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Abstract 

This paper introduces a deep learning-driven workflow and toolkit, the Structural Embodiment Toolkit 

on the McNeel Grasshopper platform, that supports the conceptual structural design process by 

streamlining form-finding, solid geometry generation, and AI-powered visualisation within a single 

CAD environment. The toolkit equips users with adaptors for incorporating results from established 

form-finding tools such as Combinatorial Equilibrium Modelling (CEM) and Kangaroo Physics, 

facilitating the transformation of the structural skeleton into solid geometries with appropriate cross-

section based on internal forces. Leveraging the transformative potential of deep learning, it allows user-

friendly access to deep learning-based image generation within Grasshopper with concurrent multiple 

control options, including line, depth and semantic segmentation. The toolkit also offers components to 

enhance the conventional render-based visualisation pipeline with the ability to mass-produce for model 

training, embodying a self-reinforcing ecosystem. This streamlined process and toolkit, exemplified 

through a detailed case study to demonstrate improvements in design ideation, communication, and 

collaboration, underscoring the distinctive potential of deep learning in structural design. 

Keywords: Deep learning, graphic statics, parametric design, form-finding, solid geometry generation, visualisation, stable 

diffusion, digital design tool 

1. Introduction 

Deep learning (DL), a subset of machine learning (ML) that employs neural networks, serves as a 
cornerstone for modern artificial intelligence (AI) advancements, encompassing areas such as speech 

processing, computer vision, and natural language processing [1]. Recently, DL applications have begun 

transforming daily life by significantly enhancing efficiency across various sectors. DL has been 

instrumental in improving decision-making, productivity, and overall system performance in industries 

like manufacturing, contributing to greater sustainability [2]. 

In parallel, the Architecture, Engineering, and Construction (AEC) industry is also capitalising on DL's 

potential. Recent attempts include leveraging DL for tasks such as interpreting architects' hand drawings 

to predict design phases [3], using Graph Attention Networks for the detection and analysis of geometric 

primitives in CAD drawings [4], and employing Recurrent Neural Networks to suggest next steps in 

early design stages by learning cognitive sequences in Building Information Modeling (BIM) [3]. 

Specifically, the structural design field is actively exploring DL's capabilities. 
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1.1 Structural Design via Form-finding 

Structural design is the process of creating physical structures that can withstand external forces and 

meet functional requirements. Form-finding is one of the structural design processes that lead to the 

definition of the form of a structure in static equilibrium under given loads and boundary conditions, 

resulting in structurally efficient structures that promote more sustainable use of material. It could be 

both physical and digital.  

1.1.1 Historical Development 

Early pioneers like Antoni Gaudi utilised funicular structures, notably in Sagrada Familia, using rope 

models to simulate tensile forces. Frei Otto's experiments with soap films, Heinz Isler's development of 

shell structures using hanging cloths, and Sergio Musmeci’s experiments with mathematical models 

further advanced form-finding methodologies and paved the way for the development of computational 

form-finding [5].  

Recent developments in digital form-finding, like the introduction of Kangaroo Physics [6],  RhinoVault 
[7], EQlib [8] and Kiwi!3D [9], have enriched the field computational structural design. Commercial 

software such as SOFiSTiK [10], Easy software [11], and the Oasys GSA Suite [12] now feature 

Rhinoceros/Grasshopper interfaces, highlighting the continued integration of computational tools in 

design workflows. In the context of computational form-finding with graphic statics, D’Acunto et al. 

(2019) [13], and Ohlbrock et al. (2020) [14] contributed with a Vector-based 3D Graphic Statics 

framework and Combinatorial Equilibrium Modelling (CEM), respectively. In 2021, Shen et al. 

introduced the Vector-based Graphic Statics (VGS) tool for spatial structure design within the 

Rhino/Grasshopper environment [15].  

1.1.2 Form-finding Enhanced by Machine Learning 

The integration of ML with structural design has evolved through collaborative advancements, each 

contributing uniquely to the field's development. In 2018, Fuhrimann et al. explored machine learning 

for structural form-finding, utilising spatial networks to broaden the understanding of solution spaces 

[16]. This was furthered by de Miguel et al. (2019), who applied variational autoencoders for generating 

structural typologies, albeit without actual form-finding, pointing to areas needing enhancement [17]. In 

2020, Bertagna et al. broadened the scope to include rapid exploration of topological designs, 

particularly for compression-only shell structures, yet left solid geometry generation and visualisation 

processes unaddressed [18]. In 2021, Ochoa et al. present a CAD framework that leverages human and 

machine intelligence to generate and evaluate non-standard structural forms in static equilibrium, using 

CEM, self-organising maps, and gradient-boosted trees for iterative design improvement [19]. In 2022, 

efforts by Guo et al. and Bleker et al. introduced novel approaches: Guo’s team combined natural 

language processing with graphic statics for the form-finding [20], while Bleker automated graph 

modelling using Graph Neural Networks [21], pushing the boundaries further in structural design 

through ML.  

1.1.3 From form-finding to visualisation 

Conceptual structural design goes beyond creating a structural skeleton; it demands accurate 

representation throughout its process. The traditional workflow consists of three primary steps: form-

finding, solid geometry generation, and render-based visualisation (Figure 1). Following form-finding, 

the dimensions of structural members are often undefined, necessitating a next step to transform the 

skeleton into tangible solid geometry. Subsequently, designers manually build detailed site models and 

spend considerable time fine-tuning materials and lighting for visualisation purposes. Image-generating 

AI has emerged as a potential solution to these labour-intensive steps. 
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Figure 1: Conventional render-based workflow exemplified via a canopy design form-found by CEM  

1.2 Image Generating AI as an Alternative for Rendering 

Introduced by OpenAI in 2022, ChatGPT [22] highlighted AI's capabilities in language processing, 

pointing the direction with its large language models (LLMs) for text-to-image models by understanding 

human languages in multi-dimensional vector spaces [23]. DALL-E [24], integrating diffusion models 

with CLIP’s embeddings for image and text [25], showcased advanced image generation, albeit with 

limitations in customisation and ways of access. Midjourney Field [26] and Stable Diffusion Field [27] 

represent the evolution of image generation via diffusion models. Stable Diffusion stands out for its local 

deployment capabilities on consumer-grade GPUs, introducing high-quality, highly customisable image 

generation. 

1.2.1 Control, Customizability and Speed 

ControlNet enhances diffusion models by adding precise guidance with inputs like sketches, semantic 

segmentation or depth maps [28], which is crucial for visualising structural designs with high 

geometrical accuracy. However, controlled GAN-based methods [29] and architectural visualisation 

plugins like ArkoAI [30] and Veras [31] offer limited utility due to their unripe development or cloud-

based limitations. Customisation and speed are vital, with Stable Diffusion models meeting these needs 

to some extent. Yet, their lack of domain specificity led to the development of specialised models 

through methods like fine-tuning. Low-Rank Adaptation (LoRA) emerged as a viable alternative to 

customise models by reducing trainable parameters [32] and becoming more cost and time-efficient as 

the base models’ sizes are growing significantly. For speed, latent consistency models (LCMs) 

streamline the image generation process, offering integration as additional LoRA models for easier 

access to substantially faster generation [33]. 

1.2.2 Stable Diffusion Access 

Scriptively accessing Stable Diffusion ranges from modifying the original codebase to ready-to-use 

scripts like Hugging Face's pipeline. Graphically, ComfyUI [34] offers a node-based user interface (UI) 

for Stable Diffusion. The Stable Diffusion WebUI [35] owns the most prominent user and developer 

community. The Ambrosinus toolkit [36] for Grasshopper functions on the WebUI’s API showcases the 

potential for CAD integration despite current limitations in user-friendliness and the lack of support for 

advanced features such as concurrent multiple ControlNet units. These developments highlight the need 

for further investigation and enhancement in integrating Stable Diffusion into architectural workflows. 

1.3 Motivation 

The conventional structural design workflow in the conceptual phase is limited by the inefficiency of 

frequent tool switching and a lack of integration between form-finding, solid geometry generation, and 

visualisation. This fragmented approach not only prolongs the design process but also diminishes 

productivity and creativity. Despite the abundance of digital tools, especially in Rhino and Grasshopper 
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environments, there's a noticeable gap in creating a seamless workflow that minimises manual labour. 

The advent of AI-based visualisation, particularly through controlled text-to-image models, presents a 

promising avenue to address these challenges. By streamlining the design process within a unified CAD 

environment and harnessing the power of AI for efficient visualisation, there's potential to significantly 

enhance both the speed and quality of conceptual design, reducing time-consuming tasks and fostering 

better design communication. 

2. DL-Enabled Workflow and Toolkit 

 

Figure 2: The proposed DL-enabled workflow intended to be established via the SE Toolkit  

Addressing the research gaps identified in Section 1.3, this paper introduces a workflow aimed at 

enhancing the efficiency of the conceptual structural design phase (Figure 2). Compared to the 

conventional workflow described in Section 1.1.3, this proposed workflow seeks to streamline the 

processes of form-finding, solid geometry generation, and AI visualisation within a single CAD 

environment.  

The Structural Embodiment Toolkit underpins this workflow by providing components in Grasshopper 

designed for modularity, reusability, and robustness to fit seamlessly into various design scenarios. It 

includes adaptors for integrating data from multiple form-finding techniques and tools, generates a solid 

geometry according to the structural analysis, and builds simple site models. For visualisation, the toolkit 

leverages stable diffusion with concurrent multiple ControlNet units for greater geometrical fidelity. In 

addition to that, it also offers components to enhance conventional render-based workflows and enables 

the mass generation of training data, ensuring a smooth transition between traditional and innovative 

design methodologies. 

2.2 Toolkit Development Principles 

The Structural Embodiment Toolkit was developed in C# within the Visual Studio IDE using McNeel's 

official SDK 8.0.23304.9001 [37]; as a product, it is available on the Package Manager of Rhino 8. 

Aimed at open-source distribution to foster community contribution, the codebase is hosted on GitHub 

[38], highlighting version control and incremental development. The toolkit also addresses 

Grasshopper's single-threaded limitation by advocating for asynchronous component execution, 

enhancing usability during computationally intensive tasks such as text-to-image generation. 

2.2.1 Software Architecture 

Structured around object-oriented programming principles, the toolkit's software architecture is divided 

into three main directories—Core, Components, and Properties—to ensure extendability and ease of 

maintenance. The Core directory forms the toolkit's foundation, containing classes and functionalities 

designed to support future features. The Components directory bridges Grasshopper with the toolkit’s 

Core, facilitating user-friendly access to its capabilities from the Grasshopper canvas. The Properties 

directory holds project information and artwork, including components’ icons. 
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2.2.2 GUI Design 

The GUI design is based on simplicity, intuitiveness, and a distinctive aesthetic to visually distinguish 

different design phases and enhance the interface's self-explanatory nature. Custom button interactions 

deviate from Grasshopper's standard UI, introducing an intuitive user interaction method. (Figure 3). 

2.3 Component Overview 

 

Figure 3: An overview of the SE Toolkit and its GUI design guideline 

4. Case Study 

The Structural Embodiment Toolkit, featuring form-finding adaptors for Combinatorial Equilibrium 

Modelling (CEM), demonstrates its capabilities through a case study, which utilises a Python script 

based on CEM for generating a dataset of 50-meter-long bridges, categorised into arch and suspension 

bridges, each with distinct design configurations.  

4.1 Form-finding: CEM Adaptor 

Using Rhino 8’s Grasshopper Script component, the bridge-generating component applies the CEM 

method to produce outputs like nodes, edges, forces, and specific bridge attributes. The CEM Adaptor 

processes this data, creating a structured object integrated within the SE Core for further operations 

(Figure 4). 
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Figure 4: The form-finding step with the CEM Adaptor 

 

4.2 Solid geometry generation: Structure, Site, Materials and Texture Mapping 

CEM’s form-finding specifies force magnitudes essential for the Materialiser component to determine 

member dimensions proportionally, offering users options for cross-section shapes. Output geometries 

are organised by function for subsequent phases. The Terrain Maker component further allows for the 

creation of parametric site models (Figure 5). 

 

Figure 5: The solid geometry generation step with automatic site model generation 

4.3 Render-based visualisation: Enhancing the conventional method 

In this step, solid geometries are inputted into the Rhino Visualizer component for texture mapping and 

automatic layer organisation, with the View Randomizer Component generating camera positions for 

varied viewing angles. These components then integrate with V-Ray [39] for rendering, demonstrating 

the toolkit’s capacity to enhance conventional visualisation methods with improved efficiency and 

flexibility (Figure 6). 

 

Figure 6: The visualisation step with a conventional render-based solution 
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4.4 Mass-production and Model Training: Self-reinforcing Ecosystem 

The SE Toolkit transcends mere compatibility with existing deep learning models by facilitating the 

mass generation and data recording. This feature is particularly beneficial for creating datasets to train 

new deep-learning models. The Mass Producer component automates the production of designs to 

specified quantities and views. The Data Recorder captures input and output data, allowing for CSV or 

JSON format saving (Figure 7 left). Using the toolkit, 10 different bridges with 10 views each were 

generated, creating 100 images of 1024x1024 resolution. These images, categorised into arch and 

suspension bridges, form a varied but balanced dataset. Rendering these images required, on average, 

20.3 seconds each on a machine with a 10 Core Intel i9-10900k CPU. Captioning was manually done to 

ensure accuracy in the description.  

 

Figure 7: The mass production enabled by the SE Toolkit (left) and the training loss (right) 

The training of the LoRA Model was conducted using the Kohya_ss [40] training pipeline, anchored on 

the runwayml/stable-diffusion-v1-5 [41] source model. This model typically outputs images with a 

resolution of 512×512 but can be higher resolution. No image preprocessing was required for our 

purposes, as our objective was to generate images at a resolution of 1024×1024. The training process 

utilised an NVIDIA RTX 6000 Ada GPU, facilitating 6 batches during training. The training regimen 

spanned 20 epochs. Each image undergoes sampling 20 times, culminating in 2000 steps. Consequently, 

the total number of training steps amounted to 6667, calculated as 2000 steps / 6 batches × 20 epochs. 

The training took 3 hours and 57 minutes, resulting in 20 LoRA checkpoints from each epoch.  

The training process demonstrated promising results, with a steady decline in loss that began to plateau 

over time (Figure 7 right). An XY plot tested weights from 0.2 to 1.0 across 20 checkpoints to find the 

optimal model and weight setup, revealing that a weight close to 0.8 from checkpoint 16 onwards 

produced reasonable images using a consistent prompt "physical model, arch bridge, concrete, site, 

timber, wire trees, dark acrylic, reflection, studio lighting " and the same random seed (2900010133) 

(Figure 8). The LoRA models SE_CEM_BRIDGE are available on Hugging Face [42]. 

 

Figure 8: XY-Plot for every second LoRA checkpoint with different weights 
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4.5 From Rendering to AI Visualisation 

To assess the LoRA model's generalisation capabilities, two new bridge structures were generated, 
form-found, materialised, and visualised with the toolkit. Comparing V-Ray-rendered images to AI 
visualisations revealed a significant reduction in time, from 21 seconds to 7 seconds for the 
suspension bridge and from 19 seconds to 8 seconds for the arch bridge via the SE Toolkit (Figure 
9), using consistent prompt with concurrent depth and canny ControlNet units (depth’s weight at 
0.6, canny’s weight at 0.3, and LoRA’s weight at 0.8).  

 

Figure 9: Guided AI image generation via SE Toolkit with the self-trained LoRA model 

 

 

Figure 10: Visual Comparison of V-Ray-rendered images (column a) and self-trained LoRA-generated 

images (column c) with depth and canny ControlNet units used for the image generation (column b) 

5. Conclusion 

This case study illustrates the proposed DL-enabled Workflow and Structural Embodiment Toolkit's 

capabilities, notably through integrating the CEM Adaptor, exemplifying the connections with various 

form-finding tools. The toolkit then automates solid geometry generation for structures and site models. 
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Despite some quality trade-offs (Figure 10), AI visualisations via the toolkit offer considerable speed 

benefits, which are crucial for the conceptual design phase's iterative nature. 

Moreover, the toolkit not only refines existing workflows but also fosters a self-reinforcing ecosystem 

by easing the task of creating AI model training datasets. The publicly available LoRA model, 

SE_CEM_BRIDGE, underscores the project's success and deep learning's transformative impact on 

structural design [42].  

However, the toolkit is not without its limitations. The quality of AI-generated visualisations and the 

current dependency on specific form-finding tools pose challenges that could be addressed in future 

versions. Looking forward, expanding the range of form-finding adaptors and encouraging community-

driven development are crucial steps towards enhancing the toolkit’s versatility and industry relevance. 

Additionally, obtaining more comprehensive feedback from industry peers will be essential to ensure 

the toolkit’s evolution reflects a broader spectrum of user needs and preferences, further bridging the 

gap between computational design and practical application. 
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