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ABSTRACT

Land-use intensification and climate change

threaten ecosystem functions. A fundamental, yet

often overlooked, function is decomposition of

necromass. The direct and indirect anthropogenic

effects on decomposition, however, are poorly

understood. We measured decomposition of two

contrasting types of necromass, rat carrion and bi-

son dung, on 179 study sites in Central Europe

across an elevational climate gradient of 168–

1122 m a.s.l. and within both local and regional

land uses. Local land-use types included forest,

grassland, arable fields, and settlements and were

embedded in three regional land-use types (near-

natural, agricultural, and urban). The effects of

insects on decomposition were quantified by

experimental exclusion, while controlling for re-

moval by vertebrates. We used generalized additive

mixed models to evaluate dung weight loss and

carrion decay rate along elevation and across re-

gional and local land-use types. We observed a

unimodal relationship of dung decomposition with

elevation, where greatest weight loss occurred be-

tween 600 and 700 m, but no effects of local tem-

perature, land use, or insects. In contrast to dung,

carrion decomposition was continuously faster

with both increasing elevation and local tempera-
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ture. Carrion reached the final decomposition stage

six days earlier when insect access was allowed,

and this did not depend on land-use effect. Our

experiment identified different major drivers of

decomposition on each necromass form. The results

show that dung and carrion decomposition are ra-

ther robust to local and regional land use, but fu-

ture climate change and decline of insects could

alter decomposition processes and the self-regula-

tion of ecosystems.

Key words: decay; ecosystem function; global

change; land-use intensification; necrobiome; ur-

banization.

HIGHLIGHTS

� Local and regional land-use intensity does not

impact dung and carrion decomposition.

� Carrion decomposition strongly responds to local

temperature, elevation, and insect access.

� Dung decomposition has a unimodal relationship

with the elevation.

INTRODUCTION

The decomposition of organic matter (detritus or

necromass) is a crucial process for nutrient cycling

(Cardinale and others 2012), influences trophic

networks, and stabilizes ecosystem structure and

function (Moore and others 2004; Nichols and

others 2008). The functioning of an ecosystem, in

turn, depends on the diversity of functional and

taxonomic groups (Millennium Ecosystem Assess-

ment 2005). However, the interaction of stressors,

that is, climate change and intensified land use,

exacerbates the risk of biodiversity loss (Jetz and

others 2007; Mantyka-Pringle and others 2015;

Sala and others 2000; Visconti and others 2016),

including those associated with necromass decom-

position, and potentially affects the functioning of

ecosystems and their associated services.

Necromass is a very nutrient-rich but ephemeral

resource; it provides shelter and habitat for a wide

variety of detritivorous organisms, like microbes

and insects, that extensively contribute to decom-

position (Benbow and others 2015, 2019; Hanski

and Cambefort 1991; Moore and others 2004).

Over the past several decades, however, there have

been documented reductions in terrestrial insect

biomass by more than two-thirds in Germany

(Hallmann and others 2017; Seibold and others

2019), and negative effects of anthropogenic

activities on the functional and taxonomic diversity

of copro- and necrophagous insects (Sánchez-Bayo

and Wyckhuys 2019; von Hoermann and others

2018). Insect decline is a general threat to both

ecosystem services and economics. For instance, a

reduction in functional diversity of dung beetles

results in lower decomposition rates (Beynon and

others 2012). Without the ecosystem service pro-

vided by dung beetles, however, slowly decom-

posing cattle feces would lead to fouling of

rangeland (for example, in Australia) and attract

pest species, which in turn lead to drastic economic

losses (Castle and MacDaid 1972; Losey and

Vaughan 2006).

Global warming, as one of the major threats to

biodiversity, applies physical stress in terms of heat

to species, and by changing their phenology, geo-

graphical distribution, community structure, and

ecosystem functions (Angilletta Jr. 2009; Barton

and Bump 2019; Graham and Grimm 1990; War-

ren and others 2013). Higher temperatures, how-

ever, also enhance metabolic activities of insects

and microbes (Barton and Bump 2019) and are

related to higher abundances of carrion and dung

beetles (Gebert and others 2020; von Hoermann

and others 2018; 2020), and soil-inhabiting fungi

in temperate regions, whereas soil-inhabiting bac-

terial abundance decreases with increasing tem-

peratures (Castro and others 2010). Higher

microbial respiration rates were also observed at

higher elevations despite cooler temperatures,

suggesting moisture as another important deter-

minant of microbial activity (Murphy and others

1998). Yet, high microbial species richness, for

example, in deadwood, can also negatively corre-

late with decay rate due to competition among

saprophytic species (Fukami and others 2010;

Hagge and others 2019).

Land-use intensification leads to changes in soil

properties, habitat loss, and habitat fragmentation

(Dudley and Alexander 2017; Lauber and others

2008). Decomposer communities and services

provided by them respond independently to dif-

ferent land-use types, and higher soil-fauna rich-

ness and abundances are not necessarily linked to

higher decomposition rates (Yang and others

2018). For dung beetles, Frank and others (2017)

found clear habitat preferences among species and

distinct dung removal rates across habitat types.

The sprawl of agricultural areas, however, and the

transformation from primary to secondary planta-

tion forests reduce dung beetle abundance (Gard-

ner and others 2008; Sánchez-Bayo and Wyckhuys
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2019). Similarly, carrion-feeding insects are influ-

enced by forest structure (Heidrich and others

2020), soil properties (von Hoermann and others

2018), and land-use type (Babcock and others

2020; Dekeirsschieter and others 2011). Further-

more, an increasing use of fertilizers, as a conse-

quence of intensified land use, leads to a decrease

in soil microbial diversity (French and others

2017). Soil microbes, however, substantially con-

tribute to nutrient cycling and accelerate decom-

position processes (Dubey and others 2019; Lauber

and others 2014). During decomposition, microbes

emit volatile organic compounds that can vary

among habitats and substrates and mediate carrion

decomposition by attracting necrophagous insects

(Cammack and others 2015; Dekeirsschieter and

others 2009). Different odor bouquets potentially

influence necrophagous beetle communities and

hence decomposition rates.

The way this complex interplay of climate

change, land-use intensification, and the decline in

insects influence the decomposition of necromass

has not yet been studied in the field. To disentangle

the abiotic effects of a macroclimate (elevation)

gradient, local temperatures, habitat and landscape,

and the biotic effects of insects on dung and carrion

decomposition, we conducted a landscape scale

experiment using 179 study sites along an eleva-

tion gradient and across local and regional land-use

types in Central Europe. Specifically, we tested the

following three hypotheses: (i) Decomposition of

dung and carrion in near-natural environments is

faster compared to highly transformed land-use

types; (ii) warmer climates and higher local tem-

peratures are related to faster decomposition; and

(iii) insect exclusion slows necromass decomposi-

tion.

MATERIAL AND METHODS

Study Sites

This study was conducted in southeast Germany

within the federal state Bavaria. We selected 60

study regions (� 5.8 km 9 5.8 km) along a climate

gradient divided into five climatic zones based on

multi-annual mean temperatures from 1981 to

2010 (Deutscher Wetterdienst, 2020), and among

three regional land-use types (near-natural, agri-

cultural, and urban landscapes) (Figure 1). All cli-

mate and regional land-use combinations were

represented four times. Within each study region,

we established study sites (3 m 9 30 m) in the

three most dominant local land-use types (habitats)

out of four possible (that is, forest, grassland, arable

fields, and settlements). In total, there were 179

study sites (a single region out of the 60 study re-

gions contained two study sites instead of three).

The final selection of study sites covered a spatial

extent of about 400 km as well as 1000 m in ele-

vation. Additional details of the study site selection

are described in Redlich and others (2021).

Study Design and Data Collection

In May 2019, two pats of European bison dung (á

450 g) and two rat carcasses (á 200–250 g) were

exposed on each of the 179 study sites. Upside

down bicycle baskets protected all dung pats and

rat carcasses from vertebrate scavenging. At each

study site, one basket of each necromass type was

additionally covered with mosquito netting (mesh

size 1 mm) to limit arthropod access. The rats were

placed 30 m apart from each other, while the two

dung pats were placed in the middle of the study

site adjacent to each other. To separate the soil

from the dung and to facilitate the collection, small

meshes (mesh size 1 mm) were placed underneath

the dung at the beginning of the experiment.

Dung was collected in March 2019 from Euro-

pean bison in the National Park Bavarian Forest’s

animal enclosure, from defecating animals that had

not been treated with antibiotics or anthelmintics.

We intended to choose dung from a species, which

functionally represents the current dominant

domestic animal in agriculture, which is cattle.

Bison is evolutionary close to the domesticated

cattle and the advantage of bison is that from an

evolutionary perspective, European bison were

widely distributed across Europe until the twenti-

eth century (Kuemmerle and others 2011; Sven-

ning 2002) and organisms like insects and microbes

were able to adapt to its dung. Contrary to

domesticated cattle, bison prefer forests as well as

herbaceous vegetation (Kuemmerle and others

2011), which makes them a suitable study organ-

ism for decomposition and land-use studies like

this. We formed approximately 450 g pats for our

experiment, weighed them, and stored them fro-

zen. Dung pats were thawed one day prior to the

beginning of the experiment. Decomposition of

dung was measured by calculating the remaining

dry weight after one month. Of 358 dung pats, 357

were collected after an average exposure of 29 ± 2

(mean ± SD) days and each pile was dried for five

days at 100 �C. Dung pat dry weight before expo-

sure was analyzed by calculating the dry weight/

wet weight ratio of 14 control samples (wet weight

ranging between 96 and 449 g) from the same

defecating animals (Appendix A). Temperature
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data loggers failed on four study sites, leaving 349

data points for the final statistical analysis.

Representing a functional important group (ro-

dents) across many habitats, we decided to choose

feeder rats as a domesticated form of the brown rat

(Rattus norvegicus) for our experiment. Considering

that small animal carrion is naturally occurring in

higher densities than carrion of larger animals

(Barton and others 2019), an important proportion

of the carrion in ecosystems can be assigned to

rodents and makes them an ideal study organism

even in higher elevations. Frozen rats were ob-

tained by an online shop for snake food and

thawed one day prior to the beginning of the

experiment. The decomposition stages of rats were

assessed by photographs. Photographs of both rats,

with and without insect access, were taken on the

day of exposure, two days after exposure to capture

early changes in decomposition, and then every

14 days until mid-August (c. 90 days in total).

Images of the carrion were then assigned to

decomposition stages using the description by

Dekeirsschieter and others (2012), and early and

late active decay stages and mummification and

unexpected disappearance as additional categories

(Table 1). Due to our biweekly sampling frequency,

we were not able to record the exact date of final

decomposition for every carrion (as some would be

gone between sampling points). Hence, we used an

interval from the last sampling day on the study site

when the carrion was not fully decomposed until

the day the photograph of the fully decomposed rat

was taken. By this, we got the interval with the first

potential date of full decomposition and the day the

decomposed rat was photographed. Only the onset

of the final decomposition stages (stages 6 and 6b)

was relevant for subsequent statistical analysis.

Despite anti-scavenger cages protecting the carrion,

Figure 1. Location of study regions across Bavaria. Numbers (1–5) indicate climate zones; landscapes are defined as nature

(near-natural), agriculture, and urban.
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98 rats were taken by vertebrate scavengers over

the course of the study. At four study sites, the data

loggers failed to measure local temperature, and six

rats (one with, five without insect access) did not

reach one of the final decomposition stages of 6 or

6b within the study period. Thus, data from 247 out

of 358 rats were included in the final analysis (118

with insect access, 129 without).

Additionally, since no direct weight loss of the

rats could be measured during the field experi-

ment, we added another experiment with ten rat

carcasses (five carcasses with insect access and five

without). Here, pairs of carcasses (with/without

insect access) were exposed successively after 3, 8,

14, and 21 days on a meadow adjacent to our

institute, and weight loss was measured every 3–

5 days. To facilitate handling of the carcasses dur-

ing weight measurements, a mesh wire (mesh size

c. 2 cm) was placed underneath each rat. To assess

the weight loss each rat was lifted with the mesh

wire and placed in an aluminum bowl (to capture

leaking body fluids and to avoid the disintegration

of the carcass). Wet weight was then measured and

subtracted from the initial weight to get the weight

loss in gram and %. This allowed us to compare

weight loss over time with the decomposition stage

classifications estimated from the photographs.

Measurements on rainy days (n = 2) were ex-

cluded from the analysis since measurements

would be distorted by the wet fur.

Environmental Parameters

We used elevation as a surrogate for a long-term

macroclimatic gradient, which was highly corre-

lated with multi-annual mean temperature and

precipitation over the past 30 years (Spearman

rho = - 0.84; p < 0.05 and rho = 0.74; p < 0.05,

respectively). Information on multi-annual mean

temperature and precipitation data for individual

study plots were extracted from gridded monthly

datasets with a horizontal resolution of 1 km using

a nearest source to destination approach. Subse-

quently, long-term averages thereof were calcu-

lated for the period 1991 to 2020. The raw input

datasets are provided free of charge by the German

Meteorological Service (DWD) and are described in

Kaspar and others (2013).

To capture small-scale variation in local temper-

ature across the sampling period and the different

habitats, we used ibutton thermologgers (type

DS1923, Hygrochron iButton�, Whitewater, WI,

USA) on each plot. Each data logger was mounted

on a wooden pole at 1.10 m height, facing north

and with a roof panel to protect against direct sun

exposure.

Land use was assessed in a nested design of local

land-use types (habitats: forest, grassland, arable

fields, settlements) within regional land-use types

(landscapes: near-natural, agricultural, urban).

The role of flying and ground-dwelling insects

was estimated by experimental exclusion.

Statistical Analysis

We modeled the effects of local habitat, regional

landscape, local temperature, elevation, and insect

access on the decomposition rates of dung (final

dry weight) and carrion (time until final decom-

position). All models were built using R, version

4.0.2 (R Core Team 2021).

To allow for different response variables, namely

‘final dry weight’ for dung and ‘time until final

decomposition’ for carrion, two separate general-

ized additive models (GAMs) (package mgcv by

Wood 2006) were built to make both data sets

comparable and to model nonlinear relationships.

To account for each response variable, ‘final dry

weight’ and ‘time until final decomposition,’ we

used the families Gaussian and Cox.ph, respec-

Table 1. Description of Carrion Decomposition Stages

Decomposition stage Description

(1) Fresh From death until first signs of bloating

(2) Bloated Swelling of the body, first in the abdomen

(3) Early active decay Deflating, skin is darkening

(4) Late active decay Skin breaks up, leaking of liquids

(5) Advanced decay Only some (wet) remains of flesh and skin

(6) Dry remains Only bones and hair remaining

(6b) Mummification Skin and organs are mummified

(7) Unexpected disappearance Disappearance of the carrion by mammal scavengers or burying beetles

Adapted from Dekeirsschieter and others (2012)
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tively, the latter implying a Cox proportional haz-

ards model (Cox 1972). Because local temperatures

measured by the data logger and elevation were

only moderately correlated (Spearman rho = -

0.43 and p < 0.05), both were included in model

building to have adequate surrogates for macrocli-

mate and local temperature gradients. Elevation

ranged from 168 to 1122 m a.s.l., so we scaled it by

dividing by 100 (elevation100) to have comparable

elevation and temperature scales.

In both models, habitat, landscape, local tem-

perature, and insect access were included as envi-

ronmental variables, with smoothness estimations

for elevation100 as fixed effect and study site as a

random effect for replicated measurements. To al-

low for variation in initial dung dry weight

(108 ± 0.01 g (mean ± SD)) and days of dung

exposure (29 ± 2 days (mean ± SD)), both

parameters were included in the offset of the Gauss

model. In both models, potential interactions of

insect presence/absence with habitat, landscape,

local temperature, and elevation were evaluated by

Akaike’s information criterion (AIC) comparison.

Although a higher value of the final dung dry

weight would mean a lower weight loss (lower

decomposition), an increase in the hazard rate

indicates an increase in carrion decomposition so

that the response variables of dung and carrion act

in different directions (Figure 2). Thus, in the dung

model output, algebraic signs of the estimates were

inverted since this response variable is less intuitive

to interpret than the Cox model results. By this, the

results are provided and interpreted as effects on

carrion and dung decomposition rates.

Although long-term data on precipitation and

temperature (multi-annual mean temperature and

precipitation over 30 years) were highly correlated

with elevation (Spearman rho = - 0.84; p < 0.05

and rho = 0.74; p < 0.05, respectively), we addi-

tionally fitted both GAMs (dung and carrion) with

the long-term precipitation and temperature data

instead of elevation to account for both options as

potential surrogates for macroclimate, and to

compare their AICs. According to the AICs, models

including elevation instead of long-term tempera-

ture and precipitation data gave a better fit (Ap-

pendix B). Therefore, elevation was chosen as a

surrogate for macroclimate.

In the GAM analysis, only the right-censored day

of final carrion decomposition could be included as

response variable because of the model structure.

Therefore, we additionally fitted a mixed-effect

parametric Cox regression utilizing interval-cen-

sored data of the carrion decomposition (packages

survival by Therneau and Grambsch 2001 and

tramME by Tamási and Hothorn 2021). The mixed-

effect parametric Cox regression included the per-

iod from the day when the carrion was last seen

until the day when the carrion was finally

decomposed, which led to a more precise result.

For this model, landscape, habitat, local tempera-

ture, insect access, and elevation100 were included

as independent variables and study site as a random

factor (Appendix C).

Figure 2. Partial plots for the smooth term s(elevation100) for both GAMs with confidence intervals indicated by the gray-

shaded areas. A Unimodal relationship for the final dry weight of dung along elevation with a minimum dry weight at

about 700 m. B Linear relationship for the decomposition of carrion along elevation. High y-values for dung

decomposition indicate high final dry weights and consequently slower decomposition rates, while high y-values for

carrion decomposition indicate faster decay. Triangles on the left-hand side of each plot indicate the direction of increase

(broad base) of decomposition along the y-axis.
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For a more intuitive access to the partial effects of

predictors on dung, we calculated the relative effect

on dung weight for a change in local temperature

or elevation by 1 �C or 100 m, respectively, as well

as for a change in the factor levels of insect exclu-

sion, habitat, or landscape type (Appendix D).

Coefficients in the Cox model represent the lin-

ear effect of the corresponding predictors on the

hazard rate, that is, the temporal rate of transition

events from the non-decomposed to the decom-

posed stage of the carcass. Interpretation of the

survival analysis coefficient is thus less self-evident

than for linear or additive models. We illustrated

the isolated effects of single predictors by cumula-

tive distribution functions indicating the probabil-

ity of decomposition over the course of time and

allowing for estimation of the delay caused, land

use, insect exclusion, or decreases in temperature

(details in Appendix D). All tables were created

using the package stargazer by Hlavac (2018).

Datasets for carrion and dung and the R code for

both GAMs and the mixed effect parametric Cox

regression are provided as supplementary material.

RESULTS

Dung Decomposition

Dung decay followed a unimodal relationship with

elevation described by the local curve minimum

marking the lowest final dry weight. Hence, the

highest weight loss across all study sites was be-

tween 600 and 700 m a.s.l. (Figure 2A, black tri-

angles next to y-axis labels indicating the partial

effect of elevation on the dung weight loss/carrion

decomposition rate). We found a marginal effect of

elevation on dung decomposition, while local

temperature, insect access, landscape, and habitat

had no significant impacts (Table 2). We could

improve the model without interactions by adding

the interaction between elevation and insects,

while any other combination of candidate interac-

tions performed worse than the model with

exclusive insect-elevation interaction. In that case

the nonlinear effect of elevation (Figure 2A) was

significantly influenced by insects increasing dung

decomposition at high elevation and reducing

decomposition at low elevation, but not changing

the overall unimodal pattern (Appendix E).

Carrion Decomposition

Higher carrion decomposition was associated with

higher elevation (Figure 2B). Further, carrion

decomposition was accelerated by six and about

four days with insect access and an increase in local

temperature by 1 �C, respectively (Table 2, Ap-

pendix D). Although not significant, the estimates

of all non-forest habitats and non-natural land-

scapes were generally negative (Table 2). Addi-

tional potential interactions between presence/

absence of insects and habitat, landscape, local

temperature, and elevation did not improve the

model (results not shown). The results of the

mixed-effects parametric Cox regression (interval-

censored time to decomposition) were commen-

surate with the GAM results (right-censored only)

and revealed significant positive effects of insect

Table 2. Summary Statistics for Generalized Additive Gauss and Cox.ph Models

Predictors

Dung weight loss

(family = Gauss)

Day of final carrion decomposition

(family = Cox.ph)

Estimates std. Error p Estimates std. Error p

(Intercept) 0.71 0.23 0.002

Insects [yes] - 0.01 0.01 0.664 0.56 0.15 < 0.001

Habitat grassland versus forest 0.07 0.05 0.155 - 0.16 0.30 0.589

Habitat arable field versus forest - 0.01 0.05 0.903 - 0.50 0.31 0.102

Habitat settlement versus forest 0.04 0.05 0.490 - 0.52 0.36 0.146

Landscape agriculture versus near-natural - 0.06 0.04 0.165 - 0.33 0.27 0.229

Landscape urban versus near-natural 0.03 0.04 0.560 - 0.21 0.28 0.452

Local temperature in �C - 0.02 0.02 0.150 0.56 0.12 < 0.001

Smooth term (elevation100) 0.097 < 0.001

Random effect (study site) < 0.001 < 0.001

Observations 349 253

R2 0.606 0.564

Insects, habitat, landscape, local temperature, and elevation100 were included as predictors in both models and study site as a random term. Algebraic signs of the estimates for
final dung dry weight are inverted; by this, results can be read as estimates for dung weight loss. Significant p-values in bold.
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access, local temperature, and elevation on carrion

decomposition (Appendix C).

The survival curves resulting from the mixed-

effect parametric Cox regression describe the

probability of complete carrion decomposition with

and without insect access over time. At almost any

timestamp, the probability of complete decompo-

sition was higher for carrion with allowed insect

access (Figure 3). This was supported by our addi-

tional experiment: After 31 days, carrion with in-

sects allowed showed about 90% weight loss,

whereas carrion without insects decreased by 50%

(Figure 4).

DISCUSSION

The overall aim of this study was to investigate the

effects of local and regional land-use intensity, cli-

mate change (local temperature and macrocli-

mate), and the decline in insects on the

decomposition processes of dung and carrion.

Dung and carrion decomposition responded dif-

ferently to land-use intensification, local tempera-

ture, macroclimate gradients represented by

elevation, and insect access. Local and regional

variation in land use did not affect the decompo-

sition of carrion and dung. Neither was dung

decomposition influenced by local temperature or

macroclimate (elevation). However, dung decom-

position followed a unimodal pattern with

increasing elevation. Carrion decomposition, in

Figure 3. Survival curve for the probability of full carrion decomposition (onset of mummification or dry remains) with

and without insect access over time. The dashed line indicates insect access, while the solid line displays no insect access.

Figure 4. Weight loss of rat carrion with and without insect access (n = 5 for each treatment) measured in weight loss in

percentage over time. Gray and black dots indicate individual measurements, and curves represent the associated

regression lines. Rats with allowed insect access are depicted in black and rats without insect access in gray. Horizontal gray

line indicates 50% weight loss.
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contrast, strongly responded to increasing local

temperatures and elevation. Insect access only en-

hanced carrion decomposition, not dung, although

insect diversity is widely known to affect both dung

and carrion decomposition processes (Lee and Wall

2006; Pechal and others 2014). Our findings indi-

cate that necromass decomposition, particularly

carrion, in temperate regions is more affected by

climate and the presence of insects than by land-

use intensity.

Land Use

We expected highest necromass decomposition

rates in near-natural habitats and landscapes. Our

results, however, show that decomposition pro-

cesses are robust against land-use intensification.

Hence, we suggest that decomposition is driven by

other factors that are independent of habitat and

landscape, although intensified land use has been

reported to have significant effects on copro-/ne-

crophagous beetles, soil-inhabiting invertebrates,

and microbes (French and others 2017; Lauber and

others 2008; Lumini and others 2010; Minor and

Cianciolo 2007; Nichols and others 2008; Polasky

and others 2011; von Hoermann and others 2018;

2020).

Land-use change and new agricultural practices,

for example, the use of anthelmintics, can nega-

tively affect dung beetles (Carpaneto and others

2007), whereas grazing-continuity of grasslands

and a low habitat complexity positively affect dung

beetle abundance and richness (Buse and others

2015; Romero-Alcaraz and Ávila 2000). Moreover,

dung beetle functional diversity is highly variable

among different regions, resulting in varying dung

decomposition rates (Milotić and others 2019).

Although the literature reports that diversity and

abundance of decomposer communities vary across

land-use types, our results suggest that for re-

sources mainly decomposed by soil-inhabiting

organisms (nematodes, arthropods, microbes), for

example, dung, the absence of one functional or

taxonomical group of decomposers may be replaced

by other groups with similar functions, indepen-

dently of the community composition across land-

use types. Comparable results were found for leaf

litter decomposition, where the exclusion of

mesofauna (> 1 mm) had no influence on

decomposition rates (Barajas-Guzmán and Alvarez-

Sánchez 2003), which highlights the importance of

a species rich decomposer community.

Although necrophagous beetle abundance and

richness are reported to be determined by land-use

characteristics (von Hoermann and others 2018;

Wolf and Gibbs 2004), we found no significant ef-

fect of habitat or landscape on carrion decomposi-

tion. Other studies on necrophagous insects and

microbes, however, would suggest distinct decom-

position patterns among habitat types. Dekeirss-

chieter and others (2011), for instance, reported

highest carrion beetle abundance in agricultural

sites, compared to forest and urban sites. Further-

more, flies are the primary competitors of carrion

beetles and benefit from open habitats and forest

fragmentation (Gibbs and Stanton 2001). Besides

insects, microbial communities and their activity

substantially contribute to carrion decomposition

(Crippen and others 2015; Weatherbee and others

2017), and microbial counts increase from wood-

land to pasture sites, accompanied by faster

decomposition rates of carrion (A. S. Wilson and

others 2007).

Taken together, our results suggest other factors

than insect abundance and diversity, or microbial

counts, are the primary drivers of decomposition

processes across different land-use types. Barton

and Evans (2017) assume that habitat effects are

only relevant for generalist arthropods, while spe-

cialists, such as some flies, consider the carrion as

their habitat and neglect the surrounding habitat.

Local Temperature

Our findings show that the effect of local temper-

ature on decomposition can be highly variable

among necromass types and potentially depends on

other factors like humidity, and insect access.

In Milotić and others (2019), dung beetle rich-

ness and abundance are increased with higher

temperatures and decreased with higher precipita-

tion, whereas the dung removal ratio responds the

opposite way. Our result, however, is in line with

an experimental study that observed no local

temperature effects on dung removal and suggests

humidity as a more important factor positively

influencing dung beetles’ activity and preventing

dung from desiccation (Holley and Andrew 2019).

Due to the absence of an additional layer (or skin),

dung is more prone to desiccation, which may

lower microbial decomposition activity, whereas

carrion is covered by a skin that serves as a pro-

tection layer and maintains a moist milieu which is

fundamental for decomposition processes, for

example, by microbial decomposers and fly larvae

(Carter and others 2007).

As expected, carrion decomposed faster with

increasing local temperatures. This might be an

indirect effect of increased microbial activity (Pe-

chal and others 2013) and higher emission rates of
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volatile organic compounds, which enhances the

attraction of beetles and other necrophagous in-

sects. Further, temperature increases insect activity

and metabolic rates, which in turn may lead to

overall great insect activity (Uhler and others

2021), and higher necrophagous insect abundances

and feeding rates at carcasses (Barton and Bump

2019; von Hoermann and others 2018). These

findings corroborate several other studies, where

carrion decomposed faster in sunlit habitats, com-

pared to shaded or forested sites due to higher

temperatures (Sharanowski and others 2008;

Shean and others 1993). Nevertheless, warm and

dry climatic conditions may also slow the carrion

decomposition by desiccation (Parmenter and

MacMahon 2009).

Elevation

We assume that the ideal temperature–precipita-

tion ratio for efficient dung decomposition in our

temperate study region is best represented at mid-

elevations, considering decreasing temperatures

and increasing precipitation along an elevational

gradient. This is supported by Milotić and others

(2019), where dung removal was reduced at higher

temperatures, but higher precipitation favored the

breakdown process. Taken together that local

temperature had no effect on dung decomposition,

and elevation only a marginal effect, we suggest

that since climate change may not lead to increas-

ing temperatures in all regions, it may potentially

result in changes in precipitation that could impact

dung decomposition processes. However, precipi-

tation forecasts are often uncertain and site specific.

Hence, to test for precipitation effects a broad-scale

study across Europe would be needed to get reliable

results. Moreover, the most commonly observed

pattern for biodiversity along elevational gradients

is a unimodal curve (Rahbek 2005), which was also

reported for dung beetle abundance (Gebert and

others 2020) and richness (Herzog and others

2013). Furthermore, soil microbial diversity (Shen

and others 2015) and copro-/necrophagous beetle

abundance and diversity are often negatively cor-

related with elevation (Martı́n-Piera and Lobo

1993), which would explain reduced decomposi-

tion at elevations above 700 m. Increasing tem-

peratures due to climate change, however, are

likely to cause a shift of dung beetles to upper

elevational ranges (Menéndez and others 2014),

which could potentially result in higher dung re-

moval rates at upper elevations.

Since we found that flying and large ground-

dwelling insects did not play a significant role in

dung decay, we speculate that the diversity and

richness of other soil-inhabiting detritivores may

peak at medium elevations. Earthworms, for in-

stance, account for up to 50% of dung decompo-

sition (Holter 1979), and their diversity and

abundance tend to be higher with increasing lati-

tude and in temperate regions, respectively (Phil-

lips and others 2019). Furthermore, Collembolans

(springtails) contribute considerably to the

decomposition processes (Wang and others 2009)

and were found to reach highest abundance at

medium elevation in a mountain study in China

(study sites were located between 3800 and

5000 m a.s.l.) (Jing and others 2005). Conse-

quently, in future investigations earthworms and

other soil-arthropods should be evaluated as an

important component of the invertebrate necro-

biome as well. Interestingly, in the presence of in-

sects, decomposition at low elevations was slowed

down, while at higher elevations decomposition

happened faster. Assuming that dung resources

become rare at higher elevations, it is likely that

decomposers at higher elevations colonize and

decompose this rare and valuable resource faster

than on lower altitudes. Interactions where the

main effects were not significant, however, should

be handled with caution. An interaction of insects

and climate has also been observed for the

decomposition of another necromass type, namely

deadwood (Seibold and others 2021). The under-

lying processes of this interaction in deadwood,

however, are not transferable to dung, where the

mechanisms behind this interaction are still un-

known.

Carrion decomposition responded positively to

increasing elevation, although temperature was

lower at higher elevation study sites, indicating

that temperature was not the driving factor for

decomposition along the elevational gradient. Our

findings are contrary to the results of other studies

where carrion decomposition did either not directly

respond to temperature changes along elevation

(Farwig and others 2014) or was slower with

increasing elevation (De Jong and Chadwick 1999;

Richards and Goff 1997).

At lower temperatures, body size of dung and

carrion-feeding beetles was found to be smaller

than on warmer sites and lower altitudes (Farwig

and others 2014; Herzog and others 2013), which

might influence the decomposition process as re-

ported by Farwig and others (2014). Lower tem-

perature (and associated slowing microbial activity;

Pechal and others 2013) and reduced larger beetle

abundance at higher elevations provide plausible
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explanations of slower decomposition processes at

higher altitudes.

Small carrion exposed at lower altitudes is more

prone to negative desiccation effects on associated

microbes (Crippen and others 2015), and con-

strained insect larval growth (Bass 1997). Despite

the presence of potentially larger carrion-feeding

beetles, higher temperatures, and the increased risk

of desiccation at lower altitudes, we found signifi-

cantly faster carrion decomposition at higher ele-

vations.

The complex interplay of ecological variables (for

example, vegetation, microclimate, forest stands)

leads to elevational effects on decomposition (De

Jong and Chadwick 1999). Thus, we assume that at

a macroclimatic scale there are other factors than

temperature affecting decomposition along the

elevational gradient in our study, such as the par-

ticipation of edaphic invertebrates or the moisture

regime dictating microorganisms’ activity.

Elevation reflects climatic conditions on a

broader temporal and spatial scale, compared to

local temperature variation, which may explain the

different decomposition patterns among these two

variables. Our study, hence, suggests disentangling

elevational and local temperature effects in future

decomposition studies.

Insects

Although exclusion or delayed access of insects

leads to substantial reduction in decay and the

subsequent insect population size and community

composition (Lee and Wall 2006; Pechal and others

2014), in our study, only carrion decay, not dung

decomposition, was strongly influenced by insects.

In general, dung decomposition happens rather

slowly compared to carrion decomposition, due to

the complexity of the substrate and the absence of a

skin, that keeps moisture higher in carrion (Carter

and others 2007). While carrion, besides microor-

ganisms, is mainly decomposed by carrion-feeding

beetles and flies (Merritt and De Jong 2015), dung

serves as a resource for a wide variety of inverte-

brates. Along with dung beetles and flies, soil-in-

habiting invertebrates are major contributors to

necromass decomposition processes (Holter 1979;

Wang and others 2009). These invertebrates were

not excluded by our cages. Therefore, it is likely

that dung breakdown in both dung pats was

equally mediated by soil-inhabiting invertebrates,

particularly earthworms, rather than by flying or

ground-dwelling insects; even though the removal

efficiency of earthworms is lower than that of dung

beetles (Holter 1979; Rosenlew and Roslin 2008),

emphasizing the important contribution of diverse

detritivore insects for rapid necromass turnover

rates.

Within hours to days, carrion is inhabited by

insects and their larvae, which feed on tissue and

significantly contribute to the biomass loss during

putrefaction and active decay (Benbow and others

2015; Richards and Goff 1997). This is supported by

our large-scale study and the small carrion-exper-

iment, where carrion with insect access lost 40%

more weight compared to caged carrion, which is

comparable with other studies (Barton and Evans

2017; Kočárek 2003; Payne 1965).

Despite cages, 27% of our rats were scavenged,

which highlights the importance of vertebrates in

decomposition processes under real world condi-

tions. Insects and microbes, however, colonize

carcasses within hours to days (Spicka and others

2011), whereas for scavengers it can be challenging

to find this ephemeral resource in a spacious area

before decomposition by insects and microbes has

proceeded too far (Putman 1983). Focusing on in-

sects’ contribution to decomposition processes, we

would recommend the use of cages to avoid

extensive loss of carcasses.

Moreover, the sum of our findings for the

decomposition of dung- and animal-remains on a

large spatial scale highlights the variability of

detritus (E. E. Wilson and Wolkovich 2011) and the

necessity to distinguish between different kinds of

necromass.

CONCLUSION

Our results demonstrate that the ecosystem service

of ‘carrion and dung decomposition’ is rather ro-

bust against land-use intensification on both local

and regional scales in a temperate region. Contrary

to dung, carrion decomposition is strongly affected

by local temperature, macroclimate, and the pres-

ence of flying and ground-dwelling insects. Hence,

climate change and a decline in necrophagous in-

sects could alter nutrient cycling and the self-reg-

ulation of ecosystems through changes in carrion

decomposition. Moreover, different necromass

forms in temperate regions react differently to

global change drivers and the decline in insects and

should be investigated separately.
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Romero-Alcaraz E, Ávila JM. 2000. Effect of elevation and type

of habitat on the abundance and diversity of scarabaeoid dung

beetle (scarabaeoidea) assemblages in a mediterranean area

410 J. Englmeier and others

https://doi.org/10.1890/10-0073.1
https://doi.org/10.1128/AEM.00957-14
https://doi.org/10.1016/j.soilbio.2008.05.021
https://doi.org/10.1016/j.soilbio.2008.05.021
https://doi.org/10.1079/ber2006428
https://doi.org/10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2
https://doi.org/10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2
https://doi.org/10.1111/j.1462-2920.2009.02099.x
https://doi.org/10.1111/j.1462-2920.2009.02099.x
https://doi.org/10.1016/j.biocon.2015.04.016
https://doi.org/10.1016/j.biocon.2015.04.016
https://www.jstor.org/stable/4009084
https://www.jstor.org/stable/4009084
https://doi.org/10.1111/geb.12142
https://doi.org/10.1111/geb.12142
https://doi.org/10.1201/b18819-6
https://doi.org/10.1111/jbi.13452
https://doi.org/10.1016/j.apsoil.2006.05.004
https://doi.org/10.1016/j.apsoil.2006.05.004
https://doi.org/10.1111/j.1461-0248.2004.00606.x
https://doi.org/10.1111/j.1461-0248.2004.00606.x
https://doi.org/10.1890/1051-0761(1998)008[1061:TEOLQA]2.0.CO;2
https://doi.org/10.1890/1051-0761(1998)008[1061:TEOLQA]2.0.CO;2
https://doi.org/10.1890/1051-0761(1998)008[1061:TEOLQA]2.0.CO;2
https://doi.org/10.1016/j.biocon.2008.04.011
https://doi.org/10.1016/j.biocon.2008.04.011
https://doi.org/10.1890/08-0972.1
https://doi.org/10.1890/08-0972.1
https://doi.org/10.1890/ES14-00022.1
https://doi.org/10.1371/journal.pone.0079035
https://doi.org/10.1126/science.aax4851
https://doi.org/10.1126/science.aax4851
https://doi.org/10.1007/s10640-010-9407-0
https://www.R-project.org/
https://doi.org/10.1111/j.1461-0248.2004.00701.x
https://doi.org/10.1111/j.1461-0248.2004.00701.x
https://doi.org/10.1101/2021.03.05.434036
https://doi.org/10.1101/2021.03.05.434036
https://doi.org/10.1093/jmedent/34.3.328
https://doi.org/10.1093/jmedent/34.3.328


from southern iberian peninsula. Zoological Studies

39(4):351–359.

Rosenlew H, Roslin T. 2008. Habitat fragmentation and the

functional efficiency of temperate dung beetles. Oikos

117(11):1659–1666. https://doi.org/10.1111/j.1600-0706.200

8.16904.x.

Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo

R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A,

Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL,

Sykes MT, Walker BH, Walker M, Wall DH. 2000. Global

biodiversity scenarios for the year 2100. Science (new York,

N.y.) 287(5459):1770–1774. https://doi.org/10.1126/science.

287.5459.1770.

Sánchez-Bayo F, Wyckhuys KA. 2019. Worldwide decline of the

entomofauna: A review of its drivers. Biological Conservation

232:8–27. https://doi.org/10.1016/j.biocon.2019.01.020.

Seibold S, Gossner MM, Simons NK, Blüthgen N, Müller J,
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