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1  |  INTRODUC TION

Almost all humans worldwide are colonised by Malassezia spp., a 
genus of lipid-dependent Basidiomycota yeasts.1,2 While under some 
circumstances, they can cause infections in the form of pityriasis 
(tinea) versicolor (PV) or Malassezia folliculitis, for the most part, the 
role of their presence in the skin microbiome and for other skin condi-
tions such as seborrheic dermatitis remains to be elucidated.3–6

These yeasts can be observed as globose to ovoid, unipolar-
budding cells and as filaments of cylindrical cells. Brightfield micros-
copy of native preparations is the preferred diagnostic test in routine 
dermatological care.7 It is fast and causes almost no consumable 
costs. With PV, tape strips are especially suitable, as they recover 
a relatively large area of stratum corneum skin scales in intact spa-
tial arrangement, on top of which Malassezia grow, while potash lye 
maceration is of limited benefit, since there is no growth inside the 
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Abstract
Background: Malassezia yeasts are almost universally present on human skin world-
wide. While they can cause diseases such as pityriasis versicolor, their implication in 
skin homeostasis and pathophysiology of other dermatoses is still unclear. Their anal-
ysis using native microscopy of skin tape strips is operator dependent and requires 
skill, training and significant amounts of hands-on time.
Objectives and Methods: To standardise and improve the speed and quality of di-
agnosis of Malassezia in skin tape strip samples, we sought to create an artificial 
intelligence-based algorithm for this image classification task. Three algorithms, each 
using different internal architectures, were trained and validated on a manually an-
notated dataset of 1113 images from 22 samples.
Results: The Vision Transformer-based algorithm performed the best with a validation 
accuracy of 94%, sensitivity of 94.0% and specificity of 93.5%. Visualisations provid-
ing insight into the reasoning of the algorithm were presented and discussed.
Conclusion: Our image classifier achieved very good performance in the diagnosis of 
the presence of Malassezia yeasts in tape strip samples of human skin and can there-
fore improve the speed and quality of, and access to this diagnostic test. By expanding 
data sources and explainability, the algorithm could also provide teaching points for 
more novice operators in future.
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scales (as opposed to dermatophytes). The presence of either no or 
sporadic single yeast cells, as opposed to clusters of Malassezia, typ-
ically of both morphologies (‘spaghetti and meatballs’), is well suited 
for the discrimination between no or commensal colonisation, and 
pathogenic overgrowth.

However, the manual performance of microscopic analyses re-
quires significant hands-on time by an experienced examiner, and in-
terpretation is still operator-dependent, creating an unmet need for 
automated and objective analysis of these samples. In digital med-
icine, artificial intelligence (AI)-based algorithms can be trained to 
classify images with very good accuracy, sometimes even surpassing 
individual human performance.8–10 Usually, algorithms pre-trained 
on huge image datasets are fine-tuned using a specific, annotated 
(labelled) dataset for the intended purpose.9,11 Different algorithm 
classes with different internal architectures exist for image clas-
sification. Notable milestones for convolutional neural networks 
include ResNet, XCeption and EfficientNet,12–14 while vision trans-
formers (ViT) are a relatively new class of algorithms offering one of 
the best classification performances while also preserving time and 
computer resources when training.15

Therefore, in this study, we sought to create and validate an AI 
image classifier for detecting the presence of Malassezia yeast in na-
tive tape strip samples, comparing different algorithm architectures, 
to standardise and improve the speed and quality of Malassezia 
diagnostics, as well as to provide teaching input to more novice 
evaluators.

2  |  MATERIAL S AND METHODS

For routine diagnostics in suspected PV at our department, tape 
strips are obtained by repeatedly glueing adhesive tape strips on 
affected skin and pulling them off. The tape strips are then glued 
onto standard glass slides for native microscopy without any further 

preparation (Figure 1). For this study, 1113 field of views of 22 of 
such tape strip samples on glass slides were considered. The samples 
were from the torso (n = 18), face (n = 3) and upper arm (n = 1). No 
synthetic or other image sources were used. Images were captured 
using a Keyence BZ-X810 microscope (Keyence Corp, Osaka, Japan) 
in brightfield mode with a 40× NA 0.95 PlanAPO lens to create 
1920 × 1440 pixel 8-bit grayscale LZW compressed TIF images with 
the BZ-X800 Viewer software. Original TIFs were slightly sharpened 
(amount: 21, radius: 3, threshold: 6) in ACDsee Ultimate 8 (ACD 
Systems, Victoria, Canada) and manually labelled by an experienced 
mycologist to either positive or negative for Malassezia yeasts. This 
annotation is defined as the ground truth. The resulting dataset of 
539 negative and 574 positive images was randomly split image-wise 
to 80% training and 20% validation data.

Three algorithms utilising three different backbones were trained 
using this data with help of the TensorFlow Keras Framework v2.15.0 
(Python v3.10.13) using one nVidia RTX4090 24GB GPU. The hyper-
parameters for training were the same for all models: batch size 16, 
200 epochs, Adam optimizer with default parameters, binary cros-
sentropy as loss function. All backbones were initialised with their 
respective pre-trained weights. As a classification head, one fully 
connected layer of 256 neurons with ReLU activation, followed by 
one fully connected layer of 1 neuron with sigmoid activation, was 
used. Data augmentation was performed, consisting of a random 
crop from 500 × 500 pixels (load size) to the respective input sizes of 
the networks, random brightness (0.3× to 1.3× the original bright-
ness), random contrast (0.3× to 1.3× the original contrast), random 
flip (both axes). The software and more details about the algorithm 
are published at https://​github.​com/​ssita​ru/​malas​sezia​-​class​ifier​.

For Algorithm A, a vision transformer (ViT) backend with 12 lay-
ers and patch size 32 × 32 was used (ViTB/32 implemented by the 
vit_keras package v0.1.2). The image size was 384 × 384 pixels. For 
Algorithm B, an XCeption backend implemented by the Keras applica-
tion layer was used. The image size was 299 × 299 pixels. For Algorithm 

F I G U R E  1 Schematic study workflow.
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C, an EfficientNetB7 backend, implemented by the Keras application 
layer, with an image size of 224 × 224 pixels was used. After each 
training epoch, validation was performed. Checkpoints were saved, 
when a new maximum validation accuracy was observed. Additionally, 
for Algorithm A, the internal attention masks were obtained using the 
functions in vit_keras and postprocessed by linear colour mapping to 
the ‘jet’ colormap using opencv-python v4.10.0.84.

Finally, validation data (predicted labels, scores) were evaluated 
using R v4.4.0 and mltest v1.0.1 and precrec v0.14.4 libraries.

The workflow scheme was created with BioRe​nder.​com.
Since the Bavarian hospital law permits the use of routine pa-

tient data for research, informed consent and IRB approval were not 
necessary (BayKrG article 27 §4). Data were not transmitted to any 
third-party service or machine.

3  |  RESULTS

After training for 200 epochs, the algorithm performance on the vali-
dation dataset was evaluated: Algorithm C reached a peak accuracy 
of 82% with a sensitivity of 86.3% and a specificity of 87.0%, while 
Algorithm B reached a peak accuracy of 89.2% with a sensitivity of 
90.2% and a specificity of 89.8%. Algorithm A reached the best perfor-
mance with a peak validation accuracy of 94.1%, a sensitivity of 94.0%, 
specificity of 93.5%, and an area under the receiver operator charac-
teristic curve (AUC-ROC) of 0.99. Of note, all training accuracies were 
higher than the respective validation accuracies (data not shown).

Example images, their true label (ground truth) and the prediction 
of Algorithm A are shown in Figure 2. In Panel A, no hyphae or yeast 
cells can be seen, which has also been correctly identified by the 

algorithm. In Panel B, a falsely positively classified image, no hyphae 
or yeast cells can be observed. However, some linear structures, 
which probably correspond to thickened keratin lamellae are seen 
in the middle. These ‘mosaic hyphae’ are also the most common ar-
tefact leading to false positive results by human observers. In Panel 
C, some hyphae can be seen, for example at the bottom (arrow) and 
very few yeast cells are present in the middle of the image, which 
was annotated as showing potentially pathogenic accumulation of 
Malassezia. The algorithm did not correctly classify this image. The 
last image, Panel D, was correctly identified as positive by the algo-
rithm. Hyphae and some single round cells can be identified in the 
middle of the image (arrow).

To gain insights into the black box of the neural network of 
Algorithm A, we obtained the attention mask for an example 
image (Figure  3). There are clear hyphae throughout the image, 
as well as nests of yeast cells in the middle, top, and left lower 
corner of the picture. When comparing this to the overlayed at-
tention map, yellow being a higher attention score, it is remarkable 
that while almost all of the areas with hyphae have high scores, 
the areas with yeast cells are not fully covered, for example in the 
lower left corner.

4  |  DISCUSSION

In our study, we created and validated three AI classifier algorithms 
for the diagnosis of the presence of Malassezia yeast in human tape 
strip samples. When comparing their performance, the ViT-backed 
Algorithm A performed the best with an impressive validation ac-
curacy of 94.1% and a ROC-AUC of 0.99.

F I G U R E  2 Example images from the 
dataset and their labels. The figure shows 
four microscopical brightfield images 
of human skin tape strip specimens for 
the analysis of Malassezia spp. presence. 
Below each image the real (ground-truth) 
label, as well as the algorithm prediction is 
indicated. (A, D) were correctly classified, 
while (B, C) were not. The red arrows 
point to hyphae and yeast cells, which 
confirms the presence of Malassezia. The 
prediction was performed using the Vision 
Transformer-based Algorithm A.

http://biorender.com
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To detect the presence of Malassezia spp. in support of the diag-
nosis of PV and other skin diseases, direct microscopy is the method 
of choice. This is because other methods are either unreliable, like 
examination of patients with Wood's light or fungal culture on media 
supplemented with a long chain fatty acid source, or are not able 
to distinguish between commensal or pathogenic colonisation (poly-
merase chain reaction, sequencing). On the other hand, identifica-
tion on species level, that is rarely possible in native preparations, is 
also usually not necessary for diagnostic purposes.16

Interestingly, but not very surprisingly, each more modern 
algorithm class performed better than the last (in the order of 
EfficientNet, XCeption, ViT, which corresponds to the order in which 
they were published). This suggests that AI algorithm performance 
in real-world settings closely tracks the more theoretical perfor-
mance on publicly available datasets, such as ImageNet, which are 
usually used to train and compare them in a first instance.

When creating and using AI algorithms, explainability (XAI) is still 
a major challenge and could pose a barrier to widespread adoption, 
especially in higher-risk areas such as medicine.17 ViT algorithms use 
so-called attention mechanisms, special layers within the network, 
whose contents can relatively easily be visualised on top of the orig-
inal image.18 These attention maps are indicative of the weight of 
individual pixels for the final decision and can therefore help under-
stand how the algorithms arrive at their classification.18 Our analysis 
of the attention masks of Algorithm A suggest that the algorithm 
gives more weight to hyphae (‘spaghetti’) than cells (‘meatballs’) 
for the classification. This is of course in contrast to the usual diag-
nostic criteria of the presence of Malassezia yeasts, which require 
both hyphae and cells for positivity. However, in PV, the filamen-
tous form (hyphae) is often dominating,19 while mostly yeast cells 
are found in pustules of Malassezia folliculitis patients.7 In seborrheic 

dermatitis conflicting findings have been published.20,21 Since our 
positive samples were taken from PV patients, this deviation from 
textbook knowledge likely reflects the specifics of the particular dis-
ease investigated.

The limitations of our study include the limited number of included 
samples, from which pictures have been captured with one device. Only 
samples from patients with PV were included. To improve reliability, 
generalisability and objectiveness, a higher number of samples from 
multiple data sources and classified by several annotators should be in-
cluded in future. A higher number of training pictures from different dis-
eases with proven or suspected involvement of Malassezia would also 
enable a more nuanced classification (e.g. elevated number of yeasts, 
presence of Malassezia hyphae, fulminant spaghetti and meatball struc-
tures) and enable a disease specific validation. Similarly, images could be 
annotated for segmentation of pathogenic structures rather than simple 
classification, which also enables more detailed analysis (e.g. quantifica-
tion of yeasts and hyphae) and better explainability.

Also, our data only included one preparation method for this di-
agnostic test. Variations include skin scrapings instead of tape strips, 
additional keratolysis (e.g. with KOH), or staining of fungal compo-
nents (e.g. Gram stain, lactophenol cotton blue or even fluorescence 
staining with Calcofluor white), before microscopy, which were not 
present in our dataset and therefore, algorithm performance for 
these data types is unknown.

Still, our AI-based algorithm offers impressive performance for 
the diagnosis of the presence of Malassezia spp. in native human 
skin tape strip specimens, and therefore could not only improve the 
speed and quality of the diagnostic process while reducing labour 
costs, but also provide teaching input to more novice operators. It 
furthermore highlights the tremendous potential for AI assistance 
in visual pattern recognition in dermatological laboratory workflow, 
while simplifying the interpretation of basic diagnostic procedures 
like tape stripping, which hopefully will allow easier access to this 
method and consequently accelerated research into these common, 
but still elusive facultative pathogens and their meaning for common 
skin conditions as well as skin homeostasis.
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F I G U R E  3 Attention mask for an example image. Malassezia-
positive original image (ground truth), as used for input to Algorithm 
A, overlayed with an attention mask, where blue corresponds to 
lower attention scores (i.e., lower contribution of these pixels to 
the final decision), and yellow to higher attention scores (i.e., higher 
contribution of these pixels to the final decision). The correct final 
decision of the algorithm was positive.
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