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We study biased random walks on dynamical percolation on Z
d . We es-

tablish a law of large numbers and an invariance principle for the random
walk using regeneration times. Moreover, we verify that the Einstein rela-
tion holds, and we investigate the speed of the walk as a function of the bias.
While for d = 1 the speed is increasing, we show that, in general, this fails in
dimension d ≥ 2. As our main result, we establish two regimes of parameters,
separated by an explicit critical curve such that the speed is either eventually
strictly increasing or eventually strictly decreasing. This is in sharp contrast
to the biased random walk on a static supercritical percolation cluster where
the speed is known to be eventually zero.

1. Introduction. In this paper we introduce and study biased random walks in dynam-
ically evolving environments. The model of random walks on dynamical percolation was
introduced in [23] by Peres, Stauffer and Steif and has the following description.

Fix a locally finite graph G = (V ,E) and an initial state η ∈ {0,1}E(G) of the edges. For
parameters μ > 0 and p ∈ [0,1], we consider the dynamics (ηt )t≥0 with η0 = η, where each
edge e in the graph is assigned an independent Poisson process of rate μ. If there is a point
of the Poisson process at time t , we refresh the state of e in ηt , that is, we declare e open (and
write ηt (e) = 1) with probability p and closed (and write ηt (e) = 0) with probability 1 − p,
independently of all other edges and previous states of e. We then say an edge e is open at
time t if ηt (e) = 1, and closed otherwise.

From now on, we focus on the case where the underlying graph is Zd with d ≥ 1. We define
a continuous-time random walk (Xt)t≥0 in the environment (ηt )t≥0 with bias parameter λ > 0
as follows: set X0 = 0 and assign a rate 1 Poisson clock to the particle. We also set for λ > 0,

Zλ := eλ + e−λ + 2d − 2.(1.1)

Whenever the clock rings at time t and the random walker is currently at a site x, we choose
one of the neighbours y of x with probability

p(x, x ± ei ) = 1

Zλ

for i ∈ {2, . . . , d},

p(x, x + e1) = eλ

Zλ

, p(x, x − e1) = e−λ

Zλ

.

If ηt ({x, y}) = 1, the random walker moves from x to y, and it stays at x, otherwise. We will
call the process (Xt , ηt )t≥0 a λ-biased random walk on dynamical percolation with parame-
ters μ and p. Throughout this paper we say that an edge e is examined by the walker at time
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t if the clock for the walker rings at time t and the walker chooses the edge e for a possible
jump.

Note that (ηt )t≥0 and (Xt , ηt )t≥0 are Markov processes, while (Xt)t≥0 is not. Moreover,
(ηt )t≥0 has the Bernoulli-p-product measure πp on {0,1}E(Zd ) as its unique invariant distri-
bution, and we assume in the following that η = η0 ∼ πp .

In this paper our focus is on the speed of the first coordinate of the walk as a function of the
bias. The motivation to study this question comes from the two different regimes one observes
in the case of a biased random walk on a static percolation cluster. It was first shown in [8] and
[28] that when p > pc and X is a λ-biased random walk on the infinite percolation cluster,
then there exist λ1 < λ2 so that when λ > λ2, the speed is 0, while for λ < λ1, the speed is
strictly positive. A few years later it was proved by [16] that there is a sharp transition, that
is, there exists λ∗ so that for all λ > λ∗ the speed is equal to 0, while for λ < λ∗ the speed is
strictly positive. Motivated by these results, in this paper we study the speed in the dynamical
setting, and we establish that, for all choices of the parameters, the speed is always strictly
positive and it satisfies an Einstein relation, as we show in Theorem 1.2 below. Our second
main result concerns the monotonicity of the speed as a function of the bias in dimensions
d ≥ 2 where we observe two different regimes.

Before stating our results, we recall an invariance principle established in [23], Theo-
rem 3.1, in the unbiased case. Unless otherwise stated, our probability measure is taking
averages not only over the walk but over the environment as well.

THEOREM 1.1 ([23], Theorem 3.1). For d ≥ 1, μ > 0, p ∈ (0,1) and λ = 0, there exists
σ ∈ (0,∞) so that (

Xkt√
k

)
t∈[0,1]

(d)→ (σBt )t∈[0,1]

in D[0,1] as k → ∞, where (Bt )t≥0 is a standard Brownian motion.

We now present our first result on the speed of the biased random walk (Xt)t≥0 for fixed
environment parameters μ > 0 and p ∈ (0,1).

THEOREM 1.2. Let d ≥ 1, and let (Xt , ηt )t≥0 be a λ-biased random walk on dynamical
percolation on Z

d with parameters μ > 0 and p ∈ (0,1). Then for all λ > 0, there exists
v(λ) = vμ,p(λ) such that almost surely

(1.2) lim
t→∞

Xt

t
= (

v(λ),0, . . . ,0
)
.

Moreover, the function λ 	→ v(λ) is strictly positive for all λ > 0, continuously differentiable
and satisfies

lim
λ→0

v′(λ) = σ 2,(1.3)

where σ is as in Theorem 1.1.

The last statement in the theorem above is known as Einstein relation. Moreover, as we
will see in Proposition 3.2, an invariance principle also holds in the biased case, and the proof
follows along the same lines as the proof of Theorem 3.1 in [23].

When d = 1, using the obvious coupling between two walks with different bias parameters,
it is immediate to see that the speed is always monotone increasing in the bias, and in fact,
in Section 4.1 we also establish that in d = 1 the speed is strictly increasing as a function
of the bias. It is thus natural to ask what happens for d ≥ 2. While the speed turns out to
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FIG. 1. Plot of the different regimes in Theorem 1.3 for large λ.

be monotone increasing in λ > 0 for certain regimes of μ > 0 and p ∈ (0,1) in dimensions
d ≥ 2, as we show in Section 5, our main result is an explicit criterion deciding whether the
speed is eventually strictly increasing or decreasing.

THEOREM 1.3 (Monotonicity of the speed for d ≥ 2). Consider the biased random walk
on dynamical percolation on Z

d for d ≥ 2. For all p ∈ (0,1) and μ > 0, there exists some
λ0 = λ0(μ, d) such that the following hold:

(1) The speed v(λ) is strictly increasing for all λ ≥ λ0 provided that μ2 > p(1 − p).
(2) The speed v(λ) is strictly decreasing for all λ ≥ λ0 provided that μ2 < p(1 − p).

REMARK 1.4. Note that this is in contrast to the biased random walk on a static super-
critical percolation cluster, where the speed is known to be zero for large values of λ; see [8,
16, 28]. The criterion for the eventual monotonicity of the speed, identified in Theorem 1.3,
is visualised in Figure 1. Moreover, this suggests different shapes of the speed functions; see
Figure 2.

1.1. Related work. Biased random walks in random media were investigated intensively
over the last years; we refer to [1, 2, 4, 6–9, 11–18, 20, 28] for a nonexhaustive list and to
[5] for a survey. The most prominent examples are biased random walks on Galton–Watson
trees and biased random walks on supercritical percolation clusters; see [20] and [8, 28],
respectively. Our work is, in particular, motivated by the study of biased random walks on
(static) supercritical percolation clusters. This model was introduced in [4]. Due to traps in the
cluster, the speed of the walk is zero for large values of the bias. Simulations indicate that the
speed is a unimodal function of the bias, first increasing until the maximum is achieved and
then decreasing and eventually becoming zero; see [14]. Indeed, in the breakthrough paper
[16], it was shown that there is a critical value separating the positive speed regime from the

FIG. 2. The different pictures show three possible shapes for v(λ) which are in accordance with Theorem 1.3.
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zero speed regime. In the case of Galton–Watson trees with leaves, this phase transition was
known earlier, and there is an explicit formula for the critical value; see [20]. When there are
no “hard traps,” the speed of the biased walk should be strictly positive, and one may ask if it
is increasing as a function of the bias. In the case of a Galton–Watson tree without leaves, it is
conjectured that the speed is indeed an increasing function of the bias. While this conjecture
still remains open, it was proved that the speed is eventually increasing; see [6] and [1]. The
same argument as in [6] gives that for biased random walk among uniformly elliptic i.i.d.
conductances, the speed is eventually increasing as a function of the bias. However, it was
shown in [7] that for some laws of the conductances, the speed is not increasing for all values
of the bias, that is, there exist λ1 < λ2 such that v(λ1) > v(λ2).

In the presence of hard traps, a central limit theorem is expected to hold for small values
of the bias in a strict subset of the positive speed regime. This was proved for biased random
walk on supercritical percolation clusters in [28] and [8] and for random walks on Galton–
Watson trees with leaves in [20]. For other models such results have been established, for
example, in [18] and [11]. In an environment without hard traps, there are examples where a
central limit theorem holds for all values of the bias; see, for instance, [24, 25]. In our case
this also turns out to be true; see Proposition 3.2.

The literature on (unbiased) random walks in time-dependent random environments is too
vast to give a review. We just point to two papers which are relevant in our setup, namely, [3,
10]; see also the references therein. Unbiased random walks on dynamical percolation have
been studied in particular in terms of their mixing times; see [19, 21–23, 26].

1.2. Overview of proof ideas. The proof of the first part of Theorem 1.2 follows by using
a suitably defined sequence of regeneration times (τi), that is, a sequence of random times
such that the evolution of the walk and the environment between [τi, τi+1] is independent
for different choices of i. A key property of the regeneration times that we define is that
their distribution only depends on the parameter μ, but not on the bias parameter λ and the
percolation parameter p. Using these regeneration times and a law of large numbers, we get
the existence of the speed. Moreover, we find an expression for the speed in terms of an
infinite series, which allows to give a simple expression for its derivative; see Lemma 3.5. In
particular, the speed is strictly increasing for all λ sufficiently small.

We now give an overview of the main ideas behind the proof of our main result, Theo-
rem 1.3, giving a necessary and sufficient condition for the speed to be eventually in λ strictly
increasing or decreasing. There are two main ingredients. First, in Proposition 4.1 we obtain
an asymptotic expression for the speed which is valid for all bias parameters λ sufficiently
large. Next, in Lemma 4.3 we give an asymptotic bound on the derivative of the speed for
large λ. The proof of Theorem 1.3 is a direct consequence of these two results.

In order to prove Proposition 4.1, we start with a detailed analysis of the speed in the one-
dimensional case. In order to analyse the case d ≥ 2, we rely on the regeneration times and
compare the first coordinate of the walk with a time-changed one-dimensional walk in a suit-
ably defined evolving environment. To be more precise, we construct a coupling which keeps
the first coordinates of the two walks together until the second time that the d-dimensional
walk jumps in a direction other than e1.

In order to prove Lemma 4.3, we rely on a comparison between walkers with different bias
parameters using marked Poisson point processes. A key task is to develop an asymptotic
expression for the derivative of the speed on the scale e−λ, with the constants only depending
on μ and p.

1.3. Organisation. In Section 2 we define our sequence of regeneration times that will
be used in the rest of the paper. In Section 3 we prove Theorem 1.2. In Section 4 we prove
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Theorem 1.3, and we also study the one-dimensional case in Section 4.1 where we establish
the strict monotonicity of the speed for all values of λ. Finally, in Section 5 we prove that the
speed in d ≥ 2 is strictly increasing when μ is sufficiently large or p is sufficiently close to 1.

1.4. Open problems. We finish this section by stating a couple of open questions. The
first question concerns the monotonicity of the speed for general directions of the drift.

QUESTION 1.5. Consider the situation where the bias of the random walk in dynamical
percolation on Z

d for d ≥ 2 is not along one of the axes ±ei with some i ∈ {1, . . . , d}. In
analogy to Theorem 1.3, is there an explicit criterion to decide whether the speed is eventually
monotone increasing in λ?

The second open question concerns the monotonicity of the speed along the critical curve
established in Theorem 1.3.

QUESTION 1.6. For μ2 = p(1 − p), is the speed eventually monotone increasing in
λ > 0?

The last open question concerns the case whether an eventually monotone increasing speed
implies that the speed is monotone in λ > 0.

QUESTION 1.7. Is there a choice of parameters μ > 0 and p ∈ (0,1) with μ2 > p(1−p)

such that λ 	→ v(λ) is not monotone increasing in λ > 0?

2. Regeneration times for the biased random walk. Throughout the paper we write
P

p,μ for the probability measure corresponding to dynamical percolation with parameters μ

and p. For λ ≥ 0, we write Pλ for the semidirect product of Pp,μ with the law of the λ-biased
random walk starting at the origin. We write Eλ for the expectation with respect to Pλ.

In order to prove Theorem 1.2, we need to define a sequence of regeneration times for the
random walk on dynamical percolation. A similar definition of regeneration times was used
by Peres, Stauffer and Steif in [23]. Here we use the definition given in [19], which works
for general underlying graphs and was used in [19] to compare mixing and hitting times
for random walks on dynamical percolation in terms of the respective quantities for the static
graph. For the biased random walk on Z

d , we have the following construction following [19],
Section 3.

We fix an enumeration (ei)i∈N of the edges in E according to an arbitrary rule. Then for
each edge ei , we create an infinite number of copies denoted ei,1, ei,2, . . . . We now define a
process (It )t≥0, where for every t ≥ 0, It is a set containing copies of edges that we refer to
as the infected set.1 Let I0 = ∅. Suppose that, for some t ≥ 0, the Poisson clock associated
with the random walk (Xt)t≥0 rings and that the walker examines the edge ei for some i ∈ N.
If no copy of ei is contained in It− , we set

(2.1) It := It− ∪ {ei,1}.
Otherwise, we add to It the copy ei,j of ei with the smallest index j such that ei,j /∈ It− .

Next, for all t ≥ 0, we assign the lexicographic ordering � to the edges in It using the
ordering of the edges of E, that is, for ei,j , ek,l ∈ It , we have

(2.2) ei,j � ek,l ⇔ (i ≤ k) ∨ (
(i = k) ∧ (j ≤ l)

)
.

1Note that in [19] the infected set can contain also the original edges.
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FIG. 3. Visualisation of the dynamical percolation cluster and the infected set It . The edges in red on the left
correspond to open edges. In the right picture, blue edges correspond to closed edges, which are infected at time
t , red edges correspond to open edges that have a copy in It and dotted red edges correspond to open edges that
do not have a copy in It .

Further, let (Nt )t≥0 be a Poisson process with time dependent intensity μ|It |. Whenever
a clock of this process rings at time t , we choose an index uniformly at random from
{1, . . . , |It |} and remove the copy of the edge with this index in It according to the order-
ing �. Moreover, if the picked copy is of the form ei,1 for some i ∈ N, we refresh the state of
the edge ei in the environment ηt , that is, we set ηt (ei) = 1 with probability p, and ηt (ei) = 0,
otherwise.

For all edges ej with ej,1 /∈ It , we use independent rate μ Poisson clocks to determine
when the state of the edge in (ηt )t≥0 is refreshed. Note that with this construction (Xt , ηt )t≥0
has indeed the correct transition rates; see Figure 3 for an illustration.

Recall that we start from η0 ∼ πp , X0 = 0 and that we set I0 = ∅. Let τ0 := 0. For every
i ∈ N, we set

(2.3) τi+1 := inf
{
t > τi : It = ∅ and It ′ �= ∅ for some t ′ ∈ (τi, t)

}
.

Let N0 := N ∪ {0}, and note that the times (τi)i∈N0 are indeed regeneration times for the
process (Xt)t≥0, that is, (τi − τi−1)i≥1 are i.i.d., and the random walk increments (Xτi

−
Xτi−1)i≥1 are i.i.d.

REMARK 2.1. Let us stress that the law of (τi)i∈N0 only depends on the parameter μ

and not on λ or p. Further, in contrast to many standard constructions of regeneration times,
we have here the advantage that the regeneration times are also finite in the case λ = 0.

Observe that the process (|It |)t≥0 is a continuous-time birth-and-death chain on N0 with
transition rates q(i − 1, i) = 1 and q(i, i − 1) = μi for all i ∈ N. The following lemma is the
content of [19], Lemma 3.5.

LEMMA 2.2. For all p ∈ (0,1), for all λ > 0 and for all μ > 1, the increments (τi −
τi−1)i∈N are i.i.d., have exponential tails and satisfy Eλ[τ1] = e1/μ.

Therefore, with a slight abuse of notation, we will write P instead of Pλ when considering
events involving only the regeneration times. For every t ≥ 0, we let Ua(t) be the number of
attempted jumps of the walker X up to time t , which follows the Poisson distribution with
parameter t . We have the following result on Ua(τ1).
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LEMMA 2.3. For every μ > 0 and p ∈ (0,1), there exists a positive constant cμ satisfy-
ing cμ → ∞ as μ → ∞ so that, for all m ≥ 2,

P
(
Ua(τ1) ≥ m

) ≤ e−cμm.

PROOF. The fact that the random variable Ua(τ1) has exponential tails is an immediate
consequence of Lemma 2.2 and the exponential concentration of a Poisson random variable
around its mean. It remains to show that we can choose cμ such that cμ → ∞ as μ → ∞.
Let μ > 1. Recall the birth and death chain (|It |)t≥0, and let (Sk)k≥0 with S0 = 0 denote its
jump chain. Further, let

(2.4) τ̃0 := inf{n ≥ 1 : Sn = 0}
be the first return time of (Sk)k≥0 to the origin, and observe that 2Ua(τ1) = τ̃0. Note that
the process (|It |)t≥0 is dominated from above by a biased random walk on {0,1, . . . } with
transition rates q(i, i − 1) = μ and q(i − 1, i) = 1 for all i ∈ N. Hence, we get for all θ > 0
that the process (Mk)k∈N, defined by

Mk := eθSk · f (θ)k−1

with f (θ) := (μ + 1)/(eθ + e−θμ), is a super-martingale. Since almost surely M1 = eθ and
τ̃0 has exponential tails, we can apply the optional stopping theorem together with Fatou’s
lemma to obtain

eθ = E[M1] ≥ E[Mτ̃0] = E
[
exp(θSτ̃0)f (θ)τ̃0−1] = E

[(
f (θ)

)τ̃0−1]
for all θ > 0. Take θ̃ = log logμ for μ > 0 sufficiently large such that f (θ̃) ≥ 1. Then we get
that for all m ≥ 2 by Markov’s inequality

(2.5) P
(
Ua(τ1) ≥ m

) = P(τ̃0 − 1 ≥ 2m − 1) ≤ E[(f (θ̃))τ̃0−1]
f (θ̃)2m−1

≤ eθ̃f (θ̃)−(2m−1).

Since f (θ̃) ≥ 1
2 logμ for all μ > 0 sufficiently large, we conclude. �

3. Speed and Einstein relation. We will now show Theorem 1.2 in two steps. First, we
prove in Proposition 3.1 a law of large numbers for the biased random walk on dynamical per-
colation. Then in Proposition 3.2, we prove an invariance principle. Both proofs use similar
arguments to [23], Theorem 3.1. In Proposition 3.7 we show that the speed in the e1-direction
is strictly positive.

PROPOSITION 3.1. Recall the sequence of regeneration times (τi)i∈N from (2.3). Then
Pλ-almost surely,

(3.1) lim
t→∞

Xt

t
= (

v(λ),0, . . . ,0
) = Eλ[Xτ1]

E[τ1] ,

and, writing (Xt)t≥0 = (X1
t , . . . ,X

d
t )t≥0, we also have

(3.2) lim
t→∞Eλ

[
X1

t

t

]
= Eλ[X1

τ1
]

E[τ1] .

PROOF. We first show that there exists a positive constant C (depending on μ) so that,
for all λ > 0,

Eλ

[‖Xτ1‖1
] ≤ C.(3.3)
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Recall that, for every t ≥ 0, we write Ua(t) for the total number of times that a copy of an
edge was added to the infected set during the time interval [0, t]. Then

‖Xτ1‖1 ≤ Ua(τ1).

By Lemma 2.3 we get that Ua(τ1) has exponential tails, and hence this proves (3.3).
Since the increments (Xτi

− Xτi−1) are i.i.d. and (3.3) holds, we can apply the strong law
of large numbers to obtain that almost surely

(3.4) lim
k→∞

Xτk

k
= lim

k→∞
1

k

k∑
i=1

(Xτi
− Xτi−1) = Eλ[Xτ1].

To prove a law of large numbers for (Xt)t≥0, for every t ≥ 0 writing k = k(t) = �t/E[τ1]�,
we get

Xt

t
= Xt − XkE[τ1]

t
+ XkE[τ1] − Xτk

t
+ Xτk

t
.

It now follows that the first fraction on the right-hand side above converges to 0 as t → ∞
almost surely. Using that τk/k → E[τ1] as k → ∞ almost surely, it follows easily that the
second fraction on the right-hand side above converges to 0 almost surely. Finally, using
(3.4), we get that the third fraction converges to Eλ[Xτ1]/E[τ1] almost surely as t → ∞, and
this concludes the proof of the almost-sure convergence. To show (3.2), note that ‖Xt/t‖1 ≤
Ua(t)/t and (Ua(t)/t)t≥0 is bounded in L2(Pλ), implying that (‖Xt/t‖1)t≥0 is bounded in
L2(Pλ) and in particular uniformly integrable. �

At this point, let us state some consequences of Proposition 3.1.
The next proposition follows in exactly the same way as the proof of Theorem 3.1 in [23]

when λ = 0. The only difference from [23] is the definition of the regeneration times, but
the way they are used for the invariance principle is the same as in [23]. We give a sketch of
the proof, as we need the expression for the diffusivity of the Brownian motion in order to
establish the Einstein relation in Lemma 3.5.

PROPOSITION 3.2. The first component (X1
t )t≥0 of the biased random walk (Xt)t≥0 =

((X1
t , . . . ,X

d
t ))t≥0 on dynamical percolation satisfies an invariance principle

(3.5)
(

X1
kt − v(λ)kt√

k

)
t∈[0,1]

(d)→ (σBt)t∈[0,1]

in D[0,1] as k → ∞, where (Bt )t≥0 denotes a standard Brownian motion and σ 2 =
σ 2(d,μ,p,λ) = Varλ(X1

τ1
)(E[τ1])−1.

SKETCH OF THE PROOF. Since the arguments are analogous to the ones in Theorem 3.1
in [23], apart from a centering due to the presence of the bias, we will only outline the key
steps of the proof. By Lemma 2.2 and a similar tightness argument as in Theorem 4.1 of [27],
it suffices to consider the convergence in (3.5) only for t = 1. Since (τn)n∈N is a sequence of
regeneration times, we have that, as n → ∞,

(3.6)
X1

τn
− v(λ)nE[τ1]√
nVar(X1

τ1
)

(d)→ N ,

where N is standard normal random variable. Next, we define

(3.7) �(k) := max{� ∈N : τ� ≤ k}
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to be the index of the last regeneration time before k. A standard renewal argument implies
that the ratio �(k)/k converges almost surely to E[τ1]−1. We write now

(3.8)
X1

k − v(λ)k√
k

= X1
k − X1

τ�(k)√
k

+ X1
τ�(k)

− v(λ)τ�(k)√
k

+ v(λ)(τ�(k) − k)√
k

.

For all 0 < s < t , we write Ua[s, t] for the number of copies of edges added to the infected
set between times s and t . Note that Ua[s, t] is a Poisson random variable of parameter t − s.
Then

(3.9)
∣∣X1

k − X1
τ�(k)

∣∣ ≤ Ua[τ�(k), τ�(k)+1].
Recall from Lemma 2.2 that the regeneration times have exponential tails and, in particular,
finite variance. Using equation (4.6) in [27] for the second statement, we see

(3.10)
k − τ�(k)√

k

(d)→ 0 and
τ�(k)+1 − τ�(k)√

k

(d)→ 0 for k → ∞.

Hence, we get from (3.9) and (3.10) that the first and third terms on the right-hand side of
(3.8) converge to 0 in probability, and by using (3.6) for the second term, we conclude. �

REMARK 3.3. Since the above proof works for all λ ≥ 0, it follows that the diffusivity
σ 2 for λ = 0 is the same as in Theorem 1.1. Moreover, note that we only prove an annealed in-
variance principle in Proposition 3.2 but conjecture that also a quenched invariance principle
holds; see [3] for sufficiently large values of μ > 0.

Recall from Proposition 3.1 that the speed v(λ) is equal to Eλ[X1
τ1

]/E[τ1] and E[τ1] does
not depend on λ. For every t ≥ 0 we let R(t), respectively L(t), be the number of steps to
the right, respectively to the left, that X1 performed by time t and U(t) be the number of
steps that were carried out by the walker until time t . Let Ra(t), respectively La(t), be the
number of attempted jumps in the e1 direction, respectively in the −e1 direction, of X1 until
time t and recall that Ua(t) is the total number of attempted jumps of X until time t . Note
that Ua(t) − U(t) is the number of jumps that were attempted but not carried out. Writing
R = R(τ1),L = L(τ1) and Ra = Ra(τ1),La = La(τ1) we will show the following.

LEMMA 3.4. We have

(3.11) Eλ

[
X1

τ1

] = E0

[
(R − L)eλ(Ra−La)

(
2d

Zλ

)Ua(τ1)
]
.

PROOF. Define the σ -field Ft generated by the evolution of the percolation, the expo-
nential waiting times of the particle, the decisions of the particle up to time t and the Poisson
process (Nt)t≥0 used in the definition of the regeneration times. By saying “evolution of the
percolation” we include the times of updates of η = (ηs)s≥0 even if the state of the edge does
not change. Consider the Radon–Nikodym derivative dPλ

dP0
|Ft of Pλ with respect to P0 on Ft .

We then have

Mt := dPλ

dP0

∣∣∣∣
Ft

= eλ(Ra(t)−La(t))

(
2d

Zλ

)Ua(t)

.(3.12)

Indeed, conditional on the evolution of the percolation, since it is the same for both measures,
for the λ-biased walk, each attempted jump to the right (resp. to the left) has probability
eλ/Zλ (resp. e−λ/Zλ), while each other direction has probability 1/Zλ. For the unbiased
walk the respective probabilities are all equal to 1/(2d). Note that τ1 is a stopping time with
respect to the filtration (Ft )t≥0, and that (Mt∧τ1)t≥0 is a martingale with respect to (Ft )t≥0.
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Since Pλ is absolutely continuous with respect to P0 on Fτ1 (this follows simply from the
fact that τ1 < ∞ almost surely), (Mt∧τ1)t≥0 is a uniformly integrable martingale. Hence,

Mτ1 = dPλ

dP0

∣∣∣∣
Fτ1

= eλ(Ra−La)

(
2d

Zλ

)Ua(τ1)

,(3.13)

that is, Mτ1 is the Radon–Nikodym derivative of Pλ with respect to P0 on Fτ1 . Hence

Eλ

[
X1

τ1

] = E0

[
X1

τ1
eλ(Ra−La)

(
2d

Zλ

)Ua(τ1)
]

= E0

[
(R − L)eλ(Ra−La)

(
2d

Zλ

)Ua(τ1)
]
,

(3.14)

which gives the result. �

Let

(3.15) p0(ka, �a, k, �,m) := P0
(
(Ra,La) = (ka, �a), (R,L) = (k, �),Ua(τ1) = m

)
,

where P0 denotes the law of the symmetric simple random walk on dynamical percolation.
Then

f (λ) := Eλ

[
X1

τ1

] = E0

[
X1

τ1
eλ(Ra−La)

(
2d

Zλ

)Ua(τ1)
]

= ∑
m∈N

∑
ka+�a≤m
k≤ka,�≤�a

(k − �)eλ(ka−�a)

(
2d

Zλ

)m

p0(ka, �a, k, �,m).(3.16)

LEMMA 3.5. Let μ > 0 and p ∈ (0,1). Then the speed v(λ) is continuously differen-
tiable in λ > 0, and the derivative satisfies

(3.17) v′(λ) = 1

E[τ1] ·
(
Eλ

[
X1

τ1
(Ra − La)

] − eλ − e−λ

Zλ

·Eλ

[
X1

τ1
· Ua(τ1)

])
.

PROOF. We first prove that for all λ > 0,

lim
δ→0

f (λ + δ) − f (λ)

δ

= ∑
m∈N

∑
ka+�a≤m
k≤ka,�≤�a

(k − �)eλ(ka−�a)

(
2d

Zλ

)m(
ka − �a − m · Z′

λ

Zλ

)
p0(ka, �a, k, �,m),

(3.18)

where Z′
λ := eλ − e−λ. The last term equals

Eλ

[
X1

τ1
(Ra − La)

] − eλ − e−λ

Zλ

·Eλ

[
X1

τ1
· Ua(τ1)

]
.

Note that the sum appearing above divided by E[τ1] is equal to the expression for the
derivative given in the statement of the lemma.

A direct calculation shows that
f (λ + δ) − f (λ)

δ
= ∑

m∈N

∑
ka+�a≤m
k≤ka,�≤�a

(k − �)eλ(ka−�a)

(
2d

Zλ

)m

g(δ) · p0(ka, �a, k, �,m),

where the function g is defined via

g(δ) = eδ(ka−�a)Zm
λ − Zm

λ+δ

δZm
λ+δ

.



BIASED RANDOM WALK ON DYNAMICAL PERCOLATION 2061

There exists a positive constant c = cd so that for all λ and δ we have

1 ≥ Zλ

Zλ+δ

≥ 1 − cδ.(3.19)

By taking δ < 1/c, and considering whether δ < 1/m or δ ≥ 1/m, we see that there is a
positive constant C = Cd so that ∣∣g(δ)

∣∣ ≤ Cm.

Indeed, the upper bound on g(δ) follows by a Taylor expansion, while the lower bound fol-
lows using (3.19). Therefore, we obtain that uniformly for δ < 1/c,∣∣∣∣f (λ + δ) − f (λ)

δ

∣∣∣∣ ≤ ∑
m∈

∑
ka+�a≤m
k≤ka,�≤�a

Cm2eλ(ka−�a)

(
2d

Zλ

)m

p0(ka, �a, k, �,m)

= C ·Eλ

[(
Ua(τ1)

)2]
< ∞,

where for the last bound we used Lemma 2.3, since the distribution of Ua(τ1) does not depend
on λ. We can thus apply the dominated convergence theorem which allows us to differentiate
the summands in (3.16) with respect to λ to get (3.18). Applying the dominated convergence
theorem again we see that all the terms appearing in the expression for v′(λ) are continuous
functions in λ, and this finishes the proof of (3.17). �

PROPOSITION 3.6. We have

lim
λ→0

v′(λ) = σ 2,

where σ 2 = E0[(X1
τ1

)2]/E[τ1] is the variance from Theorem 1.1, see (1.3).

PROOF. We see, taking λ → 0 in (3.17), that the statement follows if we show that

(3.20) E0
[
X1

τ1
(Ra − La)

] = E0
[
X2

τ1

]
.

Turning to the proof of (3.20), we first note that (3.20) is equivalent to

(3.21) E0
[
(R − L)(Rsupp − Lsupp)

] = 0,

where we write Rsupp = Ra − R and Lsupp = La − L for the jumps to the right or left re-
spectively that were not carried out (the subscript stands for “suppressed jumps”). Simi-
larly as in the proof of Proposition 3.1, one can show that, with Rsupp(t) = Ra(t) − R(t),
Lsupp(t) = La(t) − L(t),

lim
t→∞

1

t
E0

[(
R(t) − L(t)

)(
Rsupp(t) − Lsupp(t)

)]
= 1

E[τ1]E0
[
(R − L)(Rsupp − Lsupp)

]
.

(3.22)

Hence, it suffices to prove that for all t > 0,

(3.23) E0
[(

R(t) − L(t)
)(

Rsupp(t) − Lsupp(t)
)] = 0.

We will provide a measure-preserving transformation such that R(t) − L(t) is an antisym-
metric function but Rsupp(t) − Lsupp(t) is a symmetric function under this transformation,
implying that (3.23) holds true. Indeed, the law of the environment and the walk under P0
is invariant under time-reversal. More precisely, fix t > 0 and let η̃s = ηt−s , 0 ≤ s ≤ t and
X̃s = Xt−s − Xt , 0 ≤ s ≤ t . Consider all the times and decisions of the particle in the path
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FIG. 4. Visualization of the trajectory of a random walk in dynamical percolation and its time-reversal. The
black dot marks the origin (0,0), while the numbers refer to the order in which jumps are attempted (and per-
formed) in the two processes. A line is dotted when a jump was attempted, but suppressed.

(Xs)0≤s≤t concerning jumps to the right or to the left that were suppressed. Call these times
r1, r2, . . . , rRsupp(t) (for suppressed jumps to the right) and �1, �2, . . . , �Lsupp(t) (for suppressed
jumps to the left) respectively. Note that(

(ηs)0≤s≤t , (Xs)0≤s≤t , (r1, r2, . . . , rRsupp(t)), (�1, �2, . . . , �Lsupp(t))
)

has the same law under P0 as(
(η̃s)0≤s≤t , (X̃s)0≤s≤t , (t − r1, . . . , t − rRsupp(t)), (t − �1, . . . , t − �Lsupp(t))

)
.

Since R(t) − L(t) = Xt = −X̃t and Rsupp(t) and Lsupp(t) are the same for both processes,
see Figure 4, we conclude that (3.23) holds true. �

PROPOSITION 3.7. Fix p ∈ (0,1) and μ > 0. Then the speed function λ 	→ v(λ) is
strictly positive for all λ > 0.

PROOF. We have, using again the time-reversal argument in the proof of Proposition 3.6
for the third equality

Eλ

[
X1

t

] = E0

[(
R(t) − L(t)

)
eλ(Ra(t)−La(t))

(
2d

Zλ

)Ua(t)]

= E0

[(
R(t) − L(t)

)
eλ(R(t)+Rsupp(t)−L(t)−Lsupp(t))

(
2d

Zλ

)Ua(t)]

= E0

[(
L(t) − R(t)

)
eλ(L(t)+Rsupp(t)−R(t)−Lsupp(t))

(
2d

Zλ

)Ua(t)]

= 1

2
E0

[(
R(t) − L(t)

)
eλ(Rsupp(t)−Lsupp(t))

× (
eλ(R(t)−L(t)) − e−λ(R(t)−L(t)))( 2d

Zλ

)Ua(t)]

> 0,

(3.24)

where the last inequality follows since the function x 	→ x(eλx − e−λx) is nonnegative and
strictly positive for x �= 0 and we have P0(R(t) �= L(t)) > 0. (The fourth equality comes from
adding the two previous lines and dividing by 2.) Hence, we know that for fixed t , Eλ[X1

t ] > 0
and we have to show that Eλ[X1

τ1
] > 0. Going back to (3.24),

Eλ

[
X1

t

]
= 1

2
E0

[(
R(t) − L(t)

)
eλ(Rsupp(t)−Lsupp(t))

(
eλ(R(t)−L(t)) − e−λ(R(t)−L(t)))( 2d

Zλ

)Ua(t)]
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= 1

2
Eλ

[(
R(t) − L(t)

)
eλ(Rsupp(t)−Lsupp(t))

(
eλ(R(t)−L(t)) − e−λ(R(t)−L(t)))e−λ(Ra(t)−La(t))],

where we used (3.12) for the last equality. Hence

Eλ

[
X1

t

]
= 1

2
Eλ

[(
R(t) − L(t)

)
e−λ(R(t)−L(t))(eλ(R(t)−L(t)) − e−λ(R(t)−L(t)))]

= 1

2
Eλ

[(
R(t) − L(t)

)(
1 − e−2λ(R(t)−L(t)))].

This implies

(3.25) Eλ

[
X1

t

] = −Eλ

[(
R(t) − L(t)

)
e−2λ(R(t)−L(t))].

We will show that, in the same spirit as in (3.2),

(3.26) lim
t→∞

1

t
Eλ

[(
R(t) − L(t)

)
e−2λ(R(t)−L(t))] = 1

E[τ1]Eλ

[
(R − L)e−2λ(R−L)]

Assuming (3.26), dividing by t in (3.25) and letting t → ∞ gives

Eλ

[
X1

τ1

] = −Eλ

[
(R − L)e−2λ(R−L)] = 1

2
Eλ

[
(R − L)

(
1 − e−2λ(R−L))] > 0,

since the function x 	→ x(1 − e−2λx) is nonnegative and strictly positive for x �= 0 and we
have Pλ(R �= L) > 0. It remains to prove (3.26). We claim that for all t > s we have

(3.27) Eλ

[
e−2λ(R(t)−L(t))|Fs

] = e−2λ(R(s)−L(s))

and defer the proof. Hence, e−2λ(R(t)−L(t)) can act as a Radon–Nikodym derivative. More
precisely, define the probability measure Pλ by

dPλ

dPλ

∣∣∣∣
Ft

= e−2λ(R(t)−L(t)).

Note that, as in the proof of (3.13), for every i, the regeneration time τi is a stopping time
with respect to the filtration (Ft )t≥0, and Pλ is absolutely continuous with respect to Pλ on
Fτi

(recall the beginning of the proof of Lemma 3.4). Hence

dPλ

dPλ

∣∣∣∣
Fτi

= e−2λ(R(τi)−L(τi)).(3.28)

Therefore, taking i = 1 we get

(3.29) Eλ

[
(R − L)e−2λ(R−L)] = Eλ[R − L],

where Eλ is the expectation with respect to Pλ. Using the fact that the (τi)’s are regeneration
times under Pλ and (3.28) immediately yield that the (τi)’s are also regeneration times un-
der Pλ. We can now proceed as in the proof of (3.2), replacing the probability measure Pλ

by Pλ, to get

lim
t→∞

1

t
Eλ

[(
R(t) − L(t)

)
e−2λ(R(t)−L(t))] = lim

t→∞
1

t
Eλ

[
R(t) − L(t)

]
= 1

E[τ1]Eλ[R − L]

= 1

E[τ1]Eλ

[
(R − L)e−2λ(R−L)],
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where we used (3.29) for the last equality. Finally, we prove (3.27). Note that it suffices to
establish the case s = 0 and (X0, η0) = (x, ζ ). Omitting the starting state from the notation
we have

Eλ

[
e−2λ(R(t)−L(t))] = E0

[
e−2λ(R(t)−L(t))eλ(Ra(t)−La(t))

(
2d

Zλ

)Ua(t)]

= E0

[
e−λ(R(t)−L(t))eλ(Rsupp(t)−Lsupp(t))

(
2d

Zλ

)Ua(t)]

= E0

[
eλ(R(t)−L(t))eλ(Rsupp(t)−Lsupp(t))

(
2d

Zλ

)Ua(t)]

= E0

[
eλ(Ra(t)−La(t))

(
2d

Zλ

)Ua(t)]
= 1,

where we again used the time-reversal argument in the proof of Proposition 3.6 for the
second-to-last equality. �

PROOF OF THEOREM 1.2. Theorem 1.2 is now an immediate consequence of Proposi-
tion 3.1, Proposition 3.6, Proposition 3.7 and Lemma 3.5. �

4. Monotonicity of the speed. In this section we prove Theorem 1.3. In order to do so,
we first establish an asymptotic expression for the speed that is valid for large values of the
bias λ. We recall the definition from (1.1) of Zλ = eλ + e−λ + 2d − 2.

PROPOSITION 4.1. For d ≥ 1, let (X,η) be a λ-biased random walk on dynamical per-
colation on Z

d with parameters μ > 0 and p ∈ (0,1). There exists some λ0 = λ0(μ, d) such
that, for all λ > λ0,

v(λ) = μp

1 − p + μ
− (2d − 2)p

(1 − p + μ)2

(
μ2 − p(1 − p)

)
Z−1

λ +O
(
e−2λ)

,

where the implicit constant in O depends on μ and d .

REMARK 4.2. Note that the speed v(λ) converges to μp(1 − p + μ)−1 as λ → ∞ in
agreement with the one-dimensional case, as we will see in Proposition 4.5.

The above proposition proves the monotonicity of v(λ) along arithmetic progressions for
large λ. In order to prove Theorem 1.3, we also need to obtain a control on the derivative of
v(λ) that is valid for large values of λ.

LEMMA 4.3. Let d ≥ 1. Then for all μ > 0 and p ∈ (0,1), there exists λ0 = λ0(μ) and
constants cμ > 0 and Cμ,p ∈ R so that, for all λ ≥ λ0, we have

(4.1)
∣∣v′(λ) − Cμ,p exp(−λ)

∣∣ ≤ cμ exp(−2λ).

We now have all the tools needed in order to conclude the proof of Theorem 1.3. We defer
the proofs of Proposition 4.1 and Lemma 4.3 to Sections 4.2 and 4.3, respectively.

PROOF OF THEOREM 1.3. Using Lemma 4.3, it suffices to study the constant Cμ,p in
(4.1) and show that Cμ,p > 0 when μ2 > p(1 −p) as well as Cμ,p < 0 when μ2 < p(1 −p).
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Since we know that the speed is continuously differentiable by Theorem 1.2, we get that, for
all s > 0 large enough,

(4.2) v(2s) − v(s) =
∫ 2s

s
v′(t)dt = Cμ,p exp(−s) +O

(
exp(−2s)

)
.

Taking now s = λ sufficiently large, we get from Proposition 4.1 that

(4.3) Cμ,p = (2d − 2)p

(1 − p + μ)2

(
μ2 − p(1 − p)

)
,

allowing us to conclude, since we get

v′(λ) = Cμ,pe−λ +O
(
e−2λ)

,

and hence the sign of v′(λ) agrees with the sign of Cμ,p for all λ sufficiently large. �

4.1. Speed for d = 1. In this section we focus on dimension 1, where one can use the
obvious coupling between two random walks with different biases to obtain that the speed
is increasing as a function of the bias. We investigate the limiting speed and the rate of
convergence to the limit for large λ.

In the following proposition, we establish strict monotonicity as well as an explicit form
for the speed in the totally asymmetric biased random walk case, where the random walk
only attempts jumps to the right.

LEMMA 4.4. Let (X,η) be a totally asymmetric biased random walk in dynamical per-
colation on Z with parameters μ and p that attempts a jump to the right at rate 1. Then the
speed v satisfies

v = μp

1 − p + μ
.

PROOF. Suppose X0 = 0 and η0 ∼ π . Let S be the first time that X jumps along the edge
e = {0,1}. Then v = E[S]−1. In order to compute E[S], we use the following recursion:

E[S] = p + (1 − p)

(
1 + 1

μ
+E[S]

)
.

Indeed, at the time of the first attempted jump of the walk the edge e is open with probability
p. Otherwise, the walk has to wait an exponential time with parameter μ until e refreshes,
and when this happens the situation is the same as at time 0. This recursion readily implies

E[S] = 1 − p + μ

μp
,

which gives the result. �

PROPOSITION 4.5 (Monotonicity and asymptotic speed for d = 1). Let (Xt , ηt )t≥0 be a
biased random walk in dynamical percolation on Z with parameters μ and p. Then the speed
function v(λ) from (1.2) is strictly increasing for all λ > 0 and satisfies

(4.4) lim
λ→∞vμ,p(λ) = μp

1 − p + μ

for all choices of p ∈ (0,1) and μ > 0.



2066 ANDRES, GANTERT, SCHMID AND SOUSI

PROOF. We start by arguing that the speed is strictly increasing in λ > 0. We con-
struct a coupling P between a λ1-biased random walk (Xt , ηt )t≥0 and a λ2-biased random
walk (X̃t , η̃t )t≥0 on dynamical percolation on Z with 0 < λ1 < λ2. We take the same en-
vironment for both walks, and we let them attempt jumps in the following way: whenever
the two random walks are at the same location, we couple them by using the same ex-
ponential 1 clocks to determine the jump times and then moving them both to the right
with probability eλ1/(eλ1 + e−λ1), moving X̃ to the right and X to the left with probabil-
ity eλ2/(eλ2 + e−λ2) − eλ1/(eλ1 + e−λ1) and moving them both to the left otherwise. If the
two walks are in different locations, we let them attempt jumps in the common environment
using independent exponential 1 clocks.

Recall the construction of the infected set from Section 2 and the definition of copies of
edges. We define the following modified infected set (I t )t≥0, where for every t ≥ 0, I t is a set
containing copies of edges. Suppose that, for some t ≥ 0, both random walks are at the same
position. If the two random walks examine the same edge ei for some i ∈ N and no copy of
ei is contained in I t− , we set

I t := I t− ∪ {ei,1}.
Otherwise, we add to I t the copy ei,j of ei with the smallest index j such that ei,j /∈ I t− . If
the random walks are at the same position but examine different edges, we add for both the
copies of the edges with the smallest index as above to the modified infected set. When the
two random walks are at different positions, recall that according to the coupling, the two
random walks perform jumps according to independent exponential 1 clocks. Whenever an
edge is examined by one of the two random walks, we add its respective copy to the modified
infected set.

Let (Nt)t≥0 be a Poisson process with time dependent intensity μ|I t |. Whenever a clock
of this process rings at time t , we choose an index uniformly at random from {1, . . . , |I t |} and
remove the copy of the edge with this index in I t according to the ordering � of edges from
Section 2. If the picked copy is of the form ei,1 for some i ∈ N, we also refresh the state of
the edge ei in the common environment ηt for the two walkers; that is, we set ηt (ei) = 1 with
probability p, and ηt (ei) = 0, otherwise. For all edges ej with ej,1 /∈ I t , we use independent
rate μ Poisson clocks to determine when the respective edge is updated in the environment
for the two random walks.

Note that under this coupling P the biased random walks on dynamical percolation
(Xt , ηt )t≥0 and (X̃t , η̃t )t≥0 have marginally the correct law. We define

(4.5) τ := inf
{
t > 0 : I t = ∅ and I t ′ �= ∅ for some t ′ ∈ (0, t)

}
.

Since the process (|I t |)t≥0 is dominated from above by a biased random walk on {0,1, . . . }
with transition rates q(i, i − 1) = μi and q(i − 1, i + 1) = 2 for all i ∈ N, a similar argument
as in Lemma 2.2 (see also the proof of Lemma 2.3) shows that that the random variable τ has
all finite moments. Applying now the same arguments as in the proof of Proposition 3.1, we
get that

(4.6) v(λ1) = E[Xτ ]
E[τ ] and v(λ2) = E[X̃τ ]

E[τ ] ,

where we write E for the expectation with respect to P. Note that P(Xτ ≤ X̃τ ) = 1. Consid-
ering the event that both random walks jump into different directions and the respective edge
copies get removed from the modified infected set before another jump occurs, we also get

P(Xτ < X̃τ ) ≥
(

eλ2

eλ2 + e−λ2
− eλ1

eλ1 + e−λ1

)
·
(

μ

μ + 1

)2
> 0
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as λ1 < λ2. This immediately implies that v(λ1) < v(λ2), hence establishing strict mono-
tonicity.

Next, we investigate the speed when λ → ∞. Let X be a λ-biased walk and let X̃ be a
totally biased random walk as in Lemma 4.4, that is, it only attempts jumps to the right at rate
1. We couple X and X̃ by letting them both jump at the points of a Poisson process P of rate
1. At each jump attempt, we toss an independent coin and with probability eλ/(eλ + e−λ)

they both attempt a jump to the right, while with the complementary probability X attempts
a jump to the left while X̃ attempts a jump to the right. After the first time that they move in
different directions, we couple their environments by using the same rate μ Poisson process
for the removal of copies of edges of their respective infected sets. In this way, both infected
sets always have the same size and the two walks have the same regeneration times. Letting
τ1 be their first regeneration time, we then have

∣∣v(λ) − v
∣∣ = 1

E[τ1] · ∣∣E[Xτ1] −E[X̃τ1]
∣∣.

By the description of the coupling above, it is clear that given |P(τ1)|, the number of at-
tempted jumps to the left by X has the binomial distribution with parameters |P(τ1)| and
e−λ/(eλ + e−λ). Using the above coupling we see that Xτ1 is equal to X̃τ1 on the event that
there is no left jump by time τ1. We then get by a union bound

∣∣E[Xτ1] −E[X̃τ1]
∣∣ ≤ E

[∣∣P(τ1)
∣∣2 · e−λ

eλ + e−λ

]
≤ C · exp(−2λ),(4.7)

where C is a positive constant using also Lemma 2.3. We can thus deduce that as λ → ∞ the
above tends to 0, and hence we conclude that

(4.8) lim
λ→∞v(λ) = v̄,

where v̄ is given in Lemma 4.4. �

4.2. Asymptotic expression for the speed. In this section we prove Proposition 4.1. In
order to do so, we first construct a coupling between (X,η) and a one-dimensional biased
random walk Y in a suitably defined evolving environment ξ on Z for which we can calculate
an asymptotic expression for the speed using Lemma 4.4 and a time change.

In the following and with a slight abuse of notation, we identify Z with the e1-axis of Zd ,
and for x ∈ Z, we write x + e1 for the edge (x, x + 1).

The purpose of this coupling is to allow us to transfer the dynamics on Z
d to a one-

dimensional system, which we can study explicitly. More precisely, we consider three Poisson
processes P1, P2, P3. The processes P1 and P2 correspond to jumps in the ±e1 direction,
while P3 corresponds to all other directions of Zd . At the points of P1 and P2, we let the
two processes X and Y evolve together, and we update their respective infected sets together.
We stop the coupling either at the first jump in direction −e1 or the second time a point in
P3 occurs and continue the processes afterward according to the correct marginal transition
rates; see below. Our key observation is that as long as the edge to the right of the walker’s
current location has not been examined before, we can identify the state of the edge on Z

with the same e1-coordinate. We make this rigorous in the last part of the definition below.

DEFINITION 4.6 (Coupling between (X,η) and (Y, ξ)). Let μ̃ = μ + p(2d − 2)Z−1
λ ,

where we recall that Zλ = eλ + e−λ + 2d − 2. Both X and Y start from 0. We let the environ-
ment η evolve according to dynamical percolation on Z

d with parameters μ, p and η0 ∼ πp .
The edges to the left of 0 in the environment ξ update according to dynamical percolation
with parameters μ̃, p.
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Let P1, P2 and P3 be three independent Poisson processes of parameters eλZ−1
λ , e−λZ−1

λ

and (2d − 2)Z−1
λ , respectively. At the points of P1 (resp., P2), both X and Y attempt a jump

to the right (resp., to the left), and we add the corresponding edges (more precisely, the lowest
numbered copies not in the infected sets as in Definition 2.3) to their respective infected sets.
Then we say that the two (copies of) edges are a match. At the points of P3, the walk X

attempts a jump in one of the 2d − 2 directions other than e1 and −e1 chosen uniformly at
random, and we add the corresponding copy of the edge to the infected set of X only.

We now explain how to remove copies of edges from the infected sets: we pick a copy
from the infected set of X to be removed in the same way as in Definition 2.3 (each copy is
being picked at rate μ), and we also remove its match if it exists from the infected set of Y .
We then update the corresponding edges in η and ξ in the same way as in Definition 2.3 (i.e.,
if the copies are of the form ei,1 for some i).

Below whenever we say that we stop the coupling, afterward we continue (X,η) and (Y, ξ)

by letting them attempt jumps at the points of P1, P2 and P3 (the latter only for X) and each
edge copy of Y in its infected set refreshes also at the points of an additional Poisson process
P̃ of parameter p(2d − 2)Z−1

λ . If a copy in the infected set of Y refreshes according to this
Poisson process, then we do not remove it from the infected set. However, if that copy is of
the form ei,1 for some i, then we update the state of its corresponding edge in ξ .

Let (Ti) be the jump times of P3, and let S be the first point of P2. We stop the coupling
at time S ∧ T2. For every edge e, we let E(e) be the first time that the state of e is examined
by Y and C(e) be the first time the edge e is crossed by Y . When E(e) < T1 ∧ S, then for
times s ∈ [E(e),C(e) ∧ T1 ∧ S], we set ξs(e) = ηs(e). At time T1, the walk X attempts a
jump in one of the 2d − 2 directions other than e1 and −e1 chosen uniformly at random. For
each edge e such that E(e) ∈ (T1, T2 ∧ S) and for times t ∈ [E(e),C(e) ∧ T2 ∧ S], we set
ξt (e) = ηt (Xt + e1). During the time interval (C(e) ∧ T2 ∧ S,T2 ∧ S), we refresh the edge
e in the environment ξ also at the points of an additional independent Poisson process P̃ of
parameter p(2d − 2)Z−1

λ . As already mentioned above, we stress again that these updates do
not affect the infected set.

We let (τi) be the successive times at which the infected set of X becomes equal to the
empty set. Then by the definition of the process Y , we also see that the infected set of Y

becomes empty at times τi for all i.

REMARK 4.7. We note that in the above coupling, once an edge e has been examined by
Y , it then refreshes at rate μ̃. Indeed, up until the first point of P3, it updates at rate μ. At time
T1, if the edge that X examines is open, which happens with probability p, then the state of e

in ξ is updated to the state of XT1 + e1, which is distributed according to Ber(p), as XT1 + e1

had not been examined before. Hence, the rate at which e updates is p · (2d − 2)Z−1
λ , where

the factor p comes from the probability that the edge that X examines at time T1 is open and
(2d −2)Z−1

λ is the rate of P3. Using the sequence (τi), we see that the speed vY of Y is given
by

vY (λ) = E[Yτ1]
E[τ1] .

LEMMA 4.8. For all p ∈ (0,1) and μ > 0, there exist constants λ0, c > 0, depending
only on μ, such that, for all λ ≥ λ0,

(4.9)
∣∣vY (λ) − v(λ)

∣∣ ≤ c exp(−2λ).

PROOF. Recall that S is the first point of P2 and (Ti) are the points of P3. Let A be the
event that the coupling stops before time τ1, that is,

A = {S < τ1} ∪ {T2 < τ1}.
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Then we have ∣∣vY (λ) − v(λ)
∣∣ ≤ 1

E[τ1] ·E[∣∣X1
τ1

− Yτ1

∣∣1(A)
]
.

We write Ua(t) for the total number of points of P1 ∪P2 ∪P3 that have arrived before time
t . Then we obtain

E
[∣∣X1

τ1
− Yτ1

∣∣1(A)
] ≤ 2E

[
1(A) · Ua(τ1)

]
.

A key observation is that τ1 and Ua(τ1) only depend on P1 ∪P2 ∪P3 and the evolution of the
size of the infected set, which increases at the points of the Poisson process P1 ∪P2 ∪P3 and
decreases at an independent rate μ. This together with the thinning property of Poisson pro-
cesses yields that, conditional on Ua(τ1), the numbers of points in P2[0, τ1] and P3[0, τ1] fol-
low the binomial distribution with parameters (Ua(τ1), e

−λZ−1
λ ) and (Ua(τ1), (2d − 2)Z−1

λ ),
respectively. Using this we then get

E
[
1(A) · Ua(τ1)

] ≤ E
[(
Ua(τ1)

)2 · e−λZ−1
λ + (

Ua(τ1)
)3 · (2d − 2)2Z−2

λ

]
.

Since Z−1
λ = O(e−λ) and by Lemma 2.3 there exists a positive constant Cμ such that

E[(Ua(τ1))
3] ≤ Cμ < ∞, it follows that

E
[
1(A) · Ua(τ1)

] ≤O
(
e−2λ)

with the implicit constants depending only on μ, and hence this concludes the proof. �

PROOF OF PROPOSITION 4.1. Let (Ỹ , ξ̃ ) be a biased random walk on dynamical perco-
lation on Z with parameters μ̃, p that jumps to the right at rate eλZ−1

λ and to the left at rate
e−λZ−1

λ . Then the speed of Y is the same as the speed of Ỹ , since to determine it we only
need to know the state of every edge after the first time the walk examines it.

Let δ = δ(λ) = (2d − 2)Z−1
λ , and consider the process

(Y t , ξ t ) := (Ỹt (1−δ)−1, ξt (1−δ)−1), ∀t ≥ 0.

Then (Y , ξ) is a one-dimensional biased random walk in dynamical percolation with param-
eters (p,μ,λ), where

μ := μ + pδ

1 − δ
.

Intuitively, μ comes from adding an additional update rate pδ to the edges, and afterward
applying a time-change by a factor of (1 − δ) to the process. We write vY for the speed of
Y . Let Z be a random walk on dynamical percolation on Z with parameters μ, p that only
attempts jumps to the right at rate 1. Using Lemma 4.4, we get that the speed of Z is given
by

vZ = μp

1 − p + μ
.

By (4.7) we also get that for a positive constant C′ we have∣∣∣∣ μp

1 − p + μ
− vY (λ)

∣∣∣∣ ≤ C′ exp(−2λ).

Using now that vY (λ) = (1 − δ)vY (λ) and a straightforward calculation, we finally con-
clude that for λ sufficiently large

(4.10) vY (λ) = μp

1 − p + μ
− (2d − 2)p

(1 − p + μ)2

(
μ2 − p(1 − p)

)
Z−1

λ +O
(
e−2λ)

,

where the implicit constant in O depends only on μ and d . This together with Lemma 4.8
finishes the proof. �
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4.3. Asymptotic derivative of the speed. In this section we prove Lemma 4.3 by con-
structing a coupling between two walks with different bias parameters.

Let ε > 0, and let (Xλ
t , ηt )t≥0 and (Xλ+ε

t , ηt )t≥0 be λ-biased (resp., (λ+ε)-biased) random
walks on dynamical percolation in Z

d with parameters μ and p.

DEFINITION 4.9 (Coupling between Xλ and Xλ+ε). We start both walks from 0, and
we let them both attempt jumps at the points of a Poisson process P = (Pt )t≥0 of rate 1.
We also let both environments evolve together until the first very bad point, defined below,
and afterward, we couple the environments by using the same rate μ Poisson process for the
removal of copies of edges of their respective infected sets.

Whenever a clock of P rings indicating the jump attempt at time t of both walkers, we
sample a random variable U uniformly on [0,1] and proceed as follows:

(1) If U < (2d −2)/Zλ+ε , then we let both walkers attempt a jump into one of the 2d −2
directions different from e1 and −e1 chosen uniformly at random.

(2) If U ∈ [(2d − 2)/Zλ+ε, (2d − 2)/Zλ], then we let the Xλ walk attempt a jump into
one of the 2d − 2 directions different from e1 and −e1 chosen uniformly at random, while
we let the Xλ+ε walk attempt a jump in the e1 direction.

(3) If U ∈ [(2d − 2)/Zλ, (2d − 2)/Zλ + e−λ−ε/Zλ+ε], then we let both walkers attempt
a jump in the −e1 direction.

(4) If U ∈ [(2d − 2)/Zλ + e−λ−ε/Zλ+ε,1 − eλ/Zλ], then we let the Xλ walk attempt a
jump in the −e1 direction, while we let the Xλ+ε walk attempt a jump in the e1 direction.

(5) If U > 1 − eλ/Zλ, then we let both walkers attempt a jump in the e1 direction.

In the following we let (Ti)i∈N be the points of the Poisson process (Pt )t≥0, and we colour
each point independently according to the outcome of the corresponding random variable
U in the above coupling. We say that a point is good if the corresponding random variable
U satisfies (5), we say that a point is bad if U satisfies (1) or (3) and we say that a point
is very bad if U satisfies (2) or (4). Notice that good, bad and very bad points are again
independent Poisson point processes of intensities qg := eλZ−1

λ for good points, qb := (2d −
2 + e−λ−ε)/Zλ+ε for bad points and

qvb := eλ+ε

Zλ+ε

− eλ

Zλ

> 0(4.11)

for very bad points. Note that there exist constants c1, c2, c3 > 0 and λ0 > 0 so that, for all
ε ∈ (0,1) and λ ≥ λ0, we get

(4.12)
∣∣qb − (2d − 2) exp(−λ − ε)

∣∣ ≤ c1 exp(−2λ)

and

(4.13)
∣∣qvb − ε(2d − 2) exp(−λ)

∣∣ ≤ c2ε exp(−2λ) + c3ε
2 exp(−λ).

Moreover, note that the above coupling between the two random walkers ensures that they
stay together until the first very bad point and both infected sets have the same size at all
times. Therefore, both processes have the same sequence of regeneration times. We let τ1 be
their first regeneration time.

We write Ua(t) for the number of points of the Poisson process P that have arrived by time
t . Let G be the event that there is no bad point up to time τ1, and for every � ∈ N, let V� be
the event that T� is the unique very bad point of Ua(τ1). Let R be the event that at the first
very bad point the walk Xλ attempts a move in one of 2d − 2 directions.

We write for all x ∈ Z
d

(4.14) |x|1 := x · e1.
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We now explain the strategy of the proof. First, we express the speed as

v(λ) = lim
ε→0

E[τ1]−1(
E

[∣∣Xλ+ε
τ1

∣∣
1 − ∣∣Xλ

τ1

∣∣
1

] +E
[∣∣Xλ

τ1

∣∣
1

])
.

We note that for each ε, the quantity E[|Xλ+ε
τ1

|1 − |Xλ
τ1

|1] is nonzero if and only if there is
a very bad point by time τ1. In the next lemma, we show that, conditional on Ua(τ1) and on
having a unique very bad point and no bad points up to time τ1, the expectation of |Xλ+ε

τ1
|1

is independent of λ and ε. We also prove an analogous statement for |Xλ
τ1

|1. Hence, the
dependence on ε comes from the probability of the event of having a very bad point by time
τ1.

LEMMA 4.10. There exists a positive constant c = cd so that the following holds. Let
p ∈ (0,1) and μ > 0. For all k ∈ N and � ≤ k, we have

P
(
Gc |Ua(τ1) = k,V�

) ≤ (k − 1) · qb and

P
(
Rc |Ua(τ1) = k,V�,G

) ≤ ce−λ.
(4.15)

Moreover, there exist functions f = fμ,p , g = gμ,p : N×N → R+, which do not depend on
λ or ε, such that

E
[∣∣Xλ+ε

τ1

∣∣
1 |Ua(τ1) = k,V�,G

] = f (k, �) and E
[∣∣Xλ

τ1

∣∣
1 |Ua(τ1) = k,V�,G,R

] = g(k, �).

PROOF. Since the distribution of Ua(τ1) is independent of the colouring of the Poisson
process P , it follows that, conditionally on Ua(τ1) = k and V�, every point Ti for i ≤ k with
i �= � has probability qb of being a bad point. Using this together with a union bound, we
deduce

P
(
Gc |Ua(τ1) = k,V�

) ≤ (k − 1) · qb.

Using again the independence between Ua(τ1) and the colouring, we obtain

P
(
Rc |Ua(τ1) = k,V�,G

) = 1 − eλZ−1
λ − (2d − 2)Z−1

λ − e−λ−εZ−1
λ+ε

qvb
≤ ce−λ

for a suitable choice of c, completing the proof of (4.15). Recall that (Ti) are the points of P .
We notice that, on the event {Ua(τ1) = k} ∩ V� ∩ G ∩ R, we can write

∣∣Xλ+ε
τ1

∣∣
1 =

k∑
i=1

1
(
ηTi

(
Xλ+ε

Ti− ,Xλ+ε
Ti− + e1

) = 1
)

and

∣∣Xλ
τ1

∣∣
1 =

k∑
i=1
i �=�

1
(
ηTi

(
Xλ

Ti−,Xλ
Ti− + e1

) = 1
)
.

Using the independence between the Poisson process P = (Ti) and the colouring of each
point as good, bad or very bad, together with the definition of the regeneration time τ1, which
is independent of the colouring of the process P (because even if we examine the same edge
multiple times we still add a copy of it to the infected set), we see that

L
(
(T1, . . . , Tk), η |Ua(τ1) = k,V�,G,R

) = L
(
(T1, . . . , Tk), η |Ua(τ1) = k

)
.

In particular, this shows that the conditional law of ((T1, . . . , Tk), η), given Ua(τ1) =
k,V�,G,R, is independent of λ. We note that, under this conditioning, Xλ+ε becomes a
walk that only attempts jumps to the right at the times T1, . . . , Tk and Xλ attempts jumps to
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the right at the times Ti for i ≤ k and i �= � and attempts a jump to one of 2d − 2 directions at
time T�. Therefore, we deduce that there exist functions f = fμ,p and g = gμ,p independent
of λ and ε so that

E
[∣∣Xλ+ε

τ1

∣∣
1 |G,Ua(τ1) = k,V�

] = f (k, �)

and

E
[∣∣Xλ

τ1

∣∣
1 |G,Ua(τ1) = k,V�,R

] = g(k, �),

and this concludes the proof. �

We are now ready to prove Lemma 4.3.

PROOF OF LEMMA 4.3. We start the proof by recalling from Proposition 3.1 that

v(λ + ε) − v(λ) = E[τ1]−1
E

[∣∣Xλ+ε
τ1

∣∣
1 − ∣∣Xλ

τ1

∣∣
1

]
.

Let Aε be the event that there exists a very bad point before τ1. Then we have

(4.16) v(λ + ε) − v(λ) = E[τ1]−1
E

[∣∣Xλ+ε
τ1

∣∣
1 − ∣∣Xλ

τ1

∣∣
1|Aε

]
P(Aε),

noting that on the complement of the event Aε , the positions of the two walkers agree, and
hence the contribution to the expectation vanishes. Recall that Ua(t) stands for the number of
points of the Poisson process P of rate 1 up to time t . Since the assignment of good/bad/very
bad points to the points of the Poisson process is independent of the value of τ1, we get

P(Aε) = E
[
1 − (1 − qvb)

Ua(τ1)
]
.

Since 1 − (1 − qvb)
Ua(τ1) ≤ qvb · Ua(τ1) by the dominated convergence theorem and

L’Hôpital’s rule, recalling the approximation of qvb from (4.13), we obtain

lim
ε→0

P(Aε)

ε
= E

[
lim
ε→0

1

ε

(
1 − (

1 − ε(2d − 2) exp(−λ) +O
(
εe−2λ + ε2))Ua(τ1)

)]

= (2d − 2)e−λ ·E[
Ua(τ1)

] +O
(
e−2λ)

,

(4.17)

where the implicit constant only depends on μ and d . We next prove that there exists a
positive constant C̃μ,p,d depending only on μ, p and d such that

lim
ε→0

E
[∣∣Xλ+ε

τ1

∣∣
1 − ∣∣Xλ

τ1

∣∣
1|Aε

] = C̃μ,p,d +O
(
e−λ)

,

where the implicit constant in O depends only on μ and d . We define Ãε to be the event that
there is a unique very bad point up to time τ1. First, we note that

P(Ãε|Aε) = E[Ua(τ1) · qvb · (1 − qvb)
Ua(τ1)−1]

E[1 − (1 − qvb)Ua(τ1)] ,(4.18)

and using similar arguments as above, we get that

lim
ε→0

P(Ãε|Aε) = 1.(4.19)

We now have

(4.20) E
[∣∣Xλ+ε

τ1

∣∣
1|Aε

] = E
[∣∣Xλ+ε

τ1

∣∣
1|Ãε

]
P(Ãε|Aε) +E

[∣∣Xλ+ε
τ1

∣∣
1|Ãc

ε ∩ Aε

]
P

(
Ãc

ε|Aε

)
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and similarly for Xλ
τ1

. As |Xλ+ε
τ1

| ≤ Ua(τ1), we get similarly as above

lim sup
ε→0

E
[∣∣Xλ+ε

τ1

∣∣
1|Ãc

ε ∩ Aε

]
≤ lim

ε→0
E

[
Ua(τ1)|Ãc

ε ∩ Aε

]

= lim
ε→0

E[Ua(τ1)(1 − (1 − qvb)
Ua(τ1) − Ua(τ1)qvb(1 − qvb)

Ua(τ1)−1)]
E[1 − (1 − qvb)Ua(τ1) − Ua(τ1)qvb(1 − qvb)Ua(τ1)−1] .

Applying the dominated convergence theorem and L’Hôpital’s rule and using that qvb → 0
as ε → 0, we obtain that this last limit is equal to

lim
ε→0

E[Ua(τ1)(1 − (1 − qvb)
Ua(τ1) − Ua(τ1)qvb(1 − qvb)

Ua(τ1)−1)]
E[1 − (1 − qvb)Ua(τ1) − Ua(τ1)qvb(1 − qvb)Ua(τ1)−1]

= E[(Ua(τ1))
2(Ua(τ1) − 1)]

E[Ua(τ1)(Ua(τ1) − 1)] .

Since E[Ua(τ1)] > 1 and using that Ua(τ1) has exponential tails by Lemma 2.3 together with
(4.19) gives that the second term appearing in the sum in (4.20) converges to 0 as ε → 0. For
the first expectation appearing on the right-hand side of (4.20), we have

E
[∣∣Xλ+ε

τ1

∣∣
1|Ãε

] = ∑
k

∑
�≤k

E
[∣∣Xλ+ε

τ1

∣∣
1|Ua(τ1) = k,V�

]
P

(
Ua(τ1) = k,V�|Ãε

)
(4.21)

and similarly for Xλ
τ1

. Note that, for any random integrable variable Y and any event H ,

(4.22) E[Y ] = E[Y |H ] + (
E

[
Y |Hc] −E[Y |H ])P(

Hc).
Thus, for each k and � ≤ k, we have

E
[∣∣Xλ+ε

τ1

∣∣
1|Ua(τ1) = k,V�

]
= E

[∣∣Xλ+ε
τ1

∣∣
1|Ua(τ1) = k,V�,G

]
+ (

E
[∣∣Xλ+ε

τ1

∣∣
1|Ua(τ1) = k,V�,G

c]
−E

[∣∣Xλ+ε
τ1

∣∣
1|Ua(τ1) = k,V�,G

])
P

(
Gc|Ua(τ1) = k,V�

)
.

Let us remark that in the case of Xλ we also add the event R to the intersection above. Using
again the obvious bound |Xλ+ε

τ1
|1 ≤ Ua(τ1), all four statements of Lemma 4.10 and equations

(4.12) and (4.13), we get

E
[∣∣Xλ+ε

τ1

∣∣
1|Ua(τ1) = k,V�

] = f (k, �) +O
(
k2 · e−λ)

and

E
[∣∣Xλ

τ1

∣∣
1|Ua(τ1) = k,V�

] = g(k, �) +O
(
k2 · e−λ)

,

where the implicit constants in the terms O above only depend on μ and d . Inserting these
back into (4.21), we deduce

E
[∣∣Xλ+ε

τ1

∣∣
1|Ãε

] = ∑
k

∑
�≤k

(
f (k, �) +O

(
k2 · e−λ))

P
(
Ua(τ1) = k,V�|Ãε

)
(4.23)

and similarly for Xλ. Using again the independence between Ua(τ1) and the colouring, we
have

P
(
Ua(τ1) = k,V�|Ãε

) = P(Ua(τ1) = k) · qvb · (1 − qvb)
k−1

E[Ua(τ1) · qvb · (1 − qvb)Ua(τ1)−1] ,
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and hence since qvb → 0 as ε → 0 by (4.13), we deduce

lim
ε→0

P
(
Ua(τ1) = k,V�|Ãε

) = P(Ua(τ1) = k)

E[Ua(τ1)] .(4.24)

Using again the obvious bound |Xλ+ε
τ1

|1 ≤ Ua(τ1) and hence also that f (k, �) ≤ k, inserting
(4.23) into (4.20) and using the dominated convergence theorem, we can take the limit as
ε → 0 and use (4.19) and (4.24) to obtain

lim
ε→0

E
[∣∣Xλ+ε

τ1

∣∣
1|Aε

] = ∑
k

∑
�≤k

f (k, �) · P(Ua(τ1) = k)

E[Ua(τ1)] +O
(
e−λ · ∑

k

k3 · P(Ua(τ1) = k)

E[Ua(τ1)]
)

= ∑
k

∑
�≤k

f (k, �) · P(Ua(τ1) = k)

E[Ua(τ1)] +O
(
e−λ)

,

where the implicit constant in O only depends on μ and d and where for the last equality we
used that Ua(τ1) has exponential tails by Lemma 2.3 again and hence a finite third moment.
The analogous equality holds for Xλ with f replaced by g. Therefore, these together with
(4.17) and (4.16) imply that

lim
ε→0

v(λ + ε) − v(λ)

ε

= (2d − 2) · E[Ua(τ1)]
E[τ1] · ∑

k

∑
�≤k

(
f (k, �) − g(k, �)

) · P(Ua(τ1) = k)

E[Ua(τ1)] · e−λ +O
(
e−2λ)

.

This now finishes the proof as f and g are functions that only depend on μ and p and not on
λ, while the implicit constant in O depends only on μ and d . �

5. Strict monotonicity of the speed for large μ or p close to 1. As already mentioned
in the Introduction and as we saw in Section 4.1, for d = 1, the function λ 	→ v(λ) is strictly
increasing for any fixed choice of the percolation parameters p ∈ (0,1] and μ > 0 due to a
coupling argument. Let us emphasise that this argument cannot be extended for d ≥ 2, as
Theorem 1.3 demonstrates. However, we identify in the following two regimes of parameters
μ and p in d ≥ 2 dimensions, where the speed is strictly increasing for all λ > 0.

Recall the function f (λ) from (3.16) as well as Zλ from (1.1) and Z′
λ = eλ − e−λ, and p0

from (3.15). For ka, �a, k, � ∈ N0 and m ∈ N, we write

(5.1) fka,�a,k,�,m(λ) := (k − �)eλ(ka−�a)

(
2d

Zλ

)m(
ka − �a − m · Z′

λ

Zλ

)
p0(ka, �a, k, �,m)

and recall from (3.18) that

f ′(λ) = ∑
m∈N

∑
ka+�a≤m
k≤ka,�≤�a

fka,�a,k,�,m(λ).

PROPOSITION 5.1. Fix p ∈ (0,1). There exists some constant μ̃ = μ̃(p) > 0 such that,
for all μ > μ̃, we have that λ 	→ vμ,p(λ) is strictly increasing in λ > 0.

PROOF. It suffices to prove that f ′(λ) is strictly positive for all λ > 0 provided μ is
sufficiently large. For all ka, �a, k, � ∈ N0 and m ≥ 2 using Lemma 2.3 we have

(5.2) p0(ka, �a, k, �,m) ≤ exp(−cμm)



BIASED RANDOM WALK ON DYNAMICAL PERCOLATION 2075

for some constant cμ with cμ → ∞ as μ → ∞. By the construction of the regeneration
time τ1 we get

(5.3) p0(1,0,1,0,1) = p0(0,1,0,1,1) ≥ p · 1

2d
· μ

μ + 1
≥ p

4d
,

for all μ ≥ 1. For every m we let

Am :={
(ka, �a, k, �) ∈ N

4
0 : k ≤ ka and � ≤ �a and ka + �a ≤ m

}
\ {

(m,0, k,0), (0,m,0, �) : k, � ≤ m
}
.

We now get

∑
m≥2

∑
(ka,�a,k,�)∈Am

∣∣fka,�a,k,�,m(λ)
∣∣ ≤ ∑

m≥2

2m6 · eλ(m−1)

(
2d

Zλ

)m

e−cμm

≤ e−λ
∑
m≥2

2m6(2d)me−cμm.

Since cμ → ∞ as μ → ∞, by taking μ sufficiently large we can make the sum above as
small as desired. Using (5.3) and that d ≥ 2 we claim that there exists a positive constant c

such that for all λ > 0

(5.4) f1,0,1,0,1(λ) + f0,1,0,1,1(λ) ≥ ce−λ.

To see this, note that for λ → 0, the left-hand side in (5.4) converges to 2p0(1,0,1,0,1) > 0.
For λ → ∞, the estimate in (5.4) follows from (5.1). This allows to conclude (5.4) using
continuity in λ. We thus deduce that for μ sufficiently large we get for all λ > 0

∑
m≥2

∑
(ka,�a,k,�)∈Am

∣∣fka,�a,k,�,m(λ)
∣∣ ≤ 1

2

(
f1,0,1,0,1(λ) + f0,1,0,1,1(λ)

)
.(5.5)

Taking now into account the summands not contained in Am, note that

(5.6) fm,0,n,0,m(λ) ≥ f0,m,0,n,m(λ)

for all λ > 0 and m ∈N with n ≤ m. Moreover,

(5.7) f0,m,0,n,m(λ) = nme−λm

(
2d

Zλ

)m(
1 + Z′

λ

Zλ

)
p0(0,m,0, n,m) ≥ 0.

In view of (5.5) we obtain that

f ′(λ) ≥ 1

2

(
f1,0,1,0,1(λ) + f0,1,0,1,1(λ)

)
.

Using again (5.3) we get that

f1,0,1,0,1(λ) + f0,1,0,1,1(λ) ≥ 2d

Zλ

· (2d − 2)(eλ + e−λ) + 4

Zλ

· p

4d
> 0

for all λ > 0 and this concludes the proof. �

PROPOSITION 5.2. Fix μ > 0. There exists some constant p̃ = p̃(μ) ∈ (0,1) such that,
for all p ∈ (p̃,1), we have that λ 	→ v(λ) is strictly increasing in λ > 0.



2076 ANDRES, GANTERT, SCHMID AND SOUSI

PROOF. Let p be sufficiently close to 1 so that μ2 > p(1 − p), and let λ0 = λ0(μ, d) be
as in Theorem 1.3. For all λ ≥ λ0, the speed is strictly increasing by Theorem 1.3. Thus, it
remains to show that the speed is strictly increasing for all λ ∈ (0, λ0] for all p close to 1. To
do this, we will prove that v′(λ) > 0 for all such λ.

In this proof we want to emphasise the dependence of the speed on the percolation param-
eter p, so we write v(λ,p) = v(λ). Observe that when p = 1, the speed v′(λ,1) ≥ cd · e−λ

for all λ > 0, where cd is a constant depending on d , noting that v(λ,1) = (eλ − e−λ)Z−1
λ . It

thus suffices to prove that, for p sufficiently close to 1,∣∣v′(λ,p) − v′(λ,1)
∣∣ ≤ cd

2
· e−λ(5.8)

uniformly for all λ ∈ (0, λ0]. Recall the expression for v′(λ,p) from Lemma 3.5. We want to
compare Eλ,p[X1

τ1
(Ra −La)] to Eλ,1[X1

τ1
(Ra −La)] and also Eλ,p[X1

τ1
·Ua(τ1)] to Eλ,1[X1

τ1
·

Ua(τ1)]. To do this, we couple the walks in the two environments by letting them attempt the
same jumps at the times (Ti) of a Poisson process of rate 1 and using the same Poisson
process of rate μ to remove copies of edges from their infected sets. We let τ1 be their first
regeneration time. We now let κ be the index of the first jump time when the walk in the
p-dynamical percolation process attempts a jump along a closed edge. Then up until time
Tκ the two walks are in the same location. Note that κ stochastically dominates a geometric
random variable of parameter 1 − p, because for all s < t and all edges e we have

Pp[e is open at time t | e is open at time s] ≥ p.

Writing Ua(t) for the number of attempted jumps in the interval [0, t], by a union bound we
get

P
(
κ < Ua(τ1)

) ≤ P

(
Ua(τ1) >

1√
1 − p

)
+ P

(
κ <

1√
1 − p

)
≤ Cμ ·

√
1 − p,

where Cμ is a constant depending on μ. Using this and the bound |X1
τ1

| ≤ Ua(τ1) we get∣∣|Eλ,p

[
X1

τ1
(Ra − La)

] −Eλ,1
[
X1

τ1
(Ra − La)

]∣∣ ≤ 2Eλ,p

[(
Ua(τ1)

)21
(
κ < Ua(τ1)

)]
.

By the Cauchy-Schwarz inequality and the exponential tails of Ua(τ1) uniformly in p by
Lemma 2.3, we deduce

Eλ,p

[(
Ua(τ1)

)21
(
κ < Ua(τ1)

)] ≤ C′
μ(1 − p)1/4.

Similarly we can bound the remaining terms appearing in v′(λ). Recalling that λ0 depends
only on μ and d , taking p = p(λ0,μ) sufficiently close to 1, we get (5.8) and this concludes
the proof. �
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