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Abstract

We aimed to assess the performance of Ag‐RDT and RT‐qPCR with regard to

detecting infectious SARS‐CoV‐2 in cell cultures, as their diagnostic test accuracy

(DTA) compared to virus isolation remains largely unknown. We searched three da-

tabases up to 15 December 2021 for DTA studies. The bivariate model was used to

synthesise the estimates. Risk of bias was assessed using QUADAS‐2/C. Twenty
studies (2605 respiratory samples) using cell culture and at least one molecular test

were identified. All studies were at high or unclear risk of bias in at least one domain.

Three comparativeDTA studies reported results onAg‐RDTandRT‐qPCRagainst cell
culture. Two studies evaluated RT‐qPCR against cell culture only. Fifteen studies

evaluated Ag‐RDT against cell culture as reference standard in RT‐qPCR‐positive

Abbreviations: Ag‐RDT, antigen rapid diagnostic test; CCS, case‐control study; COVID‐19, coronavirus disease 2019; CPE, cytopathic effect; CS, cross‐sectional study; Ct, cycle threshold; d,
day; DTA, diagnostic test accuracy; FN, false negative; FP, false positive; IFT, immunofluorescence test; NA, not applicable; NIBSC, The National Institute for Biological Standards and Control;

NPS, nasopharyngeal swab; NR, not reported; OPS, oropharyngeal swab; PRISMA‐DTA, preferred reporting items for systematic reviews and meta‐analyses of diagnostic test accuracy
studies; PROSPERO, international prospective register of systematic review; QUADAS, quality assessment of diagnostic accuracy studies; RNA, ribonucleic acid; ROC, receiver‐operating
characteristic; RT‐qPCR, reverse transcription quantitative polymerase chain reaction; SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2; SEM, scanning electron microscope;
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samples. For Ag‐RDT, summary sensitivity was 93% (95% CI 78; 98%) and specificity

87% (95% CI 70; 95%). For RT‐qPCR, summary sensitivity (continuity‐corrected) was
98% (95% CI 95; 99%) and specificity 45% (95% CI 28; 63%). In studies relying on RT‐
qPCR‐positive subsamples (n= 15), the summary sensitivity of Ag‐RDTwas 93% (95%

CI 92; 93%) and specificity 63% (95% CI 63; 63%). Ag‐RDT show moderately high

sensitivity, detectingmost but not all samples demonstrated to be infectious based on

virus isolation. Although RT‐qPCR exhibits high sensitivity across studies, its low

specificity to indicate infectivity raises the question of its general superiority in all

clinical settings. Study findings should be interpreted with caution due to the risk of

bias, heterogeneity and the imperfect reference standard for infectivity.
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1 | INTRODUCTION

Rapid and extensive testing with subsequent non‐pharmacological
and/or pharmacological interventions were of paramount impor-

tance for the containment and management of the coronavirus dis-

ease 2019 (COVID‐19) pandemic.1,2 Diagnostics for identification of

viral components in clinical samples play a pivotal role in this context.

The exponential amplification of minute amounts of viral ribo-

nucleic acid (RNA) by reverse transcription quantitative polymerase

chain reaction (RT‐qPCR) ensures a high analytical sensitivity,

forming the foundation of its predominant role in COVID‐19
testing.3,4 However, there are several limitations of RT‐qPCR
testing, including considerable turn‐around‐time due to sample

transportation to professional laboratories and testing; high demands

on personnel, technical equipment and data transmission.5 These

requirements limit fast decision‐making processes on RT‐qPCR test

results.6 Furthermore, the high sensitivity of RT‐qPCR assays comes

with the drawback of its long tail of RNA positivity in the postacute

phase of COVID‐19.1,7 As a result, the interpretation of positive RT‐
qPCR data is often challenging, particularly with regard to shedding

of infectious viral particles, despite the possibility of semi‐
quantification of detected viral RNA expressed as cycle threshold

(Ct). The Ct value provides a broad indication of the quantity of all

viral genetic material in a patient sample which includes non‐
packaged viral RNA, RNA of defective particles as well as partially

degraded RNA.8–10 Additionally, there is no general standardisation

of commercially available RT‐qPCR test systems and the use of in-

ternational standards established by the World Health Organisation

(WHO) and the National Institute for Biological Standards and

Control (NIBSC) is only optional.11,12

Some of these restrictions, such as prolonged turnaround time,

and the requirement for advanced equipment, are not applicable to

antigen rapid diagnostic test (Ag‐RDT) formats, enabling them to

complement RT‐qPCR testing as an upstream triage test or to

partially replace RT‐qPCR, particularly in situations where large‐
scale testing or prompt diagnostic information is required.13–15

There is a large variety of Ag‐RDT assays available, that are

generally cost‐effective, pose lower demands on the logistics and

testing personnel and have a short turn‐around time. These advan-

tages are counterbalanced by a lower sensitivity compared to RT‐
qPCR and a large heterogeneity of reported sensitivities.14

The reported heterogeneity could be explained by various vari-

ables such as symptom status and viral load.14,16,17 Although the

measurement of viral load in respiratory samples is not yet stan-

dardized, it correlates with the isolation of replicative SARS‐CoV‐2
virus in cell culture systems.18,19

Isolation of replicating virus using permissive cell culture systems

represents the best available laboratory‐based method for assessing
infectious virus present in a patient's sample. It is therefore impor-

tant to determine how Ag‐RDTs perform against virus isolation in cell

culture. In this context, the extrapolation to infectivity is not directly

possible using RT‐qPCR data, as RT‐qPCR detects viral RNA,

regardless of its replicative potential.

Although several systematic reviews have assessed the perfor-

mance of Ag‐RDT using RT‐qPCR as a reference standard,14,16,20,21

its performance against virus isolation in cell culture has not been

systematically evaluated. This knowledge gap forms the basis of our

primary research question. In addition, we investigate RT‐qPCR
performance, since some diagnostic test accuracy (DTA) studies on

the evaluation of Ag‐RDT against cell cultures also employ RT‐qPCR.
By doing so, we additionally offer an update on this issue, which was

addressed in a prior systematic review.22

2 | MATERIAL AND METHODS

We performed a generic search on cell culture methodology targeting

SARS‐CoV‐2 without specification on index tests. This search strategy
allowed for DTA assessment of Ag‐RDTwhich is the primary objective
of this review and for DTA evaluation of RT‐qPCR which is a modified

follow‐up question we already analysed in another systematic re-

view.22 As the pandemic progressed and more robust studies became
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available, we shifted our focus to prioritise DTA studies in our review.

Hence, in contrast to our previous iteration, which extensively relied

on case series data to assess the performance of RT‐qPCR in detecting
SARS‐CoV‐2 infectivity, we exclusively concentrated in this iteration
on studies that specifically aimed to assess the DTA of the respective

index test. This shift allowed us to rely less on case series results and

ensured a more reliable and comprehensive analysis.

2.1 | Protocol and registration

The protocol for this systematic review was registered with the In-

ternational Prospective Register of Systematic Review (PROSPERO)

on 28 March 2022 (registration number: CRD42022321584).23 The

review was conducted following the Preferred Reporting Items for

Systematic Reviews and Meta‐Analyses of Diagnostic Test Accuracy
Studies (PRISMA‐DTA) statement.24 The PRISMA‐DTA checklist is

available in the Supporting Information S1.

2.2 | Study eligibility criteria

Study design: We included DTA and validation studies of non‐
comparative study designs, which focused on a single index test and

those with comparative study designs, that assessed at least two

different index tests. For non‐comparative DTA studies we included

cross‐sectional design, also referred to as the single gate design with a
common set of eligibility criteria for all participants and case‐control
design, also known as the multiple gate design, which utilises

different eligibility criteria for diseased and non‐diseased partici-

pants.25 Longitudinal studies were considered eligible if DTA assess-

ment was conducted in a cross‐sectional manner. All comparative
study designs were eligible, including fully paired study design, where

all participants received all index tests, as well as partially paired or

unpaired study designs, where only partial pairing exists or two sepa-

rate patient populations are used for evaluating different index tests.26

We only included studies which provided sufficient data to

construct a 2 � 2 table in order to calculate at least one of both diag-

nostic test accuracy estimates (sensitivity or specificity). Case series, in

vitro, in‐silico, animal studies and discrepant analyses were excluded.
Both preprints and published articles were considered for inclusion.

Index test (for the primary question: Ag‐RDT against cell cul-

ture): We considered Ag‐RDTs as index tests, that is, commercially

available near‐patient devices (so‐called point‐of‐care tests) that

provide rapid results by detecting viral antigens such as nucleocapsid

protein, usually within 30 min. Most commonly used Ag‐RDTs are
lateral flow assays (LFAs), which capture particular antigen such

through specific antibodies. Successful binding of viral antigens to

antibodies reveals a visible detection line on the LFA matrix or re-

sults in fluorescence that can be detected with a readout device. The

presence of a detection line is considered index test positive.27,28

Index test (for the follow‐up question: RT‐qPCR against cell

culture): RT‐qPCR is a test system that can detect target regions of a

SARS‐CoV‐RNA by reverse transcription followed by DNA amplifi-

cation. We considered both commercial and in‐house tests as eligible.
Reference standard: We considered any method of SARS‐CoV‐2

isolation using permissive cell cultures as an acceptable reference

standard, regardless of the applied cell line and confirmatory

methods to detect cytopathic effects or virus replication. The pres-

ence of cytopathic effect is considered reference standard positive.

Participants: No particular exclusion criteria with regard to pa-

tient characteristics, such as symptom status, age, gender or partic-

ular occupation such as healthcare worker. Patients with and without

symptoms from inpatient and outpatient settings with suspected

SARS‐CoV‐2 or known to be infected with SARS‐CoV‐2 were eligible.
Samples: We included only studies which assessed respiratory

samples (nasal swab, throat swab, sputum, tracheal/bronchial secre-

tion and bronchial lavage fluid, saliva). We excluded studies which

assessed less than 10 specimens.

2.3 | Information sources and search strategy

The applied search strategy has previously been published.22 We

searched in the following electronic databases: Cochrane COVID‐19
Study Register, Web of Science and COAP Living Evidence on

COVID‐19 up to 15 December 2021. We did not apply any language

or methodological search filters.

2.4 | Study selection

After deduplication, two reviewers (AF; TD) independently screened

the articles for eligibility using the online reference management

application Rayyan (https://www.rayyan.ai/),29 any disagreements

were resolved by discussion.

2.5 | Data collection

Two authors collected in duplicate the information for each study in a

Microsoft Excel data extraction sheet.30 The complete set of extracted

information items can be found in S2. We extracted data to generate

2� 2 tables either with Ag‐RDT as index test versus cell culture or RT‐
qPCR as index test versus cell culture. In comparative DTA studies we

extracted Ag‐RDT data with cell culture and RT‐qPCR as reference

standard. In studies with multiple Ag‐RDT comparisons each Ag‐RDT
assay was entered. Indetermined results were excluded from the

analysis, as their reporting was not sufficiently detailed.

2.6 | Study quality assessment (risk of bias and
applicability)

The Quality Assessment of Diagnostic Accuracy Studies (QUADAS‐2)
tool has been used in studies with single index test,31 while in
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comparative DTA studies we additionally used QUADAS‐C.32 In both
tools signalling questions are incorporated that allow for the assess-

ment of risk of bias and applicability across four domains (patients

selection, index test, reference standard, flow and timing). Further

details on the judgement guidance for each domain can be found in S3

and S4. Our assessment of the overall risk of bias and applicability was

as follows31: If a study received a low rating in all domains related to

bias or applicability, it is considered tohaveanoverall judgementof low

risk of bias or lowconcern in applicability. Conversely, if a study is rated

as high or unclear in one or more domains, it may be categorised as at

risk of bias or high concerns regarding applicability.

2.7 | Statistical analysis

Based on 2 � 2 tables, sensitivity and specificity with 95% confidence

interval (CI) for each study were calculated. Samples were the unit of

analysis. When encountering data sets with zero observations in all

cells, we applied continuity correction.33

In order to obtain the summary test accuracy estimates we

performed bivariate random‐effects meta‐analyses.34 This involved

three distinct meta‐analyses, which were necessary owing to the

variations in study designs and the utilization of different combina-

tions of index tests and reference standards.

The first meta‐analysis focused on estimating the accuracy of Ag‐
RDT against virus detection in cell culture. The second meta‐analysis
focused on estimating accuracy of RT‐qPCR against cell culture. Both

meta‐analyses utilised data derived from comparative DTA studies.

Additionally, for the evaluation of the performance of RT‐qPCR
against SARS‐CoV‐2 isolation in cell culture, studies were included

that compared RT‐qPCR versus cell culture only.

The third meta‐analysis consisted of studies in which RT‐qPCR‐
positive samples were used to assess Ag‐RDT against cell culture re-

sults. To prevent double counting of studies due to reports onmultiple

assays, sampling type, or virus isolation techniques within a single

population, one data set was randomly selected for this meta‐analysis.
The results are presented in forest plots for the two index testsAg‐

RDT and RT‐qPCR with cell culture as reference standard. We also

present the accuracy of Ag‐RDT with RT‐qPCR as reference standard

for comparative studies. However, we were unable to conduct a meta‐
analysis for Ag‐RDT with RT‐qPCR as reference standard due to the

limited number of this type of studies in our study set.

To explore heterogeneity,wevisually assessed the forest plots and

calculated τ2. Prediction regions and the summary operating points

were only available for meta‐analyses with an adequate number of

studies, specifically for RT‐qPCR meta‐analysis and Ag‐RDT meta‐
analysis using positive RT‐qPCR results. For the Ag‐RDT meta‐
analysis based on comparative DTA studies, prediction regions could

not be provided, as the number of studies was insufficient.

We conducted subgroup analyses based on a priori defined

covariates, including Ct values, symptom status, days post symptom

onset, specimen type, setting and the post‐hoc defined covariate Ag‐
RDT type. The Ct value covariate was dichotomised using the Ct

value of 25.35 For each covariate, the calculated summary test ac-

curacies along with the 95% CI and τ2 were compared.
We aimed to perform sensitivity analyses excluding studies with

high risk of bias; however, this was not possible as our largest study

set, derived from RT‐qPCR positive samples, exclusively comprised

high‐risk overall judgements.
To generate PRISMA‐flowchart we used a web‐based Shiny App

PRISMA2020.36 Bivariate random‐effect meta‐analyses were con-

ducted using R Version 4.1.0 along with the package lme4.37,38 We

used RevMan 5.4.1 to present study data in paired forest plots and in

receiver‐operating characteristic (ROC) space.39 When plotting

studies in ROC space, we adhered to the recommendation that a

summary line is more informative in the presence of variations of the

positive test defining threshold. However, since this is not applicable

to dichotomous tests such as Ag‐RDT we chose to use a summary

point instead.40

3 | RESULTS

3.1 | Study selection

The process of study selection is shown in a PRISMA‐flowchart
(Figure 1). Articles excluded during the full‐text eligibility assess-

ment can be found in the Supporting Information S5, along with the

reasons for exclusion.

After the exclusion of duplicates, we screened 7262 articles for

their title and abstract. Following the screening we assessed overall

123 full text articles for eligibility, comprising 58 records from the

present search and 65 articles identified in a previous search.22 Finally,

we included 21 publications reporting on 20 studies. In our previous

review on RT‐qPCR performance in detecting infectivity,22 we

included seven studies for DTA evaluation, two of these studies spe-

cifically aimed to evaluate the DTA of RT‐qPCR using cell cultures for

SARS‐CoV‐2 detection as a reference standard.41,42 For the present

review, we incorporated these two DTA studies along with three

additional studies that were identified in the current search, all of

which had DTA assessment as primary study aim.43–45 Moreover, nine

studies that were included in the previous review's positive predictive

value (PPV)meta‐analysis ofRT‐qPCR focusedonassessing theDTAof
Ag‐RDT. As a result, these studies were also selected for the present
review and themeta‐analysis of Ag‐RDT based on RT‐qPCR positivity.

3.2 | Study characteristics

Three studies had a fully paired comparative DTA design,43,44,46 four

studies were of case‐control design,47–50 12 of cross‐sectional
design,45,50–57 and one study of longitudinal design.58

Among the three studies of comparative DTA design, data were

available for both on RDT and RT‐qPCR assessment.43,44,46 Two

studies reported only on RT‐qPCR accuracy against cell culture.45,47

Sixteen publications were reporting on 15 studies, that assessed Ag‐
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RDT performance against cell culture in RT‐qPCR positive sam-

ples.48–63 Out of these, paired sensitivity and specificity calculation

was possible in 12 studies50–57,59–63 while three studies provided

data that only allowed for sensitivity calculation.48,49,58

Twenty‐two different Ag‐RDTs were evaluated, with four studies
examining more than one assay.

A total of 2605 samples were subjected to virus isolation in cell

culture out of which 2443 samples were eventually used for per-

formance evaluation of Ag‐RDT and RT‐qPCR.
The majority of studies utilised nasal swabs (n = 7) and naso-

pharyngeal swabs (n = 6) as the preferred sampling methods. The

studies were predominantly conducted in adults (n = 8), while two

studies also included children. Outpatient settings were the most

common research environment (n = 7) and most studies focused on

the initial 7 days following symptom onset (n = 8). However, there

was also a frequent lack of reporting for each of these characteristics.

In general studies performed virus isolation in Vero E6 cells

(n = 6), mostly with SARS‐CoV‐2 RT‐qPCR as confirmation method in

case of cytopathic effect (n = 11). Characteristics of included studies

and the evaluated test can be found in Tables 1 and 2, respectively. A

summary table of the characteristics of included studies is available

in Supporting Information S6.

3.3 | Study quality assessment

The results of QUADAS‐2 can be found in Figure 2 and in Supporting
Information S7–S9. Thirteen out of 20 studies had high risk of bias in

the patient's selection domain, most commonly due to convenience

sampling or preselection based on known RT‐qPCR results.

Considering the index test domain eight studies were of unclear risk of

bias as blinding to cell culture result could not be assessed. High con-

cerns of applicability regarding the index test were present in nine

studies, as the correct test performance was modified compared to

manufacturer's instruction, most commonly due to suspension of

specimen in transport media. Regarding cell culture domain 15 studies

wereof high risk due to lack of blinding, as sampleswith knownpositive

RT‐qPCRand/orAg‐RDT resultswere subjected to cell culture in these
studies. The flow and timing domain was affected in 19 studies due to

partial verification and unclear time between index test performance.

Each study had either high risk of bias or high concerns regarding

applicability in at least one domain.

3.4 | Results of individual studies

The contingency tables and the corresponding forest plots of sensi-

tivity and specificity of the three separate bivariate meta‐analyses
are shown in Figures 3–5.

In comparative DTA studies, the following results were obtained,

when virus isolation in cell cultures was used as a reference standard:

Ag‐RDT assessment showed sensitivity ranging from 79% (95% CI 49;

95%) to 96% (95% CI 87; 100%) and specificity from 66% (95% CI 56;

76%) to 94% (95%CI 82; 99%) (Figure 3). In theDTAassessment of RT‐
qPCR, the sensitivity was consistently 100% across all studies, with

corresponding 95% confidence intervals ranging from 77% to 100%.

Regarding specificity, it varied from23% (95%CI15; 32%) to79% (95%

CI 64; 89%) (Figure 4). Utilising RT‐qPCR as reference standard in the

same comparativeDTA study set, Ag‐RDT sensitivity ranged from41%

(95% CI 34; 49%) to 76% (95% CI 60; 89%) and specificity from 96%

F I GUR E 1 PRISMA Flow diagram of the study selection process.
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(95% CI 82; 100%) to 100% (95% CI 97; 100%). The corresponding

forest plot is included in the Supporting Information S10.

The Ag‐RDT sensitivity versus cell culture in RT‐qPCR positive

samples ranges from 71% (95% CI 53; 85%) to 100% (95% CI 90;

100%) and specificity from 29% (95% CI 19; 40%–100% (95% CI 77;

100) (Figure 5). To avoid double counting of studies and ensure one

assay per study, we randomly chose one Ag‐RDT assay, or one

sampling method or specific virus isolation technique in studies

TAB L E 1 General characteristics of included studies.

Study

identifier Country

Cell cultured
samples (n included

in the analysis) Study design

Symptomatic

patients (%)

Median

symptom
onset to test

time Setting

Funding

sources Notes

Ford 2021 USA 336 CS 56% 2 d(1), 3 d(2) Outpatient Public 1 children, 2 adults

Francis

2020*

France 104 CCS NR NR Inpatient Public *Analysed: Classic

technique

Igloi 2021 Netherlands 176 CS 91% 4 d Outpatient Public

Kim 2021 South

Korea

189 (155*) CS >90% NR Inpatient Public *Valid cell culture results

Kohmer

2021

Germany 76 (65*) CS NR NR Nursing

home

None *Valid cell culture results

Korenkov

2021

Germany 126 (118*) CS 42% 2 d Outpatient Public *RT‐qPCR positive samples

without culture

contamination included

Lopera 2022 Colombia 306 Comparative NR NR Outpatient Public

McKay 2021 USA 101 CS 13% NR Nursing

home

None

Nordgren

2021

Sweden 156 (65*) CCS 100% NR NR Public *Only sensitivity compared

to cell culture reported

Pekosz 2021 USA 75* Comparative 100% Range 0‐7 d Mixed Private *176 samples that were

not cell cultured were not

analysed

Pickering

2021

UK 141* CCS NR Range (−)1–
37 d

Mixed Private,

public

*57 samples for

SureScreen‐F RDT, 46 for

Innova, 34 for encode

Pray 2021 USA 73 (69) CS 6% 3 d Outpatient NR

Prince‐
Guerra/

Almendares

2021

USA 274 (271) CS 24% 4 d Outpatient NR

Shidlovskaya

2021

Russia 106 Comparative 100% 6 d Inpatient None

Smith 2021 USA 51 (42*) Longitudinal* NR NR Outpatient Public *Analysis based on the day

of first cell culture

positivity

Tariq 2021 South

Korea

63 CCS NR 1 d Inpatient Public

Toptan 2020 Germany 33 CS NR NR NR Public

Uwamino

2021

Japan 117 CS NR NR NR Public

Yamamoto

2021

Japan 26 CS 96% 8.5 d Inpatient None

Yamayoshi

2020

Japan 76 (74*) CS NR 7.5 d NR Public *2 inconclusive results

Abbreviations: CCS, case‐control; CS, cross‐sectional; comparative, comparative study; d, days; NR, not reported; RDT, rapid diagnostic test; RT‐qPCR,
reverse transcription quantitative polymerase chain reaction.
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TAB L E 2 Characteristics of the assessed tests in the included studies.

Study Sample type

Ag‐RDT RT‐qPCR Cell culture

Assay and manufacturer Manufacturer; detection protocol Cell line

CPE‐
confirmation
test

Ford 2021 Nasal swabs BinaxNOW COVID‐19 Ag card

(Abbott)

COVID‐19 TaqPath Vero CCL‐81 RT‐PCR

Francis 2020 NPS NA Inhouse Vero E6 cells SEM

Igloi 2021 NPS SARS‐CoV‐2 rapid antigen test

(Roche)

Roche diagnostics Vero 118 IFT

Kim 2021 Mixed: NPS, sputum,

saliva

NA Allplex™ 2019‐nCoV assay Seegene

(results for N and S gene reported)

NR Plaque assay

Kohmer

2021

NPS RIDA®QUICK SARS‐CoV‐2 antigen

(R‐Biopharm), SARS‐CoV‐2 rapid

antigen test (Roche), NADAL®

COVID‐19 Ag test, SARS‐CoV‐2 Ag

test (LumiraDx)

Roche diagnostics Caco‐2 NR

Korenkov

2021

Mixed: NPS, OPS Standard Q COVID‐19 Ag (SD

Biosensor)

TIB Molbiol, Berlin, Germany,

cobas® SARS‐CoV‐2 test kit, SARS‐
CoV‐2 AMP Kit, Xpert® Xpress

SARS‐CoV‐2

Vero E6 cells RT‐PCR

Lopera 2022 NPS Standard Q COVID‐19 Ag (SD

Biosensor)

Inhouse Vero E6 cells IFT or

RT‐PCR

McKay 2021 Nasal BinaxNOW COVID‐19 Ag card

(Abbott)

CDC Influenza SARS‐CoV‐2 (flu

SC2) Multiplex assay

Vero CCL‐81 RT‐PCR

Nordgren

2021

NPS Panbio™ COVID‐19 Ag rapid test

(Abbott), coronavirus Ag rapid test

cassette (Orient Gene Biotech

Co., Ltd)

Abbott real time SARS‐CoV‐2 or

Alinity m SARS‐CoV‐2 AMP assays

(Abbott, Solna, Sweden)

Vero E6 cells RDT (Panbio)

Pekosz 2021 Nasal BD Veritor system for rapid

detection of SARS‐CoV‐2 (BD Life

Sciences)

Lyra SARS‐CoV‐2 rRT‐PCR Kit VeroE6TMPRSS2 RT‐PCR

Pickering

2021

Mixed: NPS, OPS Encode SARS‐CoV‐2 antigen rapid

test device (Zhuhai Encode Medical

Engineering), Innova rapid SARS‐
CoV‐2 antigen test (Xiamen Biotime

Biotechnology), SureScreen COVID‐
19 rapid fluorescence antigen test

(SureScreen diagnostics)

AusDiagnostics Multiplex Tandem

SARS‐CoV‐2 PCR assays, CDC's IDT

Primer‐Probes sets

Vero E6 cells IFT

Pray 2021 Nasal swabs Sofia SARS antigen FIA (Quidel) CDC 2019‐nCoV Real‐time RT‐PCR
diagnostic panel, TaqPath COVID‐
19 combo Kit (Thermo Fisher

Scientific)

Vero CCL‐81 RT‐PCR

Prince‐
Guerra/

Almendares

2021

Nasal swabs BinaxNOW COVID‐19 Ag card

(Abbott)

CDC 2019‐nCoV Real‐time RT‐PCR
diagnostic panel, or Fosun COVID‐
19 RT‐PCR detection Kit

Vero CCL‐81 RT‐PCR

Shidlovskaya

2021

NPS SGTI‐flex COVID‐19 Ag (Sugentech

Inc.), Biocredit COVID‐19 Ag

SARS‐CoV‐2 FRT 293T/ACE2 cell

line

RT‐PCR

Smith 2021 Nasal swabs Sofia 2 SARS antigen Fluorescent

Immunoassay (Quidel)

Alinity m SARS‐CoV‐2 AMP assays

(Abbott, Solna, Sweden)

VeroE6TMPRSS2 RT‐PCR

Tariq 2021 Mixed: NPS,

saliva, OPS

PCL COVID19 Ag rapid FIA, PCL

COVID19 Ag gold (PCL Inc.)

Inhouse (N), SD biosensors kit (E,

RdRP)

Vero E6 cells RT‐PCR

Toptan 2020 Mixed: OPS, NPS R Biopharm (assay NR) Roche cobas® SARS‐CoV‐2 Caco‐2 RT‐PCR

Uwamino

2021

Mixed: NPS, saliva Espline® SARS‐CoV‐2 (Fujirebio) 2019 Novel coronavirus detection

Kit (Shimadzu, Kyoto, Japan)

NR NR

(Continues)
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where multiple methods were utilised within a single population. The

complete dataset containing information on each assay and sampling

method can be found in Supporting Information S11–S13.

3.5 | Synthesis of results

Following summary estimates were calculated: Ag‐RDTs perfor-

mance against virus detection in cell culture (n = 3, comparative DTA

studies) showed summary sensitivity and specificity of 93% (95% CI

78; 98%) (τ2 = 0.8) and 87% (95% CI 70; 95%) (τ2 = 0.7) and RT‐qPCR
performance against cell culture (n = 5) showed continuity corrected

sensitivity of 98% (95% CI 95; 99%) and summary specificity of 45%

(95% CI 28; 63%) (τ2 = 0.0006 for sensitivity and τ2 = 0.6 for spec-

ificity). Figures 6–8 display the crosshairs ROC plots along with the

summary estimates for the three meta‐analyses.
In studies based on RT‐qPCR‐positive subsamples (n = 15)

summary Ag‐RDT sensitivity and specificity was 93% (95% CI 92;

93%) and 63% (95% CI 63; 63%), with larger heterogeneity in spec-

ificity (τ2 = 1.2) than sensitivity (τ2 = 0.8) (Figure 8).

T A B L E 2 (Continued)

Study Sample type

Ag‐RDT RT‐qPCR Cell culture

Assay and manufacturer Manufacturer; detection protocol Cell line

CPE‐
confirmation
test

Yamamoto

2021

Nasal swabs Espline® SARS‐CoV‐2 (Fujirebio) Takara Bio Inc., Shiga, Japan VeroE6 and

VeroE6TMPRSS2

RT‐PCR

Yamayoshi

2020

Mixed: NPS, OPS,

saliva, gargle, sputum,

tracheal aspirate

Standard Q COVID‐19 Ag (SD

Biosensor); espline SARS‐CoV‐2
(Fujirebio), QuickNavi ‐COVID19 Ag
(Denka Seiken), ImmunoAce SARS‐
CoV‐2 (Tauns laboratories)

Inhouse VeroTMPRSS2 NR

Abbreviations: CPE, cytopathic effect; IFT, immunofluorescence test; NA, not applicable; NPS, nasopharyngeal swab; NR, not reported; OPS,

oropharyngeal swab; RT‐qPCR, reverse transcription quantitative polymerase chain reaction; SEM, scanning electron microscope.

F I GUR E 2 QUADAS‐2 graphs with regard to Ag‐RDT or RT‐qPCR as index test and cell culture as reference standard.

F I GUR E 3 Diagnostic accuracy of Ag‐RDT based on comparative DTA studies. The squares and horizontal lines represent the point
estimate and 95% CI for each included study: CI, confidence interval; FN, false negative; FP, false positive; TN, true negative; TP, true positive.

F I GUR E 4 Diagnostic accuracy of RT‐qPCR. The squares and horizontal lines represent the point estimate and 95% CI for each included
study. CI, confidence interval; FN, false negative; FP, false positive; TN, true negative; TP, true positive.
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Subgroup analyses were only feasible for the study sets based on

RT‐qPCR positive samples due to the larger number of included

studies (n = 15) compared to the other two meta‐analyses. The re-

sults of the subgroup analyses are available in Table 3 and for visual

examination, corresponding forest plots and ROC plots are presented

in the Supporting Information S14–S20. Compared to the primary

analysis the Ag‐RDT exhibited lower heterogeneity, higher sensitivity
and lower specificity in subgroups with low Ct values, a high pro-

portion of symptomatic participants and sampling time within 7 days

of symptom onset, nasal samples, in‐ and outpatient settings and for
Binax Ag‐RDT. Due to the limited number of studies in these analyses
and preselection based on RT‐qPCR positivity, caution should be

exercised when interpreting the results.

4 | DISCUSSION

This systematic review summarises the evidence from 20 studies

reporting on the diagnostic accuracy of Ag‐RDT and RT‐qPCR in

detecting infectious respiratory samples compared to results obtained

from the isolation of SARS‐CoV‐2 by cell cultures. Both types of assays
have shown high relevance for patient care and public health man-

agement during the pandemic and they have a pivotal role in profes-

sional guidelines.64 With regard to virus isolation the Ag‐RDTs
demonstrate moderately high sensitivity, but their specificity varies,

as evidenced by comparative DTA studies and studies based on RT‐
qPCR‐positive sampling. In comparison, although RT‐qPCR exhibits

consistently 100% sensitivity across all studies, its specificity varies

F I GUR E 6 Diagnostic accuracy of Ag‐RDT
based on comparative DTA studies. The solid
circle represents a summary operating point.

Prediction region could not be shown.
Sensitivity and specificity estimates of each
study are shown as open circles, with the

crosshairs denoting the corresponding 95%
confidence intervals. The dashed diagonal line
represents the chance line.

F I GUR E 5 Diagnostic accuracy of Ag‐RDT based on RT‐qPCR positivity preselection. The squares and horizontal lines represent the point

estimate and 95% CI for each included study. CI, confidence interval; FN, false negative; FP, false positive; TN, true negative; TP, true positive.
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F I GUR E 7 Diagnostic accuracy of RT‐
qPCR. The solid circle represents a summary

operating point, the dashed line around the
summary point indicates the 95% prediction
region. Sensitivity and specificity estimates of

each study are shown as open circles, with the
crosshairs denoting the corresponding 95%
confidence intervals. The dashed diagonal line
represents the chance line.

F I GUR E 8 Diagnostic accuracy of Ag‐RDT
based on RT‐qPCR positivity preselection. The
solid circle represents a summary operating
point, the dashed line around the summary

point indicates the 95% prediction region.
Sensitivity and specificity estimates of each
study are shown as open circles, with the

crosshairs denoting the corresponding 95%
confidence intervals. The dashed diagonal line
represents the chance line.
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widely and yields a low summary estimate when cell culture is used as

the reference standard. From a clinical standpoint, Ag‐RDTmight have
an underrated potential in detecting infectious patients, underscoring

the importance of Ag‐RDT testing.
Nevertheless, there is a high risk of bias, especially in the pre-

dominant study type that relied on preselection through RT‐qPCR
positive specimens, which can lead to potential issues with blinding

and introduce the spectrum effect.

The estimated summary sensitivity of Ag‐RDT against cell cul-

ture in studies based on consecutive samples is 93% (95% CI 78;

98%), surpassing what was previously described in systematic re-

views using RT‐qPCR as the reference standard. The reported sum-

mary sensitivity estimates for symptomatic patients were 73.0%

(95% CI 69.3; 76.4%) and for asymptomatic patients 54.7% (95% CI

47.7%; 61.6%).14

However, the summary specificity derived from our review was

87% (95% CI 70; 95%), which is lower than previously reported fig-

ures of 99.1% (95% CI 99.0; 99.2%) for symptomatic patients and

99.5% (95% CI 99.4; 99.6%) for asymptomatic patients.14

For RT‐qPCR versus cell culture the (continuity‐corrected)
summary sensitivity was 98% (95% CI 95; 99%), while the specificity

showed a considerably lower value of 45% (95% CI 28; 63%).

Hence, both tests demonstrate lower level of specificity when

compared to cell culture, with RT‐qPCR displaying a more pro-

nounced reduction in terms of specificity. This might reflect the

detection of abundant viral antigen and RNA shedding even when

intact virus progeny is no longer being excreted, as was previously

described.1 This assumption is also supported by the meta‐analysis of
the Ag‐RDT accuracy based on RT‐qPCR positive preselection. The

summary specificity of Ag‐RDT from this meta‐analysis was lower

(63%), compared to the meta‐analysis based on studies without

preselection (comparative DTA studies without preselection, 87%).

We hypothesise that in studies based on RT‐qPCR positive prese-

lection, there is a higher proportion of samples where RT‐qPCR
positivity indicates the shedding of non‐infectious viral material, as
opposed to studies without preselection that include samples from

both patients with and without SARS‐CoV‐2 infection. This may

result in a skewing of the data towards decreased specificity in

studies based on RT‐PCR‐positive preselection.
The results obtained from preselected samples pose challenges

due to risk of bias and potential spectrum effect. However, they are

also intriguing, resembling scenarios where individuals who have

previously tested positive with RT‐qPCR are subsequently retested

with Ag‐RDT. Within the context of RT‐qPCR‐positive preselection,

TAB L E 3 Subgroup analyses on
diagnostic accuracy of Ag‐RDT based on
RT‐qPCR positivity preselection.

Subgroup Number of studies Sensitivity (95% CI) τ2 Specificity (95% CI) τ2

Ct value

<25 6 98% (93; 99%) 0.65 34% (11; 69%) 0.63

≥25 6 70% (41; 88%) 1.5 81% (66; 90%) 0.54

Proportion of symptomatic patients

≥50% 3 96% (93; 97%) 0 46% (36; 56%) 0.04

<50% 4 93% (84; 98%) 0.14 52% (34; 69%) 0.5

NR 5 79% (65; 88%) 0.18 84% (68; 93%) 0.87

Days post symptom onset

<7 d 6 95% (91; 97%) 0.16 56% (46; 65%) 0.17

≥7 d 2 81% (52; 94%) 0.39 63% (21; 92%) 1.56

NR 4 81% (67; 90%) 0.19 82% (46; 96%) 2.58

Specimen type

NPS 2 89% (60; 98%) 1.35 70% (52; 83%) 0.14

nasal 5 94% (90; 97%) 0.18 43% (31; 56%) 0.25

mixed 5 93% (92; 93%) 2.6 83% (83; 83%) 0.82

Setting

Inpatient 2 97% (64; 100%) 0.8 45% (29; 62%) 0.06

Outpatient 5 95% (91; 97%) 0.14 57% (45; 68%) 0.21

nursing 2 86% (55; 97%) 0.9 53% (20; 84%) 1.1

NR 3 76% (64; 85%) 0.03 92% (84; 96%) 0.1

RDT assay

Binax 3 94% (88; 98%) 0.32 46% (29; 63%) 0.35

Espline 3 79% (63; 90%) 0.1 76% (38; 94%) 1.88
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the sample that contributed to the specificity evaluation of Ag‐RDT
(which is negative in cell culture) can be interpreted as follows: the

summary specificity of 63% for Ag‐RDT suggests that this proportion
was correctly identified as true negative by Ag‐RDT. However, the
entire (cell culture‐negative) sample tests positive in RT‐qPCR, and
thus would be classified as a false positive by cell culture.

In line with other systematic reviews that highlight RT‐qPCR Ct

levels and days after symptom onset as important determinants of

Ag‐RDT performance,16,20 these covariates were also identified to be
important in terms of virus isolation in cell culture systems. This is

not unexpected, as both days after symptom onset and Ct levels are

associated with the extent of viral replication and antigen

concentration.14,65

There are several limitations in the included studies and the

systematic review process that require discussion. Despite con-

ducting a comprehensive search until 16 December 2021, the results

only cover the first two years of the pandemic, focussing on the

original SARS‐CoV‐2 and specific variants of concern (VOC) that

emerged during this period in the countries where the included

studies were conducted (i.e. primarily the alpha and delta VOCs). The

temporal restriction implies that studies based on Omicron VOC,

which forms a large and distinct serocluster of SARS‐CoV‐2 with

cluster‐peculiar molecular and pathogenic features, including a

modified cell tropism and superior transmissibility, are not included

in our review.66,67 Furthermore, the results are affected by the large

clinical and methodological heterogeneity, including the lack of

standardisation of the diagnostic assays that were compared in this

meta‐analysis.68–71 Notably, the 22 analysed Ag‐RDTs only represent
a very small fraction of the Ag‐RDTs available worldwide.72 More-

over, it is important to recognise that respiratory sample is our unit

of analysis and not the patient. Additionally, caution is warranted in

interpretation given that successful cell culture detection is at best a

proxy for infectivity. This implies, that a negative cell culture result

does not necessarily exclude presence of infectious virus, as various

pre‐analytic and analytic factors might impair virus isolation and the
formation of a cytopathic effect in cell culture.71,73 Also, cell lines

susceptible to SARS‐CoV‐2 differ considerably in their propensity to

generate a clearly visible CPE and their productivity.74–76 To account

for the imperfect reference standard, a latent class analysis would

have been an option on the primary study level.77 Using the

maximum likelihood approach, latent class analysis allows to evaluate

DTA based on the results of three or more imperfect tests.78

Furthermore, some subgroup analyses were performed on small data

sets, due to limited number of studies within the subgroups.

Regarding the risk of bias, in most studies the Ag‐RDT or RT‐qPCR
results were not blinded when cell culture data were collected or

this information was not available. This should be seen in light of the

15 studies evaluating Ag‐RDT performance based on RT‐qPCR pos-

itive samples, which reflects the clinical practice using cell culture

only for RT‐qPCR positive samples. The number of these 15 studies

should also be viewed in comparison to the more elaborate design,

represented by comparative DTA studies, which are limited to only

three studies in our review.

Moreover, studies that only sampled RT‐qPCR positive speci-

mens may have introduced verification bias or spectrum effect.79 The

spectrum effect implies that the included patients in the study set

may not be representative for the spectrum of patients that will be

assessed by Ag‐RDT. Accounting for the possibility of a spectrum

effect, we performed separate meta‐analyses for comparative DTA

studies and studies based on RT‐qPCR positive samples. Further-

more, we contend that performance assessment of Ag‐RDT on RT‐
qPCR‐positive samples might be of particular interest with respect

to isolation management, for example, by conducting Ag‐RDT testing
after a positive RT‐qPCR test in order to exclude infectivity. Inter-

estingly, the results from both comparative studies and studies based

on RT‐qPCR positive samples demonstrated a sensitivity of 93%.

Overall, we believe that the evidence synthesis of Ag‐RDT per-

formance compared to cell culture contributes to a more realistic

assessment Ag‐RDT performance and the understanding of the

impact of Ag‐RDT‐based testing strategies in identifying presumptive
infectious symptomatic COVID‐19 patients.

5 | CONCLUSION

This systematic review is the first to offer a comprehensive assess-

ment of the diagnostic accuracy of antigen rapid diagnostic tests (Ag‐
RDTs) and reverse transcription quantitative polymerase chain re-

action (RT‐qPCR) in detecting infectious respiratory samples

compared to cell culture as the reference standard. Both Ag‐RDTs
and RT‐qPCR play vital roles in patient care and public health

management:

The summary sensitivity of Ag‐RDTs is higher with regard to cell
culture than reported sensitivity against RT‐qPCR as reference

standard.

Furthermore, they serve as valuable complements to molecular

methods like RT‐qPCR, providing quick results crucial for timely

patient care and public health decisions.

RT‐qPCR specificity is low and may erroneously categorise pa-

tients as infectious. However, it is a highly sensitive and reliable

diagnostic method that can be used for ruling out COVID‐19 cases. It
enables the quantification of viral load and can identify viral RNA

even in cases where infectious virus particles may no longer be

present, explaining its lack in specificity. The evolving nature of the

SARS‐CoV‐2 necessitates ongoing research and adaptation of Ag‐
RDT as well as PCR strategies to address the changing epidemio-

logical landscape and variants of concern.

Notwithstanding, a high degree of caution is warranted owing to

studies exhibiting a high risk of bias, the heterogeneity in results, and

the imperfect reference standard for infectivity.
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