �̂�0 in Ω0 × [ 0], (12e)

and boundary conditions

vf ⋅ n = v̂f
n on ΓDf

t × [ t0, te], (12f)

− pf I ⋅ n = t̂f on ΓNf
t × [ t0, te], (12g)

(FS) ⋅N = t̂s on ΓNs
0 × [ t0, te], (12h)

ds = d̂s in ΓDs
0 × [ t0, te], (12i)

𝜙 = �̂�0 in ΓD𝜙
0 × [ t0, te], (12j)

on the respective Dirichlet boundary ΓD
t = Γ

Ds
t ∪ ΓDf

t ∪ ΓC
t and Neumann boundary ΓN = ΓNs

t ∪ ΓNf
0 ∪ ΓC

t with ΓD ∩ ΓN = ∅
for every time.

The deforming PM assumes an incompressible Newtonian fluid, where the viscous stress tensor 𝝈f
visc = 2𝜇f (𝛁vf +

(
𝛁vf )T) relates the kinematic viscosity 𝜇f and the fluid velocity. The Darcian contribution within (12b) with the current

permeability tensor k can be interpreted as a linear resistance acting against the convective fluid flow and causing dissipa-
tion. The influence of viscous dissipation within the fluid through a PM is accounted for by a Brinkman-type contribution.
The difference in comparison to [100] resides in the presence of the convective term. By including the convective term,
the fluid balance equation may simplify to the Navier–Stokes equation for a specific choice of parameters.

The constitutive model of the skeleton is adopted from [100] and depends on the porosity 𝜙, the deformation in form
of the Green-Lagrange strain tensor E = 1

2

(
FTF − 1

)
and the deformation gradient F. An additive split of the solid’s strain

energy function Ψs(E, J, 𝜙) yields

Ψs(E, J, 𝜙) = Ψskel(E) + Ψvol(J, 𝜙) + Ψpen(E, J, 𝜙). (13)

The macroscopic strain energy function Ψskel(E) governs the constitutive behavior of the porous skeleton. The contribu-
tion Ψvol(J, 𝜙) accounts for changes due to the compression or expansion of the solid volume due to the fluid pressure
within the pores compared to the initial porosity 𝜙0, reading

Ψvol(J, 𝜙) = 𝜅
(

J(1 − 𝜙)
1 − 𝜙0

− 1 − ln
(

J(1 − 𝜙)
1 − 𝜙0

))

. (14)

For a comparison to the linear Biot theory, see [20]. The penalty strain energy function Ψpen(E, J, 𝜙) ensures the
maintenance of a physical reasonable porosity

Ψpen(E, J, 𝜙) = 𝜂
(

−ln
(

J𝜙
𝜙0

)

+ J𝜙
𝜙0

− 1
𝜙0

)

. (15)
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Consequently, the second Piola–Kirchhoff stress tensor S can be expressed as

S = 𝜙Sf
visc − pf JC−1 + 𝜕Ψs(E, J, 𝜙)

𝜕E
in Ω0. (16)

The fluid pressure pf is related to the strain energy of the PM via

pf = 𝜕Ψs(E, J, 𝜙)
𝜕(J𝜙)

. (17)

Equation (17) is used as an additional strong equation.

4.2.2 Weak formulation

Following the formulation and implementation of [100], we use finite elements for the spatial discretization with the
function spaces  for the primary variables ds

, vf
, pf and 𝜙 with the according weighting function spaces  , in particular

reading:

ds =
{

ds ∈ 1(Ω)nsd ||
|

ds = d̂s on ΓDs
0

}
,

ds =
{
𝛿ds ∈ 1(Ω0)nsd ||

|
𝛿ds = 0 on ΓDs

0

}
,

vf =
{

vf ∈ 1(Ωt)nsd ||
|

vf ⋅ n = v̂f
n on ΓDf

t

}
,

vf =
{
𝛿wf ∈ 1(Ωt)nsd ||

|
𝛿wf ⋅ n = 0 on ΓDf

t

}
,

pf =
{

pf ∈ 1(Ωt)
}
,

pf =
{

qf ∈ 1(Ωt)
}
,

𝜙 =
{
𝜙 ∈ 1(Ωt)

|
|
|
𝜙 = �̂�0 on ΓD𝜙

0

}
,

𝜙 =
{
𝛿𝜙 ∈ 1(Ωt)nsd ||

|
𝛿𝜙 = 0 on ΓD𝜙

0

}
.

The according Sobolev spaces are denoted with1 with the number of spatial dimensions nsd. The porosity is chosen as
an additional degree of freedom. By doing this, the higher continuity requirements for the porosity gradient from (12b)
is lowered. Applying now the standard procedure within the finite element method, the variational formulation of the
poro-elastic problem can be obtained:

(

𝛿𝜙,
𝜕𝜙

𝜕t

)

Ωt

+
(
𝛿𝜙, 𝜙∇ ⋅ vf )

Ωt
+
(
𝛿𝜙, vf∇𝜙

)

Ωt
−
(
𝛿𝜙, vs∇𝜙

)

Ωt
= 0,

(

𝛿wf
,
𝜕𝜌

f vf

𝜕t

)

Ωf
t

+
(
𝛿wf

, 𝜌
f ((vf − vs) ⋅ 𝛁

)
vf )

Ωf
t
−
(
𝛁𝛿wf ,pf )

Ωf
t
−
(
𝛿wf ,𝜌f bf

)

Ωf
t

−
(
𝛿wf ,t̂f

)

ΓNf
t ∪Γ

C
+
(
𝛿wf ,𝜇f

𝜙k−1 ⋅
(

vf − vs))

Ωf
t
+
(
𝛁𝛿wf ,𝜎f

visc

)

Ωf
t

−
(

𝛿wf , 1
𝜙
∇𝜙 ⋅ 𝜎f

visc

)

Ωf
t

= 0,

(
𝛿ds,𝜌s

0(1 − 𝜙0)
𝜕vs

𝜕t

)

Ω0

+ (𝛿E, S)Ω0
−
(
𝛿ds,𝜌s

0(1 − 𝜙0)b
)

Ω0
−
(
𝛿ds, J𝜙F−T ⋅ 𝛁0pf )

Ω0

−
(
𝛿ds,𝜇f J𝜙2k−1 ⋅

(
vf − vs))

Ω0
−
(
𝛿ds,t̂s)

ΓNs
0
= 0,

(
qf ,pf )

Ω0
−
(

qf ,𝜕Ψ
s(E, J, 𝜙)
𝜕(J𝜙)

)

Ω0

= 0.
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4.3 Discretization and residual-based stabilization

For the spatial discretization, we use linear finite elements for all fields of primary unknowns, whereas discretization in
time is done via finite differences and employs One-Step-Theta time integration. To satisfy the inf-sup condition for vf

and pf , we employ residual-based stabilization terms, namely Pressure Stabilizing Petrov-Galerkin (PSPG), Streamline
Upwind Petrov-Galerkin (SUPG), and a stabilization for the Darcy term. The stabilization for the PSPG and Darcy term
are motivated from a residual-based variational multi-scale decomposition from [6] and can be stated as

nele∑

e=1

(
𝛁𝛿pf , 𝜏m

h


)

Ωe

withh


denoting the discrete strong form residual of (12b). and 𝜏m being a user-chosen stabilization parameter. The
stabilization for to the Darcy term is given as

nele∑

e=1

(
𝜙𝜇

f k−1
𝛿wf , − 𝜏m

h


)

Ωe
.

To stabilize the nonlinear convective term, we add a SUPG contribution reading

nele∑

e=1

((
vf ⋅ 𝛁

)
𝛿wf , 𝜏m

h


)

Ωe
.

The necessary stabilization parameters are determined by a combination of ideas in [95] and [6]. We note that such sta-
bilization techniques have been around for several years and proved to be very effective. Yet, this particular combination
of stabilization methods and terms poses a novelty. The final implementation of the numerical approach just presented
was accomplished in the collaborative software project BACI [5].7

5 MODELING OF ENDOVASCULAR DEVICES

In this section we will discuss mathematical models, both mechanical as well as purely geometrical ones, for differ-
ent kinds of aneurysm treatment devices that are used to model their accurate shape and placement within the vessel
geometries obtained in Section 3.2. As already mentioned in Section 4.1 they can then also be included in the hemody-
namical simulations, see Section 6, as fully resolved flow-obstacles to analyze their effect on the blood-flow in resp. into
the aneurysm. It should be noted that the upcoming device-(placement) simulations are all still conducted in absence of
the blood-stream hence neglecting its effects on the device shapes but rather have to be seen as separate simulations or
procedures simply to generate realistic device shapes in preparation of the final hemodynamics simulations, where these
devices are then used as (still static) obstacles.

Based on the medical background from Section 2 the three kinds of devices we will consider are endovascular coils
in Section 5.1, WEB devices in Section 5.2 and stents/flow diverters in Section 5.3. Figure 5 anticipates images of virtual
representation of these devices.

5.1 Coiling devices

First, we focus on endovascular coils [31, 47, 50]. Figure 6B shows a coil emerging from a micro-catheter onto a stable
surface in unconfined air. For coil deployment into the CA cavity, the micro-catheter is first placed into the aneurysm’s
parent artery. Then, coils can then be pushed through the catheter and into the aneurysm with the goal of filling it
and occluding it from the blood flow in the parent vessel. The initial phase of this process involves the insertion of

7An LBM implementation of a similar, even though only porous not poro-elastic approach is discussed in [49] in terms of the volume-averaged
Navier–Stokes equations (VANSE) approach.
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(A) (B) (C)

F I G U R E 5 Virtual model examples for the three classes of endovascular devices. (A) Simulated coiling device model within
narrow-necked CA, see also Figure 7. (B) Geometric WEB device model within wide-necked CA, see also Figure 9. (C) Geometric stent model
even covering two CAs directly above it.

so-called “framing coils.” These have an intrinsic spherical shape to form a basket-like structure, when being placed
inside the aneurysm. Then, the aneurysm is treated through the placement of “filling coils”, featuring helical loops,
or “finishing coils” which consist of irregular wire loops. Both types share the attribute of being much softer than the
farming coil [54, 60]. In this way, the procedure ensures full volumetric occlusion up to a desired global packing den-
sity cg = Vcoil∕Vaneurysm. In clinical practice, the achieved packing density usually varies between 30% and 40%. It can
be computed using the measures obtained in Section 3.2.2. Figure 6A depicts the main schematics of a coiling wire.
The stock wire with radius D1 undergoes a sequence of transformations. Initially, it adapts into a secondary helical
structure with radius D2. Then, this secondary structure is transformed into a tertiary structure of radius D3. The lat-
ter two structures are imprinted into the stock wire by the manufacturing process. Depending on the manufacturer,
the dimensions of D1 approximately exhibit a range from 0.050 mm to 0.076 mm. Correspondingly, the secondary struc-
ture diameter D2 might vary between 0.254 mm and 0.381mm [103]. When considering tertiary structures, framing coils
can differ from filling coils significantly. For the former, D3 is often approximately the size of the aneurysm, while a
much smaller size is desired for the latter. Therefore, the diameter D3 can vary from 2 mm to 20 mm [103]. The stock
wire of the majority of contemporary coil designs is composed of a platinum alloy (see Figure 6). Arguably one of
the most significant parameters in coil design is the bending stiffness often relabeled as the aforementioned softness,
given by [103]

kb =
D4

1G
8D3

2np
, (18)

where G is the shear modulus of the stock wire (which is approximately 82 GPa for platinum), and np represents the
pitch, denoting the space between two stock wire loops within the secondary helical structure D2, often being negligible
or very small. Framing coils generally have a higher kb value to retain their spherical structure, while filling coils possess
a lower kb value. This bending stiffness together with the imprinted shape migrates the risk of poking the aneurysm wall,
preventing rupture. The impact of the bending stiffness and imprinted shape can be seen very well, when the coil is for
example protruded just into regular surrounding, when it already starts to curl up on its own—even without contact (see
Figure 6B). This behavior is accounted for in the mechanical coiling model by letting the “natural” shape of the coil be
curved. Meaning that when no strain due to stretching, bending and torsion is present in the coil, it attains a curved shape
that is prescribed by the manufacturing process, as for example shown in [101]. For the framing coil, this would be the
aforementioned basket-like wall-adhering structure which in reality and numerics—due to (blunt) contact with the wall
and the wire itself—of course might deviate from the idealistic shape.

For a mathematical description of the coil insertion process, we base our work on the Discrete Elastic Rods formulation
from [10, 11], which is a method for discretizing Kirchhoff rods. Please refer to [47] for a more detailed account on the
implementation as well as validation and application of the coiling model together with its mathematical derivation and
backgrounds. In summary, within the model the coil is considered as a discrete one-dimensional space curve consisting
of the n material points x0, … , xn−1 ∈ R3 that are connected by the n − 1 edges ej = xj+1 − xj. Each edge is equipped with
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(A) (B)

F I G U R E 6 Sketch and photo of coiling wires. (A) Schematic micro structure of a coiling wire: D3 denotes the approximate diameter of
the coil-node forming within the aneurysm, D2 the apparent diameter of the (macroscopic) coiling wire and D1 the diameter of the actually
microscopic wire wrapped in a helical way to form the macroscopic (D2) wire. (B) Expulsion of an actual coil into regular surrounding (air)
with contactless loop formation and curling.

an orthonormal basis of material directors
[

dj
1,d

j
2,d

j
3

]
∈ SO(3), indicating the orientation of the edges cross section. It is

required that the third material director fulfills dj
3 = ej∕||ej|| for j = 0, … ,n − 2, meaning that it is adapted to the tangent

of the curve. These assumptions let us formulate the elastic strain energy of the curve

E = 1
2

n−2∑

j=0
𝛼s(𝜀j)2||ej

||

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

stretching energy

+ 1
2

n−2∑

i=1

𝛽t

li

(𝜗i − 𝜗i)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

torsion energy

+ 1
2

n−2∑

i=1

𝛽b

li

(𝜿i − 𝜿i)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

bending energy

, (19)

where the first term refers to the axial strain energy due to the relative stretch 𝜀j = ||ej||∕||ej
|| − 1 on the edge j, the second

term refers to the torsion energy containing the discrete integrated twist 𝜗i at the material point xi and the last term
refers to the bending energy containing the discrete integrated curvature vector 𝜿i measured as well on the material point
xi. The quantities 𝜗i, 𝜿i can be directly obtained from the curve as described in [11]. Bared quantities ej

, 𝜗i,𝜿i refer to
the naturally curved shape of the rod and are therefore constant and li = (||e

i
|| + ||ei+1

||)∕2. The internal forces acting
on a material point xi can then be written as Pint,i = −𝜕E∕𝜕xi. Having an expression for the internal forces Pint,i due to
stretching and letting the external forces due to collisions be Pext,i (that are described in the following) acting on node xi,
by Newton’s second law, one can describe the dynamics of the coil as the second order system of ordinary differential
equations

miẍi + 𝜈ẋi = Pint,i + Pext,i, ∀i = 0, 1, … ,n − 1,

that we solve numerically by the semi-implicit Euler method. Therein, 𝜈 refers to a global damping parameter, which can
be interpreted to depend on the surrounding fluid within the aneurysm damping the insertion process. For the external
forces Pext,i due to coil-coil and coil-wall contacts, we adapt the formulation from [37] with slight simplifications. Coil-coil
contacts are modeled by the repulsive force on the material point xi as

Pcc,i =
n−2∑

j=0
H(𝜖ij)

(

−kcc𝜖ij − 𝛾cc

(

ẋi −
ẋj + ẋj+1

2

)

⋅ dij
min

)

dij
min, (20)

that is activated by the Heaviside function H when the scalar overlap 𝜖ij between material point xi and edge ej is positive.
One defines the scalar overlap with help of the minimum distance vector dij

min from xi to edge ej as 𝜖ij = D2 − ||dij
min||.

For the coil-wall contact, a Coulomb friction model is assumed. The wall force on the material point xi is decomposed
into tangential and normal component Pcw,i(Pi) = Pcw,i(Pi)⊥ ⊕ Pcw,i(Pi)||, that both depend on the force Pi acting on the
material point. Starting with the tangential component one has

Pcw,i(Pi)|| = −𝜇w||Pi,⊥||
ẋi,||

||ẋi,||||
, (21)
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F I G U R E 7 From left to right: Insertion of a coil into an intracranial aneurysm. Bottom left: The natural curvature of the coil is extracted
from a helix. Color coding is with respect to the coil length. The final volumetric packing density in this example is approximately 33.7%.

for that we decompose the nodal forces and velocities into their tangent and normal components with respect to the
wall normal Pi = Pi,⊥ ⊕ Pi,|| and ẋi = ẋi,⊥ ⊕ ẋi,||. The parameter 𝜇w is the friction coefficient for sliding coil-wall contact.
Accordingly, the normal contact force is

Pcw,i(Pi)⊥ = H(𝜖)(−||P⊥,i|| + kcw𝜖 − 𝛾wẋi ⋅ nw)nw. (22)

Similar as for the coil-coil contacts, the activation of the normal force is triggered by the Heaviside function with 𝜖 =
D2∕2 − di

min,w and di
min,w denoting the smallest distance from xi to the wall. The parameters kcw and 𝛾w refer to the wall stiff-

ness and dissipation coefficients, respectively. nw denotes the wall outward unit normal at the position that is closest to xi.
Finally, the external forces on the coil are given by Pext,i = Pcc,i + Pcw,i(Pint,i + Pcc,i), which completes the discussion of the
contact model. Since not all nodes are within the aneurysm from the beginning of the simulation, but are rather inserted
one after another, we supply a “flagging” data structure to the wire nodes, such that all the previously mentioned compu-
tations are only conducted for those already inserted, while “exterior” nodes are equipped with “boundary-conditions”
of a predefined “insertion velocity” ẋi = vins. Note that the model stated here neglects the rotational moment acting on
the coil, which allows us to drop the rotational degree of freedom and, thus, making the systems dynamics depend only
on the material point forces.

In this work, a helix coil is used (see Figure 7 bottom left for the naturally curved shape). Parameters and bound-
ary conditions for the simulation of the coil insertion process can be found in Table 1. A sequence of snapshots of
the coil insertion process can be seen in Figure 7. As expected, the coil is forming into a curved shape since we have
imposed a helix onto its natural shape. The more coil is inserted, the more densely it is packed inside the aneurysm.
To model a realistic occlusion from the blood flow, up to 30%–40% of the aneurysm volume should be be occu-
pied by the coil, which in our case is 33.7%. After having placed the coil into the aneurysm, the time step size is
decreased to 10% of the original time step size and the micro-catheter is removed, allowing the coil to settle in its final
equilibrium-position.

5.2 Woven Endo-Bridge (WEB) devices

WEB devices [41, 81] are also deployed to the aneurysm via a catheter, from which they are protruded into the sac of the
aneurysm. In contrast to the comparably simple one-dimensional structure of the coiling wire, the WEB device unfolds
into an intricate net shape on a two-dimensional (up to thread thickness) spherical or box-like manifold, see Figure 8,
that, if sized properly, fits and gets stuck in the aneurysm by adapting to its shape and with slight tension. The device
is supposed to serve the same purpose as a coiling wire, that is, to occlude the aneurysm sac from further blood flow.
However, it reaches this goal not by a full volumetric occlusion but rather by hindering inflow to the aneurysm by the
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T A B L E 1 Parameters used in the simulation of the helix coil.

Parameter Value Unit

Coil diameter D2 0.45 mm

Helix diameter D3 4 mm

Helix wavelength PH 2𝜋D2 mm

Coil total length L 37.8 cm

Stretching constant 𝛼s 18 J m−1

Bending constant 𝛽b 1 ⋅ 10−3 J

Torsion constant 𝛽t 73 ⋅ 10−5 J

Coil-coil contact stiffness kcc 1 ⋅ 104 kg2 s−1

Coil-coil contact dissipation 𝛾cc 1 kg s−1

Coil-wall contact stiffness kwc 2 ⋅ 104 kN m−2

Coil-wall contact dissipation 𝛾wc 1 ⋅ 10−4 kN m−1

Coil-wall slip coefficient 𝜇w 0.2

Material points n 1682

Time step-size Δt 1 𝜇s

Velocity dissipation parameter 𝜈 0.2 kg s−1

Insertion velocity vins 3 cm s−1

devices very narrow wire-spacing acting like a fluid cage. Since a full mechanical simulation of the WEB device unfolding
process lies beyond the scope of this publication, we pursue a purely geometric, parameterized shape model for the WEB
device. This device model can then be deformed in order to fit as precise as possible into a given aneurysm geometry to
become an obstacle for the hemodynamical simulation, like the final shape of the coil from before, in order to analyze its
effect on the blood flow behavior.

5.2.1 Mathematical shape design of WEB devices

The creation of WEB device shapes relies on the boolean union of a rotationally symmetric arranged collection of indi-
vidual parameterized threads, which at the “north-” and “south-pole” of the device can even be equipped with the
half-“pill”-shaped radiopaque markers, that is, the “tips” of the device. The main manufacturer shape parameters used
for each individual thread as well as for the thread-collection and hence complete web-device are the threads radius
rt [mm], the (maximal) radius rd,max [mm] and height hd,max [mm] of the WEB device base-cylinder, the number of
winding rounds per thread nw [1], and the number of thread-pairs nt [1], where each of them consists out of a clock-
wise and a counter-clockwise tortuous thread. These parameters are now used to spin the threads, parameterized via
𝜃 ∈ [0, 1], across the surface of a cylindrical shape with varying radius rd(𝜃) which becomes zero at the “poles” of the
shape in order to close it at the top and bottom. Assuming the radial direction of the cylinder always resides within
the x-y-plane, we equip the threads with a parameterized z-coordinate zd(𝜃), which will allow also for re-entrant parts
such as at the bundling points of the radiopaque markers. Taking inspiration from the (level set) parametrization of a
general stent graft in [89], the parametrization of the ith, i = 1, 2, … ,nt, thread pair 𝜸i with one thread in clockwise
(𝜸i,c) and one in counter-clockwise direction (𝜸i,cc) – distinguished by the different signs ± within the trigonometric
function – reads:

𝜸i,c∕cc ∶ [0, 1] → R
3
, 𝜃 → 𝜸i,c∕cc(𝜃) =

⎛
⎜
⎜
⎜
⎜
⎝

rd,max ⋅ rd(𝜃) ⋅ cos(±2𝜋nw𝜃 + 𝜑i)

rd,max ⋅ rd(𝜃) ⋅ sin(±2𝜋nw𝜃 + 𝜑i)

hd,max ⋅ zd(𝜃)

⎞
⎟
⎟
⎟
⎟
⎠

, 𝜑i =
2𝜋(i − 1)

nt
.
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(C)

F I G U R E 8 Parametrized WEB device models using different design parameters. The parameter l (compare blue vs. yellow) steers the
depth of the bundling points at the device’s poles. The parameter w (compare blue vs. red) steers the width of the bundling point sink and b
(compare blue vs. green) probably takes the most important influence on the devices’s shape transitioning between a more spherical one (small
b) and a more cylindrical one (large b). All devices have radiopaque markers attached at the “poles” in a postprocessing step. (A) Influence of
different shape-parameters on the design function zd(⋅). (B) A more realistic WEB device w.r.t. thread-count nt = 70 and -thickness
rt = 0.0055, which, however, requires an extremely high mesh resolution. The remaining parameters are the same as in the last (green) case
of subfigure (C). (C) Differently shaped WEB devices according to the mathematical design parameters used in subfigure (A) (left to right
matches the legend entries from top to bottom in subfigure (a)). They all use nt = 20 thread-pairs, nw = 1, hd,max = 2, rd,max = 1 and rt = 0.02.

For our concrete shapes, we are using the following radius and z-coordinate/height functions (see Figure 8 for a general
overview over the function zd(𝜃) as well as the influence of its parameters):

rd(𝜃) = 1 − (2𝜃 − 1)2

zd(𝜃) =
[1

2
tanh

(
b ⋅
(
𝜃 − 1

2

))
+ 1

2

]
+
[

l ⋅ sign
(
𝜃 − 1

2

)
⋅ (m(𝜃;w) − 1)

]
.

Regarding zd(⋅) the expression in the first bracket determines the overall shape of the device while the expression in the
second bracket is responsible for the (inward pointing) tip parts of the device at its “poles.” Here we have chosen the
following further mathematical—and purely WEB device related—shape parameters, in contrast to the aforementioned
manufacturer’s parameters which will be reused in the upcoming flow diverter model.
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• b ∈ N steering the “boxiness” of the WEB-device,
• l ∈ [0, 1∕2] steering the length of the (inward pointing) tips of the device,
• w ∈ [0, 1∕2] steering the width of the (inward pointing) tips of the device.

Finally, the function m(⋅;w), that appeared as part of the design function zd(⋅), is a symmetric standard mollifier bridge
function on [0, 1] with ascending flank from 0 to w and descending one from 1 − w to 1, which pronounces the region
around the “poles” of the device for the aforementioned re-entrant tip modification. It reads:

m(⋅;w) ∶ [0, 1]→ [0, 1], 𝜃 → m(𝜃;w) =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

0, 𝜃 = 0,

exp

(

1 −
(

1 −
(

x−w
w

)2
)−1

)

, 𝜃 ∈ (0,w],

1, 𝜃 ∈ (w, 1 − w),

exp

(

1 −
(

1 −
(

x−(1−w)
w

)2
)−1

)

, 𝜃 ∈ [1 − w, 1),

0, 𝜃 = 1.

The individual parameterized curves 𝜸i,c,cc are then inflated to becomes tubes of radius rt, then combined to the whole
WEB device and surface meshed using gmsh8 [38] and MeshLab9 [25]. In Figure 8, the influence of a few if these shape
parameters, both manufacturers as well as mathematical ones, on the WEB devices appearance is shown.

5.2.2 Placement of WEB devices

The shape design of WEB devices so far always dealt with their unobstructed, contact less shape that one would expect
when protruding the device into void space or centrally into a perfectly cylindrical aneurysm of exactly matching radius
rd,max − rt. Such an idealistic perfect aneurysm would be filled exactly up to its surface by the WEB device and hence could
be fully occluded from the blood-stream, assuming the device is inserted in a way that its bottom, for large values of b
(nearly) planar surface aligns with the ostium of the aneurysm. Unfortunately realistic aneurysms are seldomly shaped
that perfectly but usually exhibit some “organic”, saccular surface shape with potentially further outpouchings, or in the
extreme even smaller aneurysms on top of an aneurysm. Filling such general shaped aneurysm with an undeformed WEB
device by simple for example, central placement would always result in imperfect or even nonsufficient occlusion, even
risking that the device could “fall” out of the aneurysm into the adjacent vessel posing an even additional medical risk
(see Figure 9A).

It is hence our next step to deform a designed WEB device in such a way that it aligns as good as possible with a given
aneurysm shape, resembling the realistic, clinical situation, where after measuring the concrete patient specific aneurysm
the surgeon chooses a WEB device that is slightly larger in diameter than the aneurysm such that during insertion it can
gently press itself onto the aneurysms surface and hence attach to that. Realistically this deformation process involves
complex mechanics on both sides, that is, the WEB device as well as the dome of the aneurysm, which might deform,
even though not stretch, as well. As before, for the purpose of this work, we will not involve any mechanical model to
resolve these processes, but instead employ a purely geometric model, that deforms a given WEB device, inserted with a
given axis into the aneurysm, simply by expanding it in radial direction until it touches the aneurysm walls. By allowing
angular as well as axial height dependent variation of that expansion factor, we can bring all the device’s threads into
persistent contact with the aneurysm’s wall and again fully occlude the aneurysm (see Figure 9B). The depth of insertion,
that is responsible for the amount of empty volume above the WEB device towards the upper end of the insertion axis as
well as the amount of device that protrudes into the vessel after insertion at the lower end of the axis, can be steered as
well simply by placing the undeformed aneurysm prior to the expansion deeper or more superficial inside the aneurysm,
that is, let it slide across the insertion axis until the desired depth is reached. In the example in Figure 9, we have chosen

8gmsh software webpage: https://gmsh.info/.
9MeshLab software webpage: https://www.meshlab.net/.

https://gmsh.info/
https://gmsh.info/
https://www.meshlab.net/
https://www.meshlab.net/
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(C) (D)

F I G U R E 9 Left column with green devices: Insertion and deformation process of WEB devices along a predefined insertion direction
axis (cyan). Right column with yellow devices: Improved occlusion due to the device deformation (viewed from within the vessel). (A)
Undeformed “design-shape” WEB device inserted along predefined axis still leaving large inflow zones due to insufficient wall contact. (B)
Deformed WEB device aligning with the aneurysm surface reaching much higher occlusion. (C) View from inside the vessel onto the
undeformed device’s bottom surface. (D) View from inside the vessel onto the expanded device’s bottom surface.

the depth in a way that at the parent vessel end the device closes the aneurysms without any larger protrusion hence
connecting the vessel branching to the left and right from the aneurysm relatively straight.

5.3 Stents and flow diverters

In contrast to coils or WEB devices, stents and flow diverters are usually placed across the aneurysm’s opening in the par-
ent vessel. Flow diverters aim to redirect the blood stream across the aneurysm’s opening, reducing the inflow through the
narrow windings of the flow diverter drastically. Stents come with a less denser mesh and are intended to intra-aneurysmal
devices such as coils to fall out from the aneurysm sac into the vessel, hence stabilizing its position and effect.

For the geometric modeling of such stents, we follow very similar steps as for the WEB device. Again, the complete
device comprises of several parametrized threads being spun across a cylindrical shape. In its straight reference shape, the
parametrization of its threads is actually even simpler than in the WEB device case, since the radial shape function rd(𝜃)
can just be chosen as constant rd(𝜃) ≡ 1 and zd(𝜃) = 𝜃 as linear, giving the stent the shape of a straight cylinder. Hence,
with the same manufacturer shape parameters as in the WEB device case, the ith, i = 1, 2, … ,nt, individual thread-pair’s
parametrization—again one clockwise, one counter-clockwise—for the stent reads:

𝜸i,c∕cc ∶ [0, 1] → R
3
, 𝜃 → 𝜸i,c∕cc(𝜃) =

⎛
⎜
⎜
⎝

cos(±2𝜋nw𝜃 + 𝜑i)
sin(±2𝜋nw𝜃 + 𝜑i)

hd,max ⋅ 𝜃

⎞
⎟
⎟
⎠

, 𝜑i =
2𝜋(i − 1)

nt
. (23)
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(A)

(B) (C)

(D)

F I G U R E 10 Visualization of the stent creation process from reference configuration over the setup of an orthonormal,
parallel-transported centerline frame, up to the finished stent-graft wrapped around the centerline with different manufacturer’s parameters.
The vessel geometry used in this case is #AN166 from [106]. (A) Three thread-pairs in straight reference configuration, that is, the graphs of
the curves 𝜸i,c/cc, i = 1, 2, 3, each with nw = 4 windings. (B) Centerline of the blood-vessel with color-coded arclength. In blue the
parallel-transported vector-field u, in orange the vector-field v. (C) The truncated centerline portion in front of the aneurysm with color
coded vessel-radius information together with the physical device configuration, that is, the graphs of the curves 𝚪i,c/cc. In transparent: The
(curved) cylinder-surface on which the threads are spun, that is, the image of the original reference cylinder. (D) Different parameter
variations of the same stent, all with nw = 6 windings; Left: nt = 4, rt = 0.05 mm; Middle: nt = 8, rt = 0.025 mm; Right: same as in left picture,
but with local radius rd adapted to centerline radius information rk instead of a constant radius.

For the maximal radius in the x-y-plane, we have deliberately chosen rd,max = 1 to actually obtain a “normalized” straight
reference shape of the stent. Once we start to insert the stent into a vessel, it not only needs to be deformed to follow the
vessel’s contours, but also can be scaled in radial direction to fit to the gage of the vessel, either its minimal gage (to again
have a device of constant radius) or even adaptively to the local gage along the vessel’s arc length.

Having the parametrization of the reference stent’s threads available, we now transform them such that the resulting
device adapts to a given vessel geometry by curvilinear bending to take its place in front of the aneurysm. This is achieved
by transforming the reference thread’s parametrizations to not spin around the straight vertical z-axis of the reference
configuration anymore, but actually around the centerline of the vessel-geometry with a radial distance depending on the
gage of the vessel. To this end, we proceed as follows (see Figure 10 for a graphical depiction of the upcoming process):

1. Reading centerline information: Starting from a preprocessed vessel geometry, we approximate its centerline by
linear interpolation between discrete curve points xi, i = 1, 2, … ,n computed by vmtk and denote it by k ∶ [0,L]→
R3
, 𝜏 → k(𝜏). Furthermore by rk ∶ [0,L]→ R, 𝜏 → rk(𝜏), we denote the radius of the maximal vessel inscribed sphere

around the point at parametric coordinate 𝜏 on the centerline, hence its minimal distance from the vessel walls,
also obtained by linear interpolation between the discrete curve points. By L we refer to the overall arc length of the
centerline, see the two color-bared quantities in Figure 10B,C.

2. Truncate the centerline: We truncate the centerline to the user-chosen parametric interval [𝜏s, 𝜏e] ⊆ [0,L] that cov-
ers the region of the vessel, where the stent is supposed to be placed, that is, in front of the aneurysm. The length 𝜏e − 𝜏s
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Algorithm 1. Laplace-Taubin smoother, also see [94]

for k = 0, 1,… ,nit − 1 do
Δ⃗(k)i = 1

2

(
x⃗(k)i+1 − 2x⃗(k)i + x⃗(k)i+1

)
, ∀i = 2,… ,n − 1

if k is even then
x⃗(k+1)

i = x⃗(k)i + 𝜆Δ⃗(k)i , ∀i = 2,… ,n − 1
elseif k is odd then

x⃗(k+1)
i = x⃗(k)i − 𝜇Δ⃗(k)i , ∀i = 2,… ,n − 1

end if
end for

is hence the arc length hd,max of the stent to be inserted. By abuse of notation from here on we will re-index the discrete
curve points xi that constitute the truncated portion of the centerline as well by i = 1, 2, … ,n and re-parameterize the
interval [𝜏s, 𝜏e] to [0, hd,max]. Furthermore, the name k and the radius-information rk are carried over to the truncated
curve as well, see Figure 10C.

3. Smooth the centerline: To denoise the centerline obtained from vmtk, a one-dimensional version of a Laplace-Taubin
smoother [94] listed in Algorithm 1 is applied to smooth the centerline representation. We denote by x(0)i , i = 1, 2, … ,n
the initial discrete curve points of the (truncated) centerline stemming from the vmtk output. We perform nit smoothing
iterations with smoothing parameters 𝜆 and 𝜇.

To be on the safe side, we usually choose nit = 512, 𝜆 = 0.5, and 𝜇 = 0.25
By abuse of notation, we again keep the name k for the now smoothed centerline curve, xi for its discrete

curve-points, rk for its radius information as well as the interval naming [0, hd,max] for its truncation to the desired por-
tion of the complete centerline, where the concrete polygonal segment’s arc lengths might have changed due to the
smoothing operation.

4. Compute centerline tangents: For the polygonal curve k, we can define a discrete tangent vector ti at every interior
point xi, i = 2, … ,n − 1 as the length-aware average of the adjacent edge directions, evaluating to

ti =
xi+1 − xi−1

||xi+1 − xi||2 + ||xi − xi−1||2
,

while we use t1 = x2 − x1 as well as tn = xn − xn−1 at the boundary points, then normalizing each of them to length
one.

5. Create an orthonormal frame at the beginning of the centerline: At the beginning of the truncated centerline,
that is, at x1, we use t1, choose a second unit-vector u1, which is arbitrary, but orthogonal to t1 (e.g., a random vector
not parallel to t1 then taking out its projection onto t1 and normalizing) and form a third vector v1 = t1 × u1. The triad
(t1,u1, v1) then forms an orthonormal frame associated with the curve-point x1, that is, so far at the beginning of the
centerline only!

6. Parallel transport of initial frame: We now parallel-transport the orthonormal frame (t1,u1, v1) along the dis-
crete centerline curve, successively from point xi to point xi+1, i = 1, 2, … ,n − 1. Each such step of the (space)
parallel-transport is facilitated by determining the rotation that maps the current points tangent ti onto the next
point’s tangent ti+1 and then apply its representing rotation matrix R to the whole frame (ti,ui, vi) to obtain the new
frame (ti+1,ui+1, vi+1) = (Rti,Rui,Rvi). By means of remark 1, this rotation matrix is well defined and can be explic-
itly computed using formula (1) by choosing a = ti and b = ti+1. See Figure 10B) for a graphical representation of the
orthonormal frame vector fields ui and vi, i = 1, 2, … ,n.

We employ specifically the described way of generating an orthonormal frame for the centerline, since this parallel
transported frame, which is also refer to as Bishop frame in [58], is twist-free. Hence, if we base the mapping from the
reference configuration to the physical configuration on this transport, it will also generate a bent, but twist-free stent.
We note that currently the frame is only defined at discrete points xi. However, as with the centerline curve k itself,
we interpret (t,u, v) as the continuous linear spline interpolation between the discrete frame-points (ti,ui, vi) again
parameterized over the arc length interval [0, hd,max] for a subsequent, continuous frame evaluation.

7. The stent-graft mapping: We now combine the thread-wise reference configuration parametrization 𝜸i,c/cc of the
stent (23) with the parallel frame to construct the following thread-wise parametrization of the physical configuration
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of the stent 𝚪i,c/cc, where we are using the short-hand notation 𝜸i,c/cc = (𝛾x, 𝛾y, 𝛾z)⊤ for the three spatial components
of 𝜸i,c/cc:

𝚪i,c/cc ∶ [0, 1] → R
3
, 𝜃 → 𝚪i,c/cc(𝜃) = (k ◦ 𝛾z)(𝜃) + (rd ◦ 𝛾z)(𝜃) ⋅

[
𝛾x(𝜃) ⋅ (u ◦ 𝛾z)(𝜃) + 𝛾y(𝜃) ⋅ (v ◦ 𝛾z)(𝜃)

]

Within this formula, the first additive term drives along the centerline to the position corresponding to arc length 𝛾z(𝜃).
The two terms in brackets then map the radial components of the individual thread curves from their x/y-axis reference
values 𝛾x(𝜃) and 𝛾y(𝜃) into the bent, local u∕v-coordinate frame. In front of the bracket, there is again a term denoted
by rd which allows to radially scale the stent. Here, rd could either be chosen as rd(𝜏) ≡ min𝜏∈[0,hd,max] rk(𝜏), that is, to
represent the minimal vessel gage, or alternatively rd(𝜏) = rk(𝜏), ∀𝜏 ∈ [0, hd,max] for the local vessel gage.

8. Thread inflation and meshing: Similar to the WEB device, once all threads are placed as desired, they are inflated
to become tubes of radius rt (see manufacturer shape parameters in Section 5.2), then combined and surface meshed
to yield the final stent-graft object.

6 NUMERICAL EXPERIMENTS

Now, we will employ the numerical models introduced in Section 4 to showcase some concrete use cases. In a first
example, we will study the modeling approach for a FD by a homogenized deformable porous medium from Section 4.2
on a parametric aneurysm geometry and discuss the influence of modeling parameters. In a second experiment, we will
assess the influence of a medical treatment device on quantities of interest by a fully resolved simulation of the fluid flow
field, once done with and once without the device being inserted.

6.1 Proof of concept: Poro-elastic modeling of an aneurysm treated with a flow diverter

We will now outline a numerical example to discuss the modeling approach of elastic porous media to represent the fine
wire structures of the medical devices in a homogenized fashion. Exemplarily, we will therefore consider a FD, where the
wire structure is represented as a homogenized porous medium.

For now, we will restrict ourselves to a simplified artificial geometry. The suggested parametric geometry of aneurysm
is an idealization of a saccular aneurysm, which is composed of a torus and a sphere segment, respectively. Figure 11
sketches the geometry with the placed device and all associated geometric dimensions. The sphere is positioned at a
distance of han between the centerline and the center of the sphere. For the in-silico treatment of this saccular aneurysm,
a FD is inserted into the artery. The final configuration of the FD is assumed to be ideal, such that it attaches perfectly to
the aneurysm and surrounding artery. Additionally, the position of the FD is symmetrical with respect to the rest of the
aneurysm. In addition, a flow extension of length 3dA is added at the outflow cross section to stabilize the flow and help
with backflow stabilization [12].

The proposed modeling approach uses the equations from Section 4.2.1 for the three types of domains, namely the
artery ΩA, the FD ΩFD and the CA ΩCA. These domains may be interpreted as a single computing domain with varying
material parameters, so that no additional coupling conditions are necessary to relate the device with the surroundings.
The underlying idea is to use high values for permeability and porosity in areas with expectedly high fluid flow (such as
the artery or CA cavity), whereas the material parameters within the medical device are chosen closer to a less permeable
porous medium.

The constitutive behavior of the porous skeleton governed by Ψskel(E) is assumed to follow a hyperelastic isotropic
Neo-Hookean law [46] with Young’s modulus ENH and Poisson’s ratio 𝜈NH described by the strain energy function

ΨNH =
ENH

4(1 + 𝜈NH)
(tr C − 3) + ENH𝜈NH

4(1 + 𝜈NH)(1 − 2𝜈NH)
(J−2 𝜈NH

1−2𝜈NH − 1)

with C and J denoting the right Cauchy–Green tensor and the determinant of the deformation gradient, respectively.
The mesh is created by the preprocessing pipeline outlined in 3.2 and consists of 59,769 nodes in 59,360 quadrilateral

linear finite elements with approximately 358,614 degrees of freedom in total. For the One-Step-Theta time integration
scheme, a constant time step size of Δt = 10−3 s with a Θ = 0.6 is used. The boundary conditions of the mixture are
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F I G U R E 11 Two-dimensional sketch of the parametric geometry for the three different domains with dimensions and boundary
conditions. The colored lines represent the different boundary conditions of the fluid phase.

assigned with respect to the different phases, which can be identified from Figure 11. For the solid phase, we set the
displacements in ΩA to zero, but leave ΩFD and ΩCA free to deform. For the fluid phase, we prescribe a pulsatile velocity
profile at the inflow cross section as outlined in Section 4.1.1. At the outflow cross section, a time-dependent pressure
profile is imposed via a Neumann boundary condition. To prevent potential instabilities due to backflow through the
Neumann boundary, we employ an additional backflow stabilization from [12]. At the interfaces to the arterial walls, we
impose a no-slip condition on the velocity field. Along the outer boundary of ΩFD and ΩCA, an impermeability condition
is enforced along ΓC via a Lagrange multiplier field 𝝀 to ensure that the velocities of both phases coincide at the boundary.
This condition can be stated as

∫

(
vf − vs)

𝛿𝝀 dΓC = 0,

resulting in a vanishing fluid flow across the boundary. We finally prescribe the porosity 𝜙 everywhere in the domain: For
ΩA and ΩFD, the porosity is fixed at 0.999 (as close as numerically possible to 1), whereas ΩFD adopts a constant porosity
of 0.5.

We will vary the permeability tensor k in the spatial configuration using the Carman-Kozeny relation [19]

k = l2
0

J𝜙3

(1 − J𝜙)2
I, k = 1

J
F ⋅ K ⋅ FT

, (24)

where I denotes the identity tensor, k is governed by a reference length with a geometric constant l0, that is related to
the shape of the skeleton, and K refers to the permeability tensor in the material configuration. While the permeability
is a tensor quantity, which may also account for anisotropic effects, we restrict ourselves to an isotropic permeability
here. Aiming at a homogenized representation of a deforming device, the idea is that the permeability acts as a resistance
against the convective velocity and therefore decreases on the one hand the velocity within ΩFD and on the other hand
increases the coupling stress within the solid balance of the mixture.

We will now assess the capability of the PM modeling approach to represent a flow diverter placed across the opening
of a CA. Therefore, we compare three instances of a flow diverter modeled with different values for the reference length
of the permeability from (24) to a CFD reference solution of an untreated CA. In particular, we study cases for l2

0 ∈ {1.0 ⋅
10−5

, 6.0 ⋅ 10−6
, 5.0 ⋅ 10−7} mm2. Further parameters are summarized in Table 2.

Figure 12 shows a comparison of the fluid velocity fields for the different configurations with coloring based on a
logarithmic scale.
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T A B L E 2 Selected parameters for the different simulation domains.

Parameter Value Unit

Parameters for artery domain ΩA and aneurysm domain ΩCA

𝜇
f 4 Pa s

𝜌
f 1.0 ⋅ 10−6 kg mm−3

𝜌
s 0.94 ⋅ 10−6 kg mm−3

ENH 1 N mm−2

𝜈NH 0.3

𝜅 1.0 N mm−2

𝜂 0.1

𝜙 ≈ 1

l2
0 1.0 ⋅ 1020 mm2

Parameters for FD domain ΩFD

𝜇
f 4 Pa s

𝜌
f 1 ⋅ 10−6 kg mm−3

𝜌
s 4.5 ⋅ 10−5 kg mm−3

ENH 2000 N mm−2

𝜈NH 0.3

𝜅 1100 N mm−2

𝜂 0.1

𝜙 0.5

l2
0 Variable mm2

As a reference solution, Figure 12A depicts a pure CFD solution on a rigid domain of an untreated CA. While the
highest flow velocities naturally occur in the artery ΩA, almost the entire aneurysm cavity ΩCA exhibits a flow field with
non-negligible velocities. Due to the inserted FD and changed permeability, the respective magnitude of the fluid flow
within the CA diminishes. Naturally, a less permeable FD (e.g., as in Figure 12C) reduces the inflow in the aneurysm
cavity and, thus, the velocity magnitude inside the cavity more than FD models with larger permeability. In addition, the
center of the vertex can be seen as an indicator for the convective velocity transport. For Figure 12A, the center of vertex
has already moved further compared to the treated aneurysm in Figure 12B–D. From the decreasing velocity magnitude
within the aneurysm domains of Figure 12B–D, the proof of concept can be concluded. The velocity field in Figure 12D
exhibits a small magnitude. So far, the solution in Figure 12D still shows grid dependencies, which will be addressed with
additional mesh refinement and adaptation in future work.

To assess the deformation of the CA cavity, Figure 13 shows the deformed configuration at the systolic peak. Naturally,
displacements increases towards the tip of the aneurysm. In addition, the aneurysm is slightly shifted against the fluid
flowing passing through the FD. The area of the two-dimensional artificial aneurysm increases by ≈ 9.5% at the systolic
peak compared to the initial state. Due to the stiffness of the FD, its deformation is small and, thus, cannot be seen
in Figure 13 with the naked eye.

6.2 Impact of coiling on the flow field inside a cerebral aneurysm

We will compare simulation results for the flow patterns, velocity magnitude as well as the wall shear stress as quantities of
interest for a patient-specific CA geometry before and after a coiling procedure. While the untreated CA just requires the
vessel geometry, the coiled CA simulation utilizes the virtual coiling models from Section 5.1 to obtain a coil geometry and
use it as a fully resolved obstacle within the aneurysm sac. We have chosen coiling over stenting or WEB device treatment



FRANK et al. 29 of 37

(A) (B)

(C) (D)

F I G U R E 12 Comparison of the fluid flow in the CA at the systolic peak for three different permeabilities with CFD simulation of an
untreated CA. The different permeability values decrease the magnitude of the flow. For the lowest permeability, the fluid may barely pass
the FD, whereas fluid flow can still be observed for the other configurations. The color coding uses a logarithmic scale. (A) Reference solution
of a CFD simulation. (B) Velocity solution for l2

0 = 1.0 ⋅ 10−5 mm2. (C) Velocity solution for l2
0 = 6 ⋅ 10−6 mm2. (D) Velocity solution for

l2
0 = 5.0 ⋅ 10−7 mm2.

for this example, since the coil model is the most advanced of the three so far, since it is supplemented by a mechanical
model as well. The aneurysm and vessel geometry employed for the experiment is again #C0074b from [77] with bounding
box measures 18.38 mm × 15.5 mm × 12.15 mm, for which the preprocessing steps were already outlined in Figure 2. The
final geometry after preprocessing is digitally available in [34]. In both the empty and the coiled simulation, we study
the bloodflow over a time period of roughly 2.7 heartbeats, ending within the mid of the diastole phase, where also all
subsequent time snapshot images are taken. The inflow boundary conditions are adopted from (4) using 𝛾 = 2 and the
time amplitude profile from Figure 4, which we have continued periodically after the first full heartbeat and for stability
reasons the values were decreased by 100. At the outlet, for the pressure boundary condition, the constant pressure p = 0
is applied. For the simulations below, we assume that the fluid is Newtonian which is valid for the flow in the coiled
aneurysms [71].

For discretization, we employ the LBM as introduced in section 4.1.3 on a lattice comprising of Ncells = 15, 323, 938
cells, each of size Δx = 2.75 × 10−4 mm and Ndt = 637113 time steps with a time step size Δt = 4.24 × 10−6 s. Hence,
we run approximately 235,967 time steps for a single heartbeat with a duration of roughly one second. For the inserted
coil, material and discretization parameters used for its insertion simulation are summarized in Table 1. Snapshots of
the virtual coiling procedure are depicted in Figure 7. Please note again, that the time step size of the coil formation
simulation given in Table 1 does not have to match the time step size of the fluid simulation, as they can be regarded as
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F I G U R E 13 Deformed configuration of the CA cavity at the systolic peak with a contour plot of the velocity field: The black line
indicates the undeformed configuration. The deformation is scaled by a factor of 2 for better visibility.

(A)

(B) (C)

F I G U R E 14 Comparison of flow patterns between untreated and coiled aneurysm. The flow behavior within the aneurysm is changed
by the presence of the coil from a developed vortex to only creeping flow in between the coil’s windings. (A) Streamline pattern within the
complete computational domain, including the untreated aneurysm and the adjacent vessel where a pipe-flow pattern develops, while a
vortex is formed inside the aneurysm. (B) Zoom into the untreated aneurysm part of the domain to highlight the vortex pattern inside the CA.
(C) Streamlines within the coiled aneurysm, that is, two times the same situation where on the right the coil is just made invisible.
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(A)

(B) (C)

F I G U R E 15 Comparison of velocity field magnitudes on domain cross sections. In order to highlight the structure of the comparably
low velocity magnitudes within the aneurysm in subfigures (B) and (C), we switch to a logarithmic scale. Due to the presence of the coil, the
regions of larger velocity magnitude are driven towards the neck, respectively out of the aneurysm cavity reducing the overall flow and hence
perfusion of the aneurysm. (A) Cross section through the velocity field in the untreated situation following the main vessel with linearly
scaled colorbar highlighting the pipe flow character within the vessel while within the aneurysm the velocity magnitude is comparably low.
(B) Zoom into the untreated aneurysm with logarithmic color scaling. (C) Zoom into the untreated aneurysm with logarithmic color scaling.
Both images show the same situation where the coil has been made invisible in the right picture.

completely independent and sequential computational tasks. The same holds true for the distance of the material points
in the 1D coil vs. the lattice spacingΔx of the fluid simulation. Considering the coil diameter D2 = 0.45 mm and the given
LBMlattice spacing, the coil’s wire is resolved by approximately 16 cells in diameter, justifying the term “fully resolved” for
the device simulation. The simulation was then conducted on an Asus ESC8000A-E11 Server using an AMD Epyc 7713
processor with a core count of 64 × 2.0 GHz and 2 TB of DDR4-RAM (from which roughly 256 GB were actually being
required).

We now visualize and discuss results at a point in time in the mid of the diastole phase of the third simulated heartbeat.
Visualizations have been generated using blender in combination with the BVtkNodes10 add-on [51, 61].

First, we study the volumetric cell-wise velocity field v(x) for both scenarios, that is, before and after coiling. Using
ParaView,11 we compute streamlines in each case and use them to compare the respective flow patterns in Figure 14.

The presence of the coil reduces the flow field to a creeping flow through the remaining tight spaces within the coil.
Similarly, Figure 15 compares cross sections through the velocity magnitude field ||v(x)||2 to obtain an impression of the
change in the distribution of high flow velocities within the aneurysm due to the presence of the coil.

10BVtkNodes software webpage: https://bvtknodes.readthedocs.io/en/latest/BVTKNodes.html.
11ParaView software webpage: https://www.paraview.org/.

https://bvtknodes.readthedocs.io/en/latest/BVTKNodes.html
https://bvtknodes.readthedocs.io/en/latest/BVTKNodes.html
https://www.paraview.org/
https://www.paraview.org/
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(A) (B)

F I G U R E 16 Comparison of wall shear stress distributions on the aneurysm’s surface due to the coiling treatment. To increase the
visibility of the wall shear stress dynamics, we have switched to a logarithmic scale with values lying below the lower end of the colorbar being
transparent. (A) Wall shear stress distribution on the aneurysm’s surface before coiling treatment. (B) WSS distribution in the coiled aneurysm.

Effectively, the presence of the coil slows down the flow field by at least one or more orders of magnitude. Finally
in Figure 16, we evaluate the wall shear stress, which is only well defined on the surface of the aneurysm, to assess the
success of the coiling procedure to reduce said quantity in order to alleviate the aneurysm’s rupture risk.

In line with the reduction of the flow velocities, shear rates and, thus, also wall shear stresses are greatly reduced by
the presence of the coil. Since the wall shear stress computation is done in the LBM setting, some artifacts are present
because of the corresponding discretization. To get rid of them, the Gaussian smoothing operator is applied to the wall
shear stress field after the simulation is finished.

Overall, the numerical simulations are capable to reproduce the intended effect of coil insertion, namely the reduction
of wall shear stresses to reduce the rupture risk as well as reductions in flow velocities to aid thrombus formation inside
the CA. Another account on this topic can again be found in [49].

7 CONCLUDING REMARKS AND OUTLOOK

In this article, we have outlined various components to build mathematical models and numerical simulation work-
flows with the goal to assess different endovascular treatment options for cerebral aneurysms and predict their long-term
success for enhanced patient well-being.

Since we target patient-specific predictions, we first have described the necessary steps from medical imaging data
to ready-to-use representations of computational grids. On these grids, we can either use a LBM method to examine the
flow field within a pure CFD simulation of cerebral aneurysms, which we have demonstrated for the case of endovascular
coiling, or employ a finite element discretization of a poro-elastic continuum model to study the impact of endovascular
devices on the flow field within a deformable aneurysm domain in a homogenized manner, showcased for a simplified
aneurysm treated by a flow diverter. Then, we have proposed models for three types of endovascular devices, in particular
a mechanical model for endovascular coils and two purely geometric models for WEB devices and stents/flow diverters,
respectively.

The presented one domain modeling approach based on a poro-elastic medium appears as a simple, but promising
approach to model the fluid and structural behavior of a FD in a homogenized fashion. However, before clinically relevant
questions can be answered with the suggested modeling approach, a few considerations must still be addressed. The
estimation of a proper permeability is still a topic of research, since it may also include anisotropic effects of the fluid flow
resulting from the FD’s geometry. Additionally, the effective stiffness of a FD should be taken into consideration within
the modeling approach. For the considered material parameters, the poro-elastic medium behaved rather stiff, resulting
in a relatively low deformation of the FD. This raises the question of how to assess the bending of the thin wires of a FD
due to the interaction of blood and artery wall and include the exact structural behavior into the modeling approach.
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The LBM solver can easily be used to study flow fields in patient-specific geometries, yet limited to rigid vessel geome-
tries so far. In future work, we plan to include moving boundaries into the LBM framework in order to account for the
vessel’s deformation due to the pulsatile nature of the heartbeat.

With the presented models, we are able to compute flow fields in cerebral aneurysms just after an endovascu-
lar intervention. For now, we had to limit ourselves to two-dimensional problems for the PM model. Extension to
three-dimensional geometries is straightforward from a modeling point of view, however requires to tackle performance
questions, for example the design of effective preconditioners for the system of linear equations arising in each non-
linear iteration of the PM solver. Having successfully applied the concept of physics-based block preconditioning to
surface-coupled multi-physics couplings such as contact mechanics [104, 105] or fluid-solid interaction [69], we intend
to apply this principle also to the present case of poro-elastic media. Furthermore, we are working on the fully-coupled
embedding of patient-specific CA models using the proposed PM approach into reduced-dimensional representations of
the cerebral blood flow (based on ideas from our prior work [35]). The LBM models for coiled CAs are currently limited to
fixed domains and require an extension to domains with moving boundaries to also account for vessel dilation due to the
blood pulsation. In addition, increased voxel resolutions are required to facilitate a more accurate modeling of the thin
coiling wires, which in turns requires to ramp up the use of computational resources. While the developers of the LBM
solver waLBerla have demonstrated its application to very fine meshes, this computational power needs to be transferred
to the application at hand.

The present methods and results will serve as a starting point to simulate the subsequent thrombus formation, which
is driven by biochemical reaction processes, but dominantly governed by the blood flow velocity inside the aneurysm
cavity. Ultimately, we hope to cover the entire spectrum of flow field prediction, thrombus formation, and assessment
of the quality and stability of the aneurysm occlusion, such that we ultimately arrive at our goal to assist the attending
neuroradiologist in management and treatment of cerebral aneurysms.
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