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ABSTRACT: The excited-state dynamics of organic molecules, molecular
aggregates, and donor−acceptor clusters is typically governed by the interplay of
electronic excitations and, due to their flexibility and soft bonding, by the
interaction with their vibrations. This interaction in these systems can be
characterized by a few relevant electronic states that are coupled to numerous
vibrational normal modes, encompassing a vast configurational space of the
molecules. The full quantum simulation of these type of systems has been long
dominated by the multiconfiguration time-dependent Hartree (MCTDH)
approach and its multilayer variants, which are considered the gold standard in
the presence of electron-vibration coupling with a large number of modes. Recently, also the matrix product state ansatz (MPS) with
appropriate time-evolution schemes has been applied to these types of Hamiltonians. In this article, we provide a numerical
comparison of excited-state dynamics between the MCTDH and MPS approaches for two electron-vibration coupled systems.
Notably, we consider two models for exciton dissociation at a P3HT:PCBM heterojunction, comprising two electronic states and
100 vibrational modes, and 26 electronic states and 113 vibrational modes, respectively. While both methods agree very well for the
first model, more pronounced deviations are found for the second model. We trace back the divergence between the methods to the
different way entanglement is treated.

1. INTRODUCTION
Investigations of interacting quantum systems typically involve
high-dimensional mathematical representations. As a matter of
fact, such interactions are present everywhere from single
molecules to solid state materials and this so-called “curse of
dimensionality” is a major challenge for describing the
dynamical properties of such materials. To overcome this
challenge in the context of electron-vibration coupled
molecular systems, the multiconfiguration time-dependent
Hartree (MCTDH) method1,2 and its multilayer variants
(ML-MCTDH)3−5 have been developed as pivotal advance-
ments, exploiting low-rank tensor approximations. Specifically,
ML-MCTDH allows addressing this challenge by systemati-
cally decomposing the full product space of electronic states
and vibrational modes into a tree-like, tensorial structure, a tree
tensor network. Such decomposition, together with a focus
only on the relevant states in an otherwise exponentially
scaling Hilbert space, makes the problem tractable and
enhances computational efficiency.

This effectiveness of MCTDH and ML-MCTDH have
quickly set a new standard in the field, particularly for the
description of nonadiabatic effects in the photophysics of
organic molecular species in the gas phase, which typically

exhibit ultrafast internal conversion induced by conical
intersections.6,7 A prototypical case is the exploration of
pyrazine’s unusual photophysics, which had gathered signifi-
cant attention among theoretical chemists6,8−14 because of its
interesting S1 − S2 conical intersection in the near ultraviolet
(UV) region. The involved states are nonradiatively coupled
through a conical intersection,15 which leads to an
unexpectedly broad absorption band, due to dynamical mixing
of both states, involving vibrational modes. Early theoretical
investigations,8−10 including few relevant modes, could
qualitatively reproduce the absorption spectrum confirming
the origin of the broad band. Moreover, it was the work of refs
13,16,17 taking into account all 24 vibrational modes and
second order nonlinearities of the potential energy surface that
cleared up any doubts about the origin of the S1 − S2
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absorption band and contributed to positioning these method-
ologies as reliable tools in modern quantum chemistry. Today’s
state-of-the-art calculations based on ML-MCTDH involve up
to hundreds of electronic states and vibrational modes.

Largely in parallel to these developments, the theoretical
condensed matter community has developed the matrix
product state (MPS) approach, another tensor network
method, to address similar high-dimensional challenges in
quantum physics. In order to represent quantum states, the
MPS form has an underlying one-dimensional tensor network
structure,18 which has been shown to be particularly well suited
to represent the ground state of gapped one-dimensional
systems.19 While its origins lie in the ground-state search of
paradigmatic one-dimensional model systems using the
density-matrix renormalization group method (DMRG),20,21

subsequent extensions of the MPS methodology, pioneered by
refs 22−24, have removed these initial limitations and enabled
the computation of time evolution in this framework.
Subsequently, the representation of thermal states was
elaborated,25 further extending the capabilities of MPS-based
methods.

The MPS methodology has also been applied to problems
from quantum chemistry. Examples include the use of the
DMRG algorithm for ground-state search of molecules,26,27 the
calculation of vibrational eigenstates of molecules,28 or the
computation of nonadiabatic dynamics29−31 of coupled
electron-vibrational systems. This contributed to the mutual
awareness of different methods across different communities
and naturally raises the question whether the MPS and ML-
MCTDH methodologies can be considered essentially equal or
even fully equivalent for computing the nonadiabatic dynamics,
or if differences can be observed for typical model systems. For
the pyrazine-based two-level model with up to 24 modes13,32

and the perylene bisimide trimer model33−37 with four modes
per molecule, both methods agree. While the agreement for
these models is encouraging, these comparisons are still rather
limited in terms of the number of involved modes and
electronic states. Much less is known about how both
frameworks compare for larger models representing spatially
extended systems, both for a larger number of electronic states
and for a larger number of modes that are typically found in
more application-relevant situations such as interfaces in
organic photovoltaics (OPV). This article aims to contribute
to the knowledge in this direction, by providing a numerical
comparison between the standard formulations of the ML-
MCTDH and the MPS approach for two models that fall into
this class.

We find that MPS and ML-MCTDH treat the first, less
strongly entangled model with only minor differences, whereas
for the more complex model, significant quantitative differ-
ences emerge after some time. Notwithstanding, a consistent
qualitative physical picture is obtained by both methods.
Furthermore, in both models, deviations in the entanglement
entropy suggest differences in how entanglement between the
electronic and vibrational degrees of freedom is treated in MPS
and ML-MCTDH, possibly due to the different network
structure.

2. MODELS AND METHODS
2.1. Model. While the radiationless transitions induced by

conical intersections remain an interesting topic even for
isolated molecular species, there are other, technologically
more important cases where the same type of physics is

important. One of these relevant examples is the charge
separation process at organic donor−acceptor interfaces in
bulk heterojunctions, important for the power conversion
efficiency in organic solar cells.38 There, a tightly bound
Frenkel exciton, located at the donor molecule at the interface,
is separated into a less strongly bound charge-transfer exciton,
consisting of a hole and electron localized on either donor and
acceptor molecules. This process is not only influenced by
electronic states but also by the vibrational modes of the
involved molecules.39,40 In the following, we are interested in
the exciton dynamics at the interface of an n-oligothiophene
(OTn) donor�C60 fullerene acceptor system, which can be
regarded as a simplified structure model of the prototypical
bulk heterojunction material blend poly-3-hexylthiophene
(P3HT) and phenyl-C61 butyric acid methyl ester (PCBM).41

In order to describe the interplay of electronic and
vibrational states at the interface affecting the charge
separation process, we restrict ourselves to a linear-vibronic
coupling model6,15 of the general form
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where, tij are the transfer integrals, and ϵi denote the on-site
energies of the electronic states |i⟩ respectively |j⟩.
Furthermore, b̂λ

† respectively b̂λ denote the creation and
annihilation operator of vibrational mode λ with energy
quantum ωλ and gijλ the linear coupling constant.
2.1.1. Model A. A minimal model to describe the charge

separation process only involves one donor and one acceptor
site and therefore only one local-exciton state (LE) and one
charge-transfer state (CS), but a large number of modes. Here,
we consider the OT4 − C60 system as described and
parametrized in ref 42 and additionally studied, in different
variations, in the refs 43−45. Let us therefore only briefly
summarize the main points of this model, the Hamiltonian is
specified in the Supporting Information (Section S2). This
model involves two electronic states |LE⟩ and |CS⟩. These are
electronically coupled by a transfer integral tLE,CS = 130 meV
and the CS state lies 79 meV below the LE state (ϵCS = −79
meV). This electronic system is coupled to a single
intermolecular mode (ωR = 10 meV), which dynamically
couples the two electronic states (gLE,CS

R = −10/ 2 meV) and,
at the same time, tunes the energy of the CS state (gCS,CS

R =
30/ 2 meV) upon displacement (see ref 42 for discussion).
Furthermore, there are 99 discretized tuning modes, labeled by
μ, which modulate the CS state energy gCS,CS

μ ≠ 0. They are
generated by effective mode reduction from the full normal-
mode space43 and their specific values are taken from ref 44.
We illustrate the interaction between the electronic states and
the modes in Figure 1(a) and plot the tuning mode energies
and their respective coupling strength in Figure 1(b). For
reproducibility, the data underlying this plot can be found in
Table S1 and Section S2 of the Supporting Information. This
model, which includes 100 nontrivially coupled vibrational
modes, will serve as our initial testing ground for comparing
the MPS and ML-MCTDH methodologies.
2.1.2. Model B. While model A is able to describe the initial

charge separation at the donor−acceptor interface, it does not
account for the long-range charge separation under the
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influence of an effective Coulomb barrier in organic materials.
Due to this long-range interaction, it is usually not only the
interfacial moieties that influence the charge separation
process, but a manifold of other excitonic and charge-separated
states that are present. To account for this, we next consider an
electronically extended system, which is illustrated in Figure 2.
In this model not only one OT molecule is present next to the
C60 domain but an array of 13, cofacially stacked
oligothiophenes, mimicking one direction of a regioregular
OT-rich phase at the donor−acceptor interface. This model
has also been used in refs 46−48, where different effective
Coulomb barriers were constructed, depending on the degree
of electron delocalization across the fullerene domain, which is
here represented as an effective coarse-grained acceptor site. A
generalized electron−hole representation is used, where we
account for 13 local-exciton states (LE1, ..., LE13), in which
hole and electron are localized at the same OT donor site, and
13 charge-separated states (CS1, ..., CS13), where the electron
is localized at the acceptor site and the hole is localized at the
respective OT site. Thus, this model contains 26 electronic
states in total. In this representation, the electronic part of the
Hamiltonian is tridiagonal, see the explicit form of the
Hamiltonian given in the Supporting Information (S3). The
number of normal modes of the C60 and the OT fragments is
reduced by an effective-mode procedure,46 such that 8 effective

modes for the fullerene acceptor site and 8 modes for each of
the OT molecules are taken into account. Additionally, the
intermolecular mode, describing the relative motion of the C60
and the first OT molecule (cf. model A) is taken into account.
This amounts to 113 vibrational modes in total. The LE states
couple naturally only to the modes of the OT molecule, where
they are localized. In contrast, the CSn states couple to the C60
modes and to the modes at the nth OT molecule, as the
electron is located at C60 and the hole is at the nth OT
molecule. The intermolecular mode couples only to the LE1
state and the CS1 state. This coupling is also illustrated in
Figure 2. There the electronic matrix elements can be found,
whereas the CSn on-site energies, the coarse-grained mode
energies, and their coupling constants are summarized in the
Supporting Information (Section S3, and Tables S2 and S3).
2.1.3. Initial State. In the following, we are interested in the

Hamiltonian dynamics of a given initial state |ψ0⟩, which we
assume to be a product state between the electronic and
vibrational degrees of freedom, in accordance with the
Franck−Condon principle. We further assume that the initial
state is located right at the interface. This means that the initial
state is given by

= ···0 00 R (2)

where, |0λ⟩ denotes the ground state of the harmonic oscillator
labeled by λ, |ϕ⟩ = |LE⟩ for model A, and |ϕ⟩ = |LE1⟩ for model
B.

2.2. Tensor Network Methods for Nonadiabatic
Dynamics. Both the MPS and ML-MCTDH methods fall
into the general class of tensor network methods49 which rely
on a suitable ansatz for multidimensional wave functions in
conjunction with the time-dependent variational principle
(TDVP).50−54 The TDVP yields a projected version of the
Schrödinger equation (SE),

=i t H t( ) ( )t (3)

where, denotes the projector onto the tangent space, i.e.,
the linear space spanned by the permitted wave function
variations.50 For a wave function ansatz comprising multiple
electronic states and vibrational modes, the following general
sum-of-products form

Figure 1. (a) Visualization of the electronic part and coupling
structure of model A. Lines indicate the respective electronic on-site
energies, whereas the arches denote the transfer integrals tij. The
wiggly lines indicate the coupling structure of the modes. All energies
in meV. (b) Coupling strength gCS,CS

μ plotted against mode frequency
ωμ for the 99 tuning modes used in the calculation.

Figure 2. Visualization of the electronic and vibrational coupling structure of model B. Lines indicate the on-site energies of the respective
electronic states and arrows denote the transfer integrals between the electronic states. The on-site energies of the CSn states constitute an effective
Coulomb barrier. The fullerene particle represents an effective coarse-grained acceptor site.46 Wiggly lines indicate vibrational coupling between the
modes of the fragment (or the R-mode) and the electronic states. All energies are given in meV.
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with time-independent basis functions |χldκ
⟩ is reduced to a low-

rank tensor approximation by recasting the coefficient tensor
Yi,ld1,···,ldΛ

in a suitable tensor format. For example, the so-called
Tucker format underlies the MCTDH method,55
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where, Ai,m d1,···,m dΛ
is the core tensor, Ul dκm dκ

are transformation
matrices, and Mκ ≪ Lκ with κ ∈ {1, ···, Λ} such that a compact
representation is obtained. A generalized, hierarchical Tucker
format corresponds to the ML-MCTDH method4,5,56,57 as
detailed below. Matrix product states entail yet another
reduction of the above core tensor, which we discuss in
more detail in the upcoming subsection.

Hierarchical tensor networks of the ML-MCTDH type are
also termed tree tensor networks.58,59 ML-MCTDH schemes
then correspond to balanced trees of minimal height, while
MPS schemes correspond to sparse trees of maximal height.
The latter is alternatively termed tensor trains. Obviously these
construction schemes exhibit different approaches toward
accommodating temporal and spatial correlations, and,
hence, they may exhibit different convergence properties.59,60

The different network structures underlying the ML-MCTDH
and MPS approach are schematically depicted in Figure 3. In
the following, we provide further details on the MPS and ML-
MCTDH methods and their implementation.
2.2.1. Matrix Product States for Nonadiabatic Dynamics.

We first discuss the nonadiabatic dynamics of an initial state
|ψ0⟩ in the MPS representation of states in the Hilbert space of
the Hamiltonian eq 1 with the ansatz

= · · · | | ···
···

A A A i n n...
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N
n

, , ,
1 2 1
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1
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Here, i labels the electronic basis states, whereas nλ indicates
the nth eigenstate of the harmonic oscillator λ (1 ≤ λ ≤ Λ) and
Ak

μ are matrices of appropriate size for the matrix multiplication
to be well-defined. The index k ∈ {1, ···, N} labels the
respective factor space, whereas μ ∈ {i, n1, ···, nΛ} is associated
with the basis state index in the corresponding factor space.
The ordering chosen in eq 6, setting the electronic factor space
at the left end of the MPS chain, is fixed throughout this study.
The arrangement of eq 6 is useful when considering a limited
number of relevant exciton states. In cases where the full

electronic Fock space is relevant, e.g., for multiexciton
processes, a different arrangement of the individual factor
spaces might be more appropriate.36 Alternatively, so-called
“multi-set” representations, where state-specific nuclear wave
functions are introduced, are conceivable options.61,62 The
remaining freedom of ordering the nuclear degrees of freedom
is discussed specifically for model A and model B.

The size of the matrices Ak
μ determines the quality of

approximation of the state. It is called bond dimension or link
dimension D and can in principle be increased to obtain the
exact solution. In any practical calculation, however, one has to
choose a finite, but sufficiently large bond dimension to obtain
converged results. Additionally to the approximation of using
only a limited bond dimension in any numerical implementa-
tion, the used basis states for the bosonic degrees of freedom
have to be truncated, like in ML-MCTDH.

Apart from an MPS to represent the state in the Hilbert
space, a representation of operators�so-called matrix product
operator representation (MPO)�of the Hamiltonian eq 1 is
required. Thus, extending the MPS representation to MPOs,
one can cast the Hamiltonian in the form

= · · ···
···
···

H O O i j n l( ) ... ( )
i n
j l

j
i

N m
n

, ,
, ,
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(7)

where (Ok)ν
μ are matrices of appropriate size, with the notation

introduced before. Naively, this MPO can be constructed by
summing up individual product operator contributions.
However, this procedure naturally increases the bond
dimension of the MPO with every term added with the sum
of the individual bond dimensions.18 To circumvent this, we
perform subsequent compressions63,64 of the individual terms
to obtain the respective MPO representation.

The initial product state |ψ0⟩ of the model, by construction,
admits an exact MPS form of bond dimension one. The time
evolution driven by the Hamiltonian eq 1 leads to a growth in
entanglement between the electronic and vibrational system,
which requires a larger bond dimension of the time-evolved
MPS. Referring to the projected Schrödinger equation of eq 3
in the case of the MPS approach, the symbol denotes the
projector onto the linear space spanned by the states where
one or two tensor Ak

μ in the MPS is allowed to be varied, which
constitute the tangent space of the MPS. This projected
version of the SE is then approximately solved by sequentially
time-evolving each of the individual tensors Ak

μ(t) (1TDVP),
or a single contraction of them (2TDVP), with respect to an
effective Hamiltonian, determined by the other tensors at this
time step. This approach transforms the global problem of
evolving a state in the full Hilbert space into a sequence of
local problems, only involving the local tensors in effective

Figure 3. Schematic illustration of the two different tensor network structures used to represent the many-particle states in this study. (a) Tree
tensor network of the ML-MCTDH method; (b) chain-like tensor representation of the MPS approach. The squares indicate the respective
tensors. The blue arrows stand for the electronic indices, the red arrows represent the harmonic oscillator indices of the modes, and connecting
black lines indicate a contraction of the corresponding tensors.
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environments. In contrast to 1TDVP, the 2TDVP allows for a
dynamic increase of the bond dimension D, during the time
evolution.

In principle, there are four sources of error compared to the
exact solution:54 The projection error, a time step error, an
error related to the inexact solution of the local problem, and a
truncation error, which is only present in the 2TDVP version.
In most cases, the dominant one is the projection error. This
error can be traced back to solving the projected version of the
SE, and not the full one, and can be reduced by enlarging the
bond dimension D, which allows a systematic check of
convergence. For chain-like geometries with (semilocal)
interaction, the 2-site version is regarded as the most reliable
algorithm for the time evolution of an MPS.54 Still, there are
situations where the original form of either algorithm shows
limitations. This turns out to be the case, e.g., when the initial
state is a product state for Hamiltonians with long-range
interaction.65 Beyond the TDVP algorithms, there are also
other time-evolution algorithms for the computation of the
nonadiabatic dynamics in the MPS framework.66−69

For all of the MPS-related work in this study, we used the
Itensor library.70 Unless stated otherwise, we use a
compression threshold in the MPO construction of 10−13 for
the kept singular values. We estimated the necessary number of
oscillator states for a mode λ, by
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where the first term corresponds to the mean in the case of
localized electronic levels coupled to vibrations (static polaron
case),71 the second term is 3 times the standard deviation of
the value in the static polaron case and Nb

+ is a numerical offset
to check for convergence. If more excitations are necessary,
one can restore the U(1) symmetry of the phonons at the cost
of doubling the factor spaces of the phonons, which is called
projected purification.72 However, at least in some cases, this
may not be necessary, for example the exciton dynamics of the
singlet fission in rubrene29 can be successfully described with
only 10 vibrational quanta per mode.73 For the time evolution,
we use the TDVP code as implemented and used in ref 65 and
publicly available at1. At initial times, we use a global Runge−
Kutta integrator (RK), to enlarge the bond dimension of the
initial product state to circumvent a trapping in the low-
entanglement sector. As this approach is at some point
computationally prohibitively expensive, we switch to the
2TDVP method to further increase the bond dimension.
However, the significantly worse execution-time scaling of
2TDVP compared to 1TDVP limits the accessible time scales
with 2TDVP. For this reason, we only use 2TDVP to enlarge
the bond dimension up to a certain maximum bond dimension
Dmax and perform time evolution from this time on using
1TDVP. It should be noted that other schemes to extend the
bond dimension for 1TDVP exist.37,65,74 In this regard, the
combination RK-2TDVP is a possible choice to dynamically
increase the bond dimension of the MPS. This procedure has
been tested successfully for a smaller but similar model
compared to the ones presented here [cf. Supporting
Information Section S1] against the RK method.
2.2.2. Multilayer Multiconfiguration Time-Dependent

Hartree Method. The ML-MCTDH method4,5,56,57 employed
in the present work derives from the parent MCTDH method

which relies on the Tucker format75−77 of eq 5, as mentioned
in Section 2.2. The latter equation for the coefficient tensor
Yi,ld1,···,ldΛ

can alternatively be expressed as the inner product

= | | ··· |···
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where time-dependent auxiliary quantities denoted as single-
particle functions (SPFs) |φm dλ

(λ)(t)⟩ were introduced whose
inner product with the time-independent basis functions is
given by Uldλm dλ

(t) = ⟨χl dλ
|φm dλ

(λ)⟩, leading to eq 5.
In ML-MCTDH, the same construction scheme is used

within a hierarchical Tucker format.75−77 That is, a first layer is
constructed analogously to eq 10, but involving a smaller
number (K1 < Λ) of higher-dimensional subspaces (each
grouping Mκ d1

(1) factor spaces)
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Next, the first-layer SPFs comprising subsets of combined
vibrational modes are expanded in second-layer quantities
(K2|κd1

≤ Mκd1

(1)), again according to the Tucker format
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Generally, the SPFs of the first M − 1 layers are given as
follows
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where q = 2, 3, ..., Q runs over the layers and the SPF index κq
= 1, 2, ..., Kq|...κd1

runs over the qth layer modes. Finally, the SPFs
of the last (Qth) layer are represented in the time-independent
basis |χldλ

⟩. At this point, the expansion in the primitive basis is
inexpensive since it is done in low-dimensional subspaces. The
details of the hierarchical ML-MCTDH wave function form
can be represented in terms of a multilayer tree.49 The
structure is highly flexible and often used to construct balanced
trees comprising different subtrees that can accommodate
varying numbers of layers. In the present calculations, the
construction of the multilayer trees is closely related to the
structure of the physical system, which is composed of multiple
donor and acceptor fragments. In the calculations for model B,
tensor trees with up to Q = 8 layers were employed.

The equations of motion of the multilayer approach involve
a hierarchy with the qth layer coefficients evolving under
corresponding qth layer multiconfigurational mean fields.
These equations are generally implemented using a recursive
algorithm,5,57 as employed in the Heidelberg MCTDH
package78 that was used in the present work. The time
integration combines the integration of the time-dependent
wave function coefficients with the integration of time-
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dependent SPFs. In the present study, the so-called variable
mean-field (VMF) scheme was employed where the mean-field
matrix elements are evaluated at every integrator step. The
Adams-Bashforth-Moulton (ABM) predictor-corrector integra-
tion scheme was employed for both wave function coefficients
and SPFs. Alternatively, in the so-called constant mean-field
(CMF) integration scheme, one exploits that the coefficients
and SPFs evolve on different time scales.55 In conjunction with
the CMF scheme, the short iterative Lanczos (SIL) algorithm
is typically used for the coefficient evolution, while the
Bulirsch-Stoer (BS) integrator is used for the nonlinear
equations of motion for the SPFs.55,78

Computation of the mean-field matrix elements is efficient if
the Hamiltonian can be represented in a sum-of-products form,
similarly to eq 7 in the case of MPS,

= | |
i
k
jjjjjj

y
{
zzzzzzH c h i i

r i i
r ii r ii

,
, ,

( )

(14)

This is naturally the case for model potentials of the type
considered in this paper. In general, potential fitting algorithms
can be employed to generate the desired sum-of-products form
of the Hamiltonian; notably the so-called Potfit algorithm55

has been developed for this purpose, along with its adaptation
to the ML-MCTDH method.79 Further, more general
procedures like neural network potentials80 can be employed.
Once a sum-of-products form is obtained, kinetic matrix
elements are evaluated analytically using a polynomial basis set
representation, and the associated discrete variable representa-
tion (DVR) is employed for the evaluation of potential matrix
elements.55

Convergence of the calculations is monitored in terms of the
time-evolving populations of the natural orbitals, which are
obtained by diagonalizing the subspace density matrices
ρ̂(κ)(t).55 If the highest natural orbital is nearly unoccupied,
addition of further SPFs will have a negligible effect, showing
that convergence has been reached.

As in the case of MPS wave functions, the propagation error
is mainly due to the projection error, i.e., here an insufficient
number of SPFs. Adaptive procedures have been developed in

order to minimize the local-in-time error,81,82 which quantifies
the projection error during the propagation. Furthermore,
systematic strategies to optimize the multilayer tree structure
have been proposed such as to reduce the propagation error.49

3. RESULTS
3.1. Model A. We carefully perform convergence checks of

the numerical parameters of the MPS and ML-MCTDH
calculations. Their results are summarized in Section S4 of the
Supporting Information. On the MPS side, these include the
maximally allowed bond dimension during the time evolution
and the maximum number of oscillator states taken into
account. For the ML-MCTDH simulations, the number of
SPFs is adjusted across the multilayer tree. The multilayer tree
used in the ML-MCTDH calculation is shown in Figure 4.

For the MPS calculation, we arrange the vibrational factor
spaces such that the R-mode is right next to the electronic
factor space. The remaining vibrational factor spaces are
arranged next to one another ordered with decreasing mode
frequency. These convergence tests indicate that both methods
are close to convergence. For example, focusing on the
occupation dynamics as observable, we find for MPS
calculations employing the numerical convergence parameters
Nb

+ = 14 and Nb
+ = 18 that the maximum difference is below

10−3 throughout the entire simulation time of 200 fs (cf. Figure
S2(a) in the Supporting Information). Similarly, comparing the
same quantity in the ML-MCTDH approach for 18 and 21
SPFs in the top layer, we find deviations of comparable size in
Figure S3(a). A convergence check of the natural orbital
populations,55 as usually done for ML-MCTDH calculations,
shows that highest values of around 5 × 10−4 (both in the
upper layer as well as when taking all layers into account) are
found.
3.1.1. Description of the Electronic State Occupancy. Let

us now come to an actual comparison between the MPS and
ML-MCTDH methods by first investigating the dynamics of
the LE state occupancy over time. Although the off-diagonal
electronic coherences would also be interesting quantities,43

we focus here on the state occupancies. We plot the computed
state occupancies ⟨n̂LE(t)⟩ from both methods in Figure 5(a),

Figure 4. Multilayer tree of the ML-MCTDH wave function for model A with up to 6 layers. The wave function is partitioned into an electronic
branch (el), two branches for the tuning modes (left-hand side and right-hand side), and one branch for the intermolecular mode (center). Parts of
the tree that are equivalent by symmetry are highlighted by boxes of the same color. Circles represent nodes and rectangles represent the primitive
basis of the respective phonon modes. Numbers next to lines connecting two nodes indicate the number of SPFs, and numbers next to lines
connecting nodes and phonon modes indicate the number of primitive basis functions. For symmetry equivalent sub-branches that are not explicitly
shown, the range of SPFs is indicated with the smallest and highest number of SPFs.
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showing the depopulation of the LE state into the CT state.
The time scale of τ ≅ 50 fs indicates ultrafast charge separation
at the molecular interface. On the considered time scale, the
agreement between the two methods is excellent. Deviations
can only be found at the very end of the dynamics, but are
barely visible on the scale of Figure 5(a). Plotting the relative
difference between the MPS and ML-MCTDH results in
Figure 5(b) unveils the magnitude of the deviation. While up
to about 75 fs, the relative difference, which we define equally
throughout this paper as

= X X
X

relative difference
(MPS) (ML MCTDH)

(ML MCTDH) (15)

with X = ⟨n̂LE⟩ in this case, oscillates around zero with small
amplitude, it starts to increase beyond this time. Despite these
differences, the deviations remain orders of magnitude smaller

than the actual occupancy up to t = 200 fs, such that in this
particular case one can conclude that both methods treat the
state occupation essentially identically.
3.1.2. Description of Bath and Intermolecular Modes. To

investigate the differences of the MPS and ML-MCTDH
calculations more deeply, we further consider the occupation
number of the modes over time. Let us first focus on the bath
modes. In Figure 6(a), we display the occupation number
dynamics of all of the bath modes computed via the MPS
approach. Here, we observe mainly the typical polaronic
oscillations in the occupation of the more strongly coupled
modes as a sign of their involvement in the dynamics of the
system.

For the comparison of the MPS and ML-MCTDH approach
for this quantity, we plot the difference of the occupation
numbers over time in panel (b). We observe that minor
deviations start to appear around 75 fs. In the considered case,

Figure 5. Comparison of the MPS and ML-MCTDH method for the LE state occupation over time for model A. We find that both methods give
highly consistent results. Panel (a) displays the evolution of the LE state occupation for both methods over time, while panel (b) depicts the
relative difference between the MPS and ML-MCTDH result.

Figure 6. Comparison of the MPS and ML-MCTDH method for the bath mode occupations over time for model A. We find that MPS and ML-
MCTDH describe the bath in an equivalent way. Panel (a) displays the evolution of the occupation number computed via MPS approach over
time. Panel (b) shows the difference between the MPS and ML-MCTDH result.

Figure 7. Comparison of the MPS and ML-MCTDH method for the intermolecular mode occupations over time for model A. As depicted in panel
(a), we find for the dynamics of the intermolecular mode occupation, similar to the state occupations, only minor differences. While panel (b)
indicates that the deviation close to the end of the considered time scale, around 150 fs, are possibly influenced by the different basis representation
in the two methods, the deviation start earlier at around 75 fs as visible in panel (c), similar to the state occupations.
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there is no systematic trend concerning the sign of deviation of
the MPS from the ML-MCTDH result, as the different color
coding for the difference shows. Still, the deviations are, as in
the case of the state occupations, orders of magnitude smaller
than the actual value of the occupation, such that we again
conclude that the MPS and ML-MCTDH results can be
considered equivalent.

As a last part of this subsection, we focus on the description
of the dynamics of the occupation number of the
intermolecular mode. This mode modifies the dynamics in a
non-negligible way, even though the time scale of charge
separation remains unaffected.42,43 We compare the phonon
occupation of this mode over time computed with both
approaches in Figure 7. Analyzing the dynamics of its
occupation, we observe only slight variations between MPS
and ML-MCTDH, akin to those found in the state occupation
(cf. Figure 7(a)). Deviations toward the end of the examined
evolution time, i.e., at approximately 150 fs, are evident in
Figure 7(b) and could be affected by the fixed harmonic
oscillator basis in the MPS calculation. Notably, these
deviations start to appear earlier, around 75 fs, aligning with
observations in the state occupancy. The origin of these
deviations will be considered later on.
3.1.3. Entanglement Entropy between the Electronic and

Vibrational System. While up to now we studied observables
that either involve only the electronic system or the vibrational
subsystem, a relevant quantity that characterizes the interaction
of the two subsystems is the entanglement entropy between

both and its evolution over time. This quantity can be defined
as

= [ ]S t tr t t( ) ( )log( ( ))ient e e (16)

where ρ̂e(t) = trλ[ρ̂(t)] denotes the reduced density operator
for the electronic subsystem and ρ̂(t) is the full time-
dependent density operator of the system. Our examination
reveals intriguing temporal patterns in the entanglement
dynamics. Initially, within the first few femtoseconds, we
observe a pronounced entanglement rise, peaking below the
maximally possible value of ln(2) ≈ 0.693. This indicates the
built-up of robust entanglement of the electronic subsystem
with the phonon system. This is dominated by specific modes
on that time scale, notably within the 180−200 meV range.
Subsequently, the entanglement entropy reduces as the system
localizes in the charge-transfer (CS) state. This time scale can
be characterized by the emergence of a close-to-static polaron
state, characterized by a dressing of the CS state. This is
accompanied by discernible fluctuations in population
attributed to the intermolecular mode and the transfer integral.
The formation of this quasi-static polaron state manifests not
only in the electronic degrees of freedom but also within the
vibrational bath, evidenced by observable polaronic oscillations
within the set of relevant modes in Figure 6. This evolution
leads to a significant decrease in entanglement between the
electronic and vibrational subsystems.

By comparing the two methods of interest regarding the
computation of the entanglement entropy of the electronic and

Figure 8. (a) Comparison of MPS and ML-MCTDH methods for the entanglement entropy over time for model A. Panel (b) shows the relative
difference of the entanglement entropy between the MPS and MCTDH approaches. Similar to the other quantities considered previously, we find
good agreement between the two methods for the description of the entanglement between the electronic and vibrational subsystem. However,
deviations are larger than before, ranging up to 8% until the simulation time maximum.

Figure 9. (a) Comparison of the relative deviation of the electronic LE state occupation of the MPS approach for two different basis sizes to the
ML-MCTDH method. This shows that the time scale of deviation τ1 = 75 fs is not related to the slightly different basis used in the MPS
implementation. Panel (b) shows the bipartite entanglement entropy as a measure of the entanglement of the modes over time computed with the
MPS approach. We find on exactly the time scale τ1 an increase in the entanglement entropy of the subsystems l

(24) up to l
(48) (see main text).

This indicates that the deviation between ML-MCTDH and MPS is related to the nonidentical distribution of entanglement between the individual
degrees of freedom, as a result of the different network structure.
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vibrational system, we find in Figure 8(a) that both methods in
general agree very well over the full simulation time. However,
as in the previously considered observables, differences start to
appear at around 75 fs and increase up to 8% until the end of
the simulation. It is evident that the MPS approach predicts a
slightly stronger entanglement between the electronic and
vibrational system on longer time scales.
3.1.4. Discussion and Possible Origins of Deviation. Let us

summarize the findings of this section. We have compared the
dynamics of the state occupancy of the LE state, the
occupation of the different phonon numbers, and the
entanglement entropy of the electron and vibrational
subsystems. In all of the cases, we found very good agreement
between the MPS and the ML-MCTDH approaches. We
identified that minor differences consistently start to appear on
a single time scale, which we found to be at around 75 fs.
Although both methods employ the harmonic oscillator basis
in the bottom layer, their individual representation is slightly
different. While the ML-MCTDH uses a harmonic oscillator
DVR with NDVR = 30 basis function, the MPS approach uses
the conventional harmonic oscillator eigenstate basis and their
analytic matrix elements.

To exclude that the observed differences are related to the
different (time-independent) basis implementation and hence
possibly different convergence properties, we compare the
relative difference of the ML-MCTDH and MPS results in
Figure 9(a). The MPS data has been simulated for two
different Nb

+ values. If the deviations between MPS and ML-
MCTDH were related to the different basis representation, one
would expect that the particular time at which the deviation
between the two methods occur, will depend on the chosen
Nb

+. However, as visible in Figure 9(a), this is not the case. The
figure shows that the time τ1 where the deviation to the ML-
MCTDH method starts rising is independent of the basis
(indicated as a time window in Figure 9(a)). Therefore, the
original source of deviation is not related to the basis in the
MPS implementation. In contrast, at a later time τ2, the
dynamics of the system described by the smaller basis deviates
in an exponential fashion from the ML-MCTDH result, which
is then indeed related to the smaller basis for Nb

+ = 8.
Thus, there must be another reason for the deviation

between the two methods. While in principle both methods
can recover the exact quantum dynamics in a certain limiting
case, this limit is practically never reached, due to the
exponentially growing numerical cost. As a consequence, both
methods are intrinsically approximations to the exact solution.
This means that deviations visible around τ1 = 75 fs may be
just related to the different tensor network structure used and
to how this structure allows the flow of correlation and
entanglement between the subsystems for a finite dimensional
approximation used in practice.

One indication for this hypothesis can be found by
examining the bipartite entanglement entropy Sent

(p)(t) from
the MPS calculation. In the MPS calculation, the local Hilbert
spaces of the modes are ordered with increasing mode energy,
with the electronic degrees of freedom at the left end of the
tensor network. Thus, the full Hilbert space decomposes as
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into a left p
l
( ) and right part p

r
( ) with respect to bond index

p. With this ordering fixed, the bipartite entanglement entropy
can be defined as
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where = [ ]t t( ) tr ( )p p
r
( ) is the reduced density matrix of

subsystem p
l
( ). It encodes how strongly the left system is

entangled with the right system, and can therefore be used to
study how the different vibrational modes of our model are
entangled among each other, mediated by the electronic
system, and how this entanglement evolves during the
dynamics. In Figure 9(b), we plot this quantity as a function
of the bond number p over time. We observe a significant
increase in the entanglement entropy of the subsystems p = 25
(related to vibrational mode ω25 = 91.08 meV) which starts at
around τ1. Strong entanglement persists up to p = 50 (ω50 =
182.16 meV). Beyond this index, the bipartite entanglement
drops substantially. This entanglement is probably related to
two-phonon up or down conversion processes, due to the
closely matching energy of such processes for the involved
modes. Regardless of the individual processes leading to this
entanglement, the time scale of this increase of entanglement
aligns with the deviation time scale τ1. This supports the
hypothesis that the deviation between the two methods is
related to the intrinsically different ways entanglement can flow
through the system, as dictated by the structure of the tensor
network.

3.2. Model B. While the above model A only admits a
relatively limited entanglement entropy between the electronic
and vibrational system, captured by both methods in a proper
way, model B features a larger number of electronic states, and
is therefore potentially more entangled. Building on the above
findings on the smaller model, model B is therefore a more
complex test case. Before we start the comparison between the
two methods, let us summarize the results of the convergence
tests, which can be found at full length in the Supporting
Information (Section S5). These tests confirm the MPS
approach’s validity with a maximum bond dimension of 400
and Nb

+ = 18. The potentially stronger entanglement in model
B is indeed confirmed by the ultrafast increase in the maximum
bond dimension of the MPS reaching D = 400 for a cutoff for
the Schmidt values of 10−13 in less than 20 fs. Complementary
to these tests of the MPS approach, we tested the convergence
of the ML-MCTDH method. The results indicate that we have
satisfactorily converged simulation with up to 40 SPFs in the
top layer and varying numbers of SPFs in the lower layers (cf.
Figure S5 of the Supporting Information where convergence in
terms of natural orbital populations55 around 2 × 10−3 is
demonstrated).

The multilayer tree underlying the ML-MCTDH calcu-
lations is shown in Figure 10 and comprises up to Q = 8 layers.
As in model A, the electronic degrees of freedom are collected
into a particle at the top of the tree, in line with the so-called
single-set approach. The phonon part of the tree is then
structured such as to mimic the fragment-based nature of the
Hamiltonian, which determines the vibronic connectivities,
noting that most vibrational modes are local modes (with the
exception of the R-mode). Following earlier work, effective
phonon modes for the acceptor (fullerene) and donor
(oligothiophene) moieties were obtained from first-princi-
ples-computed spectral densities for the different types of
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electronic states.46,83 The phonon space is divided into a first
subspace comprising the interfacial distance mode and the
fullerene modes that are exclusively coupled to the charge-
separated states, and a second subspace for the oligothiophene
modes that couple to both Frenkel exciton and charge-
separated states. The second, oligothiophene, sub-branch is
further divided into separate branches for modes up to 1500
cm−1, and the remaining modes over 3000 cm−1. These
branches are finally divided according to the system’s fragment
structure, as can be seen in the penultimate layer of the tree.

The final layer represents the primitive basis. For comparison,
we constructed an alternative tree, shown in the Supporting
Information (Figure S9), that divides the oligothiophene sub-
branch solely based on the fragment structure. Both trees give
almost the same results.

In the MPS calculation, we place the R-factor space directly
adjacent to the electronic factor space. The other modes are
arranged blockwise. The first block of factor spaces, next to the
R-mode factor space, is associated with the modes of the
fullerene super particle, arranged in order of decreasing

Figure 10. Multilayer tree of the ML-MCTDH wave function for model B with up to 8 layers. The wave function is partitioned based on the
physical system into an electronic branch (el), a branch for the fullerene modes and intermolecular mode (F/R), and a branch for the thiophene
modes (OT). The thiophene branch is further divided into a sub-branch for the low- and mid-frequency modes including CC stretch modes (up to
1500 cm−1) and a sub-branch for the highest-frequency modes of CH type (above 3000 cm−1). The meaning of boxes, circles, and rectangles as
well as specifying numbers is equivalent to Figure 4.

Figure 11. Comparison of the MPS and ML-MCTDH method for the occupancy of the LE1 state for model B.

Figure 12. (a) Electronic state occupations over time computed via the MPS approach. (b) Difference of the state occupancy as a function of time
computed with the MPS and ML-MCTDH methods. At short time scales, both methods describe the dynamics equivalently. On later time scales,
the MPS approach localizes the charge more strongly in the proximity of the CS1 state (yellow), while within ML-MCTDH, the density is more
strongly delocalized (blue).
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frequency. The next block corresponds to the modes of the OT
fragment at the interface, also arranged in the order of
decreasing frequency. This procedure is repeated for the other
OT fragments. To get an estimate of how strongly the result is
affected by a different ordering, we compare the cases where
the R-mode is placed at the beginning/end of the chain. We
find negligible differences.

Not surprisingly, the MPS/ML-MCTDH comparison
generally shows stronger deviations than in the convergence
tests of model A, indicating that model B is a more
complicated system posing high demands for the description
of the quantum dynamics.
3.2.1. Description of the Electronic State Occupancy. We

now compare the nonadiabatic electronic dynamics computed
with the ML-MCTDH and MPS approaches, and illustrate the
state population of the LE1 state over time. Here, we focus
exclusively on the population dynamics. We expect a similar
comparison for the off-diagonal coherences, but have not
studied these explicitly. We plot the results of this comparison
in Figure 11. There we find that both methods give nearly
indistinguishable values up to a time scale of 20 fs and then
start to deviate (cf. Figure 11(c)). This behavior is similar to
the one of model A, but the deviations here are much more
significant, reaching a relative difference of the two methods of
up to 60% until the end of the simulation time. Still, as visible
in Figure 11(a), the dynamics is rather close up to 60 fs and
even on a later time scale, the oscillation features remain
qualitatively the same.

In addition to the occupancy of the LE1 state, we extend our
study and consider the electronic dynamics of all 26 electronic
degrees of freedom more globally. In Figure 12(a), we plot the
state populations computed via the MPS approach over time.
At the earliest times, the initial charge transfer from the LE1
state to the CS1 state starts the dynamics. Subsequently, partial
charge separation occurs, followed by the emergence of long-
range CS states and partial trapping of the exciton in the

vicinity of the CS1 state. For the comparison between the two
methods, we plot the difference in the populations over time in
Figure 12(b). In addition, Supporting Information Section S6
compares the time-evolving state occupancies for the
individual CS and LE states. In Figure 12(b), one first
observes that it takes a certain time until deviations reach a
certain site away from the initial site. For the long-range
separated CS states, it takes up to 40−50 fs until deviations
between state occupations become visible. We also observe
traces of the backscattering at the boundary of the system at
around 60 fs, which seem to be described in a similar fashion
by both methods. On the other hand, there are also
pronounced differences. The states that are more distant
from the initial one feature higher population in ML-MCTDH,
while the MPS approach seems to localize the state occupancy
closer to the first OT fragment. This characteristic is enhanced
over time. The radius of localization around the OT1 fragment
in the MPS dynamics shrinks over time, but the CSn, n = 1, ...,
4, states always remain more strongly populated than predicted
by ML-MCTDH (cf. Supporting Information Section S6).
Conversely, the long-range charge-separated states (CSn, n = 7,
..., 13) are significantly less populated in the MPS calculation as
compared with the ML-MCTDH result, to the point that the
deviation between the mean of the integrated free carrier
populations n̂free=∑l=7

13 n̂CS,l reaches nearly 50% (cf. Supporting
Information Figure S7).

In summary, we find that in this case, the ML-MCTDH
approach leads to a stronger delocalization of the wavepacket,
while the MPS method localizes the state population
increasingly strongly close to the CS1 state.
3.2.2. Entanglement Entropy between the Electronic and

Vibrational Subsystems. As the entanglement entropy Sent(t)
between the electronic and vibrational subsystems (eq 16)
proved useful as an indicator for the difference between the
ML-MCTDH and the MPS dynamics in model A, we shall
now also focus on this quantity. We compare Sent(t) computed

Figure 13. (a) Comparison of the entanglement entropy between the electronic and vibrational subsystems between the MPS and ML-MCTDH
method over time. (b) Relative difference of the curves in panel (a). (c) Bipartite entanglement entropy by cutting the state at bond (p) over time
computed with the MPS method.
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by the two methods in Figure 13(a) depicting the overall
behavior. Here, one can observe an initial, and very intense,
increase in the entanglement entropy, which is described by
both methods. A small kink is visible in the entanglement
entropy around 25 fs, which is described identically by both
methods. After that, both methods start to deviate within ∼1%
but both methods give a similar curve shape. One method
sometimes yields a higher entanglement entropy than the
other, and vice versa. The roles of the methods in producing
higher entropy appear to oscillate up to about 125 fs.

Beyond this time, the entanglement entropy in the MPS
approach starts to fall below the ML-MCTDH value, which we
attribute to localization behavior. Localization, as seen more
pronounced in the electronic dynamics of the MPS approach,
can give rise to a less entangled vibrational and electronic
system. The plot of the bipartite entanglement entropy, shown
in Figure 13(c), reveals that the modes of the OT molecule at
the interface are especially entangled in this localization
process in the MPS dynamics. Recalling the time of about 60 fs
upon which the free carrier populations in the MPS and ML-
MCTDH calculations start deviating, we can identify this with
the time of maximum entanglement between the electronic
and vibrational subsystems. After this time, the initial
entanglement surge gives way to the relatively steady increase
of bipartite entanglement (cf. Figure 13(c)), indicating the
involvement of the vibrational modes around the interface.
Although the bipartite entanglement entropy is not directly
accessible in ML-MCTDH, the match of these times seems to
indicate, similar to model A, that it is the different description
of entanglement between the subsystems that is causal for the
deviations between the methods. However, compared to
model A, the deviation between the methods is much more
pronounced, probably as a result of the multi−site character
and overall stronger entanglement in model B.

4. DISCUSSION
To summarize our findings, the MPS and ML-MCTDH results
align very well with only minor differences for model A, but
this is far less the case for model B: Here, we found after about
60 fs significant quantitative differences in the description of
the observables under study, while the qualitative physical
picture remains the same. Since both types of calculations can
be considered satisfactorily converged, the reason for these
differences likely lies in the different types of tensor networks
underlying the MPS vs ML-MCTDH approaches, guiding the
entanglement flow between the individual degrees of freedom.
Specifically, we found that the MPS approach leads to a
stronger localization of the dissociated exciton in the vicinity of
the CS1 state, involving non-negligible occupancies of CSn, n =
2, ..., 4, while the free carrier populations (CSn, n = 7, ..., 13)
are less populated in the MPS calculations. The latter can be
quantified by an integrated free carrier populations that is
reduced by up to 50% as compared with ML-MCTDH.

For both models studied, we could identify that prior to
deviations in electronic population and mode occupation,
differences in the entanglement entropy Sent could be observed.
While for the first model, Sent

(MPS) is at all times larger than
Sent
(MCTDH), this quantity shows a oscillatory behavior in model

B. That is, up to t ≤ 125 fs, Sent
(MPS) and Sent

(MCTDH) are very
similar apart from slight oscillations, within a range of about
1%. On longer time scales, the entanglement entropy in the
MPS calculation decreases more strongly than in the ML-
MCTDH calculation. This is consistent with the different

dynamical evolution of the state populations, as around t ≅
150 fs, the exciton is more strongly localized around the OT1
fragment in the MPS approach than in the ML-MCTDH
method. This leads to a slightly larger entropy for the ML-
MCTDH calculations at longer times. Still, the entanglement
entropy between the electronic and vibrational subsystem
remains rather close. Another interesting aspect is the match
between the deviations of the bipartite entanglement entropy
and the time where deviations in the population, especially the
free carrier population, appear. These observations hint toward
a different treatment of the entanglement between the
individual degrees of freedom, which may be related to the
different tensor network structure of the two methods and
consequently different convergence properties.

In the literature, there are conjectures regarding the
enhanced capability of tree tensor networks, such as ML-
MCTDH, compared to MPS, in capturing long-range
correlations in critical systems or for systems with long-range
interactions.59 As this also includes the electron−phonon
interaction, these statements are highly relevant for the two
models under study in this article. However, at least for model
A, this does not appear to be the case. The entanglement
entropy, as a measure of correlation, is here consistently larger
in the MPS simulation compared to ML-MCTDH.

Because of the mentioned small oscillations in the
entanglement entropy, the situation is more intricate in
model B. Here, we encounter the interesting situation that
the entanglement entropy, as a measure for the correlation, is
similarly described in the MPS and ML-MCTDH calculations
on an intermediate time scale, but longer-range spatial
correlations seem to be favored by ML-MCTDH (see the
above discussion). On the other hand, one can also not finally
conclude about the converse statement, as there are many
other factors of difference beyond the network topology. This
includes the employed time-evolution algorithm, the different
arrangement of the individual factor spaces, partitions of the
tree in either tensor network, or the model under
consideration, which may have an impact. In the case of
model B, we compared with an alternative tree structure,
featuring a modified sub-branch ordering of low vs high-
frequency phonon modes. The differences in electronic
occupancies remained minor, though.

Clearly, it would be highly desirable to have exact
benchmark calculations for the present system. In absence of
these, it remains unclear at this point, and possibly also in the
nearest future, whether the MPS or ML-MCTDH calculations
are closer to the exact dynamics, in particular regarding the
aspect of long-range charge separation. Also, while both
methods are regarded as quasi-exact in their respective field,
this status has to be re-examined in the light of the present
results for these large systems. We would like to emphasize that
both cannot account for an exponentially growing Hilbert
space and therefore rely on individual approximations. While
some intrinsic limitations of MPS have been partially addressed
within methods of quantum information theory, in terms of the
respective area laws19,84 for quantum lattice models, a
comprehensive study of limitations of different network
structures in a more general context is still missing.

In conclusion, despite the quantitative differences that we
unveiled, our results demonstrate that both methods effectively
capture the same qualitative physics and both give a handle on
describing the transition between coherent and relaxation
phenomena in large systems. In any event, both approaches are
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far better suited to describe the nonadiabatic dynamics in large
systems than many semiclassical or quantum-classical schemes.
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(75) Hackbusch, W.; Kühn, S. A New Scheme for the Tensor

Representation. J. Fourier Anal. Appl. 2009, 15, 706−722.
(76) Lubich, C.; Rohwedder, T.; Schneider, R.; Vandereycken, B.

Dynamical Approximation by Hierarchical Tucker and Tensor-Train
Tensors. SIAM J. Matrix Anal. Appl. 2013, 34, 470−494.
(77) Bachmayr, M.; Schneider, R.; Uschmajew, A. Tensor Networks

and Hierarchical Tensors for the Solution of High-Dimensional
Partial Differential Equations. Found. Comput. Math. 2016, 16, 1423−
1472.
(78) Worth, G. A.; Beck, M. H.; Jäckle, A.; Meyer, H.-D. The

MCTDH Package, Version 8.2, (2000). H.-D. Meyer, Version 8.3
(2002), Version 8.4 (2007). O. Vendrell and H.-D. Meyer Version 8.5
(2013). Versions 8.5 and 8.6 contain the ML-MCTDH algorithm,
Used version: 8.6.2 2022 http://mctdh.uni-hd.de for a description of
the Heidelberg MCTDH package.
(79) Otto, F. Multi-layer Potfit: An accurate potential representation

for efficient high-dimensional quantum dynamics. J. Chem. Phys. 2014,
140, No. 014106.
(80) Koch, W.; Bonfanti, M.; Eisenbrandt, P.; Nandi, A.; Fu, B.;

Bowman, J.; Tannor, D.; Burghardt, I. Two-layer Gaussian-based
MCTDH study of the S1 ← S0 vibronic absorption spectrum of
formaldehyde using multiplicative neural network potentials. J. Chem.
Phys. 2019, 151, No. 064121.
(81) Martinazzo, R.; Burghardt, I. Local-in-Time Error in Variational

Quantum Dynamics. Phys. Rev. Lett. 2020, 124, No. 150601.
(82) Mendive-Tapia, D.; Meyer, H.-D. Regularizing the MCTDH

equations of motion through an optimal choice on-the-fly (i.e.
spawning) of unoccupied single-particle functions. J. Chem. Phys.
2020, 153, No. 234114.
(83) Huix-Rotllant, M.; Tamura, H.; Burghardt, I. Concurrent

Effects of Delocalization and Internal Conversion Tune Charge
Separation at Regioregular Polythiophene−Fullerene Heterojunc-
tions. The. J. Phys. Chem. Lett. 2015, 6, 1702−1708.
(84) Wolf, M. M.; Verstraete, F.; Hastings, M. B.; Cirac, J. I. Area

Laws in Quantum Systems: Mutual Information and Correlations.
Phys. Rev. Lett. 2008, 100, No. 070502.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00751
J. Chem. Theory Comput. 2024, 20, 8767−8781

8781

https://doi.org/10.1021/acs.jctc.1c00941?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00941?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.21468/SciPostPhys.10.3.058
https://doi.org/10.21468/SciPostPhys.10.3.058
https://doi.org/10.21468/SciPostPhys.10.3.058
https://doi.org/10.1021/acs.jctc.2c00851?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00851?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevLett.133.026401
https://doi.org/10.1103/PhysRevLett.133.026401
https://doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1137/120885723
https://doi.org/10.1137/120885723
https://doi.org/10.1007/s10208-016-9317-9
https://doi.org/10.1007/s10208-016-9317-9
https://doi.org/10.1007/s10208-016-9317-9
http://mctdh.uni-hd.de
https://doi.org/10.1063/1.4856135
https://doi.org/10.1063/1.4856135
https://doi.org/10.1063/1.5113579
https://doi.org/10.1063/1.5113579
https://doi.org/10.1063/1.5113579
https://doi.org/10.1103/PhysRevLett.124.150601
https://doi.org/10.1103/PhysRevLett.124.150601
https://doi.org/10.1063/5.0035581
https://doi.org/10.1063/5.0035581
https://doi.org/10.1063/5.0035581
https://doi.org/10.1021/acs.jpclett.5b00336?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.5b00336?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.5b00336?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.5b00336?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevLett.100.070502
https://doi.org/10.1103/PhysRevLett.100.070502
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00751?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

