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Abstract
We introduce orthogonal ring patterns consisting of pairs of concentric circles generalizing
circle patterns. We show that orthogonal ring patterns are governed by the same equation
as circle patterns. For every ring pattern there exists a one parameter family of patterns that
interpolates between a circle pattern and its dual. We construct ring patterns analogues of the
Doyle spiral, Erf and zα functions. We also derive a variational principle and compute ring
patterns based on Dirichlet and Neumann boundary conditions.
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MSC codes 52C26 · 39A12

1 Introduction

The theory of circle patterns can be seen as a discrete version of conformal maps. Schramm
[6] has studied orthogonal circle patterns on the Z

2-lattice, has proven their convergence
to conformal maps and constructed discrete analogs of some entire holomorphic functions.
Circle patterns are described by a variational principle [5], which is given in terms of volumes
of ideal hyperbolic polyhedra [4]. We introduce orthogonal ring patterns that are natural
generalizations of circle patterns. Our theory of orthogonal ring patterns has its origin in
discrete differential geometry of S-isothermic cmc surfaces [3]. Recently, orthogonal double
circle patterns (ring patterns) on the sphere have been used to construct discrete surfaces
S-cmc by Tellier et al. [7].

We start Sect. 2 with a definition of orthogonal ring patterns and their elementary proper-
ties. In particular we show that all rings have the same area. Our main Theorem 1 shows that
ring patterns are described by an equation for variables at the vertices. Furthermore, each
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ring pattern comes with a natural 1-parameter family of patterns. In Sect. 3 we show that as
the area of the rings goes to zero the ring patterns converge to orthogonal circle patterns. In
the following Sect. 4 we introduce ring patterns analogs of Doyle spirals, the Erf function,
zα for α ∈ (0, 2], and the logarithm. Finally, we introduce a variational principle to construct
ring patterns for given Dirichlet or Neumann boundary conditions. A remarkable fact that
we explore is that the orthogonal ring and circle patterns in R

2 are governed by the same
integrable equation. In a subsequent publication we plan to develop a theory of ring patterns
in a sphere and hyperbolic space. They are governed by equations in elliptic functions that
belong to the class of discrete integrable systems classified in [1].

2 Orthogonal ring patterns

In this section, we will introduce orthogonal ring patterns and show that the existence of such
the patterns is governed by the same equation as the existence of orthogonal circle patterns.

We will consider cell complex G defined by a subset of the quadrilaterals of the Z2 lattice
in R

2. The vertices V (G) of the complex G are indexed by (m, n) ∈ Z
2 and denoted by

vm,n . Each of its inner vertices has four neighbors, the vertices with less neighbors are called
boundary vertices. The vertices of the dual cell complex G∗ are identified with the 2-cells of
G, and the edges of G∗ correspond to the inner edges of G, i.e. to the edges shared by two
neighboring 2-cells. We assume that G and G∗ are simply connected. The oriented edges are
given by pairs of vertices and are either horizontal (vm,n, vm+1,n) or vertical (vm,n, vm,n+1).

A ring is a pair of two concentric circles in R
2 that form a ring (annulus). We identify

the vertices with the centers and denote the inner circle and its radius by small letters c and
r , and the outer circle and its radius by capital letters C and R. We assign an orientation to
the ring by allowing r to be negative: positive radius corresponds to counter-clockwise and
negative radius to clockwise orientation. The outer radius will always be positive. The area
of a ring is given by (R2 − r2)π . Subscripts are used to associate circles and radii to vertices
of the complex, e.g., cm,n is the inner circle associated with the vertex vm,n .

Definition 1 (Orthogonal ring patterns) An orthogonal ring pattern consists of rings asso-
ciated to the vertices of G satisfying the following properties:

(1) The rings associated to neighboring vertices vi and v j intersect orthogonally, i.e., the
outer circle Ci of the one vertex intersects the inner circle c j of the other vertex orthog-
onally and vice versa (see Fig. 1, left).

(2) In each square of G the inner circles cm,n and cm+1,n+1 and the outer circles Cm,n+1 and
Cm+1,n pass through one point. (Then orthogonality implies that the two inner and the
two outer circles touch in this point. see Fig. 1, center).

(3) For any ring (Cm,n, cm,n) the four touching points Cm,n ∩ Cm+1,n−1, cm,n ∩ cm+1,n+1,
Cm,n ∩ Cm−1,n+1 and cm,n ∩ cm−1,n−1 have the same orientation as cm,n , i.e., are in
counter-clockwise order if rm,n is positive and in clockwise order if rm,n is negative.

The orthogonal intersection of neighboring rings has the following implication for their
areas.

Lemma 1 Consider two rings with radii ri , Ri and r j , R j that intersect orthogonally. Then
the two rings have the same area.

Proof By Pythagoras’ Theorem the square of the distance d between the circle centers is
R2
i + r2j = d2 = r2i + R2

j since the inner and outer circles are intersecting orthogonally. This

equation is equivalent to the equality of the ring areas (R2
i − r2i )π = (R2

j − r2j )π . ��
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Fig. 1 Left: Two orthogonally intersecting rings. Center: The inner circles touch along one diagonal of a
quadrilateral and the outer circles along the other diagonal. The touching point coincides. Right: If the orien-
tation (i.e., signed radii) of the inner circles differ, then the centers lie on the same side of the common tangent

Fig. 2 The rings of an orthogonal ring pattern partition into two diagonal families of touching rings

The constant area allows us to use a single variable ρi to express the inner and the outer
radii of the rings in the following way: Consider an orthogonal ring pattern with constant ring
area A0 = π�20, that is, for the radii ri , Ri of all vertices vi ∈ V (G) we have R2

i − r2i = �20.
Then for each vertex we can choose a single variable ρi by setting

Ri = �0 cosh(ρi ) and ri = �0 sinh(ρi ). (1)

We will call those new variables ρ-radii. The orientation of the rings is encoded in the
sign of the ρ-radii. In Sect. 3 we consider the limit of orthogonal ring patterns as the area
goes to zero. The ρ-radii become the logarithmic radii of a Schramm type orthogonal circle
pattern [6] in the limit.

As in the case of orthogonal circle patterns there exist families of vertices Ve = {(m, n) ∈
Z
2 |m + n even} and Vo = {(m, n) ∈ Z

2 |m + n odd} such that all rings along the diagonals
touch (see Fig. 2).

Neighboring vertices of an orthogonal ring pattern define a cyclic quadrilaterals of the
following forms:
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Fig. 3 Cyclic quadrilaterals defined by two orthogonally intersecting circle rings depending on the signs of
the radii: (Left): ρi > 0, ρ j > 0, embedded quadrilateral, ϕi j > 0, (Center-Left): ρi > 0, ρ j < 0, non-
embedded quadrilateral, ϕi j > 0, (Center-Right): ρi < 0, ρ j > 0, non-embedded quadrilateral, ϕi j < 0,
(Right): ρi < 0, ρ j < 0, embedded quadrilateral, ϕi j < 0

The circles Ci , ci and C j , c j intersect in four points. Since the inner circle ci (resp. c j )
and the outer circle C j (resp. Ci ) intersect orthogonally the centers of the circles and the
intersection points ci ∩ C j and Ci ∩ c j lie on a circle. We introduce four possible circular
quadrilaterals, shown in Fig. 3, depending on the orientation of the rings (i.e. on the sings of
the ρ-radii). Note that, the angle at the vertex vi has the same sign as the corresponding ρi .

If ρi = 0 the inner circle ci shrinks to its center and the cyclic quadrilateral defined by
the rings (Ci , ci ) and (C j , c j ) degenerates to a triangle with a double vertex. The circle C j

passes through this point.
Given the ρ-radii we can compute the angles in the cyclic quadrilaterals. We will assume

that the arctan function maps to oriented angles in (−π
2 , π

2 ).

Lemma 2 Let vi and v j be two neighboring vertices in an orthogonal ring pattern with ρ-
radii ρi and ρ j . Then the angle at the vertex vi in the quadrilateral (triangle if ρi = 0)
defined by the two rings at vi and v j

is given by

ϕi j =

⎧
⎪⎨

⎪⎩

π − 2 arctan(eρi−ρ j ) if ρi > 0
π
2 − 2 arctan(e−ρ j ) if ρi = 0

−2 arctan(eρi−ρ j ) if ρi < 0.

(2)

Proof For ρi �= 0 the angle ϕi j is built by two angles of two rectangular triangles

ϕi j = arg

(

1 + i
R j

ri

)

+ arg

(

1 + i
r j
Ri

)

= arg

(

(1 + i
cosh ρ j

sinh ρi
)

(

1 + i
sinh ρ j

cosh ρi

))

.

Simple transformations of hyperbolic functions yield

ϕi j = arg

(

1 − sinh 2ρ j

sinh 2ρi
+ i

2 cosh(ρi + ρ j )

sinh 2ρi

)

= arg
(
sign (ρi )(sinh(ρi − ρ j ) cosh(ρi + ρ j ) + i cosh(ρi + ρ j ))

)

= arg
(
sign (ρi )(i + sinh(ρi − ρ j ))

)
.

Further, using

arg(1 + i sinh x) = arctan sinh x = 2 arctan ex − π

2
,

we arrive at the representations (2) for all ρ j .
The angle ϕi j is discontinuous at ρi = 0, and its value jumps by π :

ϕi j (ρi = 0+) = ϕi j (ρi = 0−) + π.
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For ρi = 0 the circle ci degenerates to a point located at the center of Ci , and the circle C j

passes through this point. The quadrilateral degenerates to a triangle, and the angle of this
triangle at the vertex vi is

ϕi j (ρi = 0) = arg(1 + i
r j
Ri

) = arg(1 + i sinh ρ j ) = π

2
− 2 arctan(e−ρ j ).

��
We define a cone angle at vi as the sum of the angles built by the ring centered at vi with

all its neighbors:

�i :=
∑

j :v j•−•vi

ϕi j .

For interior vertices of an orthogonal ring pattern we have

�i =

⎧
⎪⎨

⎪⎩

2π if ρi > 0

0 if ρi = 0

−2π if ρi < 0.

(3)

For a boundary vertex�i > 0 if it is positively oriented ρi > 0, and�i < 0 if it is negatively
oriented ρi < 0.

Theorem 1 (Orthogonal ring patterns) An orthogonal ring patternR with simply connected
G and G∗ is uniquely determined by its ρ-radii function ρ : V (G) → R.

A function ρ : V (G) → R describes the ρ-radii of an orthogonal ring pattern on G with
the boundary cone angles �i if and only if it satisfies:

∑

j :v j•−•vi

2 arctan(eρi−ρ j ) =

⎧
⎪⎨

⎪⎩

2π for interiour vertices

π Val(i) − �i for boundary vertex with ρi > 0

−�i for boundary vertex with ρi < 0.

(4)

Here the sum is taken over all neighboring vertices of vi , and Val(i) is the number of rings
neighboring to the boundary ring i .

Proof The first claim of the theorem follows from the fact that a pair of orthogonal rings is
determined by their ρ-radii uniquely up to Euclidean motion. Consequently laying the rings
we obtain a simply connected ring pattern.

Let vi ∈ V (G) be an interior vertex with four neighboring vertices v1, v2, v3, and v4. The
five rings form a flower in the pattern if and only if the angles ϕi j for j ∈ {1, 2, 3, 4} sum up
to 2π (or −2π , depending on the orientation).

By Lemma 2 for positive ρi the sum of the angles ϕi j around vi is 2π if

2π =
4∑

j=1

ϕi j =
4∑

j=1

π − 2 arctan(eρi−ρ j ).

This is equivalent to (4). For negative ρi the other equation of Lemma 2 also implies (4).
Hence we can assemble the four quadrilaterals and rings around the vertex vi to form an
orthogonal ring pattern. As the complex G is simply connected the local proof suffices to
prove that the entire complex G can be assembled to build an orthogonal ring pattern.

The ρ-radii satisfy the same equation (4) for the cases ρi > 0 and ρi < 0. This equation is
also satisfied for ρi = 0. This can be seen as the limit ρi → 0 since the right hand side of (4)
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is a continuous function of ρi . Alternatively, when the quadrilaterals degenerate to triangles
the angles of the triangles at the vertex vi are given by (2) in the case ρi = 0. Summing up
around vi and using �i = 0 we arrive at the same Eq. (4).

Formulas for the cone angles at the boundary rings follow directly from (2). ��

The angle condition at the vertices of Thm. 1 only depends on the differences of the
logarithmic radii. So without violating Eq. (4), we can apply a shift ρ → ρδ = ρ + δ by
δ ∈ R to the ρ-variables.

Corollary 1 Consider an orthogonal ring patternR of area π for given ρ-radii ρi . Then the
ρ-radii ρδ

i = ρi +δ define a one parameter family of orthogonal ring patternsRδ with radii:

r δ
i = sinh(ρi + δ)

Rδ
i = cosh(ρi + δ)

and area Aδ = π .

3 Relation to orthogonal circle patterns

In this section we give a detailed description of the relation of orthogonal ring patterns and
orthogonal circle patterns. It turns out that orthogonal circle patterns can be considered as a
special case of ring patterns with constant ring area A0 = 0.

To formulate the limit we need to review some properties of orthogonal circle patterns.
Two orthogonally intersecting circles in an orthogonal circle pattern create a cyclic right
angled kite (see Fig. 5 left and right). The angle ϕ◦

i j at a vertex vi in a kite on the edge (vi , v j )

of an orthogonal circle pattern with radii r◦
i = eρ

i is given by:

ϕ◦
i j = 2 arctan

(
r◦
j

r◦
i

)

= 2 arctan(eρ j−ρi )

= π − 2 arctan(eρi−ρ j )

(5)

In case of circle patterns the ρ-radii are called logarithmic radii. Logarithmic radii of an
immersed orthogonal circle pattern are governed by the same equation (cf. [5, 6]) as the
ρ-radii of ring patterns (see Thm. 1).

Furthermore, for each orthogonal circle pattern C with logarithmic radii ρi there exists a
dual pattern C∗ with radii e−ρi . The angles of the dual pattern are given by

(ϕ◦
i j )

∗ = 2 arctan

(
r∗
j

r∗
i

)

= 2 arctan(e−ρ j+ρi ) = π − ϕ◦
i j .

Note that the angles at interior vertices still sum up to 2π , but the angles at the boundary
vertices change as shown in Fig. 4.

Now let us go back to the one parameter family Rδ of ring patterns defined in Cor. 1. To
avoid that the radii go to infinity as δ → ±∞ we scale the entire pattern by 2e−|δ|. So the
radii of the one parameter family of ring patterns are:

r δ
m,n = 2e−|δ| sinh(ρm,n + δ) and Rδ

m,n = 2e−|δ| cosh(ρm,n + δ).
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Fig. 4 An orthogonal circle pattern and its dual. The boundary angles the dual pattern are 2π − ϕi j resp.
π − ϕi j depending on whether the degree of the boundary vertex is 3 or 2

In the limit δ → ±∞ the areas of the rings tend to zero and for the radii we have:

lim
δ→±∞ r δ

i = lim
δ→±∞ 2e−|δ| 1

2
(eρi+δ − e−ρi−δ) = ±e±ρi ,

lim
δ→±∞ Rδ

i = lim
δ→±∞ 2e−|δ| 1

2
(eρi+δ + e−ρi−δ) = e±ρi .

Remark 3.0. (Limits on compact subsets). If the ring pattern R is infinite we consider
the limits δ → ±∞ of the family Rδ on any compact subset G0 ⊂ G satisfying the same
conditions as G, i.e. G0 and G∗

0 are simply connected.
Limit δ → +∞. For δ > −minvi∈G0 ρi we have ρδ

i = ρi + δ > 0 for all vi ∈ G0.
So considering the limit as δ → ∞ all ρδ

i will be positive and the angles of the circle
pattern C (Eq. 5) are exactly those of the ring patternRδ given in Lemma 2. Furthermore, for
δ → ∞, we obtain rings with area 0 since the outer and inner radii both converge to eρi . The
neighboring circles intersect orthogonally because inner and outer circles of the orthogonal
ring pattern are intersecting orthogonally in the entire one parameter family. The limit circles
form a Schramm type orthogonal circle pattern.

Limit δ → −∞. For δ < −maxvi∈G0 ρi all ρδ
i = ρi + δ < 0. By Lemma 2 the angles

of the ring pattern for negative ρi are given by

ϕi j = −2 arctan(eρi−ρ j ) = −π + arctan(e(−ρi )−(−ρ j ))

and correspond to the angles of the dual pattern C∗ with opposite orientation. As Eq. (4) is
satisfied for all δ, we obtain the dual orthogonal circle pattern C∗ (with opposite orientation)
in the limit.

Corollary 2 LetRδ be a one parameter family of orthogonal ring patterns with ρδ
i = ρi + δ

for ρi ∈ R as described in Cor. 1. Then for δ → +∞ we obtain an orthogonal circle
pattern C with logarithmic radii ρi and for δ → −∞ we obtain the dual circle pattern C∗
with logarithmic radii −ρi .

Here the limits are understood in the sense of Remark 3.0.
For a better understanding of the deformation, the one parameter family of cyclic quadri-

laterals associated to a single edge (vi , v j ) is shown in Fig. 5: Assume that ρi and ρ j are both
positive and ρi < ρ j . Then the deformation starts with an embedded cyclic quadrilateral
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Fig. 5 Deformation of a cyclic quadrilateral defined by two orthogonally intersecting rings. The bottom left
and bottom right show the limits of the ring pattern as the area of the ring goes to zero. Positive radii are
indicated by orange, negative radii (i.e., negative ρ) are indicated by pink circles. The angle associated with
the left vertex is shown in green. (Color figure online)

(center right). For δ → ∞ we obtain two orthogonally intersecting circles with radii eρi and
eρ j that form a kite (bottom right). When δ ↘ −ρi one of the edges at vi shrinks to a point
and reverses its direction as ρi + δ changes its sign from + to −. If −ρ j < δ < −ρi then
r δ
i < 0 and we obtain a non-embedded quadrilateral (top center). Again as δ ↘ −ρ j one
edge at v j shrinks to a point and changes its direction as ρ j + δ changes sign (center left)
and we obtain an embedded quadrilateral with negative orientation. For δ → −∞ the areas
of the rings go to zero and we obtain two orthogonally intersecting circles with radii e−ρi

and e−ρ j (bottom left).

4 Doyle spiral, Erf, and z˛ ring patterns

In this section we will have a look at some known orthogonal circle patterns and consider
their ring pattern analogs and deformations.

4.1 Doyle spirals

Doyle spirals for the square lattice have been constructed by Schramm [6]. For x + iy ∈
C \ {0} Schramm defines radii by rm,n = |e(x+iy)(m+in)|. Taking the logarithm we obtain the
logarithmic radii ρm,n = mx −ny. We will take these radii as a definition of the Doyle spiral
ring pattern.

Proposition 1 (Doyle spiral ring pattern) Let x + iy ∈ C \ {0} be a complex number. The
Doyle spiral ring pattern is given by the ρ-radii ρm,n = mx − ny for (m, n) ∈ Z

2.
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Let us consider the generic case x
y /∈ Q when the ρ-radii do not vanish. By Lemma 2 the

angles of the cyclic quadrilaterals at the edges are given by

ϕ(m,n),(m+1,n) =
{

π − 2 arctan(ex ) if ρm,n > 0

−2 arctan(ex ) if ρm,n < 0
and

ϕ(m,n),(m,n+1) =
{

π − 2 arctan(e−y) if ρm,n > 0

−2 arctan(e−y) if ρm,n < 0

Looking closer at the signs of the ρ-radii we observe that

ρm,n > 0 ⇔ mx > ny and ρm,n < 0 ⇔ mx < ny.

So the signs of the ρ-radii change across the line {(m, n) ∈ Z
2 |mx = ny} and hence

does the orientation of the flowers. If we restrict to the parts {(m, n) ∈ Z
2 |mx > ny}

(resp. {(m, n) ∈ Z
2 |mx < ny}) we see that the angles are constant for all horizontal edges

(m, n)(m + 1, n) and all vertical edges (m, n)(m, n + 1). Thus we can define a Doyle spiral
ring pattern by two angles α and β, one for the horizontal and one for the vertical direction.
This is the characteristic property for the Doyle spiral circle pattern.

Consider the one parameter familyRδ of orthogonal ring patterns as described by Cor. 1.
The angles along the horizontal and vertical edges stay constant in the two halfspaces. As
in the general case discussed in the previous section, all ρ’s become positive for δ → +∞
(resp. negative for δ → −∞), see Remark 3.0, and we obtain a Doyle spiral and its dual as
constructed by Schramm (see Fig. 6).

4.2 Erf pattern

For analogs to Schramm’s
√
i-Erf pattern let us have a look at the corresponding radius

function given in [6] rm,n = eamn for (m, n) ∈ Z
2 and a ∈ R, a > 0. Taking the logarithm

we obtain ρm,n = amn. As in case of the Doyle spiral we will use this function to define the
corresponding ring patterns.

Proposition 2 (Erf ring pattern) Let a ∈ R, a > 0. The Erf ring pattern is given by the ρ-radii
ρm,n = amn for (m, n) ∈ Z

2.

The angles in the pattern are given by

ϕ(m,n),(m+1,n) =
{

π − 2 arctan(e−an) if ρm,n > 0

−2 arctan(e−an) if ρm,n < 0
and

ϕ(m,n),(m,n+1) =
{

π − 2 arctan(e−am) if ρm,n > 0

−2 arctan(e−am) if ρm,n < 0

As ρm,n = amn the ρ-radii change signs at the coordinate axes. In the four quadrants, the
angles along the horizontal and the vertical parameter lines are constant. All the rings on the
coordinate axes are congruent: the radii of their outer circles are equal to R = cosh 0 = 1,
and their inner circles degenerate to their centers.

If we consider the one parameter family of ring patterns defined in Cor. 1 we see that in
the limit δ → +∞ we obtain the

√
i-SG Erf circle patterns constructed by Schramm. For

δ → −∞ we obtain a pattern with ρ∗
m,n = −amn. This is the same pattern as for a since

ρ∗
m,n = ρ−m,n (Fig. 7).
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Fig. 6 Deformation of an orthogonal circle pattern (top left) into its dual (bottom right) through a one parameter
family of ring patterns (top right and bottom left). We see how the orientation of the quadrilaterals flips during
the deformation. The innermost vertex in the top left circle patterns becomes the outermost vertex in the bottom
right circle pattern

Fig. 7 An Erf ring pattern (left) and the corresponding limit circle pattern
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4.3 z˛ and logarithm patterns

In [2] the authors defined an orthogonal circle pattern C(zα) as a discretization of the complex
map z �→ zα for α ∈ (0, 2). The radius function of the circle pattern is given by the following
identities (cf. [2, Thm. 3, equation (10, 11)]) on a subset of Z2 given by V = {(m, n) |m ≥
|n|}:

rm,nrm+1,n(−2n − α) + rm+1,nrm+1,n+1(2(m + 1) − α)

+ rm+1,n+1rm,n+1(2(n + 1) − α) + rm,n+1rm,n(−2m − α) = 0

for V ∪ {(−m,m − 1) |m ∈ N} and
(m + n)(r2m,n − rm+1,nrm,n−1)(rm,n+1 + rm+1,n)

+(n − m)(r2m,n − rm,n+1rm+1,n)(rm+1,n + rm,n−1) = 0

for interior vertices V \{(±m,m) |m ∈ N} with initial condition r0,0 = 1 and r1,0 = r0,1 =
tan απ

4 .
It is known that the dual pattern of zα is given by z2−α , e.g., the dual circle pattern of

C(z2/3) is C(z4/3) = (C(z2/3))∗ shown in Fig. 8 (top left and bottom right). Based on the
logarithmic radii of these patterns we construct a one parameter family of ring patterns that
interpolates between the two patterns.

An orthogonal circle pattern for z2 can be defined by considering a special limit forα → 2.
The radii of the z2 pattern are defined in [2, Sect. 5]. The dual of z2 is the logarithmmap log z.
In each of the corresponding orthogonal circle patterns, one of the circles degenerates. In case
of z2 one of the circles has radius 0, i.e., the circle degenerates to a point and the logarithmic
radius is negative infinity. Consequently, one of the circles in the log z pattern has radius
infinity, i.e., the circle degenerates to a line and the logarithmic radius is positive infinity. We
illustrate the one parameter deformation of z2 to log(z) in Fig. 9.

5 Variational description

The construction of a ring pattern is very similar to the construction of an orthogonal circle
pattern since the equations at the interior vertices are the same (see Thm. 1). For (not nec-
essarily orthogonal) circle patterns there exists a convex variational principle [5]. For planar
orthogonal circle patterns the functional is given in terms of the logarithmic radii by:

S(ρ) =
∑

vi•−•v j

(
Im Li2(ie

ρ j−ρi ) + Im Li2(ie
ρi−ρ j ) − π

2
(ρi + ρ j )

)
+

∑

vi


iρi ,

where the first sum is taken over all edges and the second sum over all vertices of G, Li2 is
the dilogarithm function, Im Li2(iex ) = ∫ x

−∞ arctan eudu.
This functional is invariant with respect to the shift

ρi → ρi + h, ∀i (6)

if and only if
∑

i


i = π |E(G)|, (7)
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Fig. 8 One parameter family of orthogonal ring patterns interpolating between the orthogonal circle pattern
for z �→ z2/3 (top left) and the dual pattern for z4/3 (bottom right)

123
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Fig. 9 Orthogonal ring patterns interpolating between the circle patterns for z2 and its dual pattern for log z

where |E(G)| is the number of edges of G. The critical points are given by

∂S

∂ρi
= 
i +

∑

j :v j•−•vi

(
2 arctan(eρi−ρ j ) − π

) = 0. (8)
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Fig. 10 An orthogonal ring pattern computed using the variational principle with Neumann boundary condi-
tions. The prescribed angles are π for the boundary vertices of degree 2. The shape is governed by the four
angles, with the sum 2π , prescribed for the four corner boundary vertices of degree 1

The second derivative

D2S =
∑

vi•−•v j

1

cosh(ρi − ρ j )
(dρi − dρ j )

2

is positive for all variations different from (6).
Denote by VB the set of boundary vertices of G, i.e. the vertices with less then four

neighbors. For simplicity consider ring patternswith positively oriented rings for all boundary
vertices, i.e. on VB the function ρ takes positive values. Equations (8) with


i =
{
2π for interior vertices

�i for (positively oriented) boundary vertices.
(9)

coincide with the orthogonal ring patterns equations (4).

Proposition 3 Orthogonal ring patterns can be obtained as solutions of the following bound-
ary valued problems:

• (Dirichlet boundary conditions) For any choice of prescribed radii ρ : VB → R+ of
boundary rings there exists a unique orthogonal ring pattern R.

• (Neumann boundary conditions) For any choice of boundary cone angles� : VB → R+
satisfying (7) there exists a one parameter family of orthogonal ring patterns Rh. The
parameter h is given by the shift (6). There exists h0 such that for all h > h0 all boundary
rings of the ring pattern Rh are positively oriented.

Proof The existence and uniqueness of the boundary valued problems for orthogonal ring
patterns can be treated exactly in the same way as for circle patterns. The later problems in
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a more general case were investigated in [5]. The existence and uniqueness for ring patterns
follow from the convexity of the functional S(ρ), for all variations different from (6). This
also gives a way to compute the ring patterns by minimizing the functional. For the Neumann
boundary valued problem one varies ρ’s at all vertices V (G). The condition (7) implies that
the solutions possess the symmetry group (6) described in Sect. 3. ��

An example of solution of a Neumann boundary value problem is presented in Fig. 10).
Here for all interior vertices
 = 2π , for all boundary and not corner vertices
i = �i = π .
Four angles 
i = �i at corner vertices of the quadrilateral should sum up to 2π . One can
easily check that the last condition implies (7).
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