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Abstract—The Object Constraint Language (OCL) is a formal
specification language in model-based systems and software engi-
neering. It defines complex rules and constraints for model-based
system design and verification. Constructing an OCL constraint
requires expertise not only in OCL syntax but also in meta-model
information, which can hinder its application in the practical
industrial scenario despite its broad usage. Recently, generative
artificial intelligence has demonstrated remarkable performance
in code and text generation. This work discusses the generation
of OCL constraints from natural language specifications using
large language models (LLMs). Given that the automotive and
aviation industries are major consumers of model-based engi-
neering, the use of commercial LLMs raises concerns about
data privacy. Therefore, we propose to employ open-source and
locally deployed LLMs for OCL generation tasks. In this work,
we collected a set of meta-models and OCL constraints, which
were syntactically validated to ensure the quality of the OCL
dataset. Synthetic natural language specifications were generated
and used in the dataset for model fine-tuning. Additionally, we
designed a retrieval-augmented approach to incorporate meta-
model information during LLM fine-tuning and OCL generation.
The proposed fine-tuning and OCL generation approach has
been experimented with the state-of-the-art open-source LLM,
Llama 3 8B. The locally fine-tuned and deployed language model
achieved comparable syntactic accuracy and a higher semantic
similarity score for OCL generation compared to the cutting-
edge commercial models, GPT-4 Turbo and Gemini 1.5 Pro. The
usability of the fine-tuned model has been demonstrated for OCL
generation in the context of automotive resource allocation.

I. INTRODUCTION

Model-Based Systems Engineering (MBSE) has been
widely promoted in complex system design, particularly in
the aviation and automotive industries. It leverages formal
models for information presentation, providing systematic
approaches for requirements management, system analysis,
design, validation, and verification. In MBSE, formal models
are typically created using modeling tools and languages
such as the Eclipse Modeling Framework (EMF) [1], Uni-
fied Modeling Language (UML) [2], and Systems Modeling
Language (SysML) [3]. Although models can express building
blocks and basic rules for system design, complex constraints,
especially logical ones, cannot be simply specified. Therefore,
the Object Constraint Language (OCL) [4] has been introduced
as a complement to models for constraint definition.

OCL is a declarative language that supports models con-
forming to the MetaObject Facility Specification (MOF) [5],

F. Pan, V. Zolfaghari, L. Wen, N. Petrovic, J. Lin, A. Knoll are with
Robotics, Artificial Intelligence and Real-Time Systems, School of Computa-
tion, Information and Technology, Technical University of Munich, Munich,
Germany. {panf, zov, wenl, pne, jianjie.lin, knoll}@in.tum.de

Large Language Model

Pre-processing

<Meta-model file> <Specification><Prompt>

<OCL constraint>Syntax/Semantic
Check

MBSE
Process

A client should have at least
one account.

Context Client 
inv: self.accounts -> size() > 0

FIG. 1: OCL constraint generation via LLMs

including EMF, UML, and SysML models. The MOF stan-
dard describes a meta-modeling methodology where meta-
models provide abstract information, including rules, meta-
types, and properties, needed for creating a system. Semantic
models of concrete systems are referred to as instance models,
which are instantiated from meta-models. OCL constraints are
typically constructed based on meta-models and applied to
model instances. They can be employed for instance model
verification [6], information queries [7], and the definition of
design space exploration problems [8]. An OCL constraint
typically consists of a context and an invariant. The context in
OCL specifies to which type of model components the con-
straint applies, while the invariant defines the constraint rules,
typically in first-order logic. Due to the close relationship
between OCL and models, writing OCL constraints requires
expertise in both system modeling and OCL grammar, which
strongly burdens the application of OCL in MBSE for complex
systems, despite its wide and reliable usage.

Currently, artificial intelligence (AI) has been frequently
discussed for generative tasks. In particular, with the de-
velopment of transformer-based neural networks [9], large
language models (LLMs) have demonstrated their capability to
generate text and code based on user input. FIG. 1 illustrates a



potential process of LLM-enabled OCL constraint generation
from natural language specification. The input of LLM consists
of prompts, meta-model information and natural language
specifications. OCL is not a standalone language. It only
becomes meaningful when connected to model elements. Since
standard text-based language models have limited performance
in directly handling model files, a preprocessing step is
necessary to parse and extract model information as textual
descriptions. Using LLMs, the OCL constraint, based on the
input meta-model and reflecting the input specification, can
be generated automatically. We propose performing checks
against the syntax and semantics of the generated OCL.
Afterwards, the generated OCL can be integrated into MBSE
processes for system analysis and design.

This study investigate on LLM-based OCL constraint gener-
ation. While LLMs are natively powerful due to their training
on massive data, they often face compatibility issues with
specific downstream tasks, such as OCL generation. Given that
the automotive and aviation industries are major consumers of
model-based engineering, the use of commercial LLMs raises
concerns about data privacy. To address these challenges, we
propose to utilize and fine-tune an open-source and locally
deployable pre-trained LLM for OCL generation. In this work,
the state-of-the-art Llama 3 8B [10] has been selected as proof-
of-concept. We gathered a set of meta-models and OCL con-
straints, ensuring their quality through syntactic validation. To
create a complete dataset for LLM fine-tuning, we generated
synthetic natural language specifications using the cutting-
edge commercial LLM, Generative Pre-trained Transformer-
4 (GPT-4) Turbo [11]. During LLM fine-tuning and OCL
generation, information in model files was presented as textual
description in the domain-specific language, PlantUML [12].
We further designed a retrieval-augmented approach to in-
corporate meta-model information, preventing context length
issues and out-of-memory errors due to limited local hard-
ware. OCL generation is a non-deterministic task. Therefore,
for model evaluation, we implemented a syntax checker to
validate grammatical correctness and utilized embedding-level
Euclidean distance and cosine similarity for semantic evalua-
tion of the generated OCL constraints. Our locally fine-tuned
and deployed language model shows comparable syntactic
accuracy and achieves a higher semantic similarity score for
OCL generation compared to GPT-4 Turbo and Gemini 1.5
Pro [13]. We further showcased the fine-tuned model for
generating OCL constraints in a practical automotive scenario.

II. RELATED WORK

Our research topics draws on different directions ranging
from traditional natural language processing method for OCL
generation to LLM-based approaches. Dataset collection for
OCL generation has also been discussed as another important
aspect. In addition, we also mention the relation of this paper
to our previous works in order to emphasize the practical
importance of its outcome.

Before the advent of machine learning models, OCL gener-
ation was primarily achieved through model transformations.

Bajwa et al. [14] introduced a framework for OCL generation
based on natural language specifications. They utilized the
Semantic Business Vocabulary and Rules (SBVR) to express
natural language text into a structured description. Model-
to-model transformation has been used for the generation
of OCL from structured text. Salemi et al. [15] followed a
similar approach, extending the transformation from SBVR to
OCL with additional mapping rules. These traditional methods
rely heavily on the implemented transformation rules, making
them effective in predefined domains. However, they require
thorough implementation of the transformation process.

As generative AI demonstrates its competence in code
generation tasks [16], researchers are exploring its potential for
OCL generation. Abukhalaf et al. [17] investigated different
prompt designs for OCL generation for UML models using
OpenAI’s Codex (based on GPT-3). They found that including
model information enhances the validity score of generated
OCL constraints. Similarly, Cámara et al. [18] presented an
approach for LLM-based OCL constraint generation starting
from textual descriptions and UML models using ChatGPT.
The authors highlighted the potential of this method in prac-
tical applications across various domains, including airline
systems, education, banking, and automotive industries. In
our recent work [19], we utilized ChatGPT 4 for OCL rule
extraction as part of an automated workflow for design-
ing future-proof vehicular systems. These approaches using
commercial LLMs have demonstrated the feasibility of OCL
generation. However, the demonstrations involved relatively
small numbers and sizes of components. Additionally, the use
of commercial LLMs raises data privacy concerns, particularly
in domains such as automotive and aviation, which are key
players in MBSE. Therefore, we aim to discuss the fine-
tuning of open-source and locally deployable LLMs for OCL
generation tasks.

For fine-tuning LLMs for OCL generation, a dataset con-
taining meta-models, OCL constraints, and natural language
specifications is essential. Existing OCL datasets, such as those
from Cabot et al. [20] and Noten et al. [21], include ecore
models and OCL constraints. However, these datasets lack
natural language specifications. The UML dataset collected by
Abukhalaf et al. [17] comprises 15 UML models and 114 pairs
of OCL constraints and specifications. For effective training,
a significantly larger and more complex dataset is required.

In this work, we will collect a dataset containing diverse
meta-models, OCL constraints, and natural language specifi-
cations for fine-tuning and experimenting with large language
models (LLMs). We will discuss how we utilize a locally
deployed open-source LLM to generate OCL constraints.

III. DATASET COLLECTION

Current LLMs have presented decent capability in general
tasks such as text summarization and chat generation. How-
ever, their performance, particularly in open-source LLMs, for
specific tasks including OCL constraint generation, requires
further improvement. Fine-tuning is a supervised learning pro-
cess applied to a pre-trained LLM to enhance its performance
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in specific domains. In any machine learning procedure, the
dataset is the most fundamental element.

Several open-source modeling datasets and projects are
available. However, they often lack natural language speci-
fications or OCL constraints. In this work, we aim to create
a dataset containing models, natural language specifications,
and OCL constraints. The procedure for data collection and
processing is presented in FIG. 2. We utilized the search-
ing approach described in [21] to collect open-source EMF
projects containing both meta-models (.ecore) and OCL files
(.ocl) on GitHub via the GitHub-REST-API. EMF is a tool
provided by Eclipse that primarily works with Ecore meta-
models but can also support UML and SysML models. The
Eclipse tools for UML and SysML are both based on EMF,
allowing for the possibility of extending this dataset with
UML and SysML models using the same data collection
and processing approach. We consider that the corresponding
Ecore file of an OCL file should either have the same file name
or be specified in the import declaration. Currently, we mainly
focus on OCL constraints presented as invariants because the
gathered GitHub projects do not have enough samples of other
constraint types, such as preconditions and postconditions.
We have also removed all invariant names to maintain data
uniformity. The invariant names are used as labels and do not
affect the validity of OCL constraints. A valid OCL invariant
constraint in our dataset consists of a context and a constraint
expression body.

After the initial search and filtering, we collected 276
unique meta-models and 1054 OCL constraints. As mentioned
by [22], the quality of data is more important than quantity
for the LLM fine-tuning. Thus, we further utilized the Eclipse
EMF1 and OCL2 plugins to perform syntactic check on the
collected models and constraints. We consider each model and
constraint that can be correctly loaded in Eclipse as a valid
sample for the dataset. This resulted in 52 meta-models and
369 OCL constraints of different sizes and contexts, which
build up our dataset FIG. 3 presents the complexity of the
models in terms of the number of elements, including classes,
associations, enums, and OCL constraints that apply to these

1https://eclipse.dev/modeling/emf/
2https://projects.eclipse.org/projects/modeling.mdt.ocl
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FIG. 3: Distribution of model elements and constraints in the
Dataset

models. The most of collected models have between 1 and
68 elements, providing a total of 222 constraints. Six models
are more complex, with 314 to 885 elements, and they have
a total of 147 constraints.

Synthetic data for language models have been discussed and
proven to be a successful approach for fine-tuning LLMs [23].
We recognize that state-of-the-art LLMs can generate rea-
sonable natural language specifications based on OCL con-
straints, as OCL, being a declarative language, is easier to
understand than to write. Therefore, we utilized GPT-4 Turbo
to generate natural language specifications based on OCL
constraints through a dedicated prompt involving one-shot
learning (Listing 1).

LISTING 1: Prompt for natural language specification genera-
tion via one-shot learning
You are given a json file contains OCL (Object

Constraint Language) constraint.
Your task is to generate natural language

instruction that corresponds to this
constraint.

You should use information from both model and
OCL during generation.

You should return a JSON file with OCL and
specification.

The resulting JSON should look like:
{
OCL: // description of OCL constraint how it

was in the initial JSON,
specification: // natural language

instruction (should be generated by you
and correspond to OCL)

}
Example:
Input:
{
OCL: context Human inv: age > 0

}
Output:
{
OCL: context Human inv: age > 0
specification: Age of a human should be a

positive value.



TABLE I: Summary of the character length and approximate
token length of dataset entries

Content Length of Characters Length of Tokens (approx.)
min. max. avg. min. max. avg.

puml 26 44100 10279 7 11025 2570
ocl 23 711 99 6 178 25
specification 29 550 99 7 125 25

}

The generated OCL dataset contains a total of 52 meta-
models and 369 natural language specifications along with
their corresponding OCL constraints. As discussed in FIG. 1,
preprocessing of model files is required for leveraging the
model information as textual information to LLMs. We convert
the Ecore models into PlantUML [12] using the plantumlgen
tool3. PlantUML is a domain-specific language originally
designed for generating graphical UML diagrams. It specifies
classes, their attributes, and relationships in the meta-model.
In the dataset, we provide both the PlantUML texts and the
original Ecore files, allowing for the generation of textual
model descriptions in other formats through customized pre-
processing steps. Introducing such preprocessing steps for
model information makes the training and inference proce-
dures independent of specific model formats. The generated
OCL dataset is made publicly available on Huggingface
Huggingface4. Listing 2 presents one data entry sample in
our dataset, where model name represents the name of the
meta-model, with which the Ecore file can be located. puml
contains the model information in PlantUML format, and ocl
and specification present the OCL constraint and its natural
language meaning, respectively.

LISTING 2: Sample of dataset entry
{
"model_name": "catalogue.ecore",
"puml": "class Catalogue {nom : EString}
association Catalogue \"algorithmes 0..*\"

*--> Algorithme",
"ocl": "context Catalogue inv: nom <> null

",
"specification": "The name of any

catalogue must not be null."
}

Table I presents a summary of the character length and
approximate token length of dataset samples consisting of
PlantUML model descriptions, OCL constraints and natural
language specifications. The character length of PlantUML
descriptions ranges from 26 to 44100 with an average length of
10279. The character length for OCLs ranges from 23 to 711
with an average length of 99. The character length for natural
language specifications ranges from 29 to 550 with an average
length of 99. Tokens are the fundamental units of language

3https://gist.github.com/aranega/eca9c8fbbd87b2f9c70317da53676ac6
4https://huggingface.co/datasets/fpan/text-to-ocl-from-ecore

model inputs and outputs. A token can be part of a word and
is assigned a unique identifier, typically a numerical value, by
tokenizers. As different LLMs utilize different tokenizers, the
length of generated tokens can vary. For the approximation of
token length, we roughly consider that one token represents
four characters. In our dataset, the token length of OCL and
specification samples both average around 25, with a minimal
length of less than 10 and a maximal length of less than 200.
For the model information in PlantUML, the token size ranges
from 7 to 11025 with an average value of 2570.

IV. LLM FINE-TUNING AND OCL GENERATION

This work discusses the OCL constraints generation based
on meta-model information and natural language specifica-
tions. We aim to fine-tune an open-source, locally deployed
LLM, Llama 3 8B, for OCL generation to ensure data pri-
vacy and maintain control over sensitive information This
approach is particularly beneficial for industries like aviation
and automotive, where confidentiality is crucial for system
development. The fine-tuning described in this paper is based
on the dataset presented in Section III. We utilize the Low-
Rank Adaptation (LoRA) [24] method for fine-tuning the
target LLM in our experiments. LoRA enables model fine-
tuning on resources with limited computational power by
reducing the number of parameters that need to be adjusted.
In this section, we will discuss our approach to handling long
contexts and introduce the prompts used during model fine-
tuning and OCL generation.

A. Bi-encoder-based Information Retrival for Long Context

LLMs typically have limitation on the input and output
context length. Although the context length is increasing with
the development of the latest generative AI solutions, this
problem persists, especially for locally deployed LLMs with
limited computational power and memory. In MBSE, complex
systems have extensive meta-models, which are challenging to
feed into an LLM for fine-tuning and inference. As presented
in Section III, the maximum length of an input model reaches
around 11k tokens, exceeding the 8k context length supported
by Llama 3. To address this, we propose adopting a Retrieval-
Augmented Generation (RAG) concept for retrieving model
information relevant to LLM fine-tuning and OCL genera-
tion. RAG has been designed for knowledge-intensive NLP
tasks [25]. It involves filtering external knowledge from a large
data source and using it as input for text generation, aiming to
improve the quality of the generated response. In the context of
OCL generation, it is essential to consider that the meta-model
itself provides crucial information, such as class definitions,
attributes, and their associations, which are relevant for OCL
constraint generation.

The proposed method for meta-model information retrieval
has been presented in FIG. 4. The process begins with the
preprocessing of meta-models into textual representations.
We utilize PlantUML format as model textual representation
(Section III). The generated PlantUML texts of each meta-
model are then split into smaller chunks, with each chunk
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representing either one class with its properties, one associ-
ation, or one enumeration. These chunks are compared with
specifications to filter out those with related meanings for fur-
ther fine-tuning and generation. This comparison is performed
using a bi-encoder architecture. We employ embedding models
to generate embeddings for both chunks and specifications.
Embeddings are vectors that represent the meaning of words
and sentences. For this purpose, we use the text-embedding-
3-small model [11] from OpenAI as the bi-encoder. Each
generated embedding vector has a length of 1536. During the
information retrieval process, each specification embedding is
compared against the chunk embeddings of the corresponding
meta-model by calculating their cosine similarity values. The
top k related chunks are then selected as the filtered meta-
model information. Considering the hardware limitation in our
experiment, we set k to 40, meaning the top 40 classes, as-
sociations, and enumerations will be considered related meta-
model input. The retrieved meta-model information, together
with the natural language specification and OCL constraints,
forms the final prompt for LLM fine-tuning. During the OCL
generation, only the model information and natrual language
specification are provided as LLM inputs.

B. Prompt design for fine-tuning and OCL generation

Listing 3 presents the prompt that we craft for fine-tuning
(with OCL constraints inserted at the end of prompt) and
OCL generation (without OCL constraints in the last line).
The design of the prompts for fine-tuning and generation
follows a similar structure to the prompt used for dataset
generation (Listing 1). The prompt starts with an instruction
expressing the goal of generation. This is followed by the
retrieved meta-model information, natural language specifi-
cation, and OCL constraints (included only for model fine-
tuning).

LISTING 3: Prompt example for LLM fine-tuning and OCL
generation
You are given an meta-model with information

about classes, associations and their
attributes.

You are also given a natural language
specification.

Your task is to generate an OCL (Object
Constraint Language) constraint for this
specification and based on the meta-

model.
The meta-model information is:
{{model}}
The natural language specification is:
{{specification}}
The generated OCL constraint is:
{{ocl}}

V. EXPERIMENT

In the experiment, we fine-tuned the pre-trained Llama 3
8B with the collected dataset in Section III. The dataset was
split using an 80-20 rule, resulting in a training set containing
295 samples and a test set containing 74 samples. We utilized
the Transformers API5 to perform Parameter-Efficient Fine-
Tuning using the LoRA method on a single Nvidia A5000
GPU with 24GB of VRAM. The LoRA rank, which denotes
the rank of the low-rank matrix used for adapting the original
weight matrix, was set to 16. This configuration resulted in
around 6 million trainable parameters out of a total of around
8 billion parameters. The LoRA alpha, a scaling weight for
merging LoRA weights with the original model weight, was
set to 32. The LoRA dropout rate, applied during the fine-
tuning process, was set to 0.1. Due to the VRAM limitations
of the GPU, we set the context length to 3000. The model was
trained for 3 epochs.

A. LLM evaluation

The fine-tuned model was compared with state-of-the-art
commercial LLMs, GPT-4 Turbo and Gemini 1.5 Pro, by
assessing the syntactic correctness and semantic similarity of
the generated OCL constraints. Despite the small parameter
size of Llama 3 8B, we successfully enhanced it for OCL
generation through fine-tuning. This enhancement brought the
performance of the fine-tuned model, referred to as Llama
3-OCL in this paper, to a similar level as the commercial
LLMs, GPT-4 Turbo and Gemini 1.5 Pro, in our test set.
The evaluation metrics are presented in Table II and will be
analyzed in the following part.

TABLE II: Model comparison result

LLM Syntactic
Correctness

Cosine
Similarity

Euclidean
Distance

GPT-4 Turbo 76% 0.86 0.47
Gemini 1.5 Pro 70% 0.86 0.45
Llama 3-8B 39% 0.80 0.58
Llama 3-OCL 73% 0.91 0.32

5https://huggingface.co/docs/transformers/en/index



1) Syntactic correctness: The syntactic correctness is a key
evaluation metric for OCL generation, as it directly determines
whether the generated OCL constraints can be read by a
machine and used in further automated MBSE processes, such
as model verification and design space exploration. Validation
of syntactic correctness should be based on the meta-model.
A syntactically correct OCL must not only adhere to the OCL
grammar structure but also use accurate variable names from
the meta-model. We employed the same strategy for syntactic
checking of generated OCL constraints as we did for filtering
valid data in the dataset (Section III). The generated OCL con-
straints were loaded together with their corresponding meta-
model using Eclipse EMF and OCL tools. Any syntactically
incorrect OCL constraint would result in a failure during this
process.

As shown in Table II, GPT-4 Turbo achieved the highest
syntactic correctness rate, with 76% of the generated content
being directly loadable and usable in Eclipse. Gemini 1.5
Pro achieved a syntax accuracy of 70%. In contrast to these
two commercial models, the pre-trained Llama 3-8B showed
unsatisfactory performance, with only 39% syntactic accuracy.
However, after fine-tuning, we successfully increased the syn-
tactic correctness of Llama 3-8B to 73%, which outperforms
Gemini 1.5 Pro and is comparable to GPT-4 Turbo.

2) Semantic similarity: OCL generation can be recognized
as a variant of the machine translation task. The goal is to
translate the constraints during system design into a machine-
processable format, which in our case is OCL, for automated
analysis. Semantic correctness plays an important role in any
translation task. Therefore, we use the semantic similarity be-
tween generated and ground truth OCL constraints as another
indicator of the performance of the LLM for OCL generation.

We calculated the cosine similarity and Euclidean distance
of embeddings of generated and ground truth OCL. Cosine
similarity is measured by the cosine of the angle between
embedding vectors, determining whether these two embed-
dings point in roughly the same direction [26]. A higher
cosine value indicates greater semantic closeness of the texts.
Euclidean distance, a straightforward similarity metric, reflects
the distances between the endpoints of vectors. A lower
Euclidean distance indicates higher similarity.

According to Table II, the OCL constraints generated by
the fine-tuned model have the highest similarity to the ground
truth, followed by GPT-4 Turbo and Gemini 1.5 Pro. An
obvious semantic improvement can be observed during the
fine-tuning of Llama 3-8B.

B. A practical application in automotive system design

We further demonstrated the effectiveness of the fine-tuned
model by applying it to a practical automotive resource allo-
cation scenario described in our previous work [8]. We used
the Llama 3-OCL for generating OCL constraints based on a
meta-model of a centralized vehicle architecture. The natural
language specifications were derived from the non-functional
requirements of the system design. In this part, we compare
the generated OCL constraints with those manually crafted

in [8]. Additionally, we created a simple instance model to
illustrate how system validation can be performed using OCL
constraints. The demonstration was conducted using Eclipse,
with EMF and OCL plugins.

The meta-model of the target vehicle system is presented in
FIG. 5. It describes an abstract automotive resource allocation
scenario on a centralized vehicle platform. This platform in-
cludes resources such as CPU, RAM, and other related devices
necessary for executing vehicle applications. Isolated virtual
machines (VMs) should be created to enable the coexistence of
applications with different safety levels on the same physical
platform.

Designing a concrete automotive system involves various
requirements and design specifications, such as resource avail-
ability, application coexistence/conflict, safety aspects, and
platform-related configurations. We selected five represen-
tative specifications and generated the corresponding OCL
constraints using the fine-tuned Llama 3-OCL, following the
proposed workflow presented in FIG. 4. The generated OCL
constraints were then compared with those written by human
experts. The natural language specifications, generated, and
human-written OCL constraints are presented in Table III.
All OCL constraints were found to be both syntactically and
semantically correct.

Notably, the generated and human-written OCLs exhibit
different coding styles. The generated constraints omitted the
names for invariants, as these were removed from our dataset.
This omission is purely a labeling issue and does not affect
the OCL constraints themselves. Additionally, the generated
constraints provide detailed information in the body of the
OCL expressions, while the human-written ones are more
compact. For example, in the OCL constraints from the third
specification, both OCLs use the same context and operators.
However, the generated OCL explicitly presents all hidden ref-
erences to elements (with self, x representing App instances),
whereas the human-written one omits such details. Since
OCL constraints are non-deterministic for a specification, the
generated OCLs may have different contexts and operators
compared to the human-crafted ones. Nonetheless, they all
strictly adhere to the class, attribute, and association names
from the meta-model.

The OCL constraints can be used for instance model vali-
dation and design space exploration. In this demonstration, we
created a customized instance model and introduced a conflict
with the fifth specification (FIG. 6). The concrete automotive
system is instantiated with two VMs, two applications, and one
CPU with four cores. The CPU has the turbo boost feature
activated. Vm0 has a safety level of 1. However, Core0 is
allocated to Vm0, which violates specification 5. We used the
same labels in the generated OCL as in the human-written
OCL. The generated constraints were saved in a separate text-
based .ocl file and used for validating the instance model.
The conflict in specification 5 was successfully detected and
reported in a separate window in Eclipse.



TABLE III: OCL constraints (generated and human written) for automotive resource allocation-related specifications.

Specification Generated OCL constraints by Llama 3-OCL Human written OCL constraints from [8]

1. VM should provide sufficient memory
for applications

context Vm inv:
self.app -> forAll(a:App|
a.ramSize <= self.ramSize)

context Vm inv VmRamSize:
app->collect(ramSize)->sum()
<= ramSize

2. Application should be mapped to VMs
with the respective safety levels.

context App inv:
self.vm->forAll(vm| vm.safetyLevel
= self.safetyLevel)

context App inv AppAndVmSafety:
safetyLevel = vm.safetyLevel

3. Co-location applications should be
mapped on the same VMs.

context App inv:
self.coLocation->
forAll(x| x.vm = self.vm)

context App inv CoLocation:
coLocation->forAll(vm = self.vm)

4. Separate-location applications should be
mapped on different VMs.

context App inv:
self.sepLocation->forAll(p|
p.vm->excludes(self.vm))

context App inv SeparateLocation:
sepLocation->forAll(vm <> self.vm)

5. Cores assigned to safety-critical VMs
(safety > 0) should have disabled the turbo
boost on its CPU.

context Cpu inv:
self.core->forAll(c:Core | c.vm->
exists(v:Vm | v.safetyLevel > 0)
implies not self.turboBoost)

context App inv VmSafetyConfig:
safetyLevel > 0 implies
core.cpu.turboBoost = false

FIG. 5: Meta-model for an automotive resource allocation
scenario on a centralize vehicle platform [8]

VI. CONCLUSION

In this paper, we present a novel data collection, LLM fine-
tuning and OCL generation approach on an open-source and
locally deployable LLM. We successfully fine-tuned the Llama
3 to achieve performance comparable to the state-of-the-art
commercial GPT-4 Turbo for OCL generation. The usability
of the fine-tuned model has been demonstrated for generating
OCL constraints related to automotive resource allocation.

The generated dataset consists of ecore meta-models, OCL
constraints as invariants, and natural language specifications.

 

FIG. 6: Validation of instance model against generated OCL
constraints

All meta-models and OCLs in the dataset were collected from
open-source projects on GitHub. Additionally, we designed
a grammar checker using Eclipse EMF and OCL plugins to
ensure the syntactic correctness of the collected data. Natural
language specifications for OCL constraints represent synthet-
ically generated data resulting from a state-of-the-art com-
mercial LLM (GPT-4 Turbo in our case). During LLM fine-
tuning and OCL generation, we converted the meta-model files
into textual PlantUML format. We also introduced a retrieval-
augmented approach to reduce the input context length while
preserving necessary information for OCL generation. This
approach enables LLM fine-tuning and OCL generation in-



volving large system meta-models on hardware with limited
computational resources. The fine-tuned LLM was compared
with the state-of-the-art GPT-4 Turbo and Gemini 1.5 Pro,
which rank highly on many LLM leaderboards, for OCL
generation. The evaluation considered both the syntax and
semantics of the generated OCL constraints. Our findings
indicate that the fine-tuned Llama 3-OCL outperforms the pre-
trained Llama 3-8B model in both syntax and semantics. It
achieves a syntactic correctness rate that outperforms Gemini
1.5 Pro and is comparable to GPT-4 Turbo, while having the
closest semantic similarity to the ground truth. We further
utilized the fine-tuned model for OCL generation in the
context of automotive design. The generated OCLs have been
successfully used to detect conflicts in a customized instance
model against the design constraints.

For future work, we plan to extend the dataset with a
higher number of constraints and enrich the types of OCL
expressions, including pre- and post-conditions. Additionally,
we will further investigate the semantic evaluation. Currently,
we use similarity as a performance indicator, but we plan
to explore the automated generation of instance models to
create positive and negative test cases for OCL constraint
compliance. Furthermore, as models are often represented as
block diagrams in industry-related scenarios, another aspect
to investigate is OCL rule generation from multi-modal inputs
(visual and language).
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