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Abstract

Quantum cascade lasers (QCLs) are special types of semiconductor lasers emitting optical power with a
broadband spectrum in the mid-infrared (mid-IR) or terahertz (THz) region and are suitable for the generation
of optical frequency combs (OFCs), laser spectra consisting of perfectly equidistant and locked lines. Both in
mid-IR and THz the generation of optical frequency combs with QCL sources was already demonstrated in
recent years. The property of extremely accurate frequency resolution demonstrates the enormous potential
in the area of metrology and spectroscopy and makes QCL frequency combs highly interesting for integration
into innovative applications of different fields, e.g. astronomy or healthcare diagnostics. In this thesis, a major
focus is on improving the current performance of QCLs by comprehensively investigating existing QCL designs
and performing systematic design optimization using accurate QCL modeling approaches. Furthermore, the
development of ultrafast detectors with superior noise characteristics in the mid-IR and THz regimes is part of
this work. Low-noise detectors based on intersubband transitions are required for the detection of nonclassical
features in QCL-based frequency combs. There are two types of detectors, quantum well infrared photodetectors
(QWIPs) operating in photoconductive mode and quantum cascade detectors (QCDs) operating in photovoltaic
mode. QCDs are especially suited for our purpose since they operate at zero bias and therefore have better noise
performance since there is no dark current noise.

In this work, we present the open-source framework monacoQC in combination with our in-house Ensemble
Monte Carlo (EMC) simulation tool for charge carrier transport. A Schrödinger-Poisson library is also integrated
and can be used for the engineering of the quantized electron states in the quantum cascade (QC) heterostructure.
Within the EMC approach, no empirical or fitting parameters are required as the scattering is evaluated self-
consistently based on Fermi’s golden rule. All relevant scattering mechanisms for intersubband QC devices
are considered. Since the currents in QCDs are much smaller than in QCLs, the direct EMC simulation of the
photocurrent for the irradiated designs cannot provide sufficient accuracy. To accurately model QCDs, we have
developed a robust and compact approach based on a rate equation model and a Kirchhoff resistance network.
By exploiting thermodynamic equilibrium relations, we can calculate quantities such as spectral responsivity or
specific detectivity. The modeling approach is validated using available experimental results for different QCD
designs in the mid-infrared and terahertz range and compared with simulations based on the non-equilibrium
Green function method. We additionally present a Bayesian optimization algorithm in combination with the
scattering-based modeling approach to increase the operating temperature in photovoltaic QCDs, which is
important for commercial applications. Here we focus on optimizing a mature mid-infrared QCD design that
detects at 4.7 µm. Our optimization strategy yields an improvement of specific detectivity by a factor of ∼ 2 − 3
at room temperature. Furthermore, we investigate the sensitivity of our approach to manufacturing tolerances
and demonstrate the robustness of the optimized designs to growth variations.

Endowing intersubband QC devices with outstanding quantum features like nonclassical emission modes,
entanglement among the modes of the comb and parametric generation of comb patterns far from the central
emission frequency would lead to applications in quantum networks, including quantum computation, quantum
communication and quantum metrology. Since the nonclassical features are directly linked to the noise proper-
ties, detailed simulations of the coherent light-matter interaction are required for the development of low-noise
optoelectronic quantum sources and detectors. Here, we present a full-wave Maxwell-density matrix modeling
approach including c-number stochastic noise terms for the simulation of the spatiotemporal dynamics in active
photonic devices. Fluctuations arising from interactions of the optical field and quantum system with their
reservoirs are treated within the quantum Langevin theory. The noise implementations are integrated into the
semiclassical mbsolve simulation framework, which is based on the Lindblad equation for electron dynamics,
coupled with Maxwell’s equations for the optical propagation in the laser waveguide. Within the mbsolve
framework, numerically extensive simulations of multilevel systems can be conducted. By combining the two
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simulation tools, monacoQC and mbsolve, we provide a multi-domain modeling approach, which is described
here in detail and applied for fully time-dependent and self-consistent simulations of intersubband QC devices.

Recently, coherent OFC mode-locking with large intermodal spacing was demonstrated in QCLs. These
self-starting harmonic frequency combs (HFCs) show highly phase-stable operation and promise interesting
perspectives toward optical or even quantum communication. We investigate the influence of the chosen
eigenstate basis on the gain spectrum and present self-consistent simulation results of stable HFC operation in
a double metal terahertz QCL. In our simulations, the studied QCL gain medium shows self-starting harmonic
mode-locking for different bias and waveguide configurations, resulting in a mode spacing of up to twelve times
the cavity round trip frequency. Furthermore, we characterize the spectral time evolution of the coherent HFC
formation process and analyze the effects of noise contributions on the comb characteristics. To date, direct THz
QCL frequency comb generation is not achievable at room temperature. However, THz comb generation based
on intracavity difference frequency generation (DFG) in mid-IR QCLs is a promising alternative. Dynamical
simulations of broadband THz DFG OFC emission in mid-IR QCLs are conducted in this work. All necessary
input parameters for the description of the quantum system are determined self-consistently using our in-house
EMC approach. Notably, such simulations require a full-wave Maxwell-density matrix solver which does not
employ the common rotating wave approximation, as a broadband optical field extending from the THz to
the mid-IR region is investigated. Our modeling approach and the obtained simulation results for two THz
DFG-QCL comb setups are validated against experimental data, showing reasonable agreement.
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Kurzfassung

Quantenkaskadenlaser (QKL) sind spezielle Halbleiterlaser, welche optische Leistung mit einem breitbandigen
Spektrum im mittleren Infrarot (IR) oder Terahertz (THz) Bereich emittieren und daher für die Erzeugung
von optischen Frequenzkämmen geeignet sind. Die sogenannten Frequenzkämme sind hierbei Spektren, die
aus perfekt äquidistanten und gekoppelten Linien bestehen. Sowohl im mittleren IR als auch im THz-Bereich
konnte in den letzten Jahren bereits die Erzeugung von optischen Frequenzkämmen mit QKL-Quellen demon-
striert werden. Hierbei zeigt die Eigenschaft der extrem genauen Frequenzauflösung ein enormes Potenzial
für die Bereiche der Metrologie und Spektroskopie auf und macht QKL-Frequenzkämme hochinteressant für
die Integration in innovative Anwendungen verschiedener Bereiche, z. B. in der Astronomie oder der Gesund-
heitsdiagnostik. Ein Hauptaugenmerk in dieser Arbeit liegt auf der Verbesserung der aktuellen Leistung von
QKLn. Wir konzentrieren uns hierbei auf eine umfassende Untersuchung bestehender QKL-Designs und eine
systematische Optimierung mithilfe genauer QKL-Modellierungsansätze. Darüber hinaus ist die Entwicklung
ultraschneller Detektoren mit ausgezeichneten Rauscheigenschaften im mittleren IR- und THz-Bereich ein
entscheidender Punkt in dieser Arbeit. Für die Erkennung von nichtklassischen Merkmalen in QKL-basierten
Frequenzkämmen sind rauscharme Detektoren, die auf Intersubband-Übergängen basieren, erforderlich. Wir
können diese Detektoren in zwei Arten aufteilen: Quantenquellen-Infrarot-Photodetektoren, die im photolei-
tenden Modus arbeiten, und Quantenkaskadendetektoren (QKDen), die im photovoltaischen Modus arbeiten.
QKDen sind für unseren Zweck besonders geeignet, da sie bei 0V Spannung betrieben werden. Es ergibt sich
hierbei kein Dunkelstromrauschen, was ein besseres Rauschverhalten zur Folge hat.

In dieser Arbeit stellen wir das Open-Source-Tool monacoQC in Kombination mit unserem hauseigenen
Ensemble Monte Carlo (EMC) Simulationansatz, welcher für die Modellierung des Ladungsträgertransports
verwendet wird, vor. Weiterhin ist eine Schrödinger-Poisson-Bibliothek integriert, welche für das Engineering
der quantisierten Elektronenzustände in den Quantenkaskaden (QKn) Heterostrukturen verwendet werden kann.
Im Rahmen des EMC-Ansatzes sind keine empirischen Parameter erforderlich, da die Streuraten selbstkonsistent
auf der Grundlage der goldenen Regel von Fermi berechnet werden. Alle relevanten Streuungsmechanismen
für Intersubband-QK-Bauelemente werden hier berücksichtigt. Da die Ströme in QKDen deutlich niedriger
sind als in QKLn, liefert die direkte EMC-Simulation des Photostroms in den Detektoren keine ausreichende
Genauigkeit. Um QKDen genauer modellieren zu können, haben wir daher einen robusten und kompak-
ten Ansatz entwickelt, der auf einem Ratengleichungsmodell und einem Kirchhoffschen Widerstandsnetz-
werk basiert. Unter Ausnutzung thermodynamischer Gleichgewichtsbeziehungen können wir Größen wie die
spektrale Empfindlichkeit oder die spezifische Detektivität berechnen. Unser Modellierungsansatz wird hier
mithilfe experimenteller Ergebnisse für verschiedene QKD-Designs im mittleren Infrarot- und Terahertzbereich
validiert und mit Simulationen basierend auf der Nichtgleichgewichts-Green-Function-Methode verglichen.
Darüber hinaus stellen wir einen Bayes’schen Optimierungsalgorithmus in Kombination mit dem streuungs-
basierten Modellierungsansatz vor, um die Betriebstemperatur in photovoltaischen QKDen zu erhöhen. Dies ist
speziell für kommerzielle Anwendungen wichtig. Wir konzentrieren uns auf die Optimierung eines ausgereiften
QKD-Designs, welches im mittleren Infrarotbereich bei einer Wellenlänge von 4.7 µm detektiert. Unsere Opti-
mierungsstrategie führt hierbei zu einer Verbesserung der spezifischen Detektivität um einen Faktor von ∼ 2 − 3
bei Raumtemperatur. Darüber hinaus untersuchen wir hier die Empfindlichkeit unseres Ansatzes gegenüber
Fertigungstoleranzen und zeigen die Robustheit der optimierten Designs gegenüber Wachstumsvariationen.

Die Ausstattung von Intersubband-QKn-Bauelementen mit herausragenden Quantenmerkmalen wie nicht-
klassischen Emissionsmoden, Verschränkung zwischen den Moden des Kammes und parametrischer Erzeugung
von Kammmustern weit von der zentralen Emissionsfrequenz entfernt können zu Anwendungen in Quantennetz-
werken führen. Hier zu nennen sind Anwendungsbereiche wie Quantencomputer, Quantenkommunikation und
Quantenmetrologie. Da die nichtklassischen Merkmale direkt mit den Rauscheigenschaften verbunden sind,
sind detaillierte Simulationen der kohärenten Licht-Materie-Wechselwirkung für die Entwicklung rauscharmer
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optoelektronischer Quantenquellen und -detektoren erforderlich. Wir stellen hier einen Vollwellen-Maxwell-
Dichtematrix-Modellierungsansatz vor, der komplexzahlige stochastische Rauschterme für die Simulation der
räumlich-zeitlichen Dynamik in aktiven photonischen Bauelementen enthält. Fluktuationen, die sich aus
den Wechselwirkungen des optischen Feldes und des Quantensystems mit ihren Reservoiren ergeben, werden
im Rahmen der Quanten-Langevin-Theorie behandelt. Die Rauschimplementierungen sind in das semiklas-
sische Simulationstool mbsolve integriert, welches auf der Lindblad-Gleichung für die Elektronendynamik in
Verbindung mit den Maxwell-Gleichungen für die optische Ausbreitung im Laserwellenleiter basiert. Mit Hilfe
des mbsolve-Tools können numerisch umfangreiche Simulationen durchgeführt werden. Durch die Kombination
der beiden Simulationswerkzeuge monacoQC und mbsolve bieten wir einen Multi-Domain-Modellierungsansatz
für vollständig zeitabhängige und selbstkonsistente Simulationen von Intersubband-QKn-Bauelementen an.
Dieser wird hier im Detail beschrieben.

Kürzlich wurde kohärente Modenkopplung mit großen intermodalen Abständen in QKLn demonstriert.
Diese selbststartenden harmonischen Frequenzkämme (HFKe) zeigen einen sehr phasenstabilen Betrieb und
versprechen interessante Ansätze für die optische und sogar Quantenkommunikation. Wir untersuchen den Ein-
fluss der gewählten Eigenzustandsbasis auf das Verstärkungsspektrum und präsentieren selbstkonsistente Sim-
ulationsergebnisse des stabilen HFK-Betriebs in einem Doppelmetall-THz-QKL. In unseren Simulationen kann
für das untersuchte QKL-Verstärkungsmedium selbststartendes harmonisches Mode-Locking in verschiedenen
Spannungs- und Wellenleiterkonfigurationen gezeigt werden. Dies führt zu einem Modenabstand vom bis zum
Zwölffachen der Umlauffrequenz des Resonators. Darüber hinaus charakterisieren wir die spektrale Zeitentwick-
lung des kohärenten HFK-Bildungsprozesses und analysieren die Auswirkungen von Rauschbeiträgen auf die
Kammcharakteristik. Bislang ist die direkte Erzeugung eines THz-QKL-Frequenzkamms bei Raumtemperatur
nicht möglich. Hierbei ist die Erzeugung von THz-Kämmen auf der Grundlage der Differenzfrequenzerzeugung
(DFE) in QKLn, welche im mittleren IR-Bereich emittieren, eine vielversprechende Alternative. In dieser Ar-
beit werden dynamische Simulationen von breitbandigen DFE-QKL-Frequenzkammspektren präsentiert. Alle
notwendigen Eingangsparameter für die Beschreibung des Quantensystems werden selbstkonsistent mit un-
serem eigenen EMC-Simulationstool bestimmt. Da es sich hierbei um ein breitbandiges optisches Feld, das sich
vom THz- bis zum mittleren IR-Bereich erstreckt, handelt, ist für solche Simulationen ein Vollwellen-Maxwell-
Dichtematrix-Solver, welcher nicht auf die übliche Rotationswellen-Näherung zurückgreift, erforderlich. Unser
Modellierungsansatz und die erzielten Simulationsergebnisse für zwei THz-DFE-QKL-Kammaufbauten werden
anhand experimenteller Daten validiert und zeigen gute Übereinstimmung.
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1 Introduction
The electromagnetic spectrum is depicted in Fig. 1.1 and can be divided into different portions which, thanks to
semiconductor technology, enable a wide range of applications. Here, the radio frequency (RF) and microwave
regions with frequencies up to 300 GHz are covered by electronic devices such as transistors and are used,
for example, in wireless communications or radar applications. Furthermore, semiconductor laser diodes
generate coherent light in the range from the near-infrared to the ultraviolet spectrum and are used in various
applications, e.g., in fiber-optic communications or consumer electronics. The fundamental working principle
of such devices is described by the generation of optical photons through electron-hole recombination within
the electrically pumped active gain medium. The optical frequency is determined by the bandgap energy of the
chosen semiconductor materials. Unfortunately, the room-temperature performance of conventional interband
semiconductor lasers is limited within the adjacent mid-infrared (mid-IR) and terahertz (THz) regions. Indeed,
there are materials such as lead salts with an appropriate bandgap energy [1], [2] which, however, have critical
operational limitations in terms of thermal runaway effects and thermal recycling due to their softened chemical
bonds associated with the small band gap [3], [4]. In recent years, quantum cascade lasers (QCLs) [3]–[7] and
interband cascade lasers (ICL) [8]–[10] have emerged as the most important representatives of coherent sources
to close this gap.

In the following, we will focus more on the QCL, a special type of semiconductor laser governed by
unipolar intersubband transitions in quantum well heterostructures. Kazarinov and Suris [11] first introduced
the theoretical description of QCLs in 1971, while the experimental realization was accomplished for the first
time in 1994 by Faist et al. [5]. QCLs are suitable for the generation of optical frequency combs consisting
of perfectly equidistant and locked lines in the electromagnetic spectrum [12], [13]. Both in mid-IR and
THz the generation of optical frequency combs (OFCs) with QCL sources was already demonstrated in recent
years [14], [15]. The property of extremely accurate frequency resolution demonstrates the enormous potential
in the area of metrology and spectroscopy and makes QCL frequency combs highly attractive for integration
into innovative applications of different fields, e.g., astronomy or healthcare diagnostics [16]. The present-
day performance of QCLs can be improved by extensive investigations of existing designs and by conducting
systematic optimization using accurate QCL modeling approaches [17]–[22]. Furthermore, the development of
ultrafast detectors with superior noise characteristics in the mid-IR and THz regimes is of great interest. Low-
noise detectors based on intersubband transitions are required for the detection of nonlinear and nonclassical
features in QCL emission [23], [24]. Here, we will focus on quantum cascade detectors (QCDs) [25], [26],
which operate in the photovoltaic mode and exploit scattering-based extraction along the lines of the closely
related QCL. Combining both devices by on-chip integration can serve as a cost-efficient portable sensing
application [27], [28].

microwave THz mid-IR NIR UV

Electronics OpticsIntersubband QC devices

𝑓 in Hz
109 1010 1011 1012 1013 1014 1015 1016

Figure 1.1 Coherent radiation in the EM spectrum ranging from microwave to ultraviolet. Electronic sources cover
frequencies below ∼ 0.3 THz and optical (semiconductor) sources frequencies above ∼ 100 THz. The THz and mid-IR
gap between the realms of optics and microwaves can be operated by intersubband QC devices.

Aiming for a full understanding of the physical processes in intersubband quantum cascade (QC) devices and
pushing towards higher device performance, a detailed theoretical characterization of the active gain medium
consisting of quantum well heterostructures is required. Advanced self-consistent carrier transport models
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for QCLs, such as the ensemble Monte Carlo (EMC) method [29], [30], density matrix (DM) [31], [32] or
the nonequilibrium Green’s function (NEGF) approach [29], [33], [34], are available and offer different levels
of physical complexity and numerical efficiency. Electron transport in intersubband QC devices across thick
barriers is governed by incoherent tunneling transport. Since semiclassical models, e.g., the EMC method,
cannot cover quantum coherence effects, such as resonant tunneling across thick injection barriers, corrections
based on the DM formalism have been incorporated. Therefore, incoherent tunneling is treated as an additional
"scattering-like" mechanism [35], [36] and gives the EMC method a good balance between computational
efficiency and accuracy. In contrast to QCLs, the currents within QCDs are significantly smaller, which makes
direct carrier transport simulations using standard QCL modeling techniques unfeasible. Simple models based
on scattering rates were introduced in literature [27], [28], [37]–[40]. We have derived an accurate and versatile
simulation approach, which is based on a rate equation model and a noise resistance model, to characterize the
photodetector signal strength and noise properties [23], [24], [41], [42]. For the calculation of the important
figures of merit, e.g., responsivity and detectivity, only the absorption coefficient and intersubband scattering
rates are required and can be extracted from carrier transport simulations, e.g., using the density matrix EMC
(DM-EMC) modeling approach.

Coherent light-matter interaction plays a significant role in the non-stationary behavior of intersubband QC
devices. For the investigation of semiconductor laser dynamics, Maxwell-Bloch (MB) equations offer a compact
and efficient modeling approach [29], [43]–[48]. Here, Maxwell’s equations for the optical field propagation are
coupled with the Bloch equations for two-level quantum systems. A special type of MB equations is given by
the effective semiconductor Maxwell–Bloch (ESMB) equations [13], [49]–[53], where certain semiconductor
specifications such as asymmetric gain and dispersion profiles are covered by the inclusion of a non-zero
linewidth enhancement factor (LEF). Extensions towards multiple quantum states within the generalized DM
approach result in a more powerful and sophisticated tool for the quantitative modeling of quantum optoelectronic
devices [47], [54]–[59]. Among other active photonic devices, these approaches (MB, ESMB, Maxwell-DM,
related (semi-)analysis models) have been applied extensively to QCLs, especially for the dynamical simulation
of mode-locking [50], [60]–[67], the investigation of coherent instabilities [45], [68]–[70] and the formation of
fundamental and harmonic frequency comb regimes [51], [52], [54]–[56], [59], [66], [67], [71]–[78].

In this chapter, we will start with a small overview of the investigated intersubband QC devices and discuss
the basic operating principle of QCLs and QCDs in Section 1.1 and 1.2, respectively. In Section 1.3 we will
introduce nonlinear optical effects of different orders exploited in QCLs, e.g., for the coherent THz OFC emission
at room temperature by difference-frequency generation (DFG) or harmonic mode-locking triggered by four-
wave-mixing (FWM) processes. Exploiting these nonlinear effects opens up potential applications in the area of
wireless terahertz communication networks [79], [80] and THz imaging [81], [82]. Then, Section 1.4 addresses
a new generation of semiconductor devices endowed with quantum features. Quantum optics experiments based
on intersubband QC devices have recently attracted great interest and demonstrate enormous potential for future
applications in groundbreaking areas of quantum technologies such as quantum metrology and sensing [83],
[84]. Here, we discuss the possibilities for an expansion of the general Maxwell-density matrix equations
towards nonclassical effects. Fluctuations arising from interactions of the optical field and quantum system
with their reservoirs are treated within the quantum Langevin theory [85]–[88]. Based on that, we can derive
fluctuation terms from c-number Langevin equations and consider them in the generalized Maxwell-density
matrix Langevin equations [59], [89]. The chapter is concluded in Section 1.5 with a brief overview of the
thesis.

1.1 Quantum Cascade Laser

The quantum cascade laser is a peculiar type of semiconductor laser, where the emission frequency is selected
by quantum engineering. Here, the optical transition takes place between quantized electron states in the
conduction band of a multiple quantum well heterostructure. Unlike other semiconductor devices, where the
optical transition occurs between conduction and valence band, the desired transition frequency and other optical
and electrical properties such as the dipole moment or electron transport can be designed in QCLs by adjusting
the thickness of the corresponding barrier and well layers. For the fabrication of the active QCL medium



3

𝑧

𝐸

(a)

3
- - - - -

2
1

𝜔1
𝜔2

𝜔LO-

3’
- - - - -

2’
1’

0 10 20 30 40 500

200

400

600

800

𝑧 in nm

𝐸
in

m
eV

(b)

Figure 1.2 (a) Basic operation principle of a QCL and schematic conduction band profile. Each period consists of an active
region and an electron injector. Electrons are injected into the ULL, from which they radiatively decay to the LLLs 2 and 1
by emitting photons with frequencies 𝜔1 and 𝜔2, respectively. Subsequently, electrons scatter through the injector region
and are injected into the ULL of the next period, where this process is repeated. Adapted from J. Popp, "Self-consistent
simulations of intracavity terahertz comb difference frequency generation by mid-infrared quantum cascade lasers" [90]
(CC BY 4.0). (b) Conduction band profile and probability densities for a mid-infrared QCL lasing at ∼ 8.5 µm [91].

molecular beam epitaxy (MBE) or metalorganic chemical vapor deposition (MOCVD) techniques are used. In
these devices, electron recycling is accomplished by a multistaged cascade geometry with up to 100 periods
and leads to an unprecedented quantum efficiency, as one injected electron can generate multiple photons. The
fundamental working principle is schematically described in Fig. 1.2(a), where the conduction band profile of
a QCL is qualitatively illustrated [5], [92]. Additionally, we show the conduction band profile of one period
together with the calculated probability densities of the quantum states for a diagonal bound-to-continuum
(BTC) QCL design emitting at ∼ 8.5 µm in Fig. 1.2(b) [91]. In laser operation, a tilted conduction band
profile is obtained by applying a bias of 57 kV cm−1. Electrons are injected into the upper laser level (ULL)
3 and optical transitions by stimulated emission at the frequencies 𝜔1 and 𝜔2 are accompanied by the decay
of electrons from the ULL 3 to the lower laser levels (LLLs) 2 and 1. Efficient depopulation is achieved by
longitudinal optical (LO) phonon scattering to the depopulation level 1. Within the electron injector region, the
electrons are transported toward the interface of the next period and will be injected into the next ULL 3′ by
resonant tunneling. The same process as described above is repeated in successive periods until the electrons
reach the anode and are collected.

By selecting a well-suited material system, both the mid-IR and THz region become accessible [5], [93].
For the development of short-wavelength QCLs beyond the conduction band offset (CBO) limit of 0.52 eV in
lattice-matched systems, the material composition of the mid-IR QCL material system InGaAs/InAlAs can be
strain engineered [94]–[97]. Over the years, multi-watt output powers, continuous wave (CW) operation at room
temperature and wallplug efficiencies up to 50 % have been achieved with mid-IR QCL sources [98]–[102].
An appropriate choice for the realization of QCL devices emitting in the THz regime is the material system
AlGaAs/GaAs [6], [7]. To access and close the THz gap between microwaves and optics, the QCL is the ideal
semiconductor laser source. One major disadvantage of direct THz light generation with QCL sources is the
lack of devices operating at room temperature resulting from the complexity of establishing and preserving
population inversion between the upper and lower laser levels [7], [103]. This problem arises since the THz
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photon energy is around a few meV and thus well below the thermal energy of 26 meV at room temperature. The
laser system tends to thermodynamic equilibrium and intrinsically destroys population inversion. Until very
recently, the requirement of cryogenic cooling for direct THz QCL operation could only be overcome by THz
difference frequency generation [82], [104]. However, the development of THz QCL designs with a maximum
operating temperature well above 200 K in pulsed operation opened the door for device applications using less
demanding cooling systems, e.g., thermoelectric Peltier cooling [21], [105], [106].

QCLs with a broadband optical emission spectrum are suitable for the generation of optical frequency combs,
i.e., laser spectra consisting of perfectly equidistant and phase-locked lines. Both in the mid-IR and THz
regime, the generation of optical frequency combs with QCL sources was already demonstrated [14], [15].
In principle, the gain spectrum of these devices can be very broadband, potentially covering one frequency
octave, and therefore pointing towards self-referenced emission [107]–[109]. However, the mode-locked comb
emission is usually restricted to a rather small dynamic range, at low current densities. Here, the small
group velocity dispersion (GVD) allows the FWM processes to effectively lock the cavity modes, without the
need for external optical elements. Mode-locking over the entire 1.3 THz gain bandwidth, and across more
than 60 % of the operational range of a heterogeneous QCL device has been achieved recently by altering its
intracavity light intensity [110]. This has been done by reducing the reflectivity of the device back facet to
induce higher mirror losses, through coating with an epitaxially-grown multilayer graphene film. Moreover, the
extremely accurate frequency resolution recently demonstrated by these miniaturized combs when externally
phase referenced [111], shows their enormous potential in the area of metrology and spectroscopy and makes
QCL devices highly interesting for the integration into innovative applications of different fields, e.g., astronomy
or healthcare diagnostics [16], [112], [113]. In recent years, a main focus of research has been dedicated to
the reconstruction of time domain profiles and intermodal phase relations of QCL frequency combs. Based
on methods such as the shifted-wave interference Fourier-transform spectroscopy (SWIFTS) [114], [115] or
Fourier-transform analysis of comb emission (FACE) [66], [111], [116], the phase stability of the frequency
combs could be demonstrated. The coexistence of frequency-modulated (FM) and amplitude-modulated (AM)
comb regimes in both mid-IR and THz QCL sources was experimentally retrieved [114], [115], [117], [118],
and could be replicated in several theoretical studies based on different simulation models [51], [52], [70],
[119]–[123].

1.2 Quantum Cascade Detector

The quantum cascade detector is the counterpart of the well-engineered QCL and therefore consists also of a
multiple quantum well heterostructure [25], [26]. In QCLs, lasing is achieved by stimulated emission between
quantized states, while in QCDs stimulated absorption is the relevant physical mechanism for photodetection.
QCDs do not need external fields due to their asymmetric conduction band profile and work in a photovoltaic
detection mode. In Fig. 1.3(a), a schematic of the aforementioned conduction band profile with the subband
states of a QCD is represented [28], [124], [125]. The working principle of such devices is based on intersubband
transitions, where the absorption transition takes place between the ground state a1 and the absorption state a2
in the active quantum well. Photo-excited electrons can be extracted into level b by resonant tunneling, which
is specified here by the characteristic Rabi frequency Ω corresponding to the anticrossing energy between the
near-resonant states. From level b the electron transport through a staircase consisting of multiple extractor
states is governed by LO-phonon-assisted tunneling. An electron then arrives at the ground level a′1 of the
next period and will iteratively repeat this process until it gets collected at the cathode. The unilateral charge
transport of photoexcited electrons is ensured by the graded quantum well composition of the extraction cascade.
In Fig. 1.3(b) we present the conduction band diagram together with the calculated probability distributions
of the quantum states for the mid-IR QCD design N1022 with a peak detection wavelength of 4.7 µm [124],
[126]. Here we identify two closely aligned absorption levels extending over two wells. The electron transport
is governed by resonant tunneling through the thick barrier as indicated above.

Another well-known intersubband detector is the quantum well-infrared photodetector (QWIP), which works
in photoconductive operation and consists of multiple periods of quantum wells. Absorbed photons excite
electrons within a quantum well from confined to quasi-bound subbands. By applying a bias the electrons



5

𝑧

𝐸

(a)

𝜔

a1
- - - - - -

-
Ω

a2 b-

c-

𝜔LO
d-

- - - - - -

a′2

a′1

20 40 60 80
0

100

200

300

400

500

𝑧 in nm
𝐸

in
m

eV

(b)

Figure 1.3 (a) Operation principle of a QCD and schematic representation of the conduction band structure. Electrons
in the active well a are lifted from the ground level a1 to the absorption level a2 by the annihilation of an optical photon
with frequency 𝜔. The lifted electrons escape by resonant tunneling to well b and scatter through a quantum cascade
by emitting phonons with frequency 𝜔LO. They will be collected in the ground state a′1 of the adjacent period and the
photovoltaic process is repeated. (b) Calculated conduction band profile and probability densities of the mid-IR QCD
structure N1022 with a detection wavelength of 4.7 µm [126].

can escape into the continuum and contribute to the photocurrent [127], [128]. The unipolar character of
both designs (QCDs and QWIPs) brings the advantage of highspeed operation in comparison to interband
devices [129]. In QWIPs, the main noise source is dark current noise, whereas QCDs are mainly limited
by Johnson noise [26], [126], [130]. Therefore, QCDs offer superior noise behavior, which is especially
important for high-temperature operation e.g in mobile applications [38], [130]–[132]. Furthermore, QCDs
have the advantage of simple adaption to the matured processing technique of QCLs resulting in an increased
design freedom and reliability [131]. In order to optimize the detector performance, different designs have
been tested, such as vertical [126], diagonal [40] or coupled quantum well detectors [133]. The relevance of
QCDs for on-chip integration with QCLs is growing rapidly. In recent years, high-performance bi-functional
quantum cascade devices were introduced, which can be used for monolithic integration on a single chip and
demonstrate promising perspectives towards cheap and light-weight portable sensor solutions [132], [134],
[135]. A systematic design optimization of QCDs is an essential task for the development and improvement
of such devices. Different optimization strategies have already been applied to QCL design processes, e.g.,
a genetic optimization algorithm [91] or Bayesian optimization (BO) [21]. Franckié and Faist [22] published
results for a comparison of the Bayesian optimization algorithm with an “information algorithm with parallel
trials” (IAPT) algorithm and the aforementioned genetic algorithm. The three optimization tools were applied
to a Gaussian process (GP) model, which was trained for a THz QCL using the QCL gain as a merit function.
The BO scheme shows the best performance in terms of convergence and robustness. Therefore, we have
decided to use BO in combination with a newly developed QCD modeling approach to optimize the mid-IR
QCD design N1022 with respect to the important figures of merits, e.g., detectivity and responsivity. The QCD
simulation approach is described in this work and validated against experimental data for both mid-IR and THz
QCD designs. Furthermore, in this thesis, we present the BO results of QCDs where structures with improved
performance in terms of signal strength and noise performance are obtained.
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1.3 Nonlinear Optical Effects

QCLs serve as compact and powerful on-chip sources for coherent OFC emission without the need for external
optical elements [12]–[15], [84], [110], [115], [116], [136]–[138]. Furthermore, other promising semiconductor
lasers (SCLs) for integrated optical frequency comb technologies spanning from the near-IR to mid-IR regime are
available, e.g., quantum dot (QD) lasers [139]–[149], quantum dash (QDash) lasers [150]–[155], and ICLs [9],
[10], [156], [157]. The active gain medium of the aforementioned low-dimensional SCLs provides a large third-
order nonlinearity 𝜒 (3) , which gives rise to a broadband FWM process and results in mode proliferation [12],
[113]. Here, the complex interplay of parametric gain, FWM nonlinearity, chromatic dispersion and spatial hole
burning (SHB) is essential for the frequency comb formation [10], [15], [70], [122], [141], [151], [158]–[160].
For a better understanding and to improve the laser performance, noise and linewidth characteristics of such
devices have been extensively studied, both theoretically and experimentally [147], [148], [159], [161]–[169].
Stable and robust OFC operation is assured by a narrow beatnote, which is a measure for the amount of
amplitude and phase-noise of the comb lines. Noise accompanying carrier transport and spontaneous emission
noise can therefore have a significant impact on the OFC formation and the performance of SCLs. Recently,
OFC emission in a novel QCL operating regime was detected, featuring harmonic modes separated by multiples
of the cavity roundtrip (rt) frequency. In both the mid-IR and THz spectrum, harmonic frequency comb (HFC)
states of varying orders were obtained in QCLs for different bias points and waveguide geometries [73], [79],
[81], [83], [170], [171]. Potential applications of HFC QCL setups arise in the area of wireless terahertz
communication networks [79], THz imaging [81] and quantum optics experiments [83], [84]. Free-running
HFC formation in THz QCLs is mainly based on double-metal waveguide configurations. A schematic of such
a THz HFC QCL setup is illustrated in Fig. 1.4, where the active gain medium is sandwiched into a double
metal waveguide, and the outcoupled coherent THz light is either specified by a fundamental or a harmonic
OFC spectrum depending on the order of the intermodal spacing. Recently, stable self-starting second-order
HFC emission could be demonstrated for a single-plasmon THz QCL with a cavity length of 15 mm [172].
Effective coherent emission of harmonic combs is further achieved by active mode-locking [53], [61], [65], or
can be controlled and manipulated through external forcing, e.g., macroscopic defects [173]–[175], external
cavities [176] or optical seeding [177].

Fully numerical studies have observed HFCs with large comb-line separation (more than 2 × 𝑓rt obtained
in [52]) in presence of external forcing (macroscopic defects [173]–[175], active modulation [53], or external
cavities [13]). Furthermore, analytical models have been derived and predict gain for largely detuned side
modes [75], [171], or provide an explanation based on mean-field treatment [122], [123]. However, no direct
observation of higher-order HFC combs attributed to the internal laser dynamics in free-running QCL devices
could be retrieved by numerical simulations, to the best of our knowledge. Therefore, we have performed
a substantial numerical study of THz QCLs based on a diagonal transition design [178], [179] and could
demonstrate for the first time self-starting fundamental and harmonic mode-locking with self-assembling of
high-order HFCs [73], [180]–[182]. For the characterization of the active gain medium, we have used our
in-house open-source monacoQC framework, featuring a versatile wavefunction solver [35], [183], [184] and
a stationary carrier transport model, which is based on the DM-EMC method [35]. For the investigation of
the dynamical behavior in the THz QCL, we have used the open-source solver tool mbsolve for the full-wave
generalized Maxwell-DM equation system, which is composed for the modeling of light-matter interaction in
multilevel quantum systems without invoking the rotating wave approximation (RWA) [47], [72]. All input
parameters for the dynamical simulations can be self-consistently extracted from the quantum cascade device
modeling tool monacoQC. A detailed description of the multi-domain simulation approach is presented in this
work. As pointed out in several theoretical analyses of QCL gain media, the chosen wavefunction basis has a
significant impact on the gain characteristics [35], [36], [179], [184]. In order to analyze the influence of the
eigenstate basis set on the laser output state, we calculate the wavefunctions in extended [183] and localized [35],
[36], [184] basis. The influence of the basis set on the gain characteristics and the harmonic mode-locking
behavior is discussed in Chapter 8.

Unfortunately, the maximum CW operation temperature of direct THz QCL designs is currently limited
to 129 K and demands cryogenic cooling [170], [185], [186]. An alternative approach to generate CW THz
radiation closer to or even at room temperature is intracavity DFG in dual-wavelength mid-IR QCL sources [80],
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Figure 1.4 Schematic of a double metal QCL waveguide with THz OFC emission through the laser active region facet.
Here, the difference between a fundamental OFC and a HFC is illustrated by the varying mode spacings within the emitted
comb spectrum. For the fundamental comb the mode spacing corresponds to the roundtrip rate 𝑓rt, while for the HFC
comb spectrum, we obtain a mode spacing of 𝑛 × 𝑓rt, where 𝑛 is an integer multiple of one. Reprinted from J. Popp et al.,
"Multi-domain modeling of free-running harmonic frequency comb formation in terahertz quantum cascade lasers" [178]
(CC BY 4.0).

[82], [187], [188]. Belkin et al. [189] presented the first so-called THz DFG-QCL device in 2007 and since
then great effort has been put into the engineering and development of such devices. The main advantage
here is that room temperature operation with such dual-wavelength mid-IR QCLs is well accessible without
the necessity of population inversion for a THz transition. The basic working principle of a THz DFG-QCL
is described in Fig. 1.5(a). The optical transition of electrons by stimulated emission from the ULL 4 to the
LLL 3 and 2 occurs and lasing starts at two mid-IR pump modes 𝜔1 and 𝜔2. A THz mode at frequency 𝜔THz
results from the nonlinear mixing process and downconversion of the mid-IR frequencies 𝜔1 and 𝜔2. Here,
the DFG triplet is formed by the three states 4, 3 and 2. Subsequently, efficient depopulation is achieved by
LO phonon scattering and the electrons are injected into the upper laser level 4′ of the adjacent period. The
active region has to be designed with a large second-order nonlinear susceptibility 𝜒 (2) to obtain an efficient
THz DFG process. Quantum engineering of the QCL active region towards giant nonlinearities is strongly
dependent on the coupling of the involved triplets of states. By utilizing a dual-upper state (DAU) active
region design instead of a stacked BTC structure a stronger nonlinearity due to additional DFG triplet states
is obtained. Additionally, these laser designs exhibit a relatively broad gain spectrum [190]–[193]. The first
THz DFG-QCLs consisted of a single waveguide for both mid-IR and THz frequencies and thus suffered from
excessive absorption in the THz regime [188], [189], [194]. To overcome this inefficiency in the outcoupling
of THz radiation, QCL waveguides with a Cherenkov phase-matching scheme were introduced, and are now
standard for THz DFG-QCL devices [190], [195], [196]. Here, the mid-IR pump modes are confined in the laser
active region and are outcoupled through the mid-IR waveguide facets, whereas the THz emission is directed
towards the semi-insulating (SI) InP substrate, providing comparably low THz loss. Cherenkov emission into
the substrate is achieved when the phase velocity of the nonlinear polarization wave within the slab waveguide is
faster than in the surrounding medium. As the SI InP provides a higher THz refractive index 𝑛THz than the group
effective refractive index 𝑛g of the pump modes, the THz radiation exits the active region under the Cherenkov
emission angle 𝜃c = cos−1(𝑛g/𝑛THz) [82]. To avoid internal reflection of the Cherenkov wave emission at the
substrate/air interface, the front facet has to be polished at an angle between 20° and 30° [80], [82], [187], [188].

Initially, the main research focus was laid on the development and fabrication of widely tunable THz DFG-QCL
emission with narrow linewidth in the frequency range of 1 THz to 6 THz [192], [197]–[202]. Here, broadband
tuning is either obtained by external-cavity (EC) DFG-QCL setups [200]–[202] or by monolithic electrically
tunable THz DFG-QCLs [192], [197]–[199]. Single mode THz operation is established by dual-period, or
sampled distributed feedback (DFB) grating approaches with dual-wavelength single mid-IR pump modes [188],
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Figure 1.5 Schematics of THz difference frequency generation in mid-IR QCLs. Mid-IR pump frequencies are indicated
by 𝜔2 (green) and 𝜔1 (blue), THz emission is represented by 𝜔THz (red). (a) Schematic of the DFG process between the
quantized electron states in the conduction band profile of a QCL. The energy levels (4,3,2) form a DFG triplet, electron
extraction is illustrated by LO phonon scattering into level 1 followed by injection into the adjacent period. Reprinted
from J. Popp et al., "Self-consistent simulations of intracavity terahertz comb difference frequency generation by mid-
infrared quantum cascade lasers" [178] (CC BY 4.0). (b) Schematic of a distributed feedback/Fabry-Perot configuration for
nonlinear THz DFG-QCL frequency comb generation. The buried DFB grating is etched into the upper guide layer, which
results in a single DFB mode 𝜔1 frequency detuned from the gain maximum. The FP frequency comb is centered around
𝜔2 and the THz comb radiation generated by nonlinear mixing is extracted into the substrate, where it gets outcoupled
through the polished facet. The back facet is coated with a high-reflection (HR) coating. Reprinted from J. Popp et
al., "Self-consistent simulations of intracavity terahertz comb difference frequency generation by mid-infrared quantum
cascade lasers" [178] (CC BY 4.0).
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[198], [200]. Furthermore, the applicability in high-precision spectroscopy was tested by characterizing the
spectral purity and tunability [137], [203]. Recently, broadband THz DFG-QCL frequency combs were
generated by mixing a single mid-IR mode, which is selected by an integrated largely frequency-detuned
DFB grating, and a frequency comb centered at a second mid-IR frequency in a multimode Fabry-Perot (FP)
cavity [82], [191], [204]–[206]. This distributed feedback/Fabry-Perot configuration for nonlinear THz DFG-
QCL frequency comb generation is schematically illustrated in Fig. 1.5(b).

To model the nonlinear mixing processes in QCLs, Maxwell-DM equations are a valuable tool, as they
offer a relatively compact and numerically efficient model [47]. In Chapter 8, we present THz DFG-QCL
OFC results using the open-source solver tool mbsolve [72], [207]. Here, the generalized one-dimensional
Maxwell-DM equations are treated without invoking the RWA, which is crucial for the simulation of THz
DFG-QCL frequency comb setups, as the spectrum spans from the THz region to the mid-IR regime and cannot
be resolved within the RWA. Nonlinear and nonclassical effects, like tunneling processes and coherence of
the relevant optical transitions, may account for an asymmetric gain and have been included in the system
Hamiltonian. Furthermore, all required parameters for the description of the quantum system are also extracted
self-consistently from our in-house monacoQC approach for stationary carrier transport simulations using the
EMC method [29], [35].

1.4 Nonclassical Laser Theory

Significant research efforts are devoted to the generation and deployment of nonclassical features in optical and
electronic systems [208]–[213]. Recently, intensity correlations in QCL HFCs were experimentally investigated
to develop a new generation of semiconductor devices generating light with nonclassical properties [83].
Endowing commercial devices with outstanding quantum features would pave the way to next generation high-
performance applications in the field of quantum networks [214], [215] including quantum computation [216],
[217], quantum communication [218], quantum metrology [219]–[221] and quantum simulation [222], [223].
Notably, photonic systems are quite attractive for the investigation and employment of nonclassical features,
such as the generation of so-called quantum combs [224]–[226], corresponding to nonclassical states of light
with multimode squeezed and/or entangled output. As the emergence of nonlinear and nonclassical features in
SCLs is directly linked to the noise properties [83], [227], the development of low-noise SCLs sources based
on detailed simulations is an important prerequisite.

The Maxwell-Bloch equations are widely used for spatiotemporal simulations of the optical dynamics in nano-
optoelectronic devices [43], [47], [228]. Spontaneous emission plays an important role in such devices, where
the resulting recombination can simply be included by nonlinear rate terms for the carrier occupations [229],
[230]. However, the corresponding noise contributions are not included in the Maxwell-Bloch model due to its
semiclassical nature. For more realistic simulation scenarios, e.g., OFC generation in low-dimensional SCLs,
the incorporation of nonclassical fluctuations should be considered. In the semiclassical framework [231], [232],
stochastic noise terms are typically implemented using a pseudorandom number generator. The uncorrelated
Gaussian-distributed random numbers are added to the optical propagation equation at every gridpoint [44],
[233]–[235]. Furthermore, dipole fluctuations have been included in different MB models by adding noise
terms to the off-diagonal density matrix elements [230], [236]–[240].

The magnitude of stochastic noise terms can be derived from the quantum Langevin equations [85], [86],
[241], [242], which can also be represented by equivalent stochastic c-number equations [44], [89], [243],
[244], i.e., evolution equations for operator expectation values with additional stochastic terms. Such c-number
Langevin equations have been used in literature [164], [165], [227], [245]–[249] to calculate the intrinsic
linewidth and estimate the intensity noise in SCLs. An extension of the stochastic c-number approach to
incorporate nonclassical effects has been discussed in [89] and [250]. By virtue of the fluctuation-dissipation
theorem, a decay of populations, coherences, or the optical field is generally accompanied by fluctuations, and a
Maxwell-Bloch equation model which includes such decay-induced fluctuations has been presented [233], [251],
[252]. In Chapter 4, we present an extension of the two-level quantum theory by Drummond and Raymer [89]
by including incoherent tunneling injection into the ULL. From this, we have derived the semiclassical noise
terms for our generalized Maxwell-density matrix Langevin approach, where we ensure the preservation of
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their associated reservoirs. Reprinted from J. Popp et al., "Modeling of Fluctuations in Dynamical Optoelectronic Device
Simulations within a Maxwell-Density Matrix Langevin Approach" [1] (CC BY 4.0).

the physical properties of the density matrix, i.e., positive definiteness and unit trace. Furthermore, we have
incorporated the derived noise terms in our open-source tool mbsolve to model the fluctuations accompanying
electronic transport and spontaneous emission in the dynamical simulations of light-matter interaction in
multilevel quantum optoelectronic systems such as QCLs and QD lasers. Using simulation results of a THz
QCL harmonic frequency comb, we discuss the effects of noise contributions on the comb characteristics in
Chapter 8.

Our model is illustrated schematically in Fig. 1.6. Here, the structure is described by the density matrix 𝜌̂
and the optical field represented by the electric and magnetic field vectors 𝑬 ,𝑯, which are coupled to each
other by the interaction Hamiltonian 𝐻̂I. For the calculation of drift and diffusion operators in the quantum
Langevin theory, we take into account the influence of various reservoirs in our structure. Regarding the quantum
system, the reservoir interactions with the semiconductor host, which for example includes phonons associated
with (longitudinal- and transverse-optical and -acoustic) thermal lattice vibrations, lattice imperfections in the
form of impurities (such as dopants), interface roughness (IF) or atomic disorder in alloys, as well as vacuum
fluctuations arising from spontaneous emission are considered. For the optical field, the interaction with noise
arising from thermal radiation (blackbody) entering the active waveguide from the cavity walls can be taken
into account by external noise sources [253].

1.5 Overview of this Work

In the introduction above the basic operating principles of the investigated intersubband QC devices (QCL,
QCD) have been outlined. Additionally, we have briefly introduced nonlinear optical effects of different orders
exploited in QCLs, e.g., coherent THz OFC emission at room temperature by DFG and harmonic mode-locking
triggered by FWM processes. Finally, we have addressed a new generation of semiconductor devices endowed
with quantum features. Here, we have highlighted the enormous potential of intersubband QC devices for future
applications in groundbreaking areas of quantum technologies such as quantum metrology and sensing. We
have also briefly discussed the generalized Maxwell-density matrix Langevin equations, where the derivation
from quantum theory by taking into account the interactions of the optical field and quantum system with their
reservoirs is presented in Chapter 4.

In the area of theoretical modeling and numerical simulation of intersubband QC devices, our group provides
strong expertise [24], [29], [42], [47], [54], [58], [72], [78], [90]. Here, the open-source monacoQC framework
for intersubband QC device engineering [254] in combination with the in-house EMC approach for charge-
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carrier transport [29] and the open-source solver tool mbsolve for light-matter interaction in nonlinear optics [47],
[72] have been developed and extended in recent years. In the EMC approach, scattering is self-consistently
evaluated based on Fermi’s golden rule. Within the mbsolve framework, numerically extensive simulations of
multilevel systems based on the full-wave Maxwell-density matrix equations can be conducted. Beyond the
so-called rotating wave approximation, dynamical simulations of broadband frequency combs or THz difference
frequency generation QCL frequency comb setups extending from the mid-IR to the THz spectral range are
feasible [47]. In this thesis, a detailed description of the multi-domain simulation approach for intersubband
QC devices is presented and the simulation results obtained for the intersubband QC devices are discussed in
depth. In the following, we give a brief overview of this work, starting with the theoretical foundations, and
continuing with the modeling approaches and the simulation results of intersubband QC setups.

In Chapter 2, we introduce the open-source monacoQC framework for QC device engineering. Here, we
explain the fundamental physical and optical principles of low-dimensional semiconductors and describe the
heterostructure technology. The main focus is on the calculation of important band parameters such as the band
gap energy or the effective mass, taking into account the effects of nonparabolicity and strain. All material
parameter models presented are included in the setup library and can be used to describe the active QC region
and to calculate the simulation parameters. In addition, the Schrödinger-Poisson solver tool for the design and
engineering of quantized electron states and the Bayesian optimization tool for QC devices are presented.

In Chapter 3, carrier transport simulation models for intersubband QC devices are described and the integration
into the monacoQC framework is discussed. Here, our major focus is on the in-house DM-EMC model and a rate
equation model for QCDs. We characterize the main scattering mechanisms in quantum well heterostructures
and calculate the corresponding scattering rates using Fermi’s golden rule. We further describe the stochastic
EMC method and explain the density matrix expansion for the inclusion of incoherent tunneling transport.
Within the results library, the stationary carrier transport simulation results and the eigenstates, solutions from
the SP solver, are stored using class objects. The provided class functions can be used for the analysis and
visualization of the simulation results. In order to process the simulation data and to provide a compact quantum
system model for the dynamic Maxwell-DM simulations, the class mbsolve_sim is introduced.

Furthermore, our recent work about modeling fluctuations in dynamical optoelectronic device simulations
within a Maxwell-density matrix Langevin approach is described in Chapter 4. Based on the quantum theory for
a three-level quantum system including incoherent tunneling injection we can derive stochastic fluctuation terms
and incorporate them in our mbsolve tool. Starting from the quantum Langevin equations, we can derive the
associated c-number Langevin equations and combine them with the Maxwell-DM equations. Fluctuations that
accompany electronic transport and spontaneous emission in optoelectronic multilevel systems can be accurately
modeled in dynamic simulations of light-matter interaction. Our Maxwell-DM Langevin modeling approach
shows great potential for the theoretical investigation of intermodal intensity correlations in photonic devices
and the development of low-noise integrated light emitters, also with regard to the generation of non-classical
light.

In Chapter 5, we give an overview of the open-source Maxwell-DM Langevin tool mbsolve and describe new
implementations, e.g., the truncation of the optical field at the simulation boundaries, the treatment of chromatic
waveguide dispersion and the modeling of fluctuations in dynamical optoelectronic device simulations. We
give a brief overview of the existing methods and validate the most important parameters, such as numerical
performance and long-term stability. Furthermore, the numerical treatment of the Maxwell-DM Langevin
equations within the mbsolve framework is described in detail. For the truncation of the optical field in lossy
and dispersive media, we use the advanced finite-difference time-domain method with auxiliary differential
equations. The numerical treatment of the density matrix within the matrix-exponential approach and the
evolution of the fluctuation operator are presented. Finally, the main loop of the simulation with the extended
generalized update equations is discussed.

The new functional extensions of the mbsolve simulation library are verified in Chapter 6 by using various
simulation setups. Here, we conduct a comprehensive study of a THz QCL system, including the characterization
of gain and intrinsic dispersion. A sophisticated perfectly matched absorbing boundary condition is used for the
truncation of the active QCL gain medium. By taking into account the impedance mismatch effects arising from
the internal quantum system, we can avoid detrimental reflection errors. An improved absorbing characteristic
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can be demonstrated by comparing the simulation results with the conventional absorbing boundary conditions.
We further investigate the influence of group velocity dispersion on the formation of THz frequency combs.
Therefore, we use the implemented Lorentz model for the THz QCL OFC setup and can report good agreement
with the experimental data. A superfluorescence (SF) setup is used for the validation of our fluctuation
implementations. The inclusion of fluctuations is important to reproduce the transition from SF to amplified
spontaneous emission (ASE), which is associated with the decrease in dephasing times. Here, the experimental
findings can be replicated.

In Chapter 7, we present simulation and optimization results for photovoltaic QCD operation. Using an
advanced method for accurate and efficient simulations of photovoltaic QCD structures based on the EMC
approach, we show simulation results of QCDs detecting in the mid-IR and THz regimes. The comparison with
experimental data and NEGF simulation results yields good agreement and qualifies our approach for systematic
optimization of QCDs. Therefore we use the BO approach in combination with our QCD modeling approach to
optimize the mid-IR QCD design N1022. The resulting QCD structures show improved performance concerning
signal strength and noise characteristics. Using a GP trained with the simulation results of the BO runs, we
can make assumptions about the sensitivity of the optimized designs to the manufacturing tolerances. The
optimized structures appear to be quite robust to variations in the growth layer.

Multi-domain modeling results of free-running frequency comb formation in quantum cascade lasers are
presented in Chapter 8. Therefore, the chapter is divided into two parts, one presenting simulation results for
self-starting harmonic mode-locking in a THz QCL and the other showing simulation results of intracavity
terahertz comb emission by difference frequency generation. Our results for the THz QCL setup show the
self-assembling of high-order HFCs, where the mode-locking results from the internal laser dynamics. The
investigation of different basis states reveals their influence on the gain characteristics and the formation of HFC
states in THz QCLs. Additionally, we investigate the influence of the applied bias and waveguide geometry
on the HFC formation and characterize the spectral time evolution of the self-starting harmonic mode-locking
mechanism. We discuss the effects of noise contributions on the THz HFC characteristics. For the THz DFG
QCL setup, we present stationary charge carrier transport simulations of the given structures based on the
EMC method and compare them with the corresponding experimental data. Based on these results, we conduct
dynamic simulations of the light-matter interaction using the open-source Maxwell-density matrix simulation
tool mbsolve. Within our simulations, we can reproduce the experimental findings, where a THz comb is
obtained by nonlinear mixing of a largely detuned DFB mid-IR single mode and a mid-IR FP comb.

Finally, in Chapter 9 we discuss our findings and point out possible future directions.
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2 Functional Engineering of Intersubband
Quantum Cascade Devices

Quantum cascade devices cover a wide range of the mid-IR and THz frequency spectrum and are therefore
suitable for applications in chemical and biological sensing, imaging and communication. Here, we focus
on two devices that are characterized by their physical working principle: The quantum cascade laser is a
unipolar semiconductor laser and the quantum cascade detector as its counterpart is a unipolar semiconductor
detector. In both devices, the lasing/detecting mechanism is achieved by optical intersubband transitions between
quantized states in specially designed multiple quantum well heterostructures. A deep theoretical understanding
of the physical mechanisms in these structures is required to systematically improve the performance in terms
of operating temperature, efficiency and spectral range. The quantum well heterostructure further serves as
a versatile model application for the development and improvement of simulation techniques in nano- and
optoelectronics.

In this chapter, we focus on a comprehensive description of the QC device specifications and use extensive
theoretical models from the literature for the development and optimization of these optoelectronic components.
We deal with the fundamental principles of the physical and optical properties of low-dimensional semiconduc-
tors and describe the heterostructure technology. Therefore, we have developed the open-source Matlab-based
QC device engineering tool monacoQC, schematically illustrated in Fig. 2.1 [24], [90]. In the following, we
will divide the monacoQC framework into the given submodules and describe the specifications of the modules
optimizer, setup and solver in this chapter in more detail. The reamining modules mbsolve, ext. solver and
results are covered in Chapter 3.

A setup library for the description of the QC active region and the simulation parameters is provided. Taking
into account all important parameters in our device description, the corresponding wavefunctions 𝜓𝑖 and system
Hamiltonian 𝐻̂s are calculated within a Schrödinger-Poisson (SP) solver library. The numerical approach used
for solving the Schrödinger equation is based on the transfer matrix method (TMM) and is implemented in
the corresponding class tm_solver [29], [183]. Additionally, a class poisson_solver takes care of the mean-
field treatment of the electron-electron interaction and determines the arising electrostatic potential. Backend
classes for the SP (writer_wf) and setup module (fortran_sim) generate all necessary EMC simulation input
files, which are then fed into an external EMC simulation tool for stationary carrier transport simulations.
Additionally, a Bayesian optimization module (BO_sim) based on Gaussian process regression is integrated
into the monacoQC framework aiming to engineer and develop high-performance QC devices in a structured
manner [24], [255], [256].

The chapter is organized as follows: In Section 2.1, we give an overview of the module setup for the description
of intersubband QC devices. The electronic and optical properties of III-V semiconductors, including the
physical approaches required to calculate the semiconductor band structure, are presented here. We further give
a description of the Schrödinger-Poisson solver tool in Section 2.2. Here, we discuss the numerical solution of
the one-dimensional Schrödinger equation, which provides the eigenenergies and wave functions of the energy
eigenstates in the QC heterostructure. Furthermore, the inclusion of space charge effects through the solution of
the Schrödinger-Poisson equation system is treated. Section 2.3 gives a brief summary of Bayesian optimization
and Gaussian processes and explains how to apply this method to the optimization of quantum cascade devices.

2.1 Intersubband QC Device Description

The setup library mainly consists of two classes for the description of the intersubband QC structures. Here,
the class device includes all important information about the active QC medium and the waveguide. The active
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Figure 2.1 Overview of the monacoQC framework [254]. The project consists of six modules. In this chapter, we
concentrate on the description of the three highlighted modules optimizer, setup and solver. Adopted from J. Popp et al.,
"Multi-domain modeling of free-running harmonic frequency comb formation in terahertz quantum cascade lasers" [178]
(CC BY 4.0).

region is formed by one period consisting of the layer collection with barrier and well materials. Relevant
parameters of the waveguide model, e.g., the cavity length 𝐿, the linear loss term 𝛼0, the facet reflectance 𝑅
and the confinement factor Γ, are summarized in the class waveguide. Other relevant environmental simulation
parameters, e.g., applied bias or temperature 𝑇 , describe the simulation scenario and are specified in the
corresponding class scenario.

To obtain realistic simulation results, an accurate and detailed description of the specific physical properties
of the used III-V compound semiconductor material systems is required. The III-V semiconductor compounds
crystallize in a zincblende lattice structure, schematically illustrated in Fig. 2.2(a). Here, the unit cell consists
of two interpenetrating face-centered cubic unit cells, each containing one specific atom. The reciprocal lattice
of the underlying Bravais lattice is a body-centered cubic lattice and its first Brillouin zone is a truncated
octahedron, shown in Fig. 2.2(b) with the standard notation for the points of high symmetry. In general, Greek
letters are used to describe the points within the zone and Roman letters are used for the points on the surface.
The two common material systems, AlGaAs/GaAs for THz QCLs and InGaAs/InAlAs for mid-IR QCLs are
also based on the zincblende crystal lattice. In III-V semiconductors 8 outer electrons reside in one unit cell
contributing to the chemical bonds. The other electrons are highly bound to the nuclei and will be neglected in
our description of the electronic properties near the bandgap. In GaAs, the 8 covalent electrons are summarized
by 3 electrons from Ga and 5 electrons from As and hybridize to tetrahedral bonds, e.g., one Ga-atom to its four
nearest As-atom neighbors. Here, two electrons form strongly bound s-levels and the remaining six electrons
fill the three bonding p-type orbitals. Due to the large number of unit cells, the levels broaden into bands,
where the bonding p-orbitals form the valence bands, and the lowest lying empty anti-bonding (often s-level)
orbitals the conduction band. In Fig. 2.3(a), the bandstructure of the ternary alloy In0.53Ga0.47As is depicted
with a conduction band and three valence bands (heavy-hole (HH), light-hole and split-off (SO)). In general,
the band edge of the valence band in III-V semiconductors can be found at the Γ point, which is the center of
the Brillouin zone. Spin-orbit coupling is fully dedicated to the anion (As), which means that the spin-orbit
split-off band is nearly independent of the cation. If the cation of a binary material is heavier, it is more likely
to find the conduction band minimum at the Γ point. The binary material InAs features a direct bandgap at the
Γ point, whereas AlAs has an indirect bandgap with the conduction band minimum at the 𝑋 point. Ternary and
quaternary alloys do not have a crystalline arrangement, as the involved atoms are distributed randomly at the
sites of the zincblende lattice. To describe the electronic states of these alloys the virtual crystal approximation
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Figure 2.2 (a) Zincblende lattice composed by two face-centered cubic (fcc) primitive cells, where one is shifted by
( 𝑎

4
𝑎
4

𝑎
4 ) relative to the position of the other resulting in an interpenetration of the two. (b) First Brillouin zone of the

face-centered cubic lattice. Special points and directions are highlighted. Solid lines are on the surface and the broken
lines are inside the zone.

(VCA) is applied. Here, the actual potential is replaced by an averaged one, which restores the translational
invariance. This is required for the Bloch theorem, which is used for the description of wavefunctions in crystals.
Furthermore, specific parameters such as the conduction band edge energy 𝐸c or effective masses 𝑚∗ for the
description of semiconductors can be defined. For ternary alloys we can calculate these parameters 𝑇𝐴1−𝑥𝐵𝑥𝐶

using a simple quadratic formula [257]

𝑇𝐴1−𝑥𝐵𝑥𝐶 = (1 − 𝑥)𝐵𝐴𝐶 + 𝑥𝐵𝐵𝐶 − 𝑥(1 − 𝑥)𝐶 , (2.1)

where 𝐵𝐴𝐶 and 𝐵𝐵𝐶 are the two involved binaries, 𝑥 describes the alloy composition and 𝐶 is the so-called
bowing parameter, which accounts for the deviation from the linear interpolation between the two binaries.
The physical significance of the bowing parameters results from the disorder effects caused by the presence
of the different cations (e.g., In and Al for InAlAs) and anions (e.g., As and P for GaAsP), respectively. Due
to the different bandstructures of the binaries, the electronic properties of ternary alloys such as InAlAs vary
highly nonlinearly with composition. In contrast to the material InGaAs, which offers a direct bandgap over
the full composition range, the conduction band edge for InAlAs changes from the Γ point to the 𝑋 point for
varying compositions, where the crosspoint of the bandgap from direct to indirect is roughly at a composition of
𝑥 = 0.64 [258]. Even for compound alloys such as AlGaAs, where the lattice periods of the binary components
are very similar, there are strong nonlinearities due to the considerable differences in the bandstructure of the
individual binary components.

The breakdown of the parabolic dispersion relation between energy and wavenumber in the conduction band
of semiconductor materials for higher energy levels has to be considered in the simulation of QCLs. These
nonparabolicity effects are treated within the k · p perturbation theory [259]–[261]. Here, the bandstructure
of semiconductors is described by an energy-dependent effective mass [262], [263]. Within Bloch’s theorem
a solution for the Schrödinger equation in a periodic lattice potential with the period 𝑹, e.g., in a bulk
semiconductor crystal, is given by wavefunctions of the form

Ψ𝑛,𝒌 (𝒓) = exp(i𝒌𝒓)𝑢𝑛,𝒌 (𝒓) , (2.2)

with the periodic Bloch function 𝑢𝑛,𝒌 (𝒓) = 𝑢𝑛,𝒌 (𝑹 + 𝒓). The k · p theory is used to solve the Schrödinger
equation based on perturbation theory. Here, the Schrödinger equation for Bloch wavefunctions in crystals is
given by

𝐻̂0(𝒓)Ψ𝑛,𝒌 (𝒓) =
[
𝒑̂2

2𝑚0
+𝑉 (𝒓)

]
Ψ𝑛,𝒌 (𝒓) = 𝐸𝑛 (𝒌)Ψ𝑛,𝒌 (𝒓) , (2.3)
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Figure 2.3 (a) Bandstructure of the direct bandgap semiconductor material In0.53Ga0.47As. The conduction and valence
bands are depicted and the symmetry points 𝑋 , Γ and 𝐿 are marked. Reproduced from [264]. (b) Band edge energy
calculations of the conduction band 𝐸c, heavy-hole (HH) 𝐸HH

v , light-hole (LH) 𝐸LH
v and split-off (SO) valence band 𝐸SO

v
of In𝑥Al1−𝑥As grown on a (001) InP substrate under biaxial strain (𝒌 = 0) [265]. The influence of biaxial strain is taken
into account and leads to a split-up of heavy and light hole valence band energy [263].

where 𝒑̂ is the momentum operator, 𝑚0 is the electron mass, 𝑉 (𝒓) is the crystal potential and 𝐸𝑛 denotes
the eigenenergies. In general, spin-orbit coupling should be considered in more sophisticated studies of III-V
semiconductor materials, but we neglect it here for the introduction to this theory in order to obtain a simplified
derivation. For a more detailed description including the spin-orbit coupling, we refer to [262]. Using 𝒑̂ = −iℏ∇
with ℏ being the reduced Planck constant, and substituting the wavefunctions from Eq. (2.2) into Eq. (2.3), we
can cancel out the plane wave term exp(i𝒌𝒓) and obtain for the Bloch functions 𝑢𝑛,𝒌 (𝒓)[

𝒑̂2

2𝑚0
+𝑉 (𝒓) + ℏ

𝑚0
𝒌 𝒑̂ + ℏ2𝒌2

2𝑚0

]
𝑢𝑛,𝒌 (𝒓) = 𝐸𝑛 (𝒌)𝑢𝑛,𝒌 (𝒓) , (2.4)

where the total Hamiltonian is divided into a unperturbed Hamiltonian 𝐻̂0 and a momentum-dependent term
𝐻′(𝒌). At the Γ-point for 𝒌 = 0 a solution for the wavefunctions and eigenenergies is obtained as

𝐻̂0𝑢𝑛,0(𝒓) = 𝐸𝑛 (0)𝑢𝑛,0(𝒓) , (2.5)

which can be used as the basis for the perturbation theory introduced below. The functions 𝑢𝑛,𝒌 (𝒓) at the
vicinity of the band edge are written as

𝑢𝑛,𝒌 (𝒓) =
∑︁
𝑚

𝑐𝑚(𝒌)𝑢𝑚,0(𝒓) , (2.6)

with the 𝒌-dependent coefficients 𝑐𝑚(𝒌). By inserting Eq. (2.6) into Eq. (2.4), we obtain the second-order
energy correction for the conduction band (𝑛 = 𝑐)

𝐸c(𝒌) = 𝐸c(0) + ℏ2𝒌2

2𝑚0
+ ℏ2

𝑚2
0

∑︁
𝑚≠𝑐

|⟨𝑢𝑐,0(𝒓) | 𝒌 · 𝒑̂ |𝑢𝑚,0(𝒓)⟩|2
𝐸c(0) − 𝐸𝑚(0) , (2.7)

where the momentum matrix elements ⟨𝑢𝑐,0(𝒓)|𝒌 · 𝒑̂|𝑢𝑚,0(𝒓)⟩ describes the energy corrections arising from the
coupling strength between the conduction band 𝑐 and all other considered energy bands 𝑚. For example, the
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Figure 2.4 (a) Γ-valley bandgap energy 𝐸g as a function of lattice constant for nine III-V binary compound semiconductors
(blue points) and their lattice-matched ternary alloys (orange points) for a lattice temperature of 300 K. The dashed lines
connect two binaries and represent ternary alloys of varying alloy composition. (b) Γ-valley conduction band edge energies
of binaries (blue points) and lattice-matched ternaries (orange points) as a function of lattice constant. Here, the conduction
band energy of GaAs was used as the reference value and is set to zero.

matrix element between the conduction band state 𝑆, built out of 𝑠 orbitals, and the valence band state 𝑋 , built
out of 𝑝𝑥 orbitals, is conventionally written as ⟨𝑆 | 𝒑̂𝒙 |𝑋⟩ = (i𝑚0)P. Here, the parameter P is the momentum
matrix element between conduction and valence band and was defined by E. Kane [260], [261]. From the
second-order Taylor expansion, we can define an effective mass 𝑚∗ for the electrons in the conduction band as

1
𝑚∗

=
1
𝑚0
+ 2
𝑚2

0𝒌
2

∑︁
𝑚≠𝑐

|⟨𝑢𝑐,0(𝒓) | 𝒌 · 𝒑̂ |𝑢𝑚,0(𝒓)⟩|2
𝐸c(0) − 𝐸𝑚(0) . (2.8)

In the following, we will focus on multiband k · p models, which are nowadays the standard model for bulk
semiconductor bandstructure calculations. Well-known models are based on eight bands [258], [266]–[268]
and include the spin-orbit coupling. Based on that, the conduction band edge effective mass can be expressed
as [258]

1
𝑚∗

=
1 + 2𝐹
𝑚0

+ 2P2 𝐸g + 2ΔSO/3
𝐸g(𝐸g + ΔSO) , (2.9)

where ΔSO = 𝐸LH
v − 𝐸SO

v = −𝐸SO
v is the spin-orbit splitting, 𝐸g the bandgap energy and 𝐹 the Kane parameter.

The energy-dependent effective mass based on 14-band k · p calculations is given by [269]

𝑚∗⊥(𝐸) =
𝑚∗⊥(0)
2𝛼′𝐸

[
1 − (1 − 4𝛼′𝐸) 1

2

]
, (2.10a)

𝑚∗∥ (𝐸) = 𝑚∗∥ (0) [1 + (2𝛼′ + 𝛽′)𝐸] (2.10b)

with nonparabolicity parameters 𝛼′ and 𝛽′ [29]. Approximately, we can write 𝛼′ =
(
𝐸g + ΔSO/3

)−1.
Environmental influences such as temperature or strain on the semiconductor lattice can have a significant

impact and have to be taken into account for the calculation of specific material parameters such as the energy
band gap 𝐸g or the effective mass 𝑚∗. Here, the temperature-dependent energy band gap 𝐸g is fitted using the
empirical Varshni formula [270]

𝐸g(𝑇) = 𝐸g(0) − 𝛼v𝑇
2

𝑇 + 𝛽v
, (2.11)

where 𝛼v and 𝛽v are the Varshni parameters.
In Fig. 2.4(a) and (b) the Γ-valley energy gap and conduction band edge energy 𝐸c values of nine binary ma-

terials and specific lattice-matched ternary alloys are illustrated. Here, the Matlab functions plot_Eg_materials
and plot_Ec_materials included in the monacoQC framework are used to generate the presented vector graphics.
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All band parameters for the III-V compound semiconductors and their ternary alloys are extracted from [258].
The monacoQC framework could be easily extended towards quaternary alloys, e.g., AlGaInAs or GaInAsP,
and other parameters, e.g., for the calculation of 𝑋- and 𝐿-valley energy gaps, could be incorporated.

An exact determination of the conduction band discontinuity in the quantum well heterostructure is important
for the calculation of the eigenenergies 𝐸𝑖 and wavefunctions 𝜓𝑖 of the intersubband QC device system. Hence,
to characterize the semiconductor bandstructure and the conduction band discontinuities in the quantum well
heterostructure we apply the model-solid theory [271]. It is based on density-functional calculations, where the
individual bulk semiconductors are described by ab initio pseudo-potentials. The calculated band energies are
aligned on absolute energy values, which makes it possible to calculate CBOs by subtracting the conduction band
edge energies of individual well and barrier materials. As bandgap values in density-functional theory cannot
be predicted correctly, the experimentally measured bandgap values are used to get a more precise solution of
the bandstructure [258]. Effects on the bandstructure due to pseudomorphic strain are intrinsically included
in the model-solid theory. For the development of short-wavelength QCLs beyond the CBO limit of 0.52 eV
in lattice-matched systems, the material composition of the mid-IR QCL material system InGaAs/InAlAs has
to be strain-engineered. In this work, we investigate efficient DFG QCL designs based on strain-compensated
InGaAs/InAlAs material systems. These exhibit a reduced thermally activated carrier leakage into continuum
states above the barrier potentials and thus have an increased device performance [192]. Therefore, the
composition of strain-compensated QC heterostructures during the growth process has to be selected carefully
to avoid relaxation defects in the semiconductor lattice. This is achieved by balancing the compressive and
tensile strain of well and barrier materials. The relative shift in conduction band energy due to hydrostatic strain
is given by [271]

𝑃c
𝜖 = Δ𝐸c = 𝑎c

ΔΩ
Ω

, (2.12)

where 𝑎c is the hydrostatic deformation potential of the conduction band. The volume change arising from
bi-axial strain ΔΩ/Ω = Tr(𝝐) = 2𝜖 ∥ + 𝜖⊥ is calculated by the trace of the strain tensor 𝝐 . In a similar manner,
the effective change in valence band position is obtained by [271]

𝑃v
𝜖 = Δ𝐸v = 𝑎v

ΔΩ
Ω

, (2.13)

with the hydrostatic deformation potential 𝑎v of the valence band. The effective bandgap energy under strain
influence is then given by 𝐸s

g = 𝐸g + 𝑃c
𝜖 + 𝑃v

𝜖 . The influence of biaxial strain further leads to a split-up of
heavy and light-hole valence band energy. This effect is illustrated in Fig. 2.3(b), where the calculated band
edge energies of In𝑥Al1−𝑥As taking into account biaxial strain due to lattice-mismatched growth on (001) InP
is illustrated as a function of indium concentration. The relative energy offset for the three valence bands added
to the lattice-matched value 𝐸v is calculated by [265]

𝐸HH
v = − 𝑃v

𝜖 −𝑄 𝜖 , (2.14a)

𝐸LH
v = − 𝑃v

𝜖 +
1
2

(
𝑄 𝜖 − ΔSO +

√︃
Δ2

SO + 2ΔSO𝑄 𝜖 + 9𝑄2
𝜖

)
, (2.14b)

𝐸SO
v = − 𝑃v

𝜖 +
1
2

(
𝑄 𝜖 − ΔSO −

√︃
Δ2

SO + 2ΔSO𝑄 𝜖 + 9𝑄2
𝜖

)
(2.14c)

with
𝑄 𝜖 = −𝑏s

(
𝜖 ∥ − 𝜖⊥

)
. (2.15)

Here, the shear deformation potential 𝑏s is used. In Fig. 2.5(a), the CBO of the material system InAlAs/InGaAs
on InP for 𝑥 ∈ [0, 1] is depicted. As can be seen here, the material composition choice of In𝑥Al1−𝑥As
has a significant influence on the material system CBO value, whereas the indium concentration variation in
In𝑥Ga1−𝑥As does not affect the CBO value considerably. In QCL device engineering it would make sense
to tune the target CBO value by the In𝑥Al1−𝑥As composition and balance the strain in the active period by
adjusting the indium concentration of the In𝑥Ga1−𝑥As well materials.

Sugawara et al. [265] investigated the effects of strain on the effective mass at the conduction band edge and
derived a model based on an 8-band k · p theory for the calculation of effective masses in strained materials.
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Figure 2.5 Calculated strain effects for the material system InGaAs/InAlAs at 300 K on an InP substrate with (001)
orientation. (a) Contour plot of the CBO of the In𝑥Ga1−𝑥As/In𝑥Al1−𝑥As material system for indium (In) concentrations
𝑥 ∈ [0, 1]. The lattice-matched material system In0.52Ga0.48As/In0.53Al0.47As is represented by the blue dot. (b) Effective
mass 𝑚∗ at the Γ-point of the materials In𝑥Ga1−𝑥As and In𝑥Al1−𝑥As for 𝑥 ∈ [0, 1]. Strain effects lead to an anisotropic
effective mass with different values for growth direction 𝑚∗⊥ and in-plane 𝑚∗∥ values.

Here, it was demonstrated that the electron effective mass at the conduction band edge becomes anisotropic for
In𝑥Ga1−𝑥As/InP quantum wells. The effective mass for growth direction 𝑚∗⊥ and in-plane 𝑚∗∥ effective mass at
the conduction band edge are calculated with [265]

1
𝑚∗∥

=
1 + 2𝐹
𝑚0

+ 2P2

3

[ (√2𝛼 − 𝛽)2
𝐸g + 𝑃c

𝜖 − 𝐸LH
v
+ (
√

2𝛽 + 𝛼)2
𝐸g + 𝑃c

𝜖 − 𝐸SO
v

]
, (2.16a)

1
𝑚∗⊥

=
1 + 2𝐹
𝑚0

+ P2

3

[
3

𝐸g + 𝑃c
𝜖 − 𝐸HH

v
+ (
√

2𝛼 + 𝛽)2
𝐸g + 𝑃c

𝜖 − 𝐸SO
v
+ (𝛼 −

√
2𝛽)2

𝐸g + 𝑃c
𝜖 − 𝐸LH

v

]
, (2.16b)

where the two variables 𝛼 and 𝛽 represent the strain influence. In the case of lattice-matched material systems
with 𝛼 = 1, 𝛽 = 0 and 𝐸HH

v = 𝐸LH
v = 𝐸v = 0, we obtain an isotropic effective mass at the band edge (𝑚∗⊥ = 𝑚∗∥ )

and the effective mass calculation gets reduced to the simplified formula of Eq. (2.9). Effective mass 𝑚∗
calculations at the conduction band edge for the materials In𝑥Ga1−𝑥As/In𝑥Al1−𝑥As on an InP substrate at
𝑇 = 300 K are illustrated in Fig. 2.5(b). Biaxial strain leads to a breakdown of the isotropy in effective mass.
Moving away from the lattice matched system In0.52Al0.48As and In0.53Ga0.47As on InP results in a divergence
of effective mass for growth direction and in-plane effective mass with varying indium concentrations. All
functions to calculate the here presented semiconductor parameter properties are defined and implemented in
the material classes consisting of a base class material and the subclasses for binary compounds and ternary
alloys.

In Listing 2.1, an example script for the setup generation of a THz QCL setup [73] used for HFC generation
is depicted. Here, we define a ternary barrier material AlGaAs with an Al concentration of 0.15 and combine
it with the binary well material GaAs. The active period consists of a sequence of barrier and well materials,
where the injection well of length 183 nm is Si-doped with 2.3 × 1016 cm−3. The active waveguide with a
length of 5 mm is specified by an effective refractive index of 3.6 and a power loss coefficient of 13 cm−1. The
simulation scenario is specified with a temperature of 80 K, a bias field of 49 kV cm−1 and a simulation endtime
of 50 ps. Here, the simulation basis for the Schrödinger-Poisson solver is set to a tight-binding basis, which will
be introduced in the following section [35], [36].

Listing 2.1 Code snippet of the Matlab script for the THz HFC-QCL setup in [73].
%% define scenario and device
% barrier material
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b = AlGaAs (0.15);
% well material
w = GaAs ();
% set up period
period = { ...

layer(b, 58); ...
layer(w, 183, 2.3e16); ...
layer(b, 41); ...
layer(w, 92); ...
layer(b, 39); ...
layer(w, 115); ...
layer(b, 29); ...
layer(w, 106); ...
};

% number of periods
num_periods = 5;

% set up device
d = device(period , num_periods );
% set waveguide
% effective refractive index.
neff = 3.6;
d.n_eff = neff;
r = (neff - 1) / (neff + 1);
w = waveguide (5e-3, 1300, [], 1, r);
d.set_waveguide(w);

% temperature in K
temperature = 80;

% bias field in kV/period
V = 49e-6;
l_period = d.l_period * 1e-8;
% bias field in kV/cm
bias = V / l_period;

% Simulation time in s
t_sim = 5e-11;

% Using tight -binding basis for SP simulations
basis_sp = ’tb’;

% Number of wavefunctions
num_wavefct = 5;

% set up scenario
s = scenario(temperature , bias , t_sim , num_wavefct , basis_sp );

2.2 Schrödinger-Poisson Solver

Intersubband QC devices consist of multiple quantum wells, where energetic alignment between LLL and ULL in
the conduction band is specified by the layer composition of the well and barrier materials. For the development
and optimization of such devices with their optical transition at a characteristic wavelength, a careful design of
the quantized electron states in the heterostructure is crucial. Here, the optical and non-radiative properties can
be analyzed and improved by efficient wavefunction engineering. Using the stationary Schrödinger equation,
the eigenenergies and wavefunctions are calculated, and by solving the Poisson equation, one can take into
account additional space charge effects.

Bastard [262] derived a concept for heterostructures based on the envelope function model, where the atomic
wavefunction is divided into two parts. Firstly, the fast-oscillating Bloch functions 𝑢𝜈𝑖 ,0(𝒓) in band 𝜈 have
the same periodicity as the crystal potential and are assumed to be the same in the well and barrier layers as
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Figure 2.6 Schematic illustration of full eigenstate wavefunctions Ψ𝑖 = 𝜙𝑖,𝒌𝑢𝑐𝑖 ,0 (solid) and envelope wavefunctions 𝜙𝑖,𝒌
(dashed) in the conduction band of a quantum well consisting of barrier material B and well material W. Here, the materials
B and W consist of two atoms (B: green and yellow; W: green and orange), respectively. The conduction band energy
𝐸c (𝑧) changes depending on the growth direction 𝑧.

both materials have a similar lattice constant. Secondly, a slowly varying envelope function 𝜙𝑖,𝒌 (𝒓) is used to
describe the impact of the heterostructure. The combination results in the atomic wavefunction, written as

Ψ(𝒓, 𝒌) =
∑︁
𝑖

𝜙𝑖,𝒌 (𝒓)𝑢𝜈𝑖 ,0(𝒓) . (2.17)

Within the multiple quantum well heterostructure of QC devices, we distinguish between in-growth direction
𝑧 and in-plane directions 𝒓 = [𝑥, 𝑦]T. Here, charge carriers move freely in 𝑥𝑦-plane and are only confined in
𝑧-direction. The in-plane wavevector in the 𝑥𝑦-plane can be summarized as 𝒌 =

[
𝑘𝑥 , 𝑘𝑦

]T and the material
composition and thus the potential 𝑉 and the effective masses 𝑚∗ only vary in growth direction. With this, we
can make the following ansatz for the slowly varying envelope function

𝜙𝑖,𝒌 (𝒓) = 1√
𝑆
𝜓𝑖,𝒌 (𝑧) exp(i𝑘𝑥𝑥 + i𝑘𝑦𝑦) . (2.18)

Here, 𝜓𝑖,𝒌 (𝑧) is the 1D envelope wavefunction confined in growth direction. 𝑆 denotes the in-plane cross-
sectional area and is required to fulfill the normalization condition

∫
|𝜓𝑖,𝒌 (𝑧) |2 d𝑧 = 1. In Fig. 2.6, the

wavefunctions Ψ𝑖 and corresponding envelope wavefunctions 𝜙𝑖,𝒌 for the two lowest-lying energy eigenstates
in the conduction band of a quantum well are schematically illustrated. For the treatment in the vicinity of the
Γ-point in the conduction band we utilize the framework of the Ben Daniel-Duke model, where the coupling
between conduction and valence band is neglected. The resulting stationary Schrödinger equation is given by[

ℏ2𝒌2

2𝑚 ∥ (𝑧) −
ℏ2

2
𝜕𝑧

1
𝑚∗(𝑧) 𝜕𝑧 +𝑉 (𝑧) − 𝐸𝑖,𝒌

]
𝜓𝑖,𝒌 (𝑧) = 0 , (2.19)

with 𝒌-dependent eigenenergies 𝐸𝑖,𝒌 and wavefunctions 𝜓𝑖,𝒌 (𝑧). By neglecting the 𝑧 dependence of the in-plane
effective mass 𝑚 ∥ (𝑧), the Schrödinger equation can be simplified to 1D, and is given by[

−ℏ
2

2
𝜕𝑧

1
𝑚∗(𝑧) 𝜕𝑧 +𝑉 (𝑧) − 𝐸𝑖

]
𝜓𝑖 (𝑧) = 0 . (2.20)

Taking the free in-plane electron motion into account, we obtain for the eigenenergies 𝐸𝑖,𝒌 = 𝐸𝑖 + 𝐸kin, with the
kinetic energy

𝐸kin =
ℏ2𝒌2

2𝑚 ∥
. (2.21)

Widely used numerical approaches for solving the 1D Schrödinger equation are based on the transfer matrix
method [183], [272]–[274] or use the finite difference scheme [275], [276]. Here, two important requirements
are fulfilled, namely the robustness and computational efficiency of the numerical approaches. The latter is
also very important as we have to investigate different bias points and various QC device configurations for
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detailed design optimization. In the following, we will focus on the TMM, since it is easier to include effects
like nonparabolicity. Furthermore, one obtains an exact treatment of the potential steps at the well and barrier
interfaces of the heterostructures. Within the TMM an arbitrary potential is approximated by dividing it into
piecewise constant or linear segments, for which analytical solutions of the 1D Schrödinger equation exist,
e.g., complex exponential solutions for piecewise constant segments [272], [273] and Airy functions for linear
segments [273]. Biased QCL heterostructures can, in general, be divided into segments of constant effective
mass and piecewise linear potential, if we neglect space charge and nonparabolicity effects. The Airy function
approach seems to be the appropriate choice here, but proves to be computationally quite complex and poses
numerical problems when segments with nearly flat potentials are considered [277], [278].

In our monacoQC framework, we have decided to implement the exponential transfer matrix scheme. Here,
the structure is divided into segments of piecewise constant potential and the potential jumps that occur between
the well and barrier layers are located at the segment boundaries. The wavefunction solution in one segment is
given by

𝜓𝑛 (𝑧) = 𝐴𝑛 exp[i𝑘𝑛 (𝑧 − 𝑧𝑛)] + 𝐵𝑛 exp[−i𝑘𝑛 (𝑧 − 𝑧𝑛)] . (2.22)

Here, the segment 𝑛 is described using a spatial discretization 𝑧𝑛 ≤ 𝑧 ≤ 𝑧𝑛 + Δ𝑛 = 𝑧𝑛+1 and constant values for
𝑉 (𝑧𝑛) = 𝑉𝑛 and 𝑚∗(𝑧𝑛) = 𝑚∗𝑛. The wavenumber is 𝑘𝑛 =

√︁
2𝑚∗𝑛 (𝐸 −𝑉𝑛)/ℏ for 𝐸 > 𝑉𝑛 and becomes imaginary

𝑘𝑛 = i
√︁

2𝑚∗𝑛 (𝑉𝑛 − 𝐸)/ℏ for 𝐸 < 𝑉𝑛. Matching conditions have to be specified for potential steps and effective
mass discontinuities [29], [183], [263] and can be written as

𝜓(𝑧+0) = 𝜓(𝑧−0 ) ,[
𝜕𝑧𝜓(𝑧+0)

]/𝑚∗(𝑧+0) = [
𝜕𝑧𝜓(𝑧−0 )

]/𝑚∗(𝑧−0 ) , (2.23)

with 𝑧+0 and 𝑧−0 being the positions directly to the right and left of the potential step describing the discontinu-
ity [263]. Using Eq. (2.22) and by applying the matching conditions, the relation between amplitudes [𝐴𝑛, 𝐵𝑛]T
at neighboring segments are determined as (

𝐴𝑛+1
𝐵𝑛+1

)
= 𝑇𝑛,𝑛+1

(
𝐴𝑛

𝐵𝑛

)
. (2.24)

Here, we further use a symmetric transfer matrix to improve the accuracy of the exponential matrix scheme,
which is given by

𝑇𝑛,𝑛+1 = 𝑇𝑛+1

(
Δ𝑛

2

)
𝑇𝑛→𝑛+1𝑇𝑛

(
Δ𝑛

2

)
= ©­«

𝑘̃𝑛+1+𝑘̃𝑛
2𝑘̃𝑛+1

ei𝑘+𝑛Δ𝑛 𝑘̃𝑛+1− 𝑘̃𝑛
2𝑘̃𝑛+1

e−i𝑘−𝑛Δ𝑛

𝑘̃𝑛+1− 𝑘̃𝑛
2𝑘̃𝑛+1

ei𝑘−𝑛Δ𝑛 𝑘̃𝑛+1+𝑘̃𝑛
2𝑘̃𝑛+1

e−i𝑘+𝑛Δ𝑛 ,

ª®¬ (2.25)

with 𝑘±𝑛 = (𝑘𝑛 ± 𝑘𝑛+1)/2, 𝑘𝑛 =
√︁

2𝑚∗𝑛 (𝐸 −𝑉𝑛)/ℏ and 𝑘̃𝑛 = 𝑘𝑛/𝑚∗𝑛 [29], [183]. The symmetric transfer matrix
can be divided into two submatrices, one for segments of flat potential 𝑇𝑛 ( Δ𝑛

2 ) and one for potential steps at
segment interfaces 𝑇𝑛→𝑛+1. The former is obtained by

𝑇𝑛 (Δ𝑛

2
) =

(
ei𝑘𝑛 Δ𝑛

2 0
0 e−i𝑘𝑛 Δ𝑛

2

)
, (2.26)

and the latter is given by

𝑇𝑛→𝑛+1 =
1

2𝑘̃𝑛+1

(
𝑘̃𝑛+1 + 𝑘̃𝑛 𝑘̃𝑛+1 − 𝑘̃𝑛
𝑘̃𝑛+1 − 𝑘̃𝑛 𝑘̃𝑛+1 + 𝑘̃𝑛

)
. (2.27)

If the structure is divided into 𝑁 segments, the amplitudes on the left boundary 𝐴𝑁 , 𝐵𝑁 are calculated from the
amplitudes on the right boundary 𝐴0, 𝐵0 using Eq. (2.24). The result can be written as(

𝐴𝑁

𝐵𝑁

)
= 𝑇𝑁−1,𝑁𝑇𝑁−2,𝑁−1 · · ·𝑇0,1

(
𝐴0
𝐵0

)
=

(
𝑇11 𝑇12
𝑇21 𝑇22

) (
𝐴0
𝐵0

)
. (2.28)

Finally, an adequate boundary condition for the chosen wavefunction basis has to be selected. Available basis
sets in the open-source solver library are extended states (ext) [29], tight-binding states (tb) [35], [36] and
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Figure 2.7 Calculated conduction band profile and probability densities of the investigated THz QCL structure based
on GaAs/Al0.15Ga0.85As with an optical transition frequency of around 3 THz and for a temperature of 80 K. The layer
sequence (in nm) of one active period is 4.1/18.3/5.8/10.6/2.9/11.5/3.9/9.2. Barriers are in boldface, for the underlined
layers a doping density of 2.3 × 1016 cm−3 (n-type) is assigned and the applied bias is 50 mV/period. Comparison of
three Schrödinger-Poisson solutions based on the extended (a) [183] and tight-binding (b) potential [35], [36] and (c)
EZ-transformation [184].

EZ-states (ez) [184]. In general, the three basis state configurations represent different levels of wavefunction
localization, where an appropriate choice is important to adequately resolve specific effects in carrier transport
simulations, such as resonant tunneling across injection barriers in THz QCLs [35], [184]. The transition from
extended states to highly localized states is schematically illustrated in Fig. 2.7, where the conduction band
profile together with the probability densities in the three basis state configurations (ext, tb, ez) is presented for a
THz QCL design featuring a diagonal transition [73]. In comparison to extended states, where the full potential
𝑉 is used for the calculation of the eigenstates, the QC heterostructure is divided into modules within the tight-
binding approach. Each module comprises an active period, which is separated from its neighboring period by
the thickest barrier. The wavefunction is then calculated using the so-called tight-binding potential𝑉tb, which is
schematically illustrated in Fig. 4.1 for a two-well THz QCL design. To model the carrier injection across thick
barriers correctly, which is governed by incoherent tunneling between near-resonant states, tight-binding states
(highlighted with a blue rectangle in Fig. 2.7(b)) are advantageous against extended states (highlighted with a
green rectangle in Fig. 2.7(a)) [35], [36]. Additional coherences arising from closely aligned energetic levels
can be taken into account by applying an EZ-transformation [184]. Here, eigenstates separated by an energy
of less than 5 meV are summarized within a multiplet of states and the term EZ refers to the energy 𝐸 and the
position 𝑧 within the subspace of the multiplet. These subsets of eigenstates are diagonalized with respect to the
dipole moment operator [184]. A transformed triplet of states within the investigated THz QCL configuration
is schematically illustrated in Fig. 2.7(c) by an orange rectangle.

For the simulation of intersubband QC heterostructures, we can restrict ourselves to a limited number of
periods, as we can apply periodic boundary conditions within the carrier transport simulations. The default



24

value for the number of periods within the monacoQC framework is set to num_periods = 5 in accordance
with the input values for the external EMC tool. For the wavefunction calculations, we can even further reduce
the simulation domain to a single period and copy the relevant wavefunctions to the adjacent periods. Using the
extended state configuration, for example, all important wavefunctions can be found within an energy period
𝐸p corresponding to the bias drop over one period. The wavefunctions of the adjacent periods are then simply
obtained by shifting the original wavefunctions in position using a multiple of the period length 𝐿p and the
corresponding eigenenergies by adding a multiple of the energy period 𝐸p = 𝑉 (𝑧0) −𝑉 (𝑧0 − 𝐿p). At one period
right to the simulation window, the wavefunctions are given by 𝜓𝑖′ (𝑧) = 𝜓𝑖 (𝑧 − 𝐿p) and the eigenenergies
by 𝐸𝑖′ = 𝐸𝑖 − 𝐸p. Furthermore, we have to specify appropriate wavefunction values at the boundaries of
our simulation domain. Here, we choose decaying solutions with 𝐴0 = 𝐵𝑁 = 0, corresponding to 𝑇22 = 0.
The remaining energy-dependent matrix elements 𝑇11(𝐸), 𝑇12(𝐸) and 𝑇21(𝐸) can be found for the specific
eigenenergies by applying the so-called shooting method. Therefore, we have to divide the energy period 𝐸p
into a limited number of subintervals Δ𝐸 and obtain the discrete energy points 𝐸 𝑗 = 𝐸0 + 𝑗Δ𝐸 . Here, 𝐸0 is
the starting energy point in the energy grid. To obtain a valid solution at the boundaries of our simulation
windows, the eigenenergies must fulfill 𝐵𝑁 (𝐸 𝑗)𝐵𝑁 (𝐸 𝑗+1) < 0 for a given energy interval 𝐸 𝑗 · · · 𝐸 𝑗+1. If an
energy interval for an eigenenergy solution is found, we apply the root-finding function fzero from the Matlab
standard library to obtain a more accurate solution using a finer energy subgrid between

[
𝐸 𝑗 , 𝐸 𝑗+1

]
.

The aforementioned parameters, e.g., 𝐸p or the values for 𝐴0, 𝐵0, are defined in a class boundary_condition.
Here, we use a plugin structure consisting of an abstract base class boundary_condition and different bound-
ary conditions for the solution of extended states (boundary_condition_ext), tight-binding states (bound-
ary_condition_tb), EZ-states (boundary_condition_ez) and for QCDs (boundary_condition_QCD). For the
creation of a certain boundary condition object the static method create_instance must be called. This method
expects the simulation scenario including the basis configuration for the boundary condition. Additional input ar-
guments for the specification of important parameters are a device instance and an object of class sim_constants,
which comprises all simulation constants for the appropriate description of the TMM system, e.g., a vector with
the spatial grid 𝒛 or the potential𝑽. Instances of the two classes sim_constants and boundary_condition serve
as the main properties of the solver class tm_solver.

In the predefined energy period 𝐸p, more than the number of relevant wavefunctions could be found. In this
case, an automated selection method for the most strongly bound wavefunctions would be useful. Therefore,
we can calculate the energy of state 𝑖 with respect to the conduction band edge

𝐸̃𝑖 = 𝐸𝑖 −
∫
𝑉 |𝜓𝑖 |2 d𝑧 (2.29)

to categorize the wavefunctions 𝜓𝑖 and obtain a measure for the significance of a state 𝑖 in the carrier transport
simulations.

The electronic properties and thus the functionality of semiconductor materials, e.g., p-type and n-type
conductors with different resistivity, can be engineered over a wide range by changing the charge carrier
densities. Therefore, charge carriers in intersubband QC devices are provided by doping the active region with
a donor material such as Si. By applying a bias voltage the unbound electrons are distributed across the whole
active period, while the ionized donor atoms are localized in a relatively small area, e.g., the active well. The
separation process of carriers and the resulting space charges can lead to a considerable bending effect of the
conduction band, which has a significant influence on the position and shape of eigenstates and will further
affect the carrier transport simulation results. The total potential used within Eq. (2.20) is given by

𝑉 (𝑧) = 𝐸c(𝑧) − 𝐸p𝑧/𝐿p + 𝑉̃ (𝑧) , (2.30)

where 𝐸c(𝑧) is the unbiased conduction band profile, 𝐸p𝑧/𝐿p gives the impact of the applied bias and 𝑉̃ (𝑧) is
the additional electrostatic potential arising from the space charges. The abstract solver class poisson_solver
takes care of the mean-field treatment of the electron-electron interaction, referred to as Hartee approximation.
Here, the additional electrostatic potential is determined by solving the Poisson equation [274], [279]

𝑒−1𝜕𝑧
[
𝜀(𝑧)𝜕𝑧𝑉̃ (𝑧)

]
= 𝑒

[
𝑛D(𝑧) −

∑︁
𝑛s
𝑖 |𝜓𝑖 (𝑧) |2

]
, (2.31)
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where 𝑒 is the elementary charge and 𝜀(𝑧) is the permittivity, which varies for different material compositions
and exhibits periodicity due to the repetitions in multiple heterostructures. Furthermore, the concentration of
the positively charged donor ions is given by 𝑛D(𝑧) and 𝑛s

𝑖 denotes the electron sheet density of level 𝑖 together
with the wavefunction 𝜓𝑖 (𝑧). The electrostatic potential energy fulfills the condition 𝑉̃ (𝑧0) = 𝑉̃ (𝑧0 + 𝐿p).
Furthermore, 𝜕𝑧𝑉̃ (𝑧0) = 𝜕𝑧𝑉̃ (𝑧0 + 𝐿p) in accordance with the charge neutrality in one period (

∫ 𝑧0+𝐿p
𝑧0

𝜌 d𝑧 = 0),
and therefore has the same periodicity as 𝐸c(𝑧). To solve Eq. (2.31), we use the finite difference method, written
as [29]

𝑠𝑛𝑉̃𝑛−1 − 𝑑𝑛𝑉̃𝑛 + 𝑠𝑛+1𝑉̃𝑛+1 = 𝑒
[
𝑛D,𝑛 −

∑︁
𝑛s
𝑖 |𝜓𝑖,𝑛 |2

]
, (2.32)

with

𝑠𝑛 =
1

2𝑒Δ2
𝑧

(𝜀𝑛−1 + 𝜀𝑛) ,

𝑑𝑛 =
1

2𝑒Δ2
𝑧

(𝜀𝑛−1 + 2𝜀𝑛 + 𝜀𝑛+1) .
(2.33)

Here, we can exploit the periodicity of 𝑉̃ and only have to solve Eq. (2.32) for a single period 𝑧 ∈ [
𝑧0, 𝑧0 + 𝐿p

]
.

The given electrostatic potential energy segment can then be easily copied into the entries of the total potential
vector at which the other considered periods are located. The resulting total vector 𝑽 is inserted back into the
Schrödinger equation to find the wavefunction solutions. The equation system can be treated in matrix notation
𝑴𝑽̃ = 𝝆, where 𝑽̃ and 𝝆 contain the elements 𝑉̃𝑛 and 𝜌𝑛 and 𝑴 is a tridiagonal matrix with the finite difference
coefficients 𝑠𝑛 and 𝑑𝑛. Within the monacoQC framework, this linear equation system is solved using standard
Matlab commands.

In QCL structures, the sheet densities 𝑛s
𝑖 of the individual levels 𝑖 used in Eq. (2.31) are usually determined

using detailed carrier transport simulations [33]–[35]. To characterize the significance of space charge effects,
we compare two simulation scenarios for a terahertz QCL [280]. Firstly, we solve only the Schrödinger equation
and neglect the electrostatic potential energy 𝑉̃ (dashed lines). Secondly, we solve the full Schrödinger-Poisson
equation system by including sheet densities 𝑛s

𝑖 extracted from our in-house EMC approach (solid lines). As
illustrated in Fig. 2.8(a), considerable band bending effects due to space charge effects are present in the SP
solution including the carrier transport simulation results from EMC. Here, the localized positively charged
donor ions reside in the well layer around 𝑧 = 100 nm, whereas the electrons are distributed across multiple
subbands.

The simulation of photovoltaic QCDs differs from that of QCLs. Here we assume an operation in thermal
equilibrium for zero bias and without illumination. Using the 2D density of states 𝑛2D

𝑖 = 𝑚 ∥𝑖 /(𝜋ℏ2) the electron
sheet density in subband 𝑖 at temperature 𝑇 is then calculated by

𝑛s
𝑖 =

𝑚 ∥𝑖
𝜋ℏ2 𝑘B𝑇 ln{1 + exp[(𝜇c − 𝐸𝑖)/(𝑘B𝑇)]} , (2.34)

with the quantized subband energy 𝐸𝑖 , the effective subband masses 𝑚 ∥𝑖 containing non-parabolicity effects.
Here 𝑘B denotes the Boltzmann constant. The chemical potential 𝜇c can be calculated by

𝑛s =
∫ 𝑧0+𝐿p

𝑧0

𝑛D d𝑧 =
∑︁
𝑖

𝑛s
𝑖 , (2.35)

where the charge neutrality condition within one period holds. Simulation results for a THz QCD [281] are
illustrated in Fig 2.8(b). Here, we compare the SP-solver solutions of included space charge effects resulting
from thermally filled subbands (solid lines) with no space charge effects (dashed lines) and obtain similar
tendencies of band bending effects as for the THz QCL.

For a simulation setup consisting of a device and scenario object, as specified for a THz-QCL in Listing 2.1,
a solver instance can be created with the constructor of the class tm_solver. The solution of the SP equation
system is obtained with the solver method solve. The corresponding Matlab commands are given by

>> solver = tm_solver(d,s); [eig,cond] = solver.solve(emc_dist, eig_old)
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Figure 2.8 (a) Conduction band profile and probability densities of a THz QCL [280]. Shown are the results without
considering space charge effects (dashed lines) and for space charge effects taken into account. Here, the level occupations
are extracted from EMC simulation results (solid lines). (b) Conduction band profile and probability densities of a THz
QCD [281]. Shown are the results without considering space charge effects (dashed lines) and for space charge effects
taken into account, assuming thermally occupied subbands (solid lines).

In the following, we will explain the solve method in more detail. For better illustration, the original Matlab
code snippet is shown in Listing 2.2. Based on the given setup and boundary conditions, this method iteratively
solves the Schrödinger-Possion equation system until convergence is reached and returns an object of class
eigenstates and of class conduction_band, respectively.

At the beginning, it is clarified, whether carrier_distribution and eigenstates instances have been passed
as input arguments to the function. Here, we use a function handle func_carr_distr with an input argument
of type eigenstates to generate the carrier_distribution instance. The classes emc_carrier_distribution,
eqdist_carrier_distribution and thermal_carrier_distribution are available for the generation of predefined
carrier distributions, based either on EMC results, an equal or thermal distribution. To facilitate the easy
integration of carrier transport simulation results from other approaches, e.g., NEGF, into the Schrödinger-
Poisson library, we again use a plugin structure, where the static class method generate is inherited from the
abstract frontend class.

The given objects func_carr_distr and eig_system_old, e.g., carrier transport simulation results and eigen-
state solutions from a previous simulation run, are used to calculate an initial vector containing the charge
density. This is done within the static method get_rho of the poisson_solver. As an additional input argument
the sim_constants object is required, which contains the vector with the charge density of the localized donors.
The loop starts with the calculation of 𝑽̃ using the static method calc_potential of the poisson_solver class.
The total potential vector 𝑽 will be saved in a conduction_band instance. The method calc_wavefcts takes
care of the eigenstates calculation in the central period and returns the wavefunctions 𝝍, eigenenergies 𝑬 and
the corresponding energies with respect to the conduction band edge 𝑬̃. An important aspect of self-consistent
charge carrier transport simulations is the inclusion of nonparabolicity corrections in the scattering rate calcu-
lations [29]. This is managed within our in-house EMC approach by the use of an averaged in-plane effective
mass for subband 𝑖 [282], [283]

𝑚 ∥𝑖 =
∫

𝑚∗(𝑧){1 + [2𝛼′(𝑧) + 𝛽′(𝑧)] [𝐸𝑖 −𝑉 (𝑧)]}|𝜓𝑖 (𝑧) |2 d𝑧 . (2.36)
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The averaged in-plane effective mass vector 𝒎∥ is passed to the class method gen_eig_system together with
the other vectors mentioned. The returned object eig_system comprises the quantum-mechanical description
of the complete systems with, e.g., all wavefunctions 𝝍, the system Hamiltonian 𝑯s and effective masses 𝒎∗
in num_periods − 1 periods. The object cond_profile contains the total potential 𝑽 consisting of conduction
band profile and band bending effects due to space charges. Within the while loop, the SP equation system is
solved iteratively until the relative change in charge density

Δ𝜌 =
⟨𝝆 − 𝝆old, 𝝆 − 𝝆old⟩

⟨𝝆, 𝝆⟩ , (2.37)

falls below a certain value. A predefined value 1 × 10−5 is used in the tm_solver and is stored in the property
error. If convergence is reached, the quantum-mechanical description eig_system and the total potential
information cond_profile are returned and can be used as input data for the multi-domain simulation approach.

If the appropriate number of wavefunctions, which is specified in the scenario, cannot be found, the solve
method will throw an error. In this case, one can, for example, adjust the tm_solver property num_E, which is
the number of energy points within the TMM, or modify the energy period E_period and the vector index of
the minimum energy point ind_E_min within the boundary_condition instance. A small change in the TMM
parameter space can help to find the desired number of wavefunctions.

Listing 2.2 Code snippet of the solve method of the solver class tm_solver.
function [eig_system , cond_profile] = ...

solve(obj , func_carr_distr , eig_system_old)

% Function handle for carrier distribution.
if ~exist(" func_carr_distr ")

func_carr_distr = @(eig_st) ...
eqdist_carrier_distribution. ...
generate(obj.sim_const.num_wavefct );

end

% Eigenstate instance from the previous simulation run.
if ~exist(’eig_system_old ’, ’var’)

eig_system_old = [];
end
% Calculate vector with charge density.
rho = poisson_solver.get_rho(obj.sim_const , ...

func_carr_distr , eig_system_old );

% Setting up convergence parameter.
err = 2 * obj.error;

% SP loop
while (err > obj.error)

% Solve Poisson equation: additional electrostatic potential.
dV = poisson_solver.calc_potential(obj.sim_const , rho);

% Calculate total potential in J.
V = obj.sim_const.vec_V_0 + dV;
% Generate object of conduction band profile.
cond_profile = conduction_band(obj.sim_const.vec_z_tm , V);

% Calculate eigenenergies and wavefunctions.
[psi , E, m_E_eff , E_bound_CBO] = obj.calc_wavefcts(V);

% Check the number of found wavefunctions.
if (length(E_bound_CBO) < obj.sim_const.num_wavefct)

error ([’Could␣not␣find␣the’, ...
’␣appropriate␣number␣of␣wavefunctions!’]);

end
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% Returns object of system eigenstates.
eig_system = obj.gen_eig_syst(psi , E, m_E_eff , ...

E_bound_CBO , cond_profile );

rho_old = rho;
% Calculate updated charge density from new eigenstates.
rho = poisson_solver.get_rho(obj.sim_const , ...

func_carr_distr , eig_system );
% Termination condition (relative change in sheet density ).
err = sum((rho - rho_old ).^2) / sum(rho .^2);
disp(num2str(err ));

end
end

2.3 Bayesian Optimization and Gaussian Processes

For the optimization of quantum cascade devices, the existing simulation tools (e.g., DM-EMC or NEGF) can
be used [18], [21], [22], [24]. Since these modeling approaches are highly complex and accurate, an efficient
optimization strategy is required. The input space in such simulations can range from different layer variations
of the active QC period to changes in the doping density or material compositions. Therefore, the Bayesian
optimization algorithm is a suitable statistical tool since it is generally applicable to an unknown objective
function 𝑓 (𝑥), which can be time and computationally expensive. The algorithm is characterized by the search
for the global minimum of the objective function 𝑓 (𝑥) on a high-dimensional input space 𝑥 ∈ ℝ𝑑 [256].
Bayesian optimization consists of two main elements, a surrogate model and an acquisition function. The
surrogate model is a Gaussian process, which is trained by function evaluations. The acquisition function acts
as a utility function and thus helps to interpret the posterior function distribution, and makes a decision for the
next data points to be evaluated [255]. In the following, we will give a short overview of the main elements of
Bayesian optimization and describe the monacoQC optimization toolbox in more detail.

A Gaussian process is interpreted as a Gaussian distribution over functions, and fully described by its mean
𝜇(𝑥) and covariance function 𝑘 (𝑥, 𝑥′) [284]. It specifies a collection of random variables forming a joint
Gaussian distribution. For randomly chosen input values 𝑥𝑖 , the function values can be drawn by the prior
distribution of function values 𝑓 (𝑥𝑖), which is a Gaussian distribution. An appropriate choice for a simple
covariance function 𝑘 (𝑥, 𝑥′) is the squared exponential covariance function

𝑘 (𝑥, 𝑥′) = 𝜎2
0 exp

(
−1

2
𝜎2

l |𝑥 − 𝑥′ |2
)
, (2.38)

where 𝜎2
l is the characteristic length scale and 𝜎2

0 the covariance amplitude. GPs account for noisy function
values 𝑓 (𝑥) + 𝜖n by an additional uncorrelated Gaussian noise term 𝜖n with variance 𝜎2

n . After the evaluation
of the objective function 𝑓 at some input points x∗, the posterior probability distribution is calculated by
conditioning the joint distribution on the function evaluations y∗ = 𝑓 (x∗) as

𝑝(𝑦 |𝑥, x∗, y∗, 𝜃) ∼ N (𝜇, 𝑘) , (2.39)

with mean 𝜇 = 𝑘 (𝑥, x∗) [𝑘 (x∗, x∗) + 𝜎2
𝑛I]−1y∗, covariance matrix 𝑲 = 𝑘 (𝑥, 𝑥) − 𝑘 (𝑥, x∗) [𝑘 (x∗, x∗) + 𝜎2

𝑛I]−1

× 𝑘 (x∗, 𝑥) and hyperparameters 𝜃 = (𝜎0, 𝜎l, 𝜎n). The training data from all previous iterations are summarized
in (x∗, y∗). New function values 𝑦 can thus be drawn for new random test inputs 𝑥. By maximizing the marginal
likelihood 𝑝(y∗ |x∗, 𝜃), the optimal values of hyperparameters 𝜃 to describe the training data can be found.

The acquisition function 𝑎(𝑥) is a measure for the yield of the next evaluation input point 𝑥𝑛 and is defined
as 𝑥𝑛 = arg max𝑥 𝑎(𝑥). As an example, we will introduce here the common acquisition function Expected
Improvement (EI) that provides a precise balance between exploration and exploitation. The EI acquisition
function is defined as

EI(𝑥) = ⟨(𝑡 − 𝑦)+⟩ =
∫ ∞

−∞
(𝑡 − 𝑦)+𝑝(𝑦 |𝑥, 𝜃)d𝑦 , (2.40)
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Figure 2.9 The optimized specific detectivity 𝐷∗ of the QCD test structure N1022 [126]. Here, the blue line exhibits the
mean value of 50 BO runs together with the data points (orange crosses). The gray area represents one standard deviation
𝜎 from the mean 𝜇. The Bayesian optimization of each run was stopped after 50 evaluations. Reprinted from J. Popp et
al., "Bayesian optimization of quantum cascade detectors" [24] (CC BY 4.0).

with (𝑡 − 𝑦)+ = max(0, 𝑡 − 𝑦), where 𝑡 is a target value and is usually set to be the maximum of the pre-evaluated
function values. The term exploration refers to the investigation of areas in the input space with high uncertainty,
while exploitation refers to the evaluation of the expected maximum of the predictive mean value [285]. To
summarize, EI exhibits high function values for inputs 𝑥 either with high predictive mean 𝜇(𝑥) or high predictive
variance 𝜎2(𝑥), or both.

In the optimizer toolbox, a class BO_sim for the Bayesian optimization of QC devices is implemented. Here,
the QC base period, the layer sequence under test and the length variation interval have to be provided as input
parameters for the constructor. The class function bayes_opt is used for the BO process and is based on the
standard implementation of the BO algorithm, which is part of the Statistics and Machine Learning Toolbox™
from Matlab. Here, a suitable function for the figure of merit (merit_fun) has to be provided. This function
takes care of the carrier transport simulation and returns the calculated figure of merit. The helper function
evaluate_next_device is called within the BO process to generate the simulation parameters, e.g., device object,
for the next QC setup under test and to evaluate the merit function for the given input space.

The validity of BO_sim as an appropriate tool for the optimization of QC devices was tested and the results
are illustrated in Fig. 2.9. Here, we performed 50 BO runs of the nominal QCD structure N1022 [126] to
characterize the convergence rate and uncertainty of the optimization. The specific detectivity 𝐷∗ converges
quite fast to a global maximum, which makes it also practical to use time-demanding simulation approaches,
e.g., EMC or NEGF, for efficient design optimization.

2.4 Summary

In this chapter, we have introduced our open-source Matlab-based QC device development tool monacoQC. The
main goal is to provide a versatile platform for the development and improvement of optoelectronic QC devices.
Therefore, we have addressed the fundamental principles of physical and optical properties of low-dimensional
semiconductors and heterostructure technology.

Firstly, the band structure in III-V semiconductors is described. Here, a comprehensive model is provided
to derive the important band parameters such as the band gap energy or the effective mass. Based on the
k · p perturbation theory, a formula for the energy-dependent effective mass is derived and accounts for
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nonparabolicity effects in III-V semiconductors. Furthermore, an 8-band k · p model by Sugawara et al. [265]
is used to investigate the effects of strain on the effective mass at the conduction band edge. Subsequently,
the semiconductor band structure and the conduction band discontinuities in quantum well heterostructures are
characterized using model-solid theory. All material parameter models presented here are included in the setup
library and can be used to describe the active QC region and the simulation parameters.

Secondly, we have introduced the Schrödinger-Poisson solver tool. An efficient wavefunction engineering
is required to analyze and improve the optical and non-radiative properties of QC structures. We have started
with the description of the 1D Schrödinger equation in the framework of the Ben-Daniel-Duke model. The
transfer matrix method is used to derive a numerical solution of the 1D Schrödinger equation and the Possion
equation is used to take into account space charge effects. Carrier injection plays a crucial role in modeling
QC structures. Therefore, we have provided different wavefunction basis configurations in the solver library
to appropriately account for specific carrier transport effects. These configurations are characterized by the
order of wave function localization. The calculated self-energies and wave functions can be used as input
parameters for the carrier transport simulations and serve as a description of the quantum system in dynamical
Maxwell-density matrix Langevin simulations.

Finally, the Bayesian optimization tool for QC devices is described. Since the carrier transport models for QC
devices are complex and numerically demanding, an efficient optimization method is beneficial. The two main
elements of Bayesian optimization, the surrogate model and the acquisition function, have been characterized
and the main properties of the Gaussian process surrogate model and the EI acquisition function are highlighted.
The section is concluded by a validation of the BO model using a mid-IR QCD structure.
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3 Carrier Transport Simulations of Intersubband
Quantum Cascade Devices

Aiming for a full understanding of the physical mechanisms in QCLs or the analysis of noise characteristics
in QCDs, a detailed theoretical characterization of the active QC medium is required. The systematic design
optimization of optical and electronic properties can be accomplished using advanced self-consistent carrier
transport models offering different levels of complexity and numerical efficiency. The EMC method is a widely
used statistical method for the numerical evaluation of the carrier transport in low-dimensional semiconductor
devices, such as quantum cascade structures [29], [30], [286]. A more general quantum transport approach,
which has been applied to the simulation of intersubband QC devices, is given by non-equilibrium Green’s
functions [29], [33], [34], [42], [287], [288]. Those simulation approaches are self-consistent three-dimensional
(3D) approaches taking into account intrasubband processes between different kinetic energies within a subband
and do not rely on empirical or fitting parameters as input.

In general, the NEGF approach contains the full quantum information of scattering and dephasing effects and
is therefore superior to semiclassical methods such as the EMC method. However, the numerical simulation
of the NEGF solution is expensive, if incoherent scattering within the self-consistent Born approximation is
taken into account. To reduce the numerical costs, NEGF simulations are typically executed by neglecting
electron-electron scattering beyond the Hartree approximation. For the modeling of energy transfer during
electron-electron scattering, the implementation of exchange terms would be required, which makes the actual
carrier transport simulation unfeasible from a numerical point of view. In addition, the density matrix equation
can be used to model the charge carrier transport in intersubband QC devices [289]. In the literature, 1D and
3D models of optical dynamics and charge transport in QCL structures are available [29], [32], [54], [68], [90],
[290]–[296]. The 1D approach can be seen as a quantum-mechanical generalization of the simple rate equation
model, where resonant tunneling and dephasing are taken into account.

Since semiclassical models, e.g., the EMC method, cannot cover quantum coherence effects, such as resonant
tunneling across thick injection barriers, e.g., in THz QCLs, quantum corrections based on the density matrix
formalism have been incorporated. Therefore, incoherent tunneling is treated as an additional "scattering-like"
mechanism [35], [36], and gives the DM-EMC method a good balance between computational efficiency and
accuracy.

In this chapter, we discuss the remaining three modules within the monacoQC framework, namely the ext.
solver, mbsolve and results. Generally, each available carrier transport simulation tool can be integrated into the
monacoQC framework by providing a suitable interface class. We have therefore focused on the in-house DM-
EMC solver and a rate equation solver, which can be used for the characterization of simpler simulation problems.
Both solver tools have been developed over the last 20 years in the Computational Photonics group. In this
work, the existing tools were used and integrated into the monacoQC framework. It should be mentioned here
that the module ext. solver with the two solver classes is not included in the GitHub repository. The simulation
results, e.g., wavefunctions and conduction band profiles from the SP solver or carrier transport properties such
as scattering rates, dephasing rates and level occupations from the EMC solver, can be integrated and processed.
The stationary carrier transport simulation results can be summarized in the backend class mbsolve_sim and
serve as input for the dynamical Maxwell-DM equation solver. The base library together with selected carrier
transport simulation results can be found on GitHub [254].

The chapter is organized as follows: Section 3.1 characterizes the main scattering mechanisms in intersubband
QC devices and presents the two simulation methods based on the self-consistent DM-EMC method and the
more simplistic rate equation model. In the monacoQC toolbox, results extracted from the SP solver and from
the stationary carrier transport simulations can be summarized and stored in objects of different classes. Here,
interesting microscopic and macroscopic quantities, e.g., the spectral gain or the level occupations, can be
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Figure 3.1 Overview of the monacoQC framework [254]. In this chapter, we concentrate on the three highlighted modules
mbsolve, ext. solver and results. Adopted from J. Popp et al., "Multi-domain modeling of free-running harmonic frequency
comb formation in terahertz quantum cascade lasers" [178] (CC BY 4.0).

analyzed with the help of visualization methods. The result classes and their functionalities will be discussed
in Section 3.2. The third module, which is dealt with in this chapter, contains the backend class mbsolve_sim
and will be presented in Section 3.3. Here, a reduced quantum system model can be composed from the
comprehensive carrier transport simulation results and can then be extracted as a simulation setup for the
dynamical Maxwell-density matrix Langevin approach mbsolve. The chapter concludes with a short summary.

3.1 Scattering Mechanisms and Carrier Transport Simulations

The transition of an electron in a quantum well heterostructure from one quantized level to another is described
by a scattering process. The corresponding scattering rate is derived from a perturbation potential 𝑉 , which
is either static or time-dependent. Taking into account the different perturbations, we have to distinguish
between three categories of scattering processes as illustrated in Fig. 3.2(a). Elastic processes are described by
a time-constant potential, where the energy of the involved carrier is conserved (Schematic (1) in Fig. 3.2(a)).
In Schematic (2) of Fig. 3.2(a), the inelastic scattering process is illustrated, which is described by a harmonic
time-dependent potential (𝑉 ∝ cos(𝜔0𝑡)). Here, absorption or emission leads to a change in the energy of
a particle by ±ℏ𝜔0. The third process, depicted in Schematic (3) of Fig. 3.2(a), describes a special class
corresponding to carrier-carrier scattering. In the case of intersubband QC devices, it refers to a process, where
two electrons are involved. Based on Fermi’s golden rule, the scattering rate from the initial state |𝑖𝒌⟩ to the
final state | 𝑗 𝒌′⟩ is determined by [263]

𝑊 𝑗𝒌′,𝑖𝒌 =


2𝜋
ℏ

��𝑉 𝑗𝒌′,𝑖𝒌
��2δ(𝐸 𝑗𝒌′ − 𝐸𝑖𝒌 ), elastic ,

2𝜋
ℏ

���𝑉∓𝑗𝒌′,𝑖𝒌 ���2δ(𝐸 𝑗𝒌′ − 𝐸𝑖𝒌 ± ℏ𝜔0), inelastic .
(3.1)

In intersubband QC devices, the initial and final state 𝑖 and 𝑗 describe subbands and the wavevectors 𝒌 and
𝒌′ are the in-plane wavevectors. Total energy conversion including the conservation of the in-plane energy is
ensured by the Dirac δ function. The potential matrix element𝑉 𝑗𝒌′,𝑖𝒌 for elastic scattering processes is given by

𝑉 𝑗𝒌′,𝑖𝒌 = ⟨ 𝑗 𝒌′ |𝑉 |𝑖𝒌⟩

= 𝑆−1
∫
𝑆

∫ ∞

−∞
𝑉𝜓∗𝑗𝜓𝑖 exp[i(𝒌 − 𝒌′)𝒓]d2𝑟 d𝑧 ,

(3.2)
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with the constant potential V. For elastic scattering processes, we obtain a harmonic potential𝑉 = 𝑉0 exp(i𝑸𝒙 −
𝑖𝜔0𝑡) + 𝑉∗0 exp(−i𝑸𝒙 + 𝑖𝜔0𝑡), where 𝑸 is, for example, the phonon wave vector. The matrix element is then
given by (

𝑉+
𝑗𝒌′,𝑖𝒌 (𝑄)

𝑉−
𝑗𝒌′,𝑖𝒌 (𝑄)

)
= ⟨ 𝑗 𝒌′ |

(
𝑉0 exp(i𝑸𝒙)
𝑉∗0 exp(−i𝑸𝒙)

)
|𝑖𝒌⟩

= 𝑆−1
∫
𝑆

∫ ∞

−∞
𝜓∗𝑗𝜓𝑖

(
𝑉0 exp(i𝑸𝒙)
𝑉∗0 exp(−i𝑸𝒙)

)
exp[i(𝒌 − 𝒌′)𝒓]d2𝑟 d𝑧 .

(3.3)

We treat the QC active medium as an infinitely extended periodic heterostructure and integrate over −∞ to∞ in
𝑧-direction. This is valid under the assumption of bound wavefunctions𝜓𝑖, 𝑗 in Eqs. (3.2) and (3.3). Furthermore,
the integration in 𝑥 and 𝑦 direction can be extended from −∞ to ∞ for the scattering rates calculations, if we
assume a macroscopic in-plane cross-section 𝑆.

In the following, we will briefly summarize the most important non-radiative scattering processes in intersub-
band QC devices. For detailed information about the perturbation potentials and the calculation of individual
scattering mechanisms, we refer to [29] and [297].

The relevant elastic mechanisms in intersubband devices are impurity, interface roughness and alloy scattering.
Ionized donors in quantum well heterostructures have been introduced in the previous chapter for the calculation
of the space charge effects within the mean-field treatment. Besides this, ionized donors act as charged impurities
and have to be considered for the scattering of electrons. Impurity scattering processes are described by the
Coulomb potential and can be the dominant elastic scattering process in intersubband QC devices, such as
QCLs [298]–[300]. Furthermore, the performance of QCLs can be changed significantly due to scattering
arising from imperfect interfaces [301]–[304]. Here, the layer-by-layer growth can result in fluctuations of
the compositions at the interfaces between the well and barrier material. Typically, the interface roughness
scattering is specified by a Gaussian auto-correlation function with a characteristic standard deviation Δ and
correlation length Λ. Alloy scattering has to be considered in ternary semiconductor alloys such as AlGaAs,
where the Al and Ga atoms are randomly distributed in the zincblende structure. The perturbation potential is
given by the difference of real conduction band energy 𝐸c(𝑧) and the VCA conduction band energy 𝐸c,VCA(𝑧),
introduced as average potential in Section 2.1. As the wavefunctions are mostly localized in the well layers, alloy
scattering usually only has to be taken into account for the well materials [262]. Alloy scattering is particularly
important for short-wavelength QCLs, where the electron mobility of the highly pure samples is limited at low
temperatures [303].

In intersubband QC devices, lattice vibrations lead to a harmonic perturbation potential, resulting in an
additional inelastic scattering mechanism called phonon scattering. Here, a phonon is a quasi-particle and
represents an excited state of the quantized vibrational modes. There are two types of phonons: acoustic and
optical phonons. Acoustic phonons are sound waves, where two consecutive modes move in the same direction.
Optical phonons describe optical waves, where two adjacent atoms in the same unit cell move in opposite
directions. Dependent on the wave propagation, we speak about transverse or longitudinal optical/acoustic
phonons. Nonpolar phonon scattering based on acoustic and transverse optical phonons is present in all crystals,
whereas the phonon scattering based on longitudinal optical phonons occurs only in polar materials, such as
III-V semiconductors. Here, a strong local dipole moment caused by the out-of-phase movement of neighboring
atoms results in an oscillating perturbative electric field. The dominant non-radiative scattering mechanism
in intersubband QC devices is LO phonon scattering. Efficient carrier extraction in intersubband QC devices
is achieved by matching the separation energy between the levels in the extraction cascade to the LO phonon
energy, e.g., ℏ𝜔LO ≈ 36 meV in GaAs [305].

Many-electron effects are already included in the Poisson equation using the Hartee potential. Furthermore,
the collision of electrons can be included in semiclassical models as an additional scattering mechanism and
is typically implemented as a two-electron process [29], [306], [307]. Electron-electron scattering has an
important influence in k-space resolved transport models for, e.g., the description of thermalization effects of
electrons in subbands [308], [309].
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Figure 3.2 (a) The scattering mechanisms in intersubband QC devices can be categorized into three classes: (1) elastic
scattering, (2) inelastic scattering and (3) electron-electron scattering. (b) Illustration of the carrier transport simulation
model based on the density matrix ensemble Monte Carlo method. Here, the electron transport is scattering-induced and
occurs between subbands in the conduction band of a biased diagonal transition THz QCL heterostructure [73].

In Fig. 3.2(b), a theoretical description of the DM-EMC model is illustrated for a diagonal transition THz QCL
gain medium. The scattering-induced transport of electrons between quantized levels is modeled semiclassically
by evaluating the Boltzmann equation

𝜕𝑡 𝑓𝑖,𝒌 =
∑︁
𝑠

∑︁
𝑗 ,𝒌

(
𝑊 (𝑠)

𝑖𝒌 , 𝑗𝒌′ 𝑓 𝑗 ,𝒌′ −𝑊
(𝑠)
𝑗𝒌′,𝑖𝒌 𝑓𝑖,𝒌

)
, (3.4)

where 𝑠 sums over the individual contributions of the scattering mechanisms, 𝑊 𝑗𝒌′,𝑖𝒌 denotes scattering rate
from state |𝑖𝒌⟩ to | 𝑗 𝒌′⟩ and 𝑓𝑖,𝒌 (𝑡) is the distribution function, which indicates the probability that the state |𝑖𝒌⟩
is occupied at a certain time 𝑡. Here, all relevant mechanisms such as LO and acoustic phonon, electron-electron,
impurity, interface roughness, and alloy scattering are considered. The corresponding rates are calculated self-
consistently at the beginning of the simulation using Fermi’s golden rule. For the initialization of the simulation,
an ensemble of electrons is distributed over the different states characterized by the subband index 𝑖 and in-plane
wavevector k. According to the Monte Carlo method, the QCL system will converge to the stationary solution
by stochastically evaluating the scattering events. The density matrix EMC approach includes elements of
the density matrix formalism to account for tunneling across thick injection barriers, described by the Rabi
frequencies Ω𝑖 𝑗 [29], [35], [184]. The corresponding single-electron tunneling rate is given by

𝑟 𝑡𝑖 𝑗 ,𝒌 =
2Ω2

𝑖 𝑗𝛾𝑖 𝑗 ,𝒌

𝜔2
𝑖 𝑗 + 𝛾2

𝑖 𝑗 ,𝒌

, (3.5)

where 𝜔𝑖 𝑗 =
(
𝐸𝑖 − 𝐸 𝑗

)/ℏ denotes the resonance frequency between states |𝑖, 𝒌⟩ and | 𝑗 , 𝒌⟩ and 𝛾𝑖 𝑗 ,𝒌 is the
dephasing rate.

If the external solver library is integrated into the monacoQC framework, the EMC executables can be built
by following the build instructions. Here, we use the build automation tool CMake to build and install the
tools. Additionally, a Matlab wrapper function sim_stat_solver exists to solve the self-consistent stationary
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simulation system. The SP solver and the DM-EMC approach are iterated until convergence is achieved. The
relative change of the unsaturated gain curve is used as a convergence criterion. The following command will
start the simulation of the diagonal transition THz QCL illustrated in Fig. 3.2(b):

$cd monaco/setups/tests; matlab -batch "addpath(genpath(’../../../monaco/’));
[d, s] = forrer2021(’ez’); [cond_band, eigen, curr_dens, carr_dist, deph, sc,
gain, count] = sim_stat_solver(s, d, pwd), save(’forrer2021_ez.mat’)"

In this configuration, we use the EZ-configuration for the wavefunction solution. The simulation results
consisting of conduction_band, eigenstates, current_density, carrier_distribution, dephashing_rates and
scattering_rates objects are saved in a mat-file. Additionally, a class object with the 𝒌-resolved gain results is
returned.

Unfortunately, the direct QCD modeling based on the standard QCL simulation approaches is unfeasible
due to the significantly smaller currents in photovoltaic mode. Therefore, we have developed an alternative
method, providing a robust and compact approach to determine the figures of merit of QCDs [42]. Detector
signal strength and noise characteristics are obtained utilizing a rate equation model and a Kirchhoff resistance
network, illustrated in Fig. 3.3. As inputs only the absorption coefficient and intersubband scattering rates,
extracted from the EMC carrier transport simulations or calculated using Fermi’s golden rule, are required.
Assuming a periodic QCD structure with 𝑁 subbands per period, the transition rates from subband 𝑗 to 𝑖 can
be written as 𝑟𝑖 𝑗 = 𝑟𝑖+𝑁, 𝑗+𝑁 . In the stationary case, the rate equation for a reference period including also the
transitions to and from the left- and the right-neighboring period can be written as [29], [42], [310]

𝑸 𝒑 = 𝒃 . (3.6)

Here, 𝑸 is the transition rate matrix with the elements 𝑞𝑖𝑖 = −
∑

𝑗≠𝑖
(
𝑟 𝑗+𝑁,𝑖 + 𝑟 𝑗𝑖 + 𝑟 𝑗 ,𝑖+𝑁

)
for 𝑖 = 1..(𝑁 − 1),

𝑞𝑁 𝑗 = 1 for 𝑗 = 1..𝑁 , and 𝑞𝑖 𝑗 = 𝑟𝑖, 𝑗+𝑁 + 𝑟𝑖 𝑗 + 𝑟𝑖+𝑁, 𝑗 otherwise. The subband occupation probabilities 𝑝𝑖 are
summarized in vector 𝒑, and the vector elements of 𝒃 are given by 𝑏𝑖 = 𝛿𝑖𝑁 with the Kronecker delta 𝛿𝑖𝑁 . The
photon-induced rate 𝑟p due to incident light has to be added as an additional rate 𝛿𝑟𝑎𝑔 from the ground level 𝑔
to the absorption level 𝑎. The resulting matrix 𝛿𝑸 has non-zero elements 𝛿𝑞𝑎𝑔 = 𝑟p, 𝛿𝑞𝑔𝑔 = −𝑟p. Furthermore,
we have to add the term 𝜹 𝒑 to the stationary level occupations and by taking into account stimulated photon
transitions we obtain the modified equation system

(𝑸 + 𝜹𝑸) ( 𝒑 + 𝜹 𝒑) = 𝒃 . (3.7)

For moderate intensities, i.e., if the QCD operates in the linear response regime, we can neglect the higher order
term 𝜹𝑸𝜹 𝒑 and under consideration of Eq. (3.6) a second rate equation in the form

𝑸𝜹 𝒑 = −𝜹𝑸 𝒑 (3.8)

is obtained. The solution of Eq. (3.8) gives the population changes 𝜹 𝒑 in the irradiated structure. By applying
Cramer’s rule one obtains individual-level occupation changes by

𝛿𝑝𝑖 =
|𝑸𝑖 |
|𝑸 |

(
𝑝𝑎 − 𝑝𝑔

)
𝑟p , (3.9)

where |. . . | denotes the matrix determinant, and 𝑄𝑖 is the matrix obtained by replacing the 𝑖-th column of 𝑸 by
the vector 𝒗 with two non-zero elements 𝑣𝑔 = −1 and 𝑣𝑎 = 1. As illustrated in Fig. 3.3(b), we can model the
detector noise using a noise equivalent resistances network, where the subbands within the QCD heterostructure
act as nodes [311]. The total QCD resistance 𝑅d can be calculated by solving Kirchhoff’s equations. For
unbiased QCDs, the conductance per unit area is dominated by Johnson noise at elevated temperatures and can
be written as [311]

𝜎𝑖 𝑗 = 𝜎𝑗𝑖 =
𝑒2𝑛s

2𝑘B𝑇

(
𝑟𝑖 𝑗 𝑝 𝑗 + 𝑟 𝑗𝑖𝑝𝑖

)
. (3.10)

By setting 𝜎𝑖𝑖 = 0, we can formulate Kirchhoff’s law for a node 𝑖 as∑︁
𝑗

𝜎𝑖 𝑗
(
𝑢𝑖 − 𝑢 𝑗

)
= 0 . (3.11)
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Figure 3.3 (a) Schematic conduction band profile of a QCD. Photovoltaic operation is ensured by absorption from ground
level g to absorption level a and consecutive scattering through the extractor levels in the quantum cascade. Reprinted
from J. Popp et al., "Bayesian optimization of quantum cascade detectors" [24] (CC BY 4.0). (b) For the characterization
of noise in QCDs, the quantum well heterostructure with quantized states can be represented by an equivalent resistance
network.
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In Fig. 3.3(b) it is easy to see that 𝜎𝑖 𝑗 = 𝜎𝑖+𝑁, 𝑗+𝑁 applies in periodic QCDs and we can greatly reduce the
numerical cost by exploiting the periodicity of the conductance network. We further assume that the voltages
of equivalent nodes in adjacent periods are related by 𝑢𝑖+𝑁 = 𝑢𝑖 + 𝑢p. Here, 𝑢p is the voltage drop per period.
For QCDs with several periods, we can neglect the boundary conditions at the end contacts and derive from
Eq. (3.11) for a reference period [42]

𝑮𝒖 = 𝑢p𝒅 . (3.12)

Here, we also have to account for transitions to and from the left- and the right-neighboring period, and obtain
the conductance matrix elements

𝑔𝑖 𝑗 =

{
𝜎𝑖 𝑗 + 𝜎𝑖, 𝑗+𝑁 + 𝜎𝑖+𝑁, 𝑗 , 𝑖 ≠ 𝑗 ,

−∑𝑁
𝑛=1
𝑛≠𝑖

(
𝜎𝑖𝑛 + 𝜎𝑖,𝑛+𝑁 + 𝜎𝑖+𝑁,𝑛

)
, 𝑖 = 𝑗 . (3.13)

The elements of 𝒅 are

𝑑𝑖 =
𝑁∑︁
𝑛=1

(
𝜎𝑖+𝑁,𝑛 − 𝜎𝑖,𝑛+𝑁

)
. (3.14)

No independent solution can be found for the linear equation system given in Eq. (3.12), since the zero potential
𝒖 = 0 can be chosen arbitrarily. Therefore, we set the voltage 𝑢𝑛 corresponding to an arbitrary subband 𝑛 to
zero and eliminate the 𝑛th equation from Eq. (3.12). The order of 𝑮 and length of 𝒖 and 𝒅 are reduced to 𝑁 − 1
if 𝑁 is the number of subbands per period. In accordance with the rate equation system, we can apply Cramer’s
rule to Eq. (3.12) and obtain the individual solution 𝑢𝑖

𝑢𝑖 = 𝑢p
|𝑮𝑖 |
|𝑮 | , (3.15)

where 𝑮𝑖 is the matrix obtained by replacing the 𝑖-th column of 𝑮 by vector 𝒅. The model, which includes
the equations (3.11) and (3.12), was published in [42] and is an extension of a resistance model based on LO
phonon scattering [312].

3.2 Results of Stationary Carrier Transport Simulations

In the monacoQC framework, the results library contains different classes for the post-processing and visualiza-
tion of carrier transport simulation results, e.g., based on the DM-EMC approach. Here, interesting microscopic
and macroscopic quantities, e.g., electron distribution, current, gain and absorption, device resistance, photo
response, etc. can be analyzed. In the following, we will give a short overview of the library classes and their
functionalities.

The classes conduction_band and eigenstates were already introduced in Section 2.2. The former contains
information about the total potential profile 𝑽 of the investigated QC structure. Here, the methods plot_profile
and write_cond_profile can be used to either plot the potential profile or save the position and potential vector 𝒛
and𝑽 in a CSV-file. The latter is used for the description of the quantum system and contains information about
the wavefunctions 𝝍, the system Hamiltonian 𝑯s, effective masses 𝒎∗ and the dipole matrix 𝒅. In the following,
we will give a short overview of the calculation of the individual dipole matrix element 𝒅𝑖 𝑗 . Here, we start
with the evaluation of the expectation value of the momentum operator 𝒑̂. With the eigenstate wave functions
Ψ𝑖 = 𝜙𝑖,𝒌𝑢𝑐𝑖 ,0 in the conduction band, which are shown in Fig. 2.6, the matrix element can be expressed as [263]

⟨Ψ𝑖 | 𝒑̂ |Ψ 𝑗⟩ ≈ ⟨𝜙𝑖,𝒌 |𝜙 𝑗 ,𝒌⟩⟨𝑢𝑐𝑖 ,0 | 𝒑̂ |𝑢𝑐 𝑗 ,0⟩ + ⟨𝑢𝑐𝑖 ,0 |𝑢𝑐 𝑗 ,0⟩⟨𝜙𝑖,𝒌 | 𝒑̂ |𝜙 𝑗 ,𝒌⟩ . (3.16)

The first term vanishes due to ⟨𝑢𝑐𝑖 ,0 | 𝒑̂ |𝑢𝑐 𝑗 ,0⟩ = 0, and with ⟨𝑢𝑐𝑖 ,0 |𝑢𝑐 𝑗 ,0⟩ = 1 we obtain the simplified formula

⟨Ψ𝑖 | 𝒑̂ |Ψ 𝑗⟩ ≈ ⟨𝜙𝑖,𝒌 | 𝒑̂ |𝜙 𝑗 ,𝒌⟩ . (3.17)

By the insertion of the slowly varying envelope function from Eq. (2.18), we can further simplify to ⟨𝜙𝑖,𝒌|𝒑̂|𝜙 𝑗 ,𝒌⟩ =
⟨𝜓𝑖 | 𝒑̂𝒛 |𝜓 𝑗⟩δ(𝒌, 𝒌′), which means that in quantum well heterostructures there is only one non-vanishing dipole
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moment 𝒑̂𝒛 in the direction of growth 𝑧. Light-matter interaction is present if an electric field component
perpendicular to the semiconductor layers exists and is referred to as the polarization selection rule. In THz
QC devices, for example, we can neglect nonparabolicity effects and assume a 𝒌 independent optical transition
energy 𝐸𝑖 (𝒌) − 𝐸𝑖 (𝒌) = 𝐸𝑖 − 𝐸 𝑗 . On this basis, it can be shown that the equivalence applies

⟨Ψ𝑖 | 𝒑̂𝒛 |Ψ 𝑗⟩ =
i𝑚∗

(
𝐸𝑖 − 𝐸 𝑗

)
ℏ

⟨Ψ𝑖 | 𝒛 |Ψ 𝑗⟩ . (3.18)

The dipole matrix element between an initial state 𝜙 𝑗 ,𝒌 and a final state 𝜙𝑖,𝒌 is then given by

𝒅𝑖 𝑗 = ⟨𝜓𝑖 | 𝒅 |𝜓 𝑗⟩ = −𝑒𝒆𝑧
∫

𝜓∗𝑖 𝑧𝜓 𝑗 d𝑧 . (3.19)

Here, 𝒆𝑧 denotes the unit vector in 𝑧 direction. The class eigenstates provides a member function get_dipole
_element. With the help of the wavefunctions 𝜓𝑖 , 𝜓 𝑗 the individual dipole matrix elements 𝒅𝑖 𝑗 are calculated.
Furthermore, a function plot_wavefunctions with an instance conduction_band as input can be used to plot the
conduction band profile and the probability densities of the stored wavefunctions 𝜓𝑖 . Based on the wavefunction
numbering displayed in the Matlab figure legend, one can specify wavefunctions, which can then be extracted
using the function write_wavefcts. Those wavefunctions will then be stored in a separate CSV file. Additionally,
the Rabi frequencies Ω𝑖 𝑗 and resonance frequencies 𝜔𝑖 𝑗 can be extracted from the system Hamiltonian 𝑯s, the
corresponding methods are get_rabi_freq and get_resonance_freq.

The class carrier_distribution contains the subband occupation probabilities and the electron distribution
within each subband. The steady-state electron distributions 𝜌0

𝑖𝑖,𝒌′ within one subband 𝑖 are well described by
either the Fermi-Dirac or Maxwell-Boltzmann distribution, where the characteristic subband electron temper-
atures can significantly exceed the lattice temperatures [29], [313]. The methods get_electron_temperature
and fit_distribution are provided to return the subband electron temperatures and fit the 𝒌 resolved subband
electron distributions to the predefined carrier distribution function. One can specify the carrier distribution
function using the class method set_fit_carr_dist and the distribution name ("Maxwell Boltzmann" (default),
"Fermi Dirac") as input argument.

The 𝒌-dependent scattering rates 𝑟 𝑗𝒌′→𝑖𝒌 , which were extracted e.g., from self-consistent DM-EMC simula-
tions or calculated with the help of Fermi’s Golden Rule [29], are stored in the class scattering_rates. A map is
provided, which contains all important scattering mechanisms present in intersubband QC devices, e.g., LO and
acoustic phonon scattering, electron-electron scattering, impurity scattering, interface roughness scattering and
alloy scattering. Under the assumption of moderate temporal variations of intersubband electron distributions
𝜌 𝑗 𝑗 ,𝒌 , averaged scattering rates 𝑟𝑖 𝑗 can be calculated by [47], [71]

𝑟𝑖 𝑗 =
∑︁
𝒌 ,𝒌′

𝑟 𝑗𝒌′→𝑖𝒌 𝜌
0
𝑗 𝑗 ,𝒌′

/ ∑︁
𝒌

𝜌0
𝑗 𝑗 ,𝒌′ . (3.20)

Based on the requirements, one can extract the scattering rate matrix including transitions between levels
within the active period, or transitions to and from the left- and the right-neighboring period. The function
get_scattering_matrix returns the specific scattering matrix dependent on the input variable direction ("left",
"center", "right").

The class dephasing_rates includes a map with all considered pure dephasing contributions and level
broadenings with respect to the kinetic energy of each subband. The calculated dephasing rates 𝛾𝑖 𝑗 ,𝒌 are based
on Ando’s model [314]–[316] and the level broadenings are calculated from the DM-EMC scattering rates [29],
[35], [317]. For off-diagonal density matrix elements, which generally vary strongly with time, no clearly
defined concept is given for the 𝒌 averaging and thus the calculation of effective dephasing rates 𝛾𝑖 𝑗 from 𝛾𝑖 𝑗 ,𝒌 .
Particularly for QCLs, in which the electron temperature of the different subbands fluctuates greatly and the
individual subbands have a highly non-thermal distribution, the ratio 𝜌0

𝑖𝑖,𝒌
/𝜌0

𝑗 𝑗 ,𝒌
is strongly 𝒌 dependent [29].

By averaging over the inversion between the subbands, the effective dephasing rates 𝛾𝑖 𝑗 can be determined
as [300], [317]

𝛾𝑖 𝑗 =
∑︁
𝒌

𝛾𝑖 𝑗 ,𝒌′ |𝜌0
𝑖𝑖,𝒌 − 𝜌0

𝑗 𝑗 ,𝒌 |
/ ∑︁

𝒌

|𝜌0
𝑖𝑖,𝒌 − 𝜌0

𝑗 𝑗 ,𝒌 | . (3.21)
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The functions get_dephashing_rate, get_pure_dephashing_rate and get_lt_broadening can be used to extract
individual dephasing rates 𝛾𝑖 𝑗 , pure dephasing rates 𝛾𝑖 𝑗 ,p and lifetime broadening 1

2

(
1
𝜏𝑖
+ 1

𝜏 𝑗

)
. Here, 𝜏𝑖 is the

lifetime of level 𝑖.
Based on that, we can now calculate key figures of merit for the performance characterization of intersub-

band QC devices. For the QCD, the frequency-dependent responsivity is defined by the generated detector
photocurrent 𝐼out per incident optical power 𝑃in and is written as

𝑅p(𝜔) = 𝐼out(𝜔)
𝑃in(𝜔) =

𝑒

ℏ𝜔
𝑝e
𝑁p
𝑇f [1 − exp(−𝛼p𝑛p𝑁p𝐿p sin 𝜃)], (3.22)

where 𝑇f is the facet transmittance, 𝛼p the power absorption coefficient, 𝑛p the number of passes of the optical
field through the absorbing region, 𝑁p the number of periods in the active region, 𝐿p the length of one period and
𝜔 = 2𝜋𝑐/𝜆 the angular frequency [38]. In general, a mesa-structure with a double-pass waveguide is considered
for the characterization of such detector devices. Here, the two facets are polished into 45° wedges. The light
beam exhibits a propagation angle 𝜃 = 45◦ relative to the growth direction to meet the quantum-mechanical
polarization rule. The ratio between the current change over the period to change in current from ground to
upper level is given by the extraction efficiency 𝑝e and can be calculated, as published in [42], by

𝑝e =
(
𝑝𝑔𝑟p

)−1
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

(
𝑟 𝑗+𝑁,𝑖 − 𝑟 𝑗 ,𝑖+𝑁

)
𝛿𝑝𝑖 . (3.23)

Using Eq. (3.9), we obtain in the linear regime

𝑝e =
𝑝𝑎 − 𝑝𝑔
|𝑸 |𝑝𝑔

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

(
𝑟 𝑗+𝑁,𝑖 − 𝑟 𝑗 ,𝑖+𝑁

) |𝑄𝑖 | , (3.24)

where the photon-induced rate 𝑟p cancels out. Thus, when evaluating Eq. (3.8) with a linear equation system
solver rather than using Cramer’s rule, 𝑟p can be set to a numerically convenient value. If in a QCD structure,
more than one optical absorption transition is present [126], the occupation change 𝛿𝑝𝑖 in Eq. (3.23) is obtained
by summing over the individual contributions. Furthermore, we have to account for the individual contributions
by an effective 𝑝e,

𝑝e =
∑︁
𝑎

𝑐𝑎𝑝e,𝑎 , (3.25)

where the 𝑝e,𝑎 for each of the absorption levels 𝑎 has been separately computed and 𝑐𝑎 is the relative absorption
contribution of level 𝑎.

Another key figure of merit is the specific detectivity 𝐷∗ serving as a measure for the signal-to-noise ratio in
photodetectors. In QCDs, the detectivity is limited by Johnson noise and is given by [126]

𝐷∗ = 𝑅p

√︂
𝐴d𝑅d
4𝑘B𝑇

, (3.26)

where 𝐴d is the detector area and 𝑅d the detector resistance. The unit of 𝐷∗ is Jones, which correspond to
cm
√

Hz/W. The detector resistance in Eq. (3.26) is given by

𝑅d = 𝑁p/(𝜎p𝐴)
where 𝐴 is the in-plane cross-section area of the quantum wells, which coincides with the detector area 𝐴d in
Eq. (3.26) if the facet is in the in-plane direction. The conductance per unit area of a single QCD period can
be calculated from the ratio of net current density flowing between adjacent periods to the voltage drop per
period [42],

𝜎p = 𝑢−1
p

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝜎𝑖, 𝑗+𝑁

(
𝑢 𝑗 + 𝑢p − 𝑢𝑖

)
(3.27a)

=
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝜎𝑖, 𝑗+𝑁

( ��𝐺 𝑗

��
|𝐺 | + 1 − |𝐺𝑖 |

|𝐺 |

)
, (3.27b)
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where Eq. (3.27b) has been obtained by inserting Eq. (3.15). As can be seen from Eq. (3.27b), 𝜎p only depends
on the 𝜎𝑖 𝑗 , and can thus be calculated self-consistently using Eqs. (3.6) and (3.10) with EMC intersubband
scattering rates.

3.3 Dynamical Simulation Setup

The stationary carrier transport simulation results, as needed for the dynamical Maxwell-density matrix Langevin
approach [59], [90], can be summarized in the backend class mbsolve_sim. Here, the resonant tunneling and
required optical transitions for mid-IR (𝜔mid−IR) and THz (𝜔THz) frequencies have to be identified. By the use
of various helper methods, a reduced model, which describes the quantum system adequately, can be retrieved.
Furthermore, methods, e.g., calc_gain, calc_suscept_2 for calculations of the gain characteristics and second-
order susceptibility |𝜒 (2) |, are provided in the class mbsolve_sim. The class method generate composes a
Python script of the quantum-mechanical description in mbsolve syntax, which can be directly used as input
script for a mbsolve simulation via its Python interface [72]. The quantum-mechanical description comprises
the level occupations 𝜌𝑖𝑖, the system Hamiltonian matrix 𝑯s with eigenenergies 𝐸𝑖 and anticrossing energies
ℏΩ𝑖 𝑗 , the dipole moment matrix 𝒅𝑧 , the dephasing rates 𝛾𝑖 𝑗 and the scattering rates 𝑟𝑖 𝑗 . For the one-dimensional
dynamic Maxwell-DM simulations, the energy-resolved dephasing rates are simulated within the EMC approach
and have to be averaged over the population inversions of the involved subbands, as described in detail in the
previous section. The base library together with carrier transport results in extended and EZ-configuration for
the THz HFC QCL setup illustrated in Fig. 2.7 can be found on GitHub [254]. As an example, the quantum-
mechanical description for the THz-HFC-QCL setup at a bias voltage of 50 mV per period with one optical and
one tunnel junction is illustrated in Listing 3.1.

Listing 3.1 Code snippet of the Python script for the THz HFC QCL setup at a bias voltage of 50 mV given in [73].

import mbsolve.lib as mb
import mbsolve.solvercpu
import mbsolve.writerhdf5
import mbsolve.readerhdf5

import math
import time

# Hamiltonian
energies = [ 0.0097 * mb.E0, 0.0082 * mb.E0, -0.0047 * mb.E0 ,
-0.0083 * mb.E0, -0.0097 * mb.E0 ]
off_diagonales = [ 0.0005 * mb.E0 , 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
H = mb.qm_operator(energies , off_diagonales)

# dipole moment operator
off_dipoles = [ 0, -2.9500e-09 * mb.E0 , 0, 0, 0, 0, 0, 0, 0, 0 ]
diag_dipoles = [ 0, 0, 0, 0, 0 ]
u = mb.qm_operator(diag_dipoles , off_dipoles)

# relaxation superoperator
# scattering rate matrix R
rates = [ [ 0, 1.8815e+09, 2.1290e+10, 4.0984e+09, 5.6000e+09 ],

[ 3.5006e+09, 0, 3.2437e+08, 2.2854e+10, 2.0029e+12 ],
[ 6.5578e+10, 6.2829e+08, 0, 8.0333e+11, 6.1577e+09 ],
[ 6.8416e+09, 3.6845e+08, 6.6107e+11, 0, 4.7378e+12 ],
[ 5.2192e+08, 6.7259e+10, 4.7554e+09, 4.7726e+12, 0 ] ]

# pure dephasing rates
pure_deph = [ 3.5857e+12, 9.3257e+11, 0, 0, 0, 0, 0, 0, 0, 0 ]
relax_sop = mb.qm_lindblad_relaxation(rates , pure_deph)

# initial density matrix
rho_init = mb.qm_operator ([ 0.3705 , 0.4937 , 0.0741 , 0.0333 , 0.0285])
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To classify the efficiency of nonlinear mixing processes and the potential for broadband THz comb emission,
we have investigated the gain spectrum of QCL setups emitting in the mid-IR and THz spectrum [90], [178].
Here, the optical gain using the method calc_gain is calculated by [29]

𝑔(𝜔) = 𝜔

𝜀0𝑐𝑛eff

∑︁
𝑖, 𝑗

𝑑2
𝑖 𝑗

𝛾𝑖 𝑗

𝛾2
𝑖 𝑗 +

(
ℏ𝜔 − ℏ𝜔𝑖 𝑗

)2
(
𝑝𝑖 − 𝑝 𝑗

)
, (3.28)

where 𝑐 is the vacuum speed of light and 𝑛eff is the effective refractive index. Moreover, ℏ𝜔𝑖 𝑗 =
(
𝐸𝑖 − 𝐸 𝑗

)
denotes the resonance energy between level 𝑖 and 𝑗 . The transition linewidth broadening is given by [35]

𝛾𝑖 𝑗 = (𝛾𝑖 + 𝛾 𝑗)/2 + 𝛾𝑖 𝑗 ,p , (3.29)

where 𝛾𝑖 corresponds to the level broadening of level 𝑖 and 𝛾𝑖 𝑗 ,p represents the pure dephasing contribution.
We further have characterized the strength of the nonlinearity in the active gain region important for THz

frequency comb emission in DFG QCLs via nonlinear mixing [90]. The second-order nonlinear susceptibility
𝜒 (2) within the method calc_suscept_2 is calculated by [318]

𝜒 (2) (𝜔THz = 𝜔1 − 𝜔2) = − 𝑒
3

𝜀0

∑︁
𝑖, 𝑗 ,𝑘

𝑁𝑖𝑧𝑖 𝑗 𝑧 𝑗𝑘𝑧𝑘𝑖

{[
1

(ℏ𝜔𝑘𝑖 − i𝛾𝑘𝑖 − ℏ𝜔THz) +
1

ℏ𝜔𝑘 𝑗 + i𝛾𝑘 𝑗 + ℏ𝜔THz

]
×

×
[

1
(ℏ𝜔 𝑗𝑖 − i𝛾 𝑗𝑖 + ℏ𝜔2) +

1
ℏ𝜔 𝑗𝑖 − i𝛾 𝑗𝑖 − ℏ𝜔1

]
−

[
1

(ℏ𝜔𝑘 𝑗 − i𝛾𝑘 𝑗 − ℏ𝜔THz) +
1

ℏ𝜔𝑘𝑖 + i𝛾𝑘𝑖 + ℏ𝜔THz

]
×

×
[

1
(ℏ𝜔𝑖 𝑗 − i𝛾𝑖 𝑗 + ℏ𝜔2) +

1
ℏ𝜔𝑖 𝑗 − i𝛾𝑖 𝑗 − ℏ𝜔1

]}
, (3.30)

where the levels with indices 𝑖, 𝑗 , 𝑘 build a DFG triplet. Here, all combinations of involved upper and lower
laser levels are taken into account. A detailed and more sophisticated Monte Carlo analysis of the second-order
nonlinear susceptibility can be found in the literature ([318], [319]), where also the effects of the intrasubband
kinetic electron distribution were included. By taking into account only the dominant DFG triplets near
resonance to the mid-IR design frequencies 𝜔1 and 𝜔2, a significantly reduced number of terms in Eq. (3.30)
remains [104], [192], [200], [318].

3.4 Summary

In this chapter, we have discussed the carrier transport simulation models provided in the monacoQC framework.
We have started with a short overview of the carrier transport approaches widely used in literature. In general,
all of these models can be easily integrated into the monacoQC framework by providing a suitable interface
class. However, we restrict ourselves here to the in-house DM-EMC model and a rate equation model for the
modeling of QCDs. A strong focus was put on the evaluation of the simulation results and the creation of
a reduced quantum model, which can then be used as input setup for the dynamic Maxwell-density matrix
Langevin simulation approach mbsolve.

First, we have characterized the main scattering mechanisms in the quantum well heterostructure, which
consist of elastic, inelastic and carrier-carrier scattering. With the help of Fermi’s golden rule, we can determine
the scattering rate between the initial and final states caused by a perturbation. Here, the individual state is
characterized by its state number and the in-plane wave vector. The calculated scattering rates are then used as
input for the EMC method, resulting in a self-consistent simulation approach. We also describe the stochastic
EMC method and explain its density matrix extension, which includes incoherent tunneling. Since direct EMC
modeling of photovoltaic QCDs is not feasible, we have developed a robust and compact approach based on a
rate equation model and a Kirchhoff resistor network to calculate the key figure of merits.

Secondly, the results library of the monacoQC framework has been introduced. In this library, the results
of the stationary carrier transport simulations and the eigenstate solutions of the SP solver are saved in corre-
sponding class objects. The classes eigenstates, conduction_band, carrier_distribution, scattering_rates
and dephasing_rates are introduced and their class functions, which can be used to visualize and analyze the
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simulation results, are described. Using the intersubband electron distributions, we can determine the effec-
tive intersubband scattering and dephasing rates from the k-resolved scattering rates, as an abstraction of the
extensive carrier transport simulations. The evaluation of the intraband dipole matrix element is explained by
calculating the expected value of the momentum operator. Furthermore, we discuss the computation of the main
figure of merit for the characterization of QC device performance in more detail.

Based on the carrier transport results, we can create a reduced quantum system model, which serves as input
for the dynamic Maxwell-density matrix Langevin simulations. The corresponding class msolve_sim is used
to derive a suitable quantum-mechanical description of the QC model. It provides some helper functions for
the characterization, e.g., calculation of the gain spectrum or the second-order nonlinearity. Here, the most
important tunneling transitions and optical transitions have to be identified to create a compact model. The
quantum-mechanical description can then be extracted as a Python input script for the mbsolve approach.
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4 Modeling of Fluctuations in Dynamical
Optoelectronic Devices

For the modeling of the optical dynamics in miniaturized photonic devices, the Maxwell-Bloch equations
are widely used since they form a relatively compact and numerically efficient model and thus allow for
spatiotemporal simulations of the laser dynamics over many optical roundtrips [43], [47], [228]. Here, the
Bloch equations are used for simulating the evolution of the quantum system and its coherent light-matter
interaction with the optical field in the active medium. Additionally, the optical field propagation is treated
classically within Maxwell’s equations, where the coupling with the quantum system arises from the macroscopic
polarization term [47]. The density matrix formalism can be extended and adapted by adding further quantized
states in addition to the laser levels and tunneling between states. The inclusion of fluctuations accompanying
electronic transport and spontaneous emission in dynamic simulations is of crucial importance.

Low-dimensional active photonic devices such as QCLs and QD structures can open up fascinating perspec-
tives in quantum science. Since the nonclassical features are directly linked to the noise properties, detailed
simulations of the coherent light-matter interaction are required for the development of low-noise optoelec-
tronic quantum sources. Fluctuations arising from interactions of the optical field and quantum system with
their reservoirs are treated within the quantum Langevin theory. Here, the fluctuations are included by adding
stochastic c-number terms to the Maxwell-density matrix equations.

In the following, we restrict ourselves to optoelectronic devices where the optical field can be well modeled
using 1D Maxwell’s equations. This for example applies to semiconductor lasers with longitudinally invariant
waveguide geometries, where the 3D Maxwell’s equations can be reduced to an effective 1D model [47]. The
focus lies on the inclusion of noise arising for example from spontaneous emission and fluctuations associated
with the electron transport. First, we introduce the quantum Langevin equations using a simple three-level
resonant tunneling QCL system in Section 4.1. Here, the reservoir variables are eliminated and replaced by
drift and fluctuation terms within the Heisenberg equation of motion. The quantum Langevin equations can
be transformed into associated c-number Langevin equations, as explained in Section 4.2. From this, we can
derive the stochastic noise terms incorporated into the full-wave Maxwell-density matrix equation system. The
resulting Maxwell-density matrix equations are described in Section 4.3. Finally, we give a short summary.

4.1 The Quantum Langevin Equations

The quantum Langevin equations are introduced by using a simple three-level resonant tunneling QCL system as
depicted in Fig. 4.1 [55], [294]. The QCL exploits optical transitions between quantized states in the conduction
band of a quantum well heterostructure, where the properties can be controlled by quantum design rather than
being determined by the bulk material. This not only applies to the gain and lasing wavelength but also to
the nonlinear optical properties such as FWM. Besides confinement provided by the quantum wells, another
important quantum effect is tunneling through the separating barriers, which significantly influences carrier
transport, in addition to the incoherent scattering-induced transitions due to phonons, crystal imperfections
and electron-electron interactions [29], [35]. Regarding non-stationary QCL operation as is the case for OFC
emission, coherent light-matter interaction as a further quantum effect plays a significant role in the dynamic

This chapter is largely based on Section II of J. Popp, J. Stowasser, M. A. Schreiber, et al., “Modeling of fluctuations in dynamical
optoelectronic device simulations within a Maxwell-density matrix Langevin approach”, APL Quantum, vol. 1, no. 1, p. 016 109,
2024. doi: 10 .1063 / 5 .0183828, an open access article published under the terms of the Creative Commons Attribution 4.0
International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

https://doi.org/10.1063/5.0183828
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Figure 4.1 Schematic conduction band profile and probability densities of a two-well THz QCL structure, where the
upper laser level 3 is populated via resonant tunneling from injector level 1′. Depopulation occurs through LO-phonon
scattering from the lower laser level 2 to the depopulation level 1. Reprinted from J. Popp et al., "Modeling of fluctuations
in dynamical optoelectronic device simulations within a Maxwell-density matrix Langevin approach" [59] (CC BY 4.0).

behavior, e.g., leading to Rabi flopping [68], i.e., oscillations of the electron population between the upper and
lower laser levels driven by the resonant optical field. Dephasing due to incoherent scattering has to be taken
into account for a realistic description, as it greatly affects tunneling and coherent light-matter interaction.

For the structure shown in Fig. 4.1, the lasing transition occurs between the upper laser level |3⟩ and the lower
laser level |2⟩. Depopulation takes place via level |1⟩ and electrons are injected from the depopulation level
|1′⟩ of the adjacent period via resonant tunneling. The resonant tunneling across thick injection barriers in THz
QCLs is treated within the tight-binding model [29], [32], [36], [71], [294], [295]. Here, the tunneling between
a doublet of states at the thick injection barrier is described by the coupling strength Ω𝑖 𝑗 = −ℏ−1⟨𝑖 |𝑉̂ext − 𝑉̂tb | 𝑗⟩,
with the extended conduction band potential 𝑉̂ext and the tight-binding potential 𝑉̂tb. The coupling strengths Ω𝑖 𝑗

between the states |3⟩, |2⟩, |1⟩ within the active period are zero [32].
In general, the QCL system is then described by the reduced system Hamiltonian [87], [246], [320]

𝐻̂s = 𝐻̂F + 𝐻̂0 + Δ𝑉̂tb + 𝐻̂I

= ℏ𝜔0𝑎̂
†𝑎̂ +

∑︁
𝑖

𝐸𝑖 |𝑖⟩⟨𝑖 | − ℏΩ1′3( |1′⟩⟨3| + |3⟩⟨1′ |) + ℏ𝑔( |3⟩⟨2| + |2⟩⟨3|)
(
𝑎̂ + 𝑎̂†

)
,

(4.1)

where 𝐻̂F is the Hamiltonian of the optical field, 𝐻̂0 is the Hamiltonian of the quantum system with Δ𝑉̂tb
describing the coupling of electron states in two adjacent periods within the tight-binding model, and 𝐻̂I
constitutes the interaction Hamiltonian between quantum system and optical field. Here, 𝜔0 is the single mode
lasing angular frequency, 𝑎̂†(𝑎̂) denotes the creation (annihilation) operator of the radiation field, 𝐸𝑖 is the
energy of level |𝑖⟩ and ℏΩ1′3 the anticrossing energy gap between levels |1′⟩ and |3⟩. The dipole coupling
constant 𝑔 can be written in terms of the dipole matrix element, 𝑑𝑧,23 = 𝑞⟨2|𝑧 |3⟩, as [86], [320]

𝑔 = −
√︂

𝜔0
2ℏ𝜖𝑟 𝜖0𝑉p

𝑑𝑧,23 , (4.2)

where 𝜖r is the relative permittivity, 𝜖0 is the vacuum permittivity and 𝑉p is the volume of each quantum system
associated with an active QCL period.
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The Heisenberg-Langevin equation of motion for an operator 𝐴̂𝜇 (𝑡) reads as [86]–[88], [241]

𝜕𝑡 𝐴̂𝜇 (𝑡) = −iℏ−1 [ 𝐴̂𝜇 (𝑡), 𝐻̂s(𝑡)] + 𝐷̂𝜇 (𝑡) + 𝐹̂𝜇 (𝑡) = 𝑀̂𝜇 (𝑡) + 𝐹̂𝜇 (𝑡) . (4.3)

Here, the drift operator 𝐷̂𝜇 (𝑡) and fluctuation operator 𝐹̂𝜇 (𝑡) account for the influence of the reservoirs on the
system. [·, ·] denotes the commutator [𝑋̂, 𝑌 ] = 𝑋̂𝑌 −𝑌 𝑋̂ . For the drift operator 𝐷̂𝜇 we can under the Markovian
approximation write [87], [88]

𝐷̂𝜇 = −
∑︁
𝑖, 𝑗

𝛿(𝜔𝑖 ,−𝜔 𝑗)
{
[ 𝐴̂𝜇, 𝑄̂𝑖]𝑄̂ 𝑗𝑤

+
𝑖 𝑗 − 𝑄̂ 𝑗 [ 𝐴̂𝜇, 𝑄̂𝑖]𝑤−𝑗𝑖

}
, (4.4)

where 𝑤± are the reservoir spectral densities and 𝑄̂𝑖 is a function of system operators. For a detailed description
and derivation of this theory together with the calculation examples for specific operators 𝐴̂𝜇, we refer to [88]
and [87].

The reservoir average of the fluctuation operator vanishes, ⟨𝐹̂†𝜇⟩R = ⟨𝐹̂𝜇⟩R = 0. The diffusion coefficient for
a Markovian system is defined as

2⟨𝐷̂𝜇𝜈 (𝑡)⟩R𝛿(𝑡 − 𝑡′) = ⟨𝐹̂𝜇 (𝑡)𝐹̂𝜈 (𝑡′)⟩R , (4.5)

and can be calculated by applying the fluctuation-dissipation theorem. Here, the 𝛿-function indicates the very
short memory period of the reservoirs. The generalized Einstein relation for the calculation of the diffusion
coefficient is given by [86], [88], [321]

2⟨𝐷̂𝜇𝜈 (𝑡)⟩R = 𝜕𝑡 ⟨𝐴̂𝜇 (𝑡) 𝐴̂𝜈 (𝑡)⟩R − ⟨𝑀̂𝜇 (𝑡) 𝐴̂𝜈 (𝑡)⟩R − ⟨𝐴̂𝜇 (𝑡)𝑀̂𝜈 (𝑡)⟩R . (4.6)

From Eq. (4.3) together with Eqs. (4.1) and (4.4) the quantum Langevin equations for the three-level QCL
quantum system can be derived. Therefore, we introduce the electron population operators 𝜎̂𝑖𝑖 = |𝑖⟩⟨𝑖 | and
the coherence operators 𝜎̂𝑖 𝑗 = |𝑖⟩⟨ 𝑗 |. The term 𝜎̂32𝑎̂

† describes the creation of a photon accompanied by
an electron transition from the lower to the higher lying energy level and 𝜎̂23𝑎̂ the annihilation of a photon
accompanied by an electron transition from the higher to the lower lying energy level. At this point we drop
these counter-rotating energy non-conserving terms in the interaction Hamiltonian 𝐻̂I as in the commonly used
rotating wave approximation [86], [320]. This simplifies the following calculations of the noise terms. A more
complete calculation should also include more than one mode of the optical field in the system Hamiltonian.
However, these concessions do not affect the form of the specific noise terms which are ultimately used in our
simulations. The corresponding equations of motion are given by

𝜕𝑡 𝑎̂(𝑡) = − i𝜔0𝑎̂(𝑡) − 𝜅2 𝑎̂(𝑡) − 𝑔𝜎̂23 + 𝐹̂𝑎 (𝑡) , (4.7a)

𝜕𝑡 𝜎̂23(𝑡) = − i
ℏ
Δ32𝜎̂23(𝑡) − 𝛾23𝜎̂23(𝑡) + iΩ1′3𝜎̂21′ (𝑡) + i𝑔(𝜎̂33(𝑡) − 𝜎̂22(𝑡))𝑎̂(𝑡) + 𝐹̂23(𝑡) , (4.7b)

𝜕𝑡 𝜎̂31′ (𝑡) = − i
ℏ
Δ1′3𝜎̂31′ (𝑡) − 𝛾1′3𝜎̂31′ (𝑡) + iΩ1′3(𝜎̂33(𝑡) − 𝜎̂1′1′ (𝑡)) + i𝑔𝜎̂21′ (𝑡)𝑎̂†(𝑡) + 𝐹̂31′ (𝑡) , (4.7c)

𝜕𝑡 𝜎̂21′ (𝑡) = − i
ℏ
Δ1′2𝜎̂21′ (𝑡) − 𝛾1′2𝜎̂21′ (𝑡) + iΩ1′3𝜎̂23(𝑡) + i𝑔𝜎̂31′ (𝑡)𝑎̂(𝑡) + 𝐹̂21′ (𝑡) , (4.7d)

𝜕𝑡 𝜎̂33(𝑡) = − 1
𝜏3
𝜎̂33(𝑡) + 𝑟32𝜎̂22(𝑡) + 𝑟31′ 𝜎̂1′1′ (𝑡) + i𝑔

[
𝑎̂†(𝑡)𝜎̂23(𝑡) − 𝑎̂(𝑡)𝜎̂†23(𝑡)

]
− iΩ1′3

(
𝜎̂†31′ (𝑡) − 𝜎̂31′ (𝑡)

)
+ 𝐹̂33(𝑡) , (4.7e)

𝜕𝑡 𝜎̂22(𝑡) = 𝑟23𝜎̂33(𝑡) − 1
𝜏2
𝜎̂22(𝑡) + 𝑟21′ 𝜎̂1′1′ (𝑡) + i𝑔

[
𝑎̂(𝑡)𝜎̂†23(𝑡) − 𝑎̂†(𝑡)𝜎̂23(𝑡)

]
+ 𝐹̂22(𝑡) , (4.7f)

𝜕𝑡 𝜎̂1′1′ (𝑡) = 𝑟1′3𝜎̂33(𝑡) + 𝑟1′2𝜎̂22(𝑡) − 1
𝜏1′
𝜎̂1′1′ (𝑡) − iΩ1′3

[
𝜎̂31′ (𝑡) − 𝜎̂†31′ (𝑡)

]
+ 𝐹̂1′1′ (𝑡) , (4.7g)

where 𝜅 is the cavity decay rate, Δ𝑖 𝑗 denotes the energy separation between levels |𝑖⟩ and | 𝑗⟩, 𝜏−1
𝑖 =

∑
𝑖≠ 𝑗 𝑟 𝑗𝑖 is

the inverse population lifetime, 𝑟𝑖 𝑗 ,𝑖≠ 𝑗 represents the scattering rate from level 𝑗 to 𝑖 and 𝛾𝑖 𝑗 is the dephasing
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rate, which can be calculated using Eq. (3.29). In QCLs, the pure dephasing rate 𝛾𝑖 𝑗 ,p mainly consists of elastic
scattering contributions due to impurity and interface roughness [35]. The equivalent equations for 𝑎̂†(𝑡),
𝜎̂32(𝑡), 𝜎̂1′3(𝑡) and 𝜎̂1′2(𝑡) are given by the Hermitian conjugates of Eqs. (4.7)(a)-(d).

Using Eqs. (4.5) and (4.6), we can calculate the second-order correlation function relevant for the polarization
operator as

⟨𝐹̂†23(𝑡)𝐹̂23(𝑡′)⟩R =
[
𝜕𝑡 ⟨𝜎̂33(𝑡)⟩R − ⟨𝑀̂†23(𝑡)𝜎̂23(𝑡)⟩R − ⟨𝜎̂†23(𝑡)𝑀̂23(𝑡)⟩R

]
𝛿(𝑡 − 𝑡′)

=

[〈
− 1
𝜏3
𝜎̂33(𝑡) + 𝑟32𝜎̂22(𝑡) + 𝑟31′ 𝜎̂1′1′ (𝑡) + i𝑔

[
𝑎̂†(𝑡)𝜎̂23(𝑡) − 𝑎̂(𝑡)𝜎̂†23(𝑡)

]
− iΩ1′3

[
𝜎̂†31′ (𝑡) − 𝜎̂31′ (𝑡)

]〉
R
−

〈{
i
ℏ
Δ32𝜎̂

†
23(𝑡) − 𝛾23𝜎̂

†
23(𝑡) − i𝑔[𝜎̂33(𝑡) − 𝜎̂22(𝑡)]𝑎̂†(𝑡)

− iΩ1′3𝜎̂1′2(𝑡)
}
𝜎̂23(𝑡)

〉
R
−

〈
𝜎̂†23(𝑡)

{
− i
ℏ
Δ32𝜎̂23(𝑡) − 𝛾23𝜎̂23(𝑡) + i𝑔[𝜎̂33(𝑡) − 𝜎̂22(𝑡)]𝑎̂(𝑡)

+ iΩ1′3𝜎̂21′(𝑡)
}〉

R

]
𝛿(𝑡 − 𝑡′)

=

[(
2𝛾23 − 1

𝜏3

)
⟨𝜎̂33(𝑡)⟩R + 𝑟32⟨𝜎̂22(𝑡)⟩R + 𝑟31′ ⟨𝜎̂1′1′ (𝑡)⟩R

]
𝛿(𝑡 − 𝑡′) .

(4.8)

Here, we take into account the orthogonality of the levels ⟨𝑖 | 𝑗⟩ = 𝛿𝑖 𝑗 and obtain

𝜎̂†23𝜎̂23 = ( |3⟩⟨2|2⟩⟨3|) = ( |3⟩⟨3|) = 𝜎̂33 . (4.9)

We use the same procedure to determine the other non-vanishing second-order correlation functions [87], [88]

⟨𝐹̂†𝑎 (𝑡)𝐹̂𝑎 (𝑡′)⟩R = 𝜅𝑛th(𝜔0)𝛿(𝑡 − 𝑡′) , (4.10a)
⟨𝐹̂𝑎 (𝑡)𝐹̂†𝑎 (𝑡′)⟩R = 𝜅(𝑛th(𝜔0) + 1)𝛿(𝑡 − 𝑡′) , (4.10b)

⟨𝐹̂23(𝑡)𝐹̂†23(𝑡′)⟩R =

[
𝑟23⟨𝜎̂33(𝑡)⟩R +

(
2𝛾23 − 1

𝜏2

)
⟨𝜎̂22(𝑡)⟩R + 𝑟21′ ⟨𝜎̂1′1′ (𝑡)⟩R

]
𝛿(𝑡 − 𝑡′) , (4.10c)

⟨𝐹̂†31′ (𝑡)𝐹̂31′ (𝑡′)⟩R =

[
𝑟1′3⟨𝜎̂33(𝑡)⟩R + 𝑟1′2⟨𝜎̂22(𝑡)⟩R +

(
2𝛾1′3 − 1

𝜏1′

)
⟨𝜎̂1′1′ (𝑡)⟩R

]
𝛿(𝑡 − 𝑡′) , (4.10d)

⟨𝐹̂31′ (𝑡)𝐹̂†31′ (𝑡′)⟩R =

[(
2𝛾1′3 − 1

𝜏3

)
⟨𝜎̂33(𝑡)⟩R + 𝑟32⟨𝜎̂22(𝑡)⟩R + 𝑟31′ 𝜎̂1′1′ (𝑡)

]
𝛿(𝑡 − 𝑡′) , (4.10e)

⟨𝐹̂†21′ (𝑡)𝐹̂21′ (𝑡′)⟩R =

[
𝑟1′3⟨𝜎̂33(𝑡)⟩R + 𝑟1′2⟨𝜎̂22(𝑡)⟩R +

(
2𝛾1′2 − 1

𝜏1′

)
⟨𝜎̂1′1′ (𝑡)⟩R

]
𝛿(𝑡 − 𝑡′) , (4.10f)

⟨𝐹̂21′ (𝑡)𝐹̂†21′ (𝑡′)⟩R =

[
𝑟23⟨𝜎̂33(𝑡)⟩R +

(
2𝛾1′2 − 1

𝜏2

)
⟨𝜎̂22(𝑡)⟩R + 𝑟21′ ⟨𝜎̂1′1′ (𝑡)⟩R

]
𝛿(𝑡 − 𝑡′) , (4.10g)

⟨𝐹̂33(𝑡)𝐹̂33(𝑡′)⟩R =

[
1
𝜏3
⟨𝜎̂33(𝑡)⟩R + 𝑟32⟨𝜎̂22(𝑡)⟩R + 𝑟31′ ⟨𝜎̂1′1′ (𝑡)⟩R

]
𝛿(𝑡 − 𝑡′) , (4.10h)

⟨𝐹̂22(𝑡)𝐹̂22(𝑡′)⟩R =

[
𝑟23⟨𝜎̂33(𝑡)⟩R + 1

𝜏2
⟨𝜎̂22(𝑡)⟩R + 𝑟21′ ⟨𝜎̂1′1′ (𝑡)⟩R

]
𝛿(𝑡 − 𝑡′) , (4.10i)

⟨𝐹̂1′1′ (𝑡)𝐹̂1′1′ (𝑡′)⟩R =

[
𝑟1′3⟨𝜎̂33(𝑡)⟩R + 𝑟1′2⟨𝜎̂22(𝑡)⟩R + 1

𝜏1′
⟨𝜎̂1′1′ (𝑡)⟩R

]
𝛿(𝑡 − 𝑡′) . (4.10j)

Here, 𝑛th(𝜔0) =
[
exp

(
ℏ𝜔0
𝑘B𝑇

)
− 1

]−1
is the number of thermal photons in the lasing mode at temperature 𝑇 .

4.2 The C-Number Langevin Equations

In order to derive the stochastic noise terms for the semiclassical Maxwell-density matrix equations, the operator
Langevin equations have to be converted into the associated c-number Langevin equations.
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The quantum Langevin equation for the operator 𝐴̂𝜇 (𝑡) in chosen order is given by

𝜕𝑡 𝐴̂𝜇 (𝑡) = −iℏ−1 [ 𝐴̂𝜇 (𝑡), 𝐻̂s(𝑡)]c + 𝐷̂c
𝜇 (𝑡) + 𝐹̂c

𝜇 (𝑡) , (4.11)

where we make use of the commutation relation 𝐴̂†𝜇 𝐴̂𝜈 = 𝐴̂𝜈 𝐴̂
†
𝜇 − [ 𝐴̂𝜈 , 𝐴̂

†
𝜇] to bring the equation into the chosen

order. We use the superscript c to highlight that we have put the operators in chosen order. To explain this
formulation in more detail, we use the fluctuation operator 𝐹̂𝜇 (𝑡) as an example, but the following description
holds for the other operators in the same way. For a chosen order 𝐴̂1, . . . , 𝐴̂𝜇, we can write

𝐹̂𝜇 = 𝐹̂c
𝜇 ( 𝐴̂1, . . . , 𝐴̂𝜇) , (4.12)

where the fluctuation operator 𝐹̂c
𝜇 in the chosen order is, of course, equal to the fluctuation operator 𝐹̂𝜇 in the

original order. The associated c-number fluctuation term 𝐹c
𝜇 (𝐴1, . . . , 𝐴𝜇) is obtained using c-numbers 𝐴𝜈 . By

defining a linear chosen ordering operator 𝐶̂ we can further indicate [87], [322]

𝐹̂c
𝜇 ( 𝐴̂1, . . . , 𝐴̂𝜇) = 𝐶̂ (𝐹c

𝜇 (𝐴1, . . . , 𝐴𝜇)) , (4.13)

where the operator 𝐶̂ has the function of replacing each 𝐴𝜈 by the corresponding operator 𝐴̂𝜈 and bringing all
terms into chosen order.

If we now convert the quantum Langevin equation into the equivalent c-number Langevin equation, we may
write

𝜕𝑡𝐴𝜇 (𝑡) = 𝐿𝜇 (𝑡) + 𝐷𝜇 (𝑡) + 𝐹c
𝜇 (𝑡) = 𝑀𝜇 (𝑡) + 𝐹c

𝜇 (𝑡) , (4.14)

with 𝐿𝜇 (𝑡) being the coherent term corresponding to the commutation of 𝐴̂𝜇 (𝑡) with the system Hamiltonian
𝐻̂s, and 𝐷𝜇 (𝑡) denoting the drift term. Furthermore, by the use of Eq. (4.14) we obtain the c-number equation

𝜕𝑡
[
𝐴𝜇 (𝑡)𝐴𝜈 (𝑡)

]
= 𝐴𝜇 (𝑡)𝜕𝑡𝐴𝜈 (𝑡) + 𝐴𝜈 (𝑡)𝜕𝑡𝐴𝜇 (𝑡)
= 𝐴𝜇 (𝑡)𝑀𝜈 (𝑡) + 𝐴𝜈 (𝑡)𝑀𝜇 (𝑡) + 𝐴𝜇 (𝑡)𝐹c

𝜈 (𝑡) + 𝐴𝜈 (𝑡)𝐹c
𝜇 (𝑡) .

(4.15)

In analogy to the reservoir average in the operator case, we may write the c-number equation

𝜕𝑡 ⟨𝐴𝜇 (𝑡)𝐴𝜈 (𝑡)⟩R = ⟨𝐴𝜇 (𝑡)𝑀𝜈 (𝑡)⟩R + ⟨𝐴𝜈 (𝑡)𝑀𝜇 (𝑡)⟩R + 2⟨𝐷𝜇𝜈 (𝑡)⟩R , (4.16)

where we can make use of the following relation under the Markovian approximation [86], [87]

2⟨𝐷𝜇𝜈 (𝑡)⟩R = ⟨𝐴𝜇 (𝑡)𝐹c
𝜈 (𝑡) + 𝐴𝜈 (𝑡)𝐹c

𝜇 (𝑡)⟩R . (4.17)

The diffusion coefficients in the c-number Langevin equations may differ from the ones in the quantum Langevin
equations, as the c-numbers commute, whereas the operators do not. By requiring the equivalence of Eq. (4.16)
and Eq. (4.6) in both c-number and quantum Langevin theory, it can be shown that in general

2⟨𝐷̂𝜇𝜈 (𝑡)⟩R ≠ 2⟨𝐶̂ (𝐷𝜇𝜈 (𝑡))⟩R . (4.18)

By taking our chosen ordered operator representation of the system operators 𝑎̂†, 𝜎̂†23, 𝜎̂†31′ , 𝜎̂
†
21′ , 𝜎̂33, 𝜎̂22,

𝜎̂1′1′ , 𝜎̂21′ , 𝜎̂31′ , 𝜎̂23, 𝑎̂, we obtain the corresponding c-numbers 𝑎∗, 𝜎∗23, 𝜎∗31′ , 𝜎
∗
21′ , 𝜎33, 𝜎22, 𝜎1′1′ , 𝜎21′ , 𝜎31′ ,

𝜎23, 𝑎.
As an example, we provide a detailed derivation of the diffusion coefficient 𝐷3333(𝑡). Here, we prove the

difference in diffusion coefficients, which arises through the transition from operator to c-number Langevin
equations. By the use of Eqs. (4.6) and (4.7)(e), we obtain

𝜕𝑡 ⟨𝜎̂33(𝑡)𝜎̂33(𝑡)⟩R = − 2
𝜏3
⟨𝜎̂33(𝑡)𝜎̂33(𝑡)⟩R + 𝑟32

[
⟨𝜎̂22(𝑡)𝜎̂33(𝑡)⟩R + ⟨𝜎̂33(𝑡)𝜎̂22(𝑡)⟩R

]
+ 𝑟31′

[
⟨𝜎̂1′1′ (𝑡)𝜎̂33(𝑡)⟩R

+ ⟨𝜎̂33(𝑡)𝜎̂1′1′ (𝑡)⟩R
]
+ i𝑔

[
⟨𝑎̂†(𝑡)𝜎̂23(𝑡)𝜎̂33(𝑡)⟩R − ⟨𝑎̂(𝑡)𝜎̂†23(𝑡)𝜎̂33(𝑡)⟩R

+⟨𝑎̂†(𝑡)𝜎̂33(𝑡)𝜎̂23(𝑡)⟩R − ⟨𝑎̂(𝑡)𝜎̂33(𝑡)𝜎̂†23(𝑡)⟩R
]
− iΩ1′3

[
⟨𝜎̂†31′ (𝑡)𝜎̂33(𝑡)⟩R

− ⟨𝜎̂31′ (𝑡)𝜎̂33(𝑡)⟩R + ⟨𝜎̂33(𝑡)𝜎̂†31′ (𝑡)⟩R − ⟨𝜎̂33(𝑡)𝜎̂31′ (𝑡)⟩R
]
+ 2⟨𝐷̂3333(𝑡)⟩R .

(4.19)
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Here, the terms that are underlined in red are not in the chosen order. The commutation relations are used to
bring these terms into chosen order, and by exploiting the level orthogonality similarly to Eq. (4.9) we derive

[𝜎̂22(𝑡), 𝜎̂33(𝑡)] = 𝜎̂22(𝑡)𝜎̂33(𝑡) − 𝜎̂33(𝑡)𝜎̂22(𝑡) = 0 , (4.20a)
[𝜎̂23(𝑡), 𝜎̂33(𝑡)] = 𝜎̂23(𝑡) , (4.20b)

[𝜎̂33(𝑡), 𝜎̂†23(𝑡)] = 𝜎̂†23(𝑡) , (4.20c)
[𝜎̂31′ (𝑡), 𝜎̂33(𝑡)] = − 𝜎̂31′ (𝑡) , (4.20d)

[𝜎̂33(𝑡), 𝜎̂†31′ (𝑡)] = − 𝜎̂†31′ (𝑡) . (4.20e)

With this, we can restructure Eq. (4.19) as follows:

𝜕𝑡 ⟨𝜎̂33(𝑡)𝜎̂33(𝑡)⟩R = − 2
𝜏3
⟨𝜎̂33(𝑡)𝜎̂33(𝑡)⟩R + 2𝑟32⟨𝜎̂33(𝑡)𝜎̂22(𝑡)⟩R + 2𝑟31′ ⟨𝜎̂33(𝑡)𝜎̂1′1′ (𝑡)⟩R

+ 2i𝑔
[
⟨𝑎̂†(𝑡)𝜎̂33(𝑡)𝜎̂23(𝑡)⟩R − ⟨𝑎̂(𝑡)𝜎̂†23(𝑡)𝜎̂33(𝑡)⟩R

]
− 2iΩ1′3

[⟨𝜎̂†31′ (𝑡)𝜎̂33(𝑡)⟩R
− ⟨𝜎̂33(𝑡)𝜎̂31′ (𝑡)⟩R

] + 2⟨𝐷̂3333(𝑡)⟩R + i𝑔
[
⟨𝑎̂†(𝑡)𝜎̂23(𝑡)⟩R − ⟨𝑎̂(𝑡)𝜎̂†23(𝑡)⟩R

]
+ iΩ1′3

[
⟨𝜎̂†31′ (𝑡)⟩R − ⟨𝜎̂31′ (𝑡)⟩R

]
.

(4.21)

Here, the additional terms resulting from the operator ordering are underlined in green. With the use of
Eqs. (4.14) and (4.15) we can derive the corresponding c-number equation

𝜕𝑡 ⟨𝜎33(𝑡)𝜎33(𝑡)⟩R = − 2
𝜏3
⟨𝜎33(𝑡)𝜎33(𝑡)⟩R + 2𝑟32⟨𝜎33(𝑡)𝜎22(𝑡)⟩R + 2𝑟31′ ⟨𝜎33(𝑡)𝜎1′1′ (𝑡)⟩R

+ 2i𝑔
[⟨𝑎∗(𝑡)𝜎33(𝑡)𝜎23(𝑡)⟩R − ⟨𝑎(𝑡)𝜎∗23(𝑡)𝜎33(𝑡)⟩R

] − 2iΩ1′3
[⟨𝜎∗31′ (𝑡)𝜎33(𝑡)⟩R

−⟨𝜎33(𝑡)𝜎31′ (𝑡)⟩R] + 2⟨𝐷3333(𝑡)⟩R .
(4.22)

If we now require the equivalence of the left-hand sides of Eqs. (4.21) and (4.22), we end up with the diffusion
coefficient

⟨𝐹33(𝑡)𝐹33(𝑡′)⟩R =

{
1
𝜏3
⟨𝜎33(𝑡)⟩R + 𝑟32⟨𝜎22(𝑡)⟩R + 𝑟31′ ⟨𝜎1′1′ (𝑡)⟩R + i𝑔

[⟨𝑎∗(𝑡)𝜎23(𝑡)⟩R − ⟨𝑎(𝑡)𝜎∗23(𝑡)⟩R
]

+ iΩ1′3
[⟨𝜎∗31′ (𝑡)⟩R − ⟨𝜎31′ (𝑡)⟩R

]}
𝛿(𝑡 − 𝑡′) ,

We further derive the c-number second-order moments for the remaining populations 𝜎22 and 𝜎1′1′ , which result
in differing terms compared to the operator case:

⟨𝐹22(𝑡)𝐹22(𝑡′)⟩R =

{
𝑟23⟨𝜎33(𝑡)⟩R + 1

𝜏2
⟨𝜎22(𝑡)⟩R + 𝑟21′ ⟨𝜎1′1′ (𝑡)⟩R + i𝑔

[⟨𝑎∗(𝑡)𝜎23(𝑡)⟩R − ⟨𝑎(𝑡)𝜎∗23(𝑡)⟩R
]}

𝛿(𝑡 − 𝑡′) , (4.23a)

⟨𝐹1′1′ (𝑡)𝐹1′1′ (𝑡′)⟩R =

{
𝑟1′3⟨𝜎33(𝑡)⟩R + 𝑟1′2⟨𝜎22(𝑡)⟩R + 1

𝜏1′
⟨𝜎1′1′ (𝑡)⟩R + iΩ1′3

[⟨𝜎∗31′ (𝑡)⟩R

− ⟨𝜎31′ (𝑡)⟩R
]}
𝛿(𝑡 − 𝑡′) . (4.23b)

Additionally, we obtain diffusion coefficients absent in the quantum Langevin theory, e.g.

⟨𝐹23(𝑡)𝐹23(𝑡′)⟩R = 2i𝑔⟨𝑎(𝑡)𝜎23(𝑡)⟩R𝛿(𝑡 − 𝑡′) , (4.24a)
⟨𝐹31′ (𝑡)𝐹31′ (𝑡′)⟩R = − 2iΩ1′3⟨𝜎31′ (𝑡)⟩R𝛿(𝑡 − 𝑡′) . (4.24b)
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The complete diffusion matrix 𝑫 (𝑨, 𝑡) including all relevant cross-correlation terms of the three-level QCL
system with the c-number vector 𝑨 =

[
𝑎∗, 𝑎, 𝜎∗23, 𝜎

∗
31′ , 𝜎

∗
21′ , 𝜎33, 𝜎22, 𝜎1′1′ , 𝜎21′ , 𝜎31′ , 𝜎23

]T is given by

𝐴 =



0 √
𝑛th𝜅 0 0 0

√
𝑛th𝜅 0 0 0 0
0 0 −2i𝑔𝑎∗𝜎∗23 i𝑔𝑎∗𝜎∗31′ −i𝑔𝑎∗𝜎∗21′

0 0 i𝑔𝑎∗𝜎∗31′ 2iΩ1′3𝜎
∗
31′ 0

0 0 −i𝑔𝑎∗𝜎∗21′ 0 0
0 0 −𝑟32𝜎

∗
23 −i𝑔𝑎𝜎∗21′ + (𝑟23 + 𝑟1′3)𝜎∗31′ −𝑟32𝜎

∗
21′

0 0 (𝑟32 + 𝑟1′2)𝜎∗23 i𝑔𝑎𝜎∗21′ − 𝑟23𝜎
∗
31′ (𝑟32 + 𝑟1′2)𝜎∗21′

0 0 −𝑟1′2𝜎
∗
23 −𝑟1′3𝜎31′ −𝑟1′2𝜎

∗
21′

0 0 (𝛾23 + 𝛾1′2 − 𝛾1′3)𝜎31′ 0 (2𝛾1′2−𝑟21′−𝑟31′ )𝜎1′1′+𝑟1′2𝜎22+𝑟1′3𝜎33

0 0 0 (2𝛾1′3−𝑟21′−𝑟31′ )𝜎1′1′+
𝑟1′2𝜎22+𝑟1′3𝜎33

0
0 0 (2𝛾23−𝑟23−𝑟1′3 )𝜎33+𝑟32𝜎22

0 (𝛾1′2 + 𝛾23 − 𝛾1′3)𝜎∗31′

0 0 0
0 0 0

−𝑟32𝜎
∗
23 (𝑟32 + 𝑟1′2)𝜎∗23 −𝑟1′2𝜎

∗
23

−i𝑔𝑎𝜎∗21′ + (𝑟23 + 𝑟1′3)𝜎∗31′ i𝑔𝑎𝜎∗21′ − 𝑟23𝜎
∗
31′ −𝑟1′3𝜎

∗
31′

−𝑟32𝜎
∗
21′ (𝑟32 + 𝑟1′2)𝜎∗21′ −𝑟1′2𝜎

∗
21′

(𝑟23+𝑟1′3 )𝜎33+𝑟32𝜎22+𝑟3′1𝜎1′1′
+i𝑔(𝑎∗𝜎23−𝑎𝜎∗23)+iΩ1′3

(
𝜎∗31′−𝜎31′

) −𝑟32𝜎22−𝑟23𝜎33
+i𝑔(𝑎𝜎∗23−𝑎∗𝜎23) iΩ1′3

(
𝜎31′−𝜎∗31′

)
−𝑟31′𝜎1′1′−𝑟1′3𝜎33−𝑟32𝜎22−𝑟23𝜎33

+i𝑔(𝑎𝜎∗23−𝑎∗𝜎23)
𝑟23𝜎33+(𝑟32+𝑟1′2 )𝜎22

+𝑟21′𝜎1′1′+i𝑔(𝑎∗𝜎23−𝑎𝜎∗23) −𝑟21′𝜎1′1′ − 𝑟1′2𝜎22

iΩ1′3
(
𝜎31′−𝜎∗31′

)
−𝑟1′3𝜎33−𝑟31′𝜎1′1′

−𝑟21′𝜎1′1′ − 𝑟1′2𝜎22
𝑟1′2𝜎22+(𝑟21′+𝑟31′ )𝜎1′1′
+iΩ1′3

(
𝜎∗31′−𝜎31′

)
+𝑟1′3𝜎33

−𝑟32𝜎21′ (𝑟32 + 𝑟1′2)𝜎21′ −𝑟1′2𝜎21′

i𝑔𝑎∗𝜎21′ + (𝑟23 + 𝑟1′3)𝜎31′ −i𝑔𝑎∗𝜎21′ − 𝑟23𝜎31′ −𝑟1′3𝜎31′

−𝑟32𝜎23 (𝑟32 + 𝑟1′2)𝜎23 −𝑟1′2𝜎23

(4.25)

0 0 0
0 0 0

(𝛾23 + 𝛾1′2 − 𝛾1′3)𝜎31′ 0 (2𝛾23−𝑟23−𝑟1′3 )𝜎33+𝑟32𝜎22

0 (2𝛾1′3−𝑟2′1−𝑟31′ )𝜎1′1′+
𝑟1′2𝜎22+𝑟1′3𝜎33

0
(2𝛾1′2−𝑟21′−𝑟31′ )𝜎1′1′+𝑟1′2𝜎22+𝑟1′3𝜎33

0 (𝛾23 + 𝛾1′2 − 𝛾1′3)𝜎∗31′

−𝑟32𝜎21′ i𝑔𝑎∗𝜎21′ + (𝑟23 + 𝑟1′3)𝜎31′ −𝑟32𝜎23

(𝑟32 + 𝑟1′2)𝜎21′ −i𝑔𝑎∗𝜎21′ − 𝑟23𝜎31′ (𝑟32 + 𝑟1′2)𝜎23

−𝑟1′2𝜎21′ −𝑟1′3𝜎31′ −𝑟1′2𝜎23

0 0 i𝑔𝑎𝜎21′

0 −2iΩ1′3𝜎31′ −i𝑔𝑎𝜎31′

i𝑔𝑎𝜎21′ −i𝑔𝑎𝜎31′ 2i𝑔𝑎𝜎23





𝑎∗

𝑎

𝜎∗23

𝜎∗31′

𝜎∗21′

𝜎33

𝜎22

𝜎1′1′

𝜎21′

𝜎31′

𝜎23



.
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In literature ([323], [324]) it has been shown that a set of Ito stochastic differential equations (SDEs) can
be derived for the given c-number vector and can serve as an efficient basis for numerical simulations. The
equivalent Ito SDEs to the Langevin theory are given by

𝜕𝑡 𝑨(𝑡) = 𝑴 (𝑡) + 𝑭(𝑡) = 𝑴 (𝑡) + 𝑩(𝑨, 𝑡) · 𝝃 (𝑡) , (4.26)

where 𝝃 (𝑡) is a vector with real, independent Gaussian random numbers. Here, a semi-definite and symmetric
diffusion matrix 𝑫 (𝑨, 𝑡) is required, which can then be factorized into the form [89], [323], [325]

𝑫 (𝑨, 𝑡) = 𝑩(𝑨, 𝑡)𝑩T(𝑨, 𝑡) , (4.27)

where the derived noise matrix 𝑩(𝑨, 𝑡) is not necessarily symmetric.
To calculate the full noise matrix 𝑩(𝑨, 𝑡) for the three-level QCL system, we can divide the diffusion matrix

𝑫 (𝑨, 𝑡) into four different submatrices, where a correlation between the corresponding terms is identified. The
given subvector 𝑨𝜈 as well as the submatrices 𝑩𝜈 (𝑨𝜈 , 𝑡) and 𝑫𝜈 (𝑨𝜈 , 𝑡) are illustrated in Table 4.1. Here, we
include correlations between three states by taking into account a tunneling transition followed by an optical
transition. This leads to a substantial extension of the initially derived quantum theory of propagation of
nonclassical radiation in a two-level system [89] and is of essential importance for the description of quantum
fluctuations in THz QCL systems, where electron transport across thick barriers is mediated by tunneling
between closely aligned energy levels. A detailed symbolic derivation of the noise submatrices 𝑩𝜈 (𝑨𝜈 , 𝑡)
and the resulting noise matrix 𝑩(𝑨, 𝑡) for the three-level QCL system can be found in the GitHub project
mbsolve [58].

By calculating the operator expectation value in the Schrödinger picture, we can demonstrate that the c-
numbers representing the quantum system can be replaced by the density matrix elements 𝜌23, 𝜌31′ , 𝜌21′ , 𝜌33,
𝜌22, 𝜌1′1′ , 𝜌1′2, 𝜌1′3, 𝜌32. The expectation value can be written as

⟨𝜎̂𝑖 𝑗⟩ = Tr{|𝑖⟩⟨ 𝑗 | 𝜌̂(𝑡)} = Tr

{
|𝑖⟩⟨ 𝑗 |

∑︁
𝑗′ ,𝑖′

𝜌 𝑗′𝑖′ (𝑡) | 𝑗 ′⟩⟨𝑖′ |
}
= 𝜌 𝑗𝑖 (𝑡) . (4.28)

Furthermore, we can write the interaction Hamiltonian 𝐻̂I of the quantum system and the optical field as

𝐻̂I = −𝒅𝑧 𝑬̂𝑧 = −𝒅𝑧,23𝑬̂𝑧 (𝜎̂32 + 𝜎̂23) , (4.29)

where the electrical field operator 𝑬̂𝑧 is defined as

𝑬̂𝑧 =
√︂

𝜔0
2ℏ𝜖𝑟 𝜖0𝑉p

(
𝑎̂† + 𝑎̂

)
𝒆𝑧 . (4.30)

For devices in which the intraband transitions between quantized states occur within the conduction band, e.g.,
the QCL quantum well heterostructure, only the dipole matrix element 𝒅𝑧 for the polarization in growth direction
𝑧 is nonzero and relevant.

4.3 Generalized Maxwell-Density Matrix Langevin Equations in 1D

In the following, we derive the generalized Maxwell-density matrix Langevin equations with additional mi-
croscopic fluctuation terms and characterize the influence of spontaneous emission noise on the optical field
evolution. For the description of the coherent carrier dynamics and the incoherent relaxation processes, as well
as the interaction with the classical optical field, the generalized full-wave Maxwell-density matrix equations
constitute a compact semiclassical model. By combining it with the Langevin approach, the microscopic noise
characteristics can be fully taken into account. Here, the carrier dynamics in a SCL system are described in the
density matrix formulation using the Lindblad equation

𝜕𝑡 𝜌̂ = −iℏ−1 [𝐻̂0 + Δ𝑉̂tb + 𝐻̂I, 𝜌̂] + D( 𝜌̂) + F ( 𝜌̂) , (4.31)
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Table 4.1 Division of the diffusion matrix into submatrices 𝑫𝜈 (𝑨𝜈 , 𝑡) and the corresponding c-number subvectors 𝑨𝜈

and noise submatrices 𝑩𝜈 (𝑨𝜈 , 𝑡). In order to preserve the physical properties of the quantum system description, we have
to interpret noise matrices 𝑩𝜈 (𝑨𝜈 , 𝑡) differently for occupation and coherence terms. The differing matrix expressions for
the coherence terms are highlighted here in red. Reprinted from J. Popp et al., "Modeling of fluctuations in dynamical
optoelectronic device simulations within a Maxwell-density matrix Langevin approach" [59] (CC BY 4.0).

subvector 𝑨𝜈 submatrix 𝑩𝜈 (𝑨𝜈 , 𝑡) submatrix 𝑫𝜈 (𝑨𝜈 , 𝑡)
𝜎∗23
𝜎33
𝜎22
𝜎23

 ,


𝜎∗31′
𝜎33
𝜎1′1′

𝜎31′

 ,


𝜎∗21′
𝜎22
𝜎1′1′

𝜎21′

 , 
𝑎 −i𝑎
−𝑏 −i𝑐
𝑏 i𝑐
𝑎∗ i𝑎∗




0 −𝑎𝑏 − 𝑎𝑐 𝑎𝑏 + 𝑎𝑐 2|𝑎 |2
−𝑎𝑏 − 𝑎𝑐 𝑏2 − 𝑐2 −𝑏2 + 𝑐2 −𝑎∗𝑏 + 𝑎∗𝑐
𝑎𝑏 + 𝑎𝑐 −𝑏2 + 𝑐2 𝑏2 − 𝑐2 𝑎∗𝑏 − 𝑎∗𝑐

2|𝑎 |2 −𝑎∗𝑏 + 𝑎∗𝑐 𝑎∗𝑏 − 𝑎∗𝑐 0


𝜎∗23
𝜎22
𝜎1′1′

𝜎23

 ,


𝜎∗31′
𝜎33
𝜎22
𝜎31′

 ,


𝜎∗21′
𝜎33
𝜎22
𝜎21′

[
𝜎33
𝜎22

]
,
[
𝜎33
𝜎1′1′

]
,
[
𝜎22
𝜎1′1′

] [
𝑎
−𝑎

]
,
[
𝑎
𝑎∗

] [
𝑎2 −𝑎2

−𝑎2 𝑎2

]
,
[
𝑎2 |𝑎 |2
|𝑎 |2 (𝑎∗)2

]
[
𝜎∗23
𝜎23

]
,
[
𝜎∗31′
𝜎31′

]

𝜎∗23
𝜎∗31′
𝜎31′

𝜎23

 ,


𝜎∗23
𝜎∗21′
𝜎21′

𝜎23

 ,


𝜎∗23
𝜎21′

𝜎∗21′
𝜎23



𝑎 i𝑎
𝑏 −i𝑏
𝑐 i𝑐
𝑎∗ −i𝑎∗




0 2𝑎𝑏 0 2|𝑎 |2
2𝑎𝑏 0 2𝑏𝑐 0

0 2𝑏𝑐 0 2𝑎∗𝑐
2|𝑎 |2 0 2𝑎∗𝑐 0

[
𝜎∗23
𝜎23

]
,
[
𝜎∗31′
𝜎31′

]
,
[
𝜎∗21′
𝜎21′

] [
𝑎 i𝑎
𝑎 −i𝑎

] [
0 2𝑎2

2𝑎2 0

]
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which is coupled to Maxwell’s equations in one dimension

𝜕𝑡𝐸𝑧 = 𝜀
−1 (−𝜎𝐸𝑧 − 𝜕𝑡𝑃𝑧,class − Γ𝜕𝑡𝑃𝑧,qm + 𝜕𝑥𝐻𝑦

)
, (4.32a)

𝜕𝑡𝐻𝑦 = 𝜇−1𝜕𝑥𝐸𝑧 , (4.32b)

where D( 𝜌̂) is the dissipation superoperator, F ( 𝜌̂) is an additional Langevin fluctuation superoperator and the
other operators have their usual meanings. The permittivity is given by the product 𝜀 = 𝜀0𝜀r, 𝜎 is the material
conductivity, 𝜇 is the permeability, and the confinement factor Γ ∈ [0, 1] gives the spatial overlap of the
transverse optical field mode with the quantum system. As we focus in this work on optoelectronic devices with
invariant transverse field distribution, the reduction to a one-dimensional model for the optical propagation in
the waveguide is justified [47]. The Lindblad equation is the general form of a time-local and Markovian linear
master equation for a quantum system, described by its completely positive trace-preserving density matrix,
interacting with an environment. Obviously, the conventional Bloch equations, corresponding to a two-level
system, describe the interaction of the laser levels with the optical field 𝐸𝑧 and constitute a special case of the
Lindblad equation given in Eq. (4.31). The interaction with the environment is here modeled by scattering
and dephasing rates, 𝑟𝑖 𝑗 and 𝛾𝑖 𝑗 . Further levels can be considered in Eq. (4.31), and additional effects such as
tunneling are included in the Hamiltonian. Moreover, quantum fluctuations are considered in the model given by
Eq. (4.31) by adding a suitable Langevin fluctuation superoperator F . Maxwell’s equations capture the optical
propagation through the waveguide resonator, where the coupling with the quantum system is described by the
macroscopic polarization 𝑃𝑧,qm arising from the contributions of the dipole matrix elements. The expectation
value of the dipole moment operator 𝑑𝑧 is calculated by averaging over a large ensemble of quantum systems
within an adequate volume 𝑉p around the position 𝑧, and we can write for the macroscopic polarization

𝑃𝑧,qm = 𝑛3D Tr
{
𝑑𝑧 𝜌̂

}
= 𝑛3D

(
𝑑𝑧,23𝜌32 + 𝑑𝑧,32𝜌23

)
= 𝑛3D𝑑𝑧,23(𝜌32 + 𝜌23) , (4.33)

where 𝑛3D is the carrier number density. The two classical contributions, 𝑃𝑧,class = 𝜖0𝜒𝐸𝑧 and 𝜎𝐸𝑧 , account
for the polarization caused by bulk and waveguide dispersion as well as the material losses [326].

Finally, the update equations of the density matrix elements for the QCL laser system depicted in Fig. 4.1 can
be written as

𝜕𝑡 𝜌32(𝑡) = − i
ℏ
Δ32𝜌32(𝑡) − 𝛾23𝜌32(𝑡) + iΩ1′3𝜌1′2(𝑡) + i

ℏ
𝑑𝑧,23𝐸𝑧 [𝜌33(𝑡) − 𝜌22(𝑡)] + 𝐹23(𝑡) , (4.34a)

𝜕𝑡 𝜌1′3(𝑡) = − i
ℏ
Δ1′3𝜌1′3(𝑡) − 𝛾1′3𝜌1′3(𝑡) + iΩ1′3 [𝜌33(𝑡) − 𝜌1′1′ (𝑡)] + i

ℏ
𝑑𝑧,23𝐸𝑧𝜌1′2(𝑡) + 𝐹31′ (𝑡) , (4.34b)

𝜕𝑡 𝜌1′2(𝑡) = − i
ℏ
Δ1′2𝜌1′2(𝑡) − 𝛾1′2𝜌1′2(𝑡) + iΩ1′3𝜌32(𝑡) + i

ℏ
𝑑𝑧,23𝐸𝑧𝜌1′3(𝑡) + 𝐹21′ (𝑡) , (4.34c)

𝜕𝑡 𝜌33(𝑡) = − 1
𝜏3
𝜌33(𝑡) + 𝑟32𝜌22(𝑡) + 𝑟31′𝜌1′1′ (𝑡) − 2ℏ−1𝑑𝑧,23𝐸𝑧ℑ𝔪{𝜌32(𝑡)} − 2Ω1′3ℑ𝔪{𝜌1′3(𝑡)} + 𝐹33(𝑡) ,

(4.34d)

𝜕𝑡 𝜌22(𝑡) = 𝑟23𝜌33(𝑡) − 1
𝜏2
𝜌22(𝑡) + 𝑟21′𝜌1′1′ (𝑡) + 2ℏ−1𝑑𝑧,23𝐸𝑧ℑ𝔪{𝜌32(𝑡)} + 𝐹22(𝑡) , (4.34e)

𝜕𝑡 𝜌1′1′ (𝑡) = 𝑟1′3𝜌33(𝑡) + 𝑟1′2𝜌22(𝑡) − 1
𝜏1′
𝜌1′1′ (𝑡) + 2Ω1′3ℑ𝔪{𝜌1′3(𝑡)} + 𝐹1′1′ (𝑡) . (4.34f)

Via the macroscopic polarization 𝑃𝑧,qm, the quantum fluctuations added to the coherence term of Eq. (4.34a)
have an influence on the evolution of the classical optical field. The quantum-mechanical fluctuation terms for
the three-level QCL quantum system are derived within the framework of the Langevin theory. In this work,
we have calculated the full diffusion matrix resulting from the c-number Langevin equations. Exploiting the
positive semi-definiteness of the diffusion matrix, one can show that there exists a set of Ito stochastic differential
equations equivalent to the Langevin equations. We can factorize the diffusion matrix to obtain a noise matrix
that can be directly integrated into the Maxwell-density matrix approach for numerical modeling of fluctuations
in dynamical optoelectronic devices. With a suitable choice of the noise matrix, one can guarantee a completely
positive trace-preserving update map for long-term simulations. For the three-level QCL system, the fluctuation
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terms will fully account for the influence of the reservoirs and the properties of the nonlinear coupling between
QCL system and optical field, including the incoherent tunneling transition, and can be represented as follows:

𝐹23(𝑡) = 𝜉11(𝑡)
√
𝑟32 + 𝜉14(𝑡)

√
𝑟1′2 − 𝜉24(𝑡)

√︁
2i𝑑𝑧,23𝐸𝑧 (𝑡)𝜌32(𝑡) − 𝜉∗31(𝑡)

i𝑑𝑧,23𝐸𝑧 (𝑡)
2

+ 𝜉∗32(𝑡)
i𝑑𝑧,23𝐸𝑧 (𝑡)

2

+ 𝜉∗33(𝑡)
√︂
𝛾1′2 − 𝛾1′3 + 𝛾23

2
+ 𝜉∗41(𝑡)

[
𝛾1′3 − 𝛾1′2 − 𝛾23

2
+ 𝑟32𝜌22(𝑡)

2
+ 2𝛾23 − 𝑟1′3 − 𝑟23

2
𝜌33(𝑡)

−
𝑑2
𝑧,23𝐸𝑧 (𝑡)2

2
− 𝑟1′2 − 𝑟32 + 𝑑𝑧,23𝐸𝑧 (𝑡) |𝜌32(𝑡) |

]1/2
, (4.35a)

𝐹31′ (𝑡) = 𝜉12(𝑡)
√
𝑟1′3 + 𝜉15𝑎 (𝑡)

√
𝑟23 − 𝜉15𝑏 (𝑡)i𝑑𝑧,23𝐸𝑧 (𝑡) − 𝜉25(𝑡)

√︁
−2iΩ31′𝜌1′3(𝑡) + 𝜉31(𝑡)𝜌1′3(𝑡)

+ 𝜉∗42(𝑡)
[
2𝛾1′3 − 𝛾1′2 − 𝛾23

2
𝜌1′1′ (𝑡) + 𝑟1′2

2
𝜌22(𝑡) − |𝜌31′ (𝑡) |2 + 𝑟1′3

2
𝜌33(𝑡) − 𝑑2

𝑧,23𝐸𝑧 (𝑡)2 − 𝑟1′3

− 𝑟23 +Ω3′1 |𝜌31′ (𝑡) |
]1/2

, (4.35b)

𝐹21′ (𝑡) = 𝜉13(𝑡)
√
𝑟1′2 + 𝜉16(𝑡)

√
𝑟32 + 𝜉32(𝑡)𝜌1′2(𝑡) + 𝜉∗33(𝑡)

√︂
𝛾1′2 − 𝛾1′3 + 𝛾23

2
𝜌1′3(𝑡)

+ 𝜉∗43(𝑡)
[
2𝛾1′3 − 𝛾1′2 − 𝛾23

2
𝜌1′1′ (𝑡) + 𝑟1′2
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𝜌22(𝑡) − |𝜌21′ (𝑡) |2 + 𝑟1′3
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− 𝛾1′3 − 𝛾1′2 − 𝛾23
2

|𝜌31′ (𝑡) |2
]1/2

, (4.35c)

𝐹33(𝑡) = − 𝜉∗11(𝑡)
√
𝑟32𝜌32(𝑡)

2
− 𝜉11(𝑡)

√
𝑟32𝜌23(𝑡)

2
+ 𝜉∗12(𝑡)

√
𝑟1′3𝜌1′3(𝑡)

2
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√
𝑟1′3𝜌31′ (𝑡)

2

+ 𝜉∗15𝑎 (𝑡)
√
𝑟23𝜌1′3(𝑡)

2
+ 𝜉15𝑎 (𝑡)

√
𝑟23𝜌31′ (𝑡)

2
− 𝜉∗15𝑏 (𝑡)
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− 𝜉15𝑏 (𝑡) 𝜌21′ (𝑡)

2
− 𝜉∗16(𝑡)
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] + 𝑟32
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− |𝜌32(𝑡) |2
] + i𝑑𝑧,23𝐸𝑧 (𝑡)
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𝜌32(𝑡) − 𝜌23(𝑡)

]}1/2
+ 𝜉22(𝑡)

{
iΩ31′

[ − 𝜌1′3(𝑡) + 𝜌31′ (𝑡)
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+ 𝑟1′3
[
𝜌33(𝑡) − |𝜌1′3(𝑡) |2

]}1/2
, (4.35d)

𝐹22(𝑡) = 𝜉∗11(𝑡)
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𝑟32𝜌32(𝑡)
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𝑟32𝜌23(𝑡)
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2
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, (4.35e)

𝐹1′1′ (𝑡) = − 𝜉∗12(𝑡)
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,

(4.35f)
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𝐹1′2(𝑡) = 𝜉∗13(𝑡)
√
𝑟1′2 + 𝜉∗16(𝑡)

√
𝑟32 + 𝜉∗32(𝑡)𝜌21′ (𝑡) + 𝜉33(𝑡)
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, (4.35g)

𝐹1′3(𝑡) = 𝜉∗12(𝑡)
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2
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, (4.35h)

𝐹32(𝑡) = 𝜉∗11(𝑡)
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. (4.35i)

Here, the terms 𝜉11, 𝜉12, 𝜉13, 𝜉14, 𝜉15𝑎, 𝜉15𝑏, 𝜉16, 𝜉31, 𝜉32, 𝜉33, 𝜉41, 𝜉42, 𝜉43 are complex, while 𝜉21, 𝜉22, 𝜉23, 𝜉24,
𝜉25 are real.

For the reduction to a two-level system, we obtain similar noise terms as derived by Drummond and
Raymer [89]. However, unlike Drummond and Raymer we can assure the preservation of the physical properties
of the density matrix, i.e., positive definiteness and unit trace. This is accomplished by a suitable choice of the
submatrices 𝑩𝜈 (𝑨𝜈 , 𝑡) depicted in Table 4.1.

4.4 Summary

In this chapter, we have described the quantum Langevin approach for a three-level quantum system. Here,
the non-classical operator description is used for the derivation of the Heisenberg-Langevin equations. Based
on the generalized Einstein relation the diffusion coefficients can be calculated. The presented approach is an
extension of the well-known two-level quantum theory by Drummond and Raymer [89], where we additionally
take into account incoherent tunneling injection into the upper laser level. The quantum Langevin equations are
then converted into the associated c-number Langevin equations. It is shown that the diffusion coefficients in the
c-number Langevin equations differ from those in the quantum Langevin equations. The c-numbers commute,
while the operators do not. The complete diffusion matrix including all relevant cross-correlation terms of the
three-level QCL system is calculated. On the basis of Ito-SDEs, we have derived the complete noise matrix for
the three-level QCL system.

We combine the c-number Langevin equations with the Maxwell-density matrix equations to account for
microscopic fluctuations accompanying electronic transport and spontaneous emission in the dynamical simu-
lations of light-matter interaction in multilevel quantum optoelectronic systems, such as QCLs and QD lasers.
Within the generalized Maxwell-density matrix Langevin equations we can ensure the preservation of the
physical properties of the density matrix, i.e., positive definiteness and unit trace. The derived noise terms
are included in our open-source simulation tool mbsolve. Our modeling approach based on the generalized
Maxwell-density matrix Langevin equations shows great potential for the theoretical investigation of intermodal
intensity correlations in photonic devices and the development of low-noise integrated light emitters, also with
regard to the generation of non-classical light.
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5 An Open-Source Solver for the Maxwell-Density
Matrix Langevin Equations

The Maxwell-density matrix equations are commonly treated in the so-called rotating-wave/slowly varying am-
plitude approximation, generally used to reduce the numerical load associated with the fast field oscillations [43],
[47]. This is only valid for relatively narrowband (and not too strong) optical fields. However, QCLs offer the
potential for generating spectra extending over a full octave and beyond [108]. None of the available open-source
platforms are suitable for our purposes, mostly because they employ the rotating-wave approximation. For this
reason, the Computational Photonics group has developed the open-source project mbsolve in recent years.
It enables numerically extensive simulations of multilevel systems based on the full-wave Maxwell-density
matrix equations [58], [72]. An important point in this work was the extension of the codebase towards the
Maxwell-density matrix Langevin equations, so that we can account for vacuum fluctuations due to spontaneous
emission and fluctuations related to electronic transport [44], [233], [251].

In detail, the development of the codebase has been based on various principles. Here, the generalized
Lindblad equation (Eq. (4.31)) instead of the usual, quite restrictive two-level Bloch equation model is used.
Furthermore, numerical methods have been developed that preserve physical properties, such as the complete
positivity and trace preservation of the density matrix [47], [328]. This is especially important in the context
of long-term simulations, as required for frequency comb modeling. A computational speedup is obtained
by using parallelization techniques [329]. Our scientific software package mbsolve is developed following
sustainable software engineering strategies and includes all common and essential best software engineering
practices [329], [330]. It is based on C++ for performance reasons and features an easy-to-use Python interface
facilitating the setup and active quantum system of the low-dimensional optoelectronic structures. The modular
architecture of the mbsolve project, as shown in Fig. 5.1, provides the required flexibility in the numerical
treatment of the Maxwell-density matrix (Langevin) equation system to efficiently model the spatio-temporal
dynamics in active photonic devices. The extensions of the mbsolve simulation library carried out in this work
with the corresponding components are highlighted in dark blue. For a detailed package description, including
the remaining modules, the reader is referred to [72] and [331]. The central part of the software is the object-
oriented mbsolve-lib base library, providing a framework for defining a simulation setup and the infrastructure
to add solver and writer components. Importantly, mbsolve supports different numerical methods for solving
the Lindblad equation [328], [331], as well as different parallelization techniques, e.g., OpenMP for shared
memory systems.

mbsolve-lib

writer / reader

solverdevice
region

bc_field

material
dispersion_model

qm_description
scenario

source

HDF5 CUDA

OpenMP

Python interfaceC++ program

Python script/Jupyter notebook

Figure 5.1 Overview of the mbsolve project. Modified from M. Riesch, The QCL Stock Image Project [327] (CC BY 4.0).
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This chapter is organized as follows: In Section 5.1, an overview of the mbsolve-lib base library is given.
We will review existing numerical methods for the Maxwell-density matrix (Langevin) equations and introduce
the new implementations in mbsolve, e.g., the calculation of the fluctuations terms, the truncation of the optical
field at the simulation boundaries or the treatment of chromatic waveguide dispersion. Another new function
for restarting the simulation is also described. Subsequently, the corresponding code changes with regard to the
numerical treatment of the Maxwell-density matrix Langevin equations are presented in Section 5.2. Therefore,
we introduce the auxiliary differential equation (ADE) finite-difference time-domain method for the truncation
of lossy and dispersive media and the update algorithm for the density matrix equation including the propagation
of the fluctuations. An overview of the new generalized updating equations for lossy and dispersive materials
including the absorbing boundary conditions is given in Section 5.3 and the simulation main loop is explained.
Finally, we conclude with a short summary.

5.1 Implementations and Extensions of mbsolve

Different methods exist in literature to solve the density matrix equation. We will give here a short overview
of the existing methods and characterize their properties with respect to physical accuracy and numerical
performance. In [332] and [333] the implicit Crank-Nicolson (CN) scheme refined by the predictor-corrector
(PC) technique was used to solve the Lindblad equation. Furthermore, implementations based on matrix
exponentials (ME) [334]–[338] and the Runge-Kutta (RK) method [339]–[341] have been presented. The main
criterion for the evaluation of the master equation is the preservation of the physical properties of the density
matrix, e.g., positive definiteness and trace preservation. In recent years, the above techniques have been
verified [328], [335], [342], and only the ME methods can provide a fully positive, trace-preserving update
map. A detailed comparison of the different methods can be found in [331]. Within the current version of
the open-source mbsolve project, we provide the two most promising density matrix algorithms based on the
matrix exponential approach. The class algo_lindblad_reg_cayley implements the operator splitting method
by Bidégaray [335], [343]. In the second implementation algo_lindblad_cvr_rodr, we consider the density
matrix in the coherence vector representation [344], in which the density matrix is transformed into a real-valued,
non-redundant vector. Here, the matrix exponential calculations are conducted using Rodrigues’ formula [331].
The two methods complement each other well in terms of accuracy and reasonable performance. While the
first one shows a good overall performance, the latter one is especially suited for two- and three-level systems
problems in terms of numerical efficiency. We further extended our code base considering vacuum fluctuations
due to spontaneous emission and fluctuations associated with electronic transport [44], [233], [251]. Therefore,
we have added a new density matrix algorithm class to account for fluctuations accompanying the electronic
transport and vacuum fluctuations. The density matrix algorithm class algo_lindblad_reg_cayley_qnoise is
based on the aforementioned operator splitting method. In addition to the class method propagate_dissipation
for the dissipation update step, the propagate_fluctuation method for updating the fluctuations is specified
here.

In the context of Maxwell-density matrix equations mainly two numerical methods out of many are used
to solve Maxwell’s equations, namely the pseudo-spectral time-domain (PSTD) and the finite difference time-
domain (FDTD) method. The PSTD method, which has been used in related works [334], [336], calculates the
spatial derivatives using the fast Fourier transform (FFT) in space. Therefore, the numerical dispersion can be
minimized and the spatial discretization requirements can be significantly reduced, provided that the Nyquist-
Shannon theorem is satisfied. A spatial discretization size 𝜆/10 has been used in literature [334], with 𝜆 denoting
the smallest occurring wavelength. Major drawbacks of this method are the potentially expensive calls for the FFT
and the complex implementations of e.g., absorbing boundary conditions (ABCs). In the context of Maxwell-
density matrix equations, the FDTD method is mostly used [47], [251], [332], [333], [335], [339], [340], [343],
[345]–[348], as it has a great advantage in terms of simplicity. The approximation of the spatial and temporal
derivatives by central differences makes the implementation quite easy and the integration of ABCs or source
terms straightforward. However, a finer spatial discretization is required to reduce the numerical dispersion,
resulting in an increased numerical workload. Spatial discretization sizes between 𝜆/20 and 𝜆/200 have been
found adequate [47], [332], [335], [349], [350]. A template class solver_cpu_fdtd is implemented in mbsolve
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targeting CPU based shared memory systems. Here we can simply add the above-mentioned density matrix
algorithms as template arguments and compile specific solver objects, e.g., solver_cpu_reg_cayley_qnoise with
the corresponding algorithm algo_lindblad_reg_cayley_qnoise for updating the density matrix. We need to
provide the template argument at compile time, which significantly increases the time required for compilation
but provides an efficient approach at runtime. Furthermore, an advanced FDTD implementation is available,
which takes advantage of redundant calculations of the field values to reduce the synchronization overhead
during runtime [351], [352]. The template class solver_cpu_fdtd_red with the suffix red implements this
communication-reducing approach and can be combined with various density matrix algorithms in a similar
way as with solver_cpu_fdtd.

A major challenge in simulating optical devices in open radiation problems is the truncation of the FDTD
lattice [353]. One idea to solve this is to use a highly absorbing, reflectionless layer at the outer boundary of
the spatial FDTD grid. Berenger therefore introduced the perfectly matched layers (PMLs) as a non-physical
absorber in 1994 [354]. His approach is based on the so-called field-splitting method, where the field components
are split into two orthogonal components resulting in modified Maxwell’s equations. In addition, Fang et al.
developed a general PML method for lossy materials by extending the original PML approach [355], [356]. A
uniaxial anisotropic PML (UPML) absorber was presented by Gedney [357], where the mathematical model of
field-splitting is replaced by a more physical model based on the Maxwellian formulation. In a later publication,
he extended the approach to the absorption of fields in lossy and dispersive materials [358]. Wang et al.
used both the unsplit and field-splitting methods for truncating a gain medium in a semiconductor Maxwell-
Bloch framework [359]. To improve the absorbing characteristics of open radiation simulations in mbsolve, a
modified PML model is introduced [360]. Parasitic reflection errors at the boundary arising from an impedance
mismatch due to the interaction with the internal quantum system can be suppressed by expanding the active
QCL gain medium into the PML region. We further have developed partially reflecting layer (PRL) boundary
conditions [361], which model the reflectance 𝑅 at the facet of e.g., THz DFG-QCL frequency comb devices
correctly without decreasing the simulation performance by adding surrounding layers at the active gain medium
facets [90]. It is important to emphasize here the necessity of PRLs for correct light outcoupling (𝑅 < 1) at the
facet. In a DFG OFC QCL setup, for example, a spatially averaged loss would impose an unrealistically strong
attenuation on the DFB mode, which counteracts the optical feedback mechanism. Single-mode operation
would be suppressed, and DFG mixing and THz comb generation would not be feasible. These boundary
conditions are based on the modified PMLs [360]. Unlike in PML absorbing boundaries, we here introduce a
predefined impedance mismatch at the interface of the active region and the PRL. The facet reflectance 𝑅 is
adjusted by the relative permeability of the artificial boundary material, i.e.,

𝜇r,PRL = 𝜇r ·
(

1 ± √𝑅
1 ∓ √𝑅

)2

, (5.1)

where 𝜇r is the relative permeability of the material at the truncation facet. In the mbsolve-lib base library, the
abstract base class bc_field together with different subclasses for the truncation of the active waveguide medium
are specified. In addition to the UPML and PRL boundary conditions, perfectly magnetic conductors (PMCs),
perfectly electric conductors (PECs), Mur and periodic boundary conditions are implemented. The device class
holds a map as a property, which contains key-value pairs for the left and right boundary conditions. The default
boundary conditions for both facets are initialized as PMCs but can be changed using the method set_bc_field.
Within the solver_cpu_fdtd class the update algorithms in the boundaries are selected at runtime with respect
to the defined device properties. A class algo_bc_field_fdtd is responsible for the correct simulation updates
in the boundaries. The underlying properties for modeling the physical components within the boundary layer
are combined in an artificial material, which is composed in relation to the adjacent material of the simulation
setup and the boundary properties. The class function set_artificial_mat_bc is called within the initialization
process of the solver_cpu_fdtd class.

Furthermore, we have extended the equations of the optical field towards a multi-polarization term, where
the bulk and waveguide dispersion are taken into account. A new class dispersion_model is introduced, which
includes all necessary properties of the modeled dispersion. There are various material dispersion models
available in FDTD to adequately model the frequency-dependent characteristics of dispersive media, from
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the three important generic classes (Debye relaxation, Lorentzian resonance and Drude model for metals) to
more complex ones, such as quadratic complex rational function (QCRF) [353], [362]. The complex-valued,
frequency-domain susceptibility function 𝜒(𝜔) can in general be described by a combination of multiple
dispersion models. For example, the optical and conductive properties of doped III-V semiconductors, which are
controlled by free carrier absorption, lattice vibration and background permittivity, can be adequately described
in the mid-IR and THz range by a Drude-Lorentz function [363]. The different susceptibility functions are stored
in the material class, where the dispersion_model vector can be filled using the function add_susceptibility.
To capture the complex dispersion model within the class solver_cpu_fdtd, the FDTD update steps have been
modified.

The simulation results are provided by the writer class, which can generally be extended to process any
file format. Here, we provide a writer_hdf5 class, which utilizes the Hierarchical Data Format (HDF) high-
performance software library and file format. The HDF5 format is used by many institutions in the industrial
sector, e.g., in aerospace or silicon manufacturing, and computational science, e.g., in computational fluid
dynamics or astronomy [364]. Application programming interfaces (APIs) for different programming languages
such as C/C++ or Fortran 90 are officially supported and third-party bindings for various other programming
languages, e.g., Python and Matlab, are available. The HDF5 data model is specified by a hierarchical structure
with two main entities: groups and datasets. An HDF5 file consists of a root group, which contains other
groups or links to objects in other files. Each group in turn can hold other groups or datasets. In general,
the handling is quite similar to that of the UNIX filesystem, where objects can be addressed by their absolute
path. A dataset contains the raw data and is described by additional HDF5 objects, e.g., datatypes, dataspaces,
properties and attributes. As the HDF5 library only provides a low-level C/C++ interface, we decided to use
the modern C++14 wrapper Highfive [365]. The header-only library supports standard template library (STL)
containers/classes such as vector or string, as well as types from Eigen, Boost::UBLAS, Boost::Multi-array
and Xtensor. C++ templating is used for automatic type mapping, which increases programmer productivity
and reduces coding bugs. For most of our use cases, we can employ the integrated H5Easy interface, which
simplifies the reading/writing of data sets and attributes thanks to a minimalistic syntax. In order to improve the
reproducibility of future simulation results, we reworked the data concept of the write method. The simulation
meta-informations are stored in a group setup, which is divided into two datasets: scenario and device. This
data concept enables uncomplicated recording of all important simulation parameters for better traceability.

We further have introduced a new class reader which, in combination with some modifications in the class
writer, enables the simulation to be resumed. In order to restart a simulation from the last run, all simulation
data including the field and density matrix values at the last discretized timestep of a simulation run are saved
in an object of class sim_data. The method autosave added to the abstract class writer is intended to save
the simulation data in a file. An implementation of this method is provided for the writer_hdf5 class. It
should be mentioned here that Highfive can handle the complex datatype of the STL, which is important for
storing the off-diagonal entries of the density matrix. The abstract reader class features the two functions
read_field for the field values and read_density for the density matrix entries. In Listing 5.1, the autosave
and reload of the simulation data are demonstrated. We have included the autosave/restart mechanism as an
example in the Python script for the investigation of self-induced transparency (SIT) in two-level systems. The
application example that reproduces the pioneering work of Ziolkowski et al. [332] can be found on GitHub,
cf. tools/python/ziolkowski1995.py in the mbsolve repository [58].

Listing 5.1 Code snippet of a Python script that can be used to restart the mbsolve simulation.
# import mbsolve libraries
import mbsolve.lib as mb
import mbsolve.solvercpu
import mbsolve.writerhdf5
import mbsolve.readerhdf5

# Restart with initialization from autosaved simulation data
# Please choose the right autosave file to restart simulation
read = mb.reader.create_instance("hdf5")
rho_init = read.read_density(filename_autosave)
ic_d = mb.ic_density_autosave(rho_init)
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ic_e = mb.ic_field_autosave(read.read_field(filename_autosave , "e"))
ic_h = mb.ic_field_autosave(read.read_field(filename_autosave , "h"))
ic_p = mb.ic_field_autosave(read.read_field(filename_autosave , "p"))

# scenario: number of gridpoints num_gp and simulation time t_sim
# have to be specified
sce = mb.scenario("Basic", num_gp , t_sim , ic_d , ic_e , ic_h , ic_p)

# Autosave of last simulation step
outfile_autosave = dev.get_name () + "_" + sce.get_name () +

"_autosave." + wri.get_extension ()
sim_data = sol.get_sim_data ()
wri.autosave(outfile_autosave , sim_data , dev , sce)

5.2 Numerical Treatment of the Maxwell-Density Matrix Langevin
Equations

As discussed above, different features such as ABCs or the modeling of fluctuations are integrated into the
mbsolve framework. The corresponding code changes lead to an increased complexity in the numerical update
scheme. In the following, we will discuss the numerical treatment of the Maxwell-density matrix Langevin equa-
tions in more detail. Firstly, the ADE finite-difference time-domain method for the truncation of lossy and disper-
sive media is presented. Secondly, the new density matrix algorithm class algo_lindblad_reg_cayley_qnoise
is described. Finally, an overview of the new generalized updating equations for lossy and dispersive materials
including the absorbing boundary conditions is given.

5.2.1 ADE-FDTD Method for Maxwell’s Equations

The optical field propagation in photonic devices can be described with the help of Ampere’s law (Eq. (4.32)(a))
and Faraday’s law (Eq. (4.32)(b)). Based on the FDTD method, a discretization of the variables, e.g., the electric
field 𝐸𝑧 and magnetic field 𝐻𝑦 , is carried out. In order to derive the update equations for the PML medium, we
utilize the ADE techniques. For PML ABCs, the ADE-FDTD implementation can be performed by considering
the constitutive relation between electric flux density 𝐷𝑧 , electric field 𝐸𝑧 and polarization field 𝑃𝑧 . In the time
domain, we thus obtain

𝜕𝑡𝐷𝑧 = 𝜀0𝜀r𝜕𝑡𝐸𝑧 + 𝜎𝐸𝑧 + 𝜕𝑡𝑃𝑧,qm + 𝜕𝑡𝑃𝑧,class . (5.2)

Here, 𝜕𝑡𝑃𝑧,class =
∑

𝑖 𝜕𝑡𝑃
𝑖
𝑧,class describes the multi-polarization term accounting for bulk and waveguide dis-

persion, where 𝑖 is the number of individual dispersion models [353]. By taking into account the constitutive
parameter 𝑠𝑥 = 1 + 𝜎𝑥

i𝜔𝜀0
for the attenuation of the field values within the PML, the time evolution equation for

the electric flux density is given by
𝜕𝑡𝐷𝑧 = 𝜕𝑥𝐻𝑦 − 𝜎𝑥

𝜀0
𝐷𝑧 . (5.3)

Furthermore, the time evolution equation of the magnetic field can be written as

𝜕𝑡𝐻𝑦 = 𝜇−1𝜕𝑥𝐸𝑧 − 𝜎𝑥

𝜖0
𝐻𝑦 , (5.4)

with the permeability 𝜇 = 𝜇0𝜇𝑟 .
In order to reduce the parasitic reflection errors from the PML layers, the conductivity 𝜎𝑥 in the PML layers

is gradually increased along the propagation direction. Therefore, the conductivity is varied using a smooth
polynomial with depth 𝑥 in the PML layer [353], [357]

𝜎𝑥 (𝑥) = (𝑥/𝑑)𝑚𝜎𝑥,max . (5.5)

The optimal choice for 𝜎𝑥,max is given by [353], [358]

𝜎𝑥,opt =
0.8(𝑚 + 1)

𝜂0Δ𝑥
√
𝜀r,eff𝜇r,eff

, (5.6)
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Figure 5.2 Schematic of a SCL gain medium setup truncated with two PML boundaries at the facets. The thermal radiation
sources are placed next to the PML-cavity interface and are highlighted by orange arrows.

where 𝜂0 is the free-space wave impedance, Δ𝑥 is the lattice-cell dimension, and 𝜀r,eff and 𝜇r,eff are constants
representing the effective relative permittivity and permeability, respectively. The values of 𝜀r,eff and 𝜇r,eff
should be chosen either to be mean values of the physical parameters or the values at the wavenumber of the
fundamental mode in the waveguide [353]. Here it is important to take into account the macroscopic polarization
of the quantum system in the PML in order to reduce the reflection error at the interface layer between the
absorbing boundary and the main simulation region.

In addition, we use a numerical model presented in [253] to simulate the thermal noise in open cavities due
to the output coupling with the FDTD method. The PML boundaries are interpreted here as blackbodies, which
ideally absorb all incident light. To keep the system in thermal equilibrium, the blackbody has to radiate into
the cavity through the facets. This blackbody radiation acts as noise to the intracavity optical field. To model
this, soft sources must be added at the PML-cavity interfaces. A schematic of the numerical treatment of the
blackbody radiation within the FDTD calculations is illustrated in Fig. 5.2. The spectral properties of these
noise sources are derived from blackbody theory. The temporal correlation function for the source electric field
𝛿𝐸 is thus obtained as

⟨𝛿𝐸 (𝑡1)𝛿𝐸 (𝑡2)⟩ =
𝛿2

th
2𝜋

∫ ∞

−∞
𝐷𝑛 ( |𝜔 |, 𝑇) exp(i𝜔(𝑡2 − 𝑡1))𝑑𝜔 , (5.7)

where 𝛿th is the rms amplitude of the noise field and
∫ ∞
−∞ 𝐷𝑛 ( |𝜔|, 𝑇)𝑑𝜔 = 2𝜋 yields the normalized energy

density of the blackbody radiation. The electric field value 𝛿𝐸 of the thermal noise source at timestep 𝑡 𝑗 is
calculated by

𝛿th𝐸 (𝑡 𝑗) = 𝛿√
𝜏sim

𝑀−1∑︁
𝑙=−𝑀

(𝑀𝑙 + i𝑁𝑙)𝐷1/2
𝑛 ( |𝜔𝑙 |, 𝑇) exp(i𝜔𝑙𝑡 𝑗) (5.8)

with 2𝑀 being the number of timesteps, 𝜏sim the simulation time and 𝜔𝑙 = 2𝜋𝑙/𝜏sim. The independent Gaussian
random numbers 𝑀𝑙 and 𝑁𝑙 with zero mean and a variance of one have the symmetry properties 𝑀𝑙 = 𝑀−𝑙 and
𝑁𝑙 = −𝑁−𝑙. A detailed derivation of the thermal noise terms can be found in [253]. In mbsolve, a source class
thermal_noise is provided, which implements the calculation of the electric field values 𝛿𝐸 in the function
calc_value. We further have included a Python test script for the application given in [253], which can be
found on GitHub, cf. tools/python/andreasen2008.py. The code snippet with the definition of the two
noise sources at the boundaries is illustrated in Listing 5.2. An in-depth examination of thermal noise sources
is beyond the scope of this thesis and has to be conducted in future work.

Listing 5.2 Code snippet of the Python script tools/python/andreasen2008.py to add the thermal noise sources to
the simulation scenario.

# add thermal noise sources
sce.add_source(mb.thermal_noise("noise_left" ,0.0,

mb.source.soft_source ,30000 , tau_sim ,1e12 /(2* math.pi),
2.5 e16 /(2* math.pi),2e15 /(2* math.pi)))

sce.add_source(mb.thermal_noise("noise_right",length ,
mb.source.soft_source ,30000 , tau_sim ,1e12 /(2* math.pi),
2.5 e16 /(2* math.pi),2e15 /(2* math.pi)))
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𝑥

𝑡

Figure 5.3 The standard Yee grid of the ADE-FDTD method combined with the discretization of the density matrix with
respect to time and space. Electric and magnetic fields are denoted with orange crosses and blue circles, respectively.
Electric flux density and polarization are represented by yellow and red (mirrored) triangles, respectively. The density
matrix discretization is marked using green squares. The arrows indicate the data dependencies during the update of five
quantities. Modified from M. Riesch et al., “Numerical simulation of the quantum cascade laser dynamics on parallel
architectures” [352] (CC BY 4.0).

We can now turn to the numerical treatment of the propagation equations (5.2) - (5.4) and start with the
discretization of the variables therein. Here, the spatial index 𝑚 and discretization size Δ𝑥 as well as the
temporal index 𝑛 and discretization size Δ𝑡 are used. The continuous field variables, e.g., the electric field
𝐸𝑧 (𝑥, 𝑡), are then approximated at discrete grid points in space and time 𝐸𝑚,𝑛

𝑧 = 𝐸𝑧 (𝑚Δ𝑧, 𝑛Δ𝑡). Here, the
central differences are used to solve the spatial and temporal derivatives with second-order accuracy. In the
ADE-FDTD approach, the Yee grid is the central element in order to calculate the central differences. As
depicted in Fig. 5.3, the discretization points are staggered by half of the respective step size [366]. Based on
this, the differential equations (5.2) - (5.4) can be transformed into the difference equations

𝐷𝑚,𝑛+1
𝑧 − 𝐷𝑚,𝑛

𝑧

Δ𝑡
= 𝜀0𝜀r

𝐸𝑚,𝑛+1
𝑧 − 𝐸𝑚,𝑛

𝑧

Δ𝑡
+ 𝜎𝐸

𝑚,𝑛+1
𝑧 + 𝐸𝑚,𝑛

𝑧

2
+ 𝜕𝑡𝑃𝑚,𝑛+1/2

𝑧,qm +
∑︁
𝑖

𝑃𝑖, (𝑚,𝑛+1)
𝑧,class − 𝑃𝑖, (𝑚,𝑛)

𝑧,class

Δ𝑡
, (5.9)

𝐸𝑚+1,𝑛
𝑧 − 𝐸𝑚,𝑛

𝑧

Δ𝑥
= 𝜇

𝐻𝑚+1/2,𝑛+1/2
𝑦 − 𝐻𝑚+1/2,𝑛−1/2

𝑦

Δ𝑡
+ 𝜇𝜎

𝑚+1/2
𝑥

𝜖0

𝐻𝑚+1/2,𝑛+1/2
𝑦 + 𝐻𝑚+1/2,𝑛−1/2

𝑦

2
(5.10)

and

𝐻𝑚+1/2,𝑛+1/2
𝑦 − 𝐻𝑚−1/2,𝑛+1/2

𝑦

Δ𝑥
=
𝐷𝑚,𝑛+1

𝑧 − 𝐷𝑚,𝑛
𝑧

Δ𝑡
+ 𝜎

𝑚
𝑥

𝜖0

𝐷𝑚,𝑛+1
𝑧 + 𝐷𝑚,𝑛

𝑧

2
. (5.11)

To ensure the stability of the ADE-FDTD method, the Courant-Friedrichs-Lewy condition must be fulfilled,
which is defined as

Δ𝑡 <
𝑛

𝑐
Δ𝑥 . (5.12)

Here, 𝑐/𝑛 = (𝜇𝜀)−1/2 is the speed of light in the material under consideration. A simulation setup can consist
of multiple materials with varying refractive indices 𝑛𝑖 . The minimum time interval Δ𝑡 must be selected taking
into account the Courant-Friedrichs-Lewy condition. This corresponds to the material with the highest speed
of light 𝑐/𝑛min, which is inversely proportional to the minimum refractive index 𝑛min. We obtain the modified
condition

Δ𝑡 = 𝐶
𝑛min
𝑐

Δ𝑥, 𝐶 < 1 , (5.13)

where the Courant number 𝐶 is introduced [353]. While the treatment of the derivatives and the integration
of the conductivities 𝜎𝑥 , 𝜎 is straightforward, the classical polarization term 𝑃 (𝑚,𝑛+1)

𝑧,class has to be discussed in
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more detail here. As outlined above, various models for the characterization of dispersive media exist. For
the definition of the dispersive ADE-FDTD formulation, we focus here on Lorentz media characterized by a
frequency-dependent relative dielectric constant consisting of complex-conjugate pole pairs, written as

𝜀r(𝜔) = 𝜀r,∞ + 𝜒(𝜔) = 𝜀r,∞ +
Δ𝜖𝜔2

0

𝜔2
0 + 2 𝑗𝜔𝛿 − 𝜔2

. (5.14)

Here, 𝜒(𝜔) is the material susceptibility and Δ𝜀 = 𝜀r,s − 𝜀r,∞ is the difference of the static relative permittivity
𝜀r,s and the relative permittivity at infinite frequency 𝜀r,∞. The other two parameters correspond to the resonant
frequency 𝜔0 and a damping constant 𝛿. The absorption of light leads to resonant phonon excitation at 𝜔0 in
the material [363].

To derive the update equation of the polarization term, the auxiliary expression 𝑃𝑧,class = 𝜀0𝜒(𝜔)𝐸𝑧 is used.
With Eq. (5.14), the discretization of the inverse Fourier transform is given by

𝜔2
0𝑃

𝑚,𝑛
𝑧,Lorentz + 2𝛿

𝑃𝑚,𝑛+1
𝑧,Lorentz − 𝑃𝑚,𝑛−1

𝑧,Lorentz

2Δ𝑡
+
𝑃𝑚,𝑛+1
𝑧,Lorentz − 2𝑃𝑚,𝑛

𝑧,Lorentz + 𝑃𝑚,𝑛−1
𝑧,Lorentz

Δ𝑡2
= 𝜖0Δ𝜖𝜔

2
0𝐸

𝑚,𝑛
𝑧 . (5.15)

5.2.2 Numerical Treatment of the Master Equation

The macroscopic polarization 𝑃𝑧,qm and the evolution of the density matrix are the remaining components to be
discussed. Here, we start with the discretization of the macroscopic polarization 𝑃𝑧,qm by taking into account
the interaction of the optical field and the quantum system. The contributions of the dipole moment to the
polarization are calculated as

𝜕𝑡𝑃𝑧,qm = 𝑛3D Tr
{
𝑑𝑧𝜕𝑡 𝜌̂

}
= 𝑛3D Tr

{−iℏ−1𝑑𝑧 [𝐻̂0 + Δ𝑉̂tb − 𝑑𝑧𝐸𝑧 , 𝜌̂] + 𝑑𝑧D( 𝜌̂) + 𝑑𝑧F ( 𝜌̂)
}

= 𝑛3D Tr
{−iℏ−1𝑑𝑧 [𝐻̂0 + Δ𝑉̂tb, 𝜌̂] + 𝑑𝑧D( 𝜌̂) + 𝑑𝑧F ( 𝜌̂)

}
,

(5.16)

where we make use of the master equation for the density matrix (Eq. (4.31)). Further, the commutator property

[𝐻̂0 + Δ𝑉̂tb − 𝑑𝑧𝐸𝑧 , 𝜌̂] = [𝐻̂0 + Δ𝑉̂tb, 𝜌̂] − [𝑑𝑧𝐸𝑧 , 𝜌̂] (5.17)

and the properties (cyclic property and linearity) of the trace operation are utilized, leading to the relation

Tr
{
𝑑𝑧 [𝑑𝑧𝐸𝑧 , 𝜌̂]

}
= 𝐸𝑧 Tr

{
𝑑𝑧𝑑𝑧 𝜌̂

} − 𝐸𝑧 Tr
{
𝑑𝑧 𝜌̂𝑑𝑧

}
= 0 . (5.18)

The discretized equation is then given by

𝜕𝑧𝑃
𝑚,𝑛+1/2
𝑧,qm = 𝑛3D Tr

{−iℏ−1𝑑𝑧 [𝐻̂0 + Δ𝑉̂tb, 𝜌̂
𝑚,𝑛+1/2] + 𝑑𝑧D( 𝜌̂𝑚,𝑛+1/2) + 𝑑𝑧F ( 𝜌̂𝑚,𝑛+1/2)} . (5.19)

Here, the density matrix is discretized at the same temporal gridpoints as the magnetic field, which is referred
to as weak coupling (depicted in Fig. 5.3). In contrast, one speaks of a strong coupling, if the density matrix is
sampled at the same temporal discretization points as the electric field. In general, both approaches are stable,
however, methods using weak coupling tend to be simpler and computationally more efficient as the density
matrix and electric field can be updated alternately with explicit update equations [335].

Using the ME method, the update step of the density matrix can be written as

𝜌̂𝑚,𝑛+1/2 = exp
[(
L𝑚,𝑛−1/2 + D

)
Δ𝑡

]
𝜌̂𝑚,𝑛−1/2 = V𝑚,𝑛−1/2 𝜌̂𝑚,𝑛−1/2 , (5.20)

where L( 𝜌̂) = −iℏ−1 [𝐻̂0 + Δ𝑉̂tb + 𝐻̂I, 𝜌̂] is the Liouville superoperator and V𝑚,𝑛−1/2 represents the update
superoperator. The Liouville superoperator is assumed to be time-independent during an update step, which is
appropriate in the scope of Maxwell-density matrix simulations with the ADE-FDTD method. In this expression,
we neglect the fluctuation superoperator F , for which the update step is treated separately and will be described
below. Whether an exact form of the matrix exponential can be found, depends on the representation. In the
Liouville space, for example, an analytical ME expression exists and the update of the density matrix in vector
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form is straightforward. For a density matrix of size 𝑁 × 𝑁 , we need to perform exponential calculations
of 𝑁2 × 𝑁2 matrices in Liouville space. This leads to O(𝑁6) operations per update, which makes it rather
impractical for quantum structures with a large number of states 𝑁 .

In order to reduce the numerical effort for the evaluation of the matrix exponential function, we will not
use the direct calculation and concentrate here on an approximation based on the symmetric Strang operator
splitting technique [367]. Here, the density matrix is in regular representation and the superoperatorV is given
by

V𝑚,𝑛 ≈ exp(DΔ𝑡/2) exp(L𝑚,𝑛Δ𝑡) exp(DΔ𝑡/2) , (5.21)

where the right-hand side of the master equation (Eq. (4.31)) is divided into two parts, the Liouvillian L
and dissipation superoperator D, respectively. The operator splitting method results in a product of matrix
exponentials and thus retains the CPTP map. However, it generates an additional error of order O(Δ𝑡2). The
solution of the exponential function with the Liouvillian reads

exp(L𝑚,𝑛Δ𝑡) 𝜌̂ = exp
[
iℏ−1 (𝐻̂0 + Δ𝑉̂tb + 𝐻̂I

)𝑚,𝑛
Δ𝑡

]
𝜌̂ exp

[−iℏ−1 (𝐻̂0 + Δ𝑉̂tb + 𝐻̂I
)𝑚,𝑛

Δ𝑡
]
. (5.22)

The update step is dominated by the exponential matrix calculation with a complexity of O(𝑁3), and has to
be executed for each time step due to the time dependence of the electric field. In order to further reduce the
numerical cost, we approximate the matrix exponential operation by

exp
[
iℏ−1 (𝐻̂0 + Δ𝑉̂tb + 𝐻̂I

)𝑚,𝑛
Δ𝑡

] ≈ [
𝐼 − iℏ−1 (𝐻̂0 + Δ𝑉̂tb + 𝐻̂I

)𝑚,𝑛
Δ𝑡/2]−1

× [
𝐼 + iℏ−1 (𝐻̂0 + Δ𝑉̂tb + 𝐻̂I

)𝑚,𝑛
Δ𝑡/2] . (5.23)

This approximation is known as the Cayley transformation and guarantees unitarity [368]. The additional
numerical error is acceptable, as the density matrix properties are preserved and a reduced complexityO(𝑁≈2.37)
is obtained for the multiplication of 𝑁×𝑁 matrices. In mbsolve, the Eigen library is used for linear algebra [369].
Here, the matrix operations can be further optimized by applying suitable algorithms.

In the following, we will divide the dissipation superoperator into two parts, where population and coherence
terms are processed independently. By taking into account Eq. (3.29), the time derivatives of the coherence
terms (𝑖 ≠ 𝑗) are given by

𝜕𝜌𝑖 𝑗 = −𝛾𝑖 𝑗𝜌𝑖 𝑗 . (5.24)

The elementwise update step is thus derived as

𝜌𝑚,𝑛+1/2
𝑖 𝑗 = exp

(−𝛾𝑖 𝑗Δ𝑡)𝜌𝑚,𝑛−1/2
𝑖 𝑗 . (5.25)

The derivative of the population terms can be written in matrix-vector form

𝜕𝑡


𝜌11
𝜌22
...

𝜌𝑁𝑁


=


−𝜏−1

1 𝑟12 . . . 𝑟1𝑁
𝑟21 −𝜏−1

2 . . . 𝑟2𝑁
...

...
. . .

...
𝑟𝑁1 𝑟𝑁2 . . . −𝜏−1

𝑁



𝜌11
𝜌22
...

𝜌𝑁𝑁


, (5.26)

If we use the vector representation diag( 𝜌̂) for the main diagonal of the density matrix and the transition rate
matrix 𝑸, we can express the update step as

diag( 𝜌̂)𝑚,𝑛+1/2 = exp(𝑸Δ𝑡)diag( 𝜌̂)𝑚,𝑛−1/2 . (5.27)

It is assumed here that the dissipation operator is time-independent so that the matrix operations can be calculated
in advance. The method propagate_dissipation only needs to perform the update step based on the equations
(5.25) and (5.27).

The density algorithm class algo_lindblad_reg_cayley_qnoise contains the method propagate_fluctuation,
which calculates the fluctuations for an update step by adding the product of the fluctuation superoperator and
the time interval (Δ𝑡 · F (𝜌)) to the updated density matrix 𝜌𝑛+1/2. In Chapter 4, the implementation of c-number
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stochastic noise terms for the modeling of fluctuations within the mbsolve simulation tool is derived. Here,
we have investigated an active QCL gain medium in lasing operation above threshold. In the simulations, we
have to find the balance between numerical efficiency and modeling accuracy. Most of the fluctuation terms in
Eqs. (4.35)(a)-(i) arise from the operator ordering when reducing the operator equations to c-number Langevin
equations. As it was proven in literature [233], [239], these terms are negligible in the lasing regime above
threshold with strong optical fields in the laser cavity. The fluctuation terms for a 𝑁-level system featuring
diagonal elements 𝐹𝑖𝑖 and off-diagonal elements 𝐹𝑖 𝑗 = 𝐹†𝑗𝑖 can thus be significantly reduced for the numerical
treatment and are described by

𝐹
𝑗
𝑖𝑖 = − 𝐹𝑖

𝑗 𝑗 = 𝜉1,𝑖 𝑗

√︂
𝑟 𝑗𝑖𝜌𝑖𝑖 + 𝑟𝑖 𝑗𝜌 𝑗 𝑗

𝑁cell
, (5.28a)

𝐹𝑖𝑖 =
∑︁
𝑗≠𝑖

𝐹
𝑗
𝑖𝑖 , (5.28b)

𝐹𝑖 𝑗 =
(
𝜉2,𝑖 𝑗 + i𝜉3,𝑖 𝑗

)√︄−𝜏−1
𝑗 𝜌 𝑗 𝑗 +

∑
𝑛≠ 𝑗 𝑟 𝑗𝑛𝜌𝑛𝑛 + 2𝛾𝑖 𝑗𝜌 𝑗 𝑗

2𝑁cell
,

for 𝑖 > 𝑗 , (5.28c)

where 𝑁cell is the number of carriers in one grid cell. The 𝜉2,𝑖 𝑗 , 𝜉2,𝑖 𝑗 and 𝜉3,𝑖 𝑗 are real Gaussian random numbers
and fulfill the correlation function

⟨𝜉𝑘,𝑖 𝑗 (𝑡) |𝜉𝑙,𝑚𝑛 (𝑡′)⟩ = 𝛿𝑘𝑙𝛿𝑖𝑚𝛿 𝑗𝑛𝛿(𝑡 − 𝑡′) . (5.29)

For future applications, in which a more detailed fluctuation treatment would be beneficial, it might be necessary
to extend our numerical model by additional noise terms derived in the previous chapter. However, additional
Gaussian random numbers have to be drawn, which is at the expense of computing efficiency.

To optimize the random number generation process, we make use of the header-only C++ library EigenRand
in mbsolve [370]. The library provides vectorized random number engines and vectorized random distribution
generators and supports Eigen classes such as matrices and arrays. In contrast to the standard Eigen random
functions, a speedup of 5 ∼ 10 times can be achieved. The code snippet in Listing 5.3 is used in the method
propagate_fluctuations to generate the random numbers for the fluctuation update described in the equations
5.28 (a)-(c). Here, we use a vectorized version of the Mersenne Twister algorithm as a random number generator
(Eigen::Rand::Vmt19937_64).

Listing 5.3 Code snippet of the C++ method propagate_fluctuations to generate a Matrix with 3 × 𝑁 (𝑁 − 1)/2
Gaussian random numbers. The Eigen matrix object is used for the fluctuation update in the density algorithm class
algo_lindblad_reg_cayley_qnoise.

/* random number generator */
Eigen :: MatrixXd v{3, num_lvl * (num_lvl - 1) / 2};
v = Eigen ::Rand:: normalLike(v, generator );

Furthermore, we have implemented a class ic_density_random_2lvl, which represents random initial con-
ditions for the common Maxwell-Bloch two-level system. As the dipole moment operators 𝜎12, 𝜎21 and the
atomic operators 𝜎11, 𝜎22 do not commute, we have to take into account a non-vanishing initial stochastic value
for the polarization term following the uncertainty principle [233], [371]. The tipping angle 𝜃 is obtained by
drawing a random number from a Gaussian distribution with a standard deviation 𝜎 = 2𝑁−1/2

cell and the angle 𝜙
in xy-plane is obtained by drawing a random number from a uniform distribution [251].
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5.3 Parallel Implementation of the ADE-FDTD Method

The update equations for the truncation of the optical fields with partially or fully absorbing boundary layers
are derived from Eqs. (5.9)- (5.11), where we have applied the centered differencing scheme. The equations are
given in implicit form and have to be rearranged. The update equation for the electric field element is written as

𝐸𝑚,𝑛+1
𝑧 = 𝑎𝐸𝑚,𝑛

𝑧 − 𝑏𝜕𝑡𝑃𝑚,𝑛+1/2
𝑧,qm + 𝑏Δ𝑡inv

∑︁
𝑖

(
𝑃𝑖, (𝑚,𝑛)
𝑧,class −𝑉

𝑖, (𝑚,𝑛)
𝑧

)
+ 𝑐Δ𝑥inv

(
𝐻𝑚+1/2,𝑛+1/2

𝑦 − 𝐻𝑚−1/2,𝑛+1/2
𝑦

)
+ 𝑑𝐷𝑚,𝑛

𝑧 ,

(5.30)

with the coefficients

𝑎 =
1 − Δ𝑡 (2𝜖0𝜖∞)−1𝜎

1 + Δ𝑡 (2𝜖0𝜖∞)−1𝜎
, 𝑏 =

Δ𝑡 (𝜖0𝜖∞)−1

1 + Δ𝑡 (2𝜖0𝜖∞)−1𝜎
, Δ𝑡inv =

1
Δ𝑡
,

𝑐 =
1

1 + Δ𝑡 (2𝜖0)−1𝜎𝑥
𝑏, Δ𝑥inv =

1
Δ𝑥
, 𝑑 = − (𝜖0)−1𝜎𝑥

1 + Δ𝑡 (2𝜖0)−1𝜎𝑥
𝑏 .

The non-physical quantity 𝑉 𝑖
𝑧 will be introduced below in the context of the numerical treatment of the classical

polarization terms 𝑃𝑖
𝑧,class. The update equation for the magnetic field is given by

𝐻𝑚+1/2,𝑛+1/2
𝑦 = 𝑘𝐻𝑚+1/2,𝑛−1/2

𝑦 + 𝑙′
(
𝐸𝑚+1,𝑛
𝑧 − 𝐸𝑚,𝑛

𝑧

)
, (5.31)

and the update equation of the electric flux density is written as

𝐷𝑚,𝑛+1
𝑧 = 𝑘𝐷𝑚,𝑛

𝑧 + 𝑙
(
𝐻𝑚+1/2,𝑛+1/2

𝑦 − 𝐻𝑚−1/2,𝑛+1/2
𝑦

)
. (5.32)

The coefficients are given by

𝑘 =
1 − Δ𝑡 (2𝜖0)−1𝜎𝑥

1 + Δ𝑡 (2𝜖0)−1𝜎𝑥
, 𝑙′ = 𝜇−1𝑙 =

1
𝜇Δ𝑥

Δ𝑡

1 + Δ𝑡 (2𝜖0)−1𝜎𝑥
.

Within one material, the coefficients are constant or vary gradually within the boundary layer and thus can be
precalculated to improve the numerical efficiency. The spatial gridpoints 𝑁𝑥 are a prerequisite in mbsolve and
are specified as a property of the scenario class. The spatial discretization Δ𝑥 = 𝐿/(𝑁𝑥 − 1) can be calculated
with the help of the total length 𝐿 of the simulation domain, corresponding to the waveguide length. For each
boundary layer the number of gridpoints 𝑁BL has to be specified individually. Here, one has to find the balance
between numerical accuracy and efficiency. The temporal discretization size Δ𝑡 is calculated with Eq. (5.13),
where a Courant number 𝐶 = 0.5 is set as default value and was adapted from several studies in literature [47],
[332]. If another value for the Courant number seems to be more appropriate for certain simulation scenarios,
e.g., a superfluorescence setup [233], the value can be set within the simulation scenario using the member
function set_courant_number. With the simulation endtime 𝑡e the number of temporal gridpoints is derived.
In order to obtain an integer number 𝑁t, we have to use the ceiling function, which leads to a small reduction in
the simulation endtime. The helper functions init_fdtd_simulation and get_fdtd_constants are implemented
for the initialization of discretization sizes, numbers of gridpoints, and the calculations of the ADE-FDTD
coefficients, respectively. The algo_bc_field_fdtd class provides a method get_fdtd_constants_bc, which
returns the corresponding coefficients in the boundary layer.

For the inclusion of the chromatic background dispersion present in the waveguide materials, we have
introduced an auxiliary expression based on the complex-valued, frequency-domain susceptibility function
𝜒(𝜔). As illustrated in Eq. (5.15) for the Lorentzian dispersion model, the storage of the full classical
polarization vector at two independent timesteps is required for the numerical update step. Here, we introduce
the two non-physical quantities𝑉 𝑖

𝑧 and𝑊 𝑖
𝑧 to streamline the update step and make it more efficient. The resulting

update equations are given by
𝑃𝑖, (𝑚,𝑛+1)
𝑧,class = 𝑉 𝑖, (𝑚,𝑛)

𝑧 , (5.33)
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𝑉 𝑖, (𝑚,𝑛+1)
𝑧 = 𝑒𝑖𝐸

𝑚,𝑛+1
𝑧 + 𝑓𝑖𝑃𝑖, (𝑚,𝑛+1)

𝑧,class −𝑊 𝑖, (𝑚,𝑛)
𝑧 , (5.34)

𝑊 𝑖, (𝑚,𝑛+1)
𝑧 = 𝑔𝑖𝑃

𝑖, (𝑚,𝑛+1)
𝑧,class . (5.35)

For the Lorentz model, we obtain the coefficients

𝑒 =
Δ𝑡2𝜖0Δ𝜖𝜔2

0
1 + Δ𝑡𝛿 , 𝑓 =

2 − 𝜔2
0Δ𝑡

2

1 + Δ𝑡𝛿 , 𝑔 =
1 − Δ𝑡𝛿
1 + Δ𝑡𝛿 . (5.36)

In addition, we introduce here the coefficients of the Drude model for the modeling of highly doped semicon-
ductor materials, written as

𝑒 =
2Δ𝑡2𝜖0𝜔

2
0

2 + 𝛾pΔ𝑡
, 𝑓 =

4
2 + 𝛾pΔ𝑡

, 𝑔 =
2 − 𝛾pΔ𝑡

2 + 𝛾Δ𝑡 , (5.37)

where 𝛾p is the inverse of the pole relaxation time.
When analyzing Eqs. (5.30)- (5.35), we find that all individual variables can be updated in parallel, but

synchronization steps between the quantities are necessary. This also applies to the density matrix updates, which
do not depend on their spatial neighbors. The increased number of equations in the ADE-FDTD formulation
results in a more complex update procedure than with the standard FDTD method. The implementations of
the main loop are shown schematically in Algorithm 1. Here, the abstract functions update_h, update_v,
update_e, and update_d represent together with the simpler expressions for 𝑝class, 𝑤 the update equations
(5.30)- (5.35). Furthermore, the functions update_d and calc_p_qm refer to the update of the density matrix
and the calculation of the polarization term in Eq. (5.19), which are both provided by the specific algorithm for
the density matrix Langevin equation. A larger block of the simulation main loop contains the quantity updates
within the boundary layers. Regardless of the selected boundary conditions, the endpoints have to be updated
individually using the methods update_h_bc_end and update_e_bc_end of the class algo_bc_field_fdtd. In
Algorithm 1, we have divided the electric field update into two parts, where the main update procedure is
summarized in update_e, and the addition of the electric flux density is dealt with in a separate step. If we
take a closer look at the coefficient 𝑑 in equation (5.30), we will notice that it only has non-zero values within
the boundary layer, where 𝜎𝑥 ≠ 0. We therefore only need to update the electric flux density within the
boundary layer, as it is not needed as an input value for updating quantities other than the electric field. The
classical polarization and the related quantities 𝑣 and 𝑤 are stored in a two-dimensional vector to account for
multiple susceptibilities (num_suscept ≥ 1). As their name suggests, the functions sync and record_results
are responsible for synchronizing all computing units and recording the desired simulation results.

By adding OpenMP directives (e.g. #pragma omp parallel for) to the serial code, the loops over
𝑚 in Algorithm 1 can be distributed over multiple threads. In principle, the procedure is simple, as the
compiler handles complicated tasks such as synchronization and thread creation. In order to further optimize
the parallelization of the task, further details have to be taken into account. Our implementations serve as an
extension of the work in [331], where the necessary steps for the optimization of parallel code including memory
allocation and thread pinning are discussed. The parallel efficiency of the implementations was measured [329],
[352] and the analysis shows good performance.

5.4 Summary

For the simulation of broadband frequency comb operation or ultrashort pulse generation in active SCL devices,
full-wave Maxwell-density matrix approaches could be advantageous over models relying on the RWA. For such
full-wave simulations, we have developed an open-source solver in recent years. In addition, we have integrated
fluctuations from the quantum Langevin theory, which arise from the interactions of the optical field and the
quantum system with their reservoirs. An overview of the existing mbsolve toolbox is given here and further
extensions, e.g., the truncation of the optical field at the simulation boundaries or the treatment of chromatic
waveguide dispersion, are presented.

We have provided a brief overview of existing numerical methods for the density matrix equations and
evaluated them with respect to their numerical performance and long-term stability. The latter criterion is
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Algorithm 1 Simulation main loop – advanced ADE-FDTD version.
for 𝑛 = 0 to 𝑛max do

for 𝑚 = 1 to 𝑚max do
ℎ[𝑚] ← update_h(𝑒[𝑚], 𝑒[𝑚 − 1])
𝑑𝑚 [𝑚] ← update_dm(𝑒[𝑚])
𝑝_qm[𝑚] ← calc_p_qm(𝑑𝑚 [𝑚])
for 𝑖 = 0 to num_suscept do
𝑝_class[𝑚] [𝑖] ← 𝑣 [𝑚] [𝑖]
𝑣 [𝑚] [𝑖] ← update_v(𝑒[𝑚], 𝑝_class[𝑚] [𝑖], 𝑤 [𝑚] [𝑖])
𝑤 [𝑚] [𝑖] ← 𝑔[𝑖] ∗ 𝑝_class[𝑚] [𝑖]

end for
end for
for all algo_bc_f ∈ algo_bc_field do

algo_bc_f :: update_h_bc_end(𝑒, ℎ)
end for
sync()
for 𝑚 = 0 to 𝑚max − 1 do
𝑒[𝑚] ← update_e(ℎ[𝑚 + 1], ℎ[𝑚], 𝑝_qm[𝑚])
for 𝑖 = 0 to num_suscept do
𝑒[𝑚] ← update_e(𝑝_class[𝑚] [𝑖], 𝑣 [𝑚] [𝑖])

end for
end for
sync()
for all algo_bc_f ∈ algo_bc_field do

algo_bc_f :: update_e_bc_end(𝑒, 𝑑, 𝑝class, 𝑣, 𝑤)
𝑚bc_start ← algo_bc_f :: get_ind_boundary_start()
𝑚bc_stop ← algo_bc_f :: get_ind_boundary_stop()
for 𝑚 = 𝑚bc_start to 𝑚bc_stop do
𝑒[𝑚] ← 𝑒[𝑚] − 𝑑 [𝑚]
𝑑 [𝑚] ← update_d(ℎ[𝑚 + 1], ℎ[𝑚])

end for
end for
sync()
record_results()

end for
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strongly linked to the preservation of the physical properties of the density matrix, e.g., positive definiteness and
trace preservation. Two density matrix algorithms based on the matrix exponential approach are implemented
in mbsolve, as they have proven to be the most promising for our purposes. For the numerical treatment of
Maxwell’s equations, two suitable candidates exist, which are evaluated in terms of implementation complexity
and numerical accuracy. Here, the finite-difference time-domain method is used, as it offers advantages in terms
of simplicity. We further have focused on the simulation of optical devices in open radiation problems. Therefore,
an overview of existing absorbing boundary conditions for the truncation of the FDTD grid is provided. An
uniaxial anisotropic perfectly matched layer absorber proves to be a suitable choice for the mbsolve toolbox.
The implemented UPML model is thereby refined by taking into account an additional impedance mismatch
arising from the internal quantum system. From the UPML boundary condition, we have derived a partially
reflective layer boundary condition by implementing an impedance mismatch at the interface. The integration
of those and other existing BCs into mbsolve is then described. Furthermore, we have presented a model for the
numerical treatment of waveguide dispersion and introduced a new reader class to resume simulation scenarios.

The numerical treatment of the Maxwell-density matrix Langevin equation is also described. Firstly, the
evolution of the optical field in lossy and dispersive media is treated numerically within the framework of the
auxiliary differential equation FDTD method. Two auxiliary expressions are defined here, which use the electric
flux density for the attenuation of the electric field in the boundary layer and the classical polarization terms
for treating the bulk and waveguide dispersion. The resulting four differential equations are then converted
into difference equations. Secondly, the evolution of the density matrix equation and the discretization of the
macroscopic polarization are described. In addition, the implementation of c-number stochastic noise terms
for the modeling of fluctuations within the mbsolve simulation tool is discussed. Finally, we have given a brief
overview of the new generalized update equations and explained the simulation main loop in more detail.
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6 Verification of the Simulation Framework for the
Maxwell-Density Matrix Langevin Equations

For the numerical validation of the code extensions presented in Chapter 5, we use an active gain medium
based on a well-studied THz quantum cascade laser design [14], [55] and an incoherent two-level system,
which is used for modeling the transition from superfluorescence to amplified spontaneous emission [233],
[372], [373]. First, we will give a short description of the active THz QCL gain medium and introduce the
simulation setup in Section 6.1. The THz QCL simulation setup is then used to analyze the reflection error of
the implemented PML absorbing boundary conditions. To avoid detrimental reflection errors at the boundary
of the simulation domain, the adapted PML model takes into account impedance mismatch effects arising from
the internal quantum system. Improved absorbing characteristics for the truncation of active gain media in
our Maxwell-density matrix simulation approach can be demonstrated. Further simulations are executed to
characterize the influence of group velocity dispersion on the formation of THz frequency combs. Chromatic
dispersion is known to be one of the main degradation mechanisms of THz frequency combs and has been added
to the mbsolve simulation tool. The implementation using the Lorentz model is applied to the investigated QCL
frequency comb setup. The reported results are in good agreement with the experimental data. Especially, the
need for dispersion compensation is confirmed to be crucial for the generation of terahertz frequency combs
in the given QCL setup. Secondly, the superfluorescence setup in a two-level configuration is presented in
Section 6.2 to test the Maxwell-density matrix Langevin approach [233], [373]. Here, it is important to account
for the fluctuations arising from the quantum system. With this, we can reproduce the transition from SF
to amplified spontaneous emission accompanying the decrease of dephasing times, as demonstrated in the
experiment. Finally, the chapter is concluded by a short summary of the numerical validation of the extended
dynamical simulation tool mbsolve.

6.1 Time-Domain Modeling of Terahertz Quantum Cascade Lasers

In order to analyze the code base extensions of mbsolve, we decide to use a well-studied THz QCL frequency
comb device based on a resonant LO phonon depopulation active region [14], [55]. An experimental laser setup
with this QCL design integrated into a dispersion compensating waveguide has been shown to produce stable
frequency comb emission at a center frequency of 𝑓c = 3.5 THz. The coherent emission comprises a full comb
spectrum of more than 70 equidistant longitudinal modes in free-running operation mode.

In order to execute time-domain simulations of the THz QCL structure, we have to provide a detailed
simulation setup including eigenenergies, scattering, and dephasing rates of the quantum-mechanical system.

In Section 6.1, the gain analysis and reflection error results are partially reproduced with permission from J. Popp, L. Seitner,
M. Haider, et al., “Reducing the reflection error of PML absorbing boundary conditions within a generalized Maxwell-Bloch
framework”, in 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), 2022, pp. 1–4. doi: 10.23919/AT-
AP-RASC54737.2022.9814330.

The group velocity dispersion results are extracted from L. Seitner, J. Popp, M. Riesch, et al., “Group velocity dispersion in terahertz
frequency combs within a generalized Maxwell-Bloch framework”, J. Phys.: Conf. Ser., vol. 2090, no. 1, p. 012 082, 2021. doi:
0.1088/1742-6596/2090/1/012082, an open access article published under the terms of the Creative Commons Attribution 3.0
International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
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Figure 6.1 Calculated conduction band profile and probability densities of the investigated THz QCL structure [14], [55]
at a bias field strength of 11 kV cm−1. The dashed rectangle comprises a single QCL period. Here, the upper and lower
laser levels together with the depopulation levels are represented by bold solid lines. The injection levels of the adjacent
period are further shown by dashed lines. Adapted from J. Popp et al., "Reducing the reflection error of PML absorbing
boundary conditions within a generalized Maxwell-Bloch framework" [360].

Therefore, we have performed a detailed analysis of the active gain medium using the Schrödinger-Poisson
solver for wavefunction calculations and the DM-EMC method for carrier transport simulations. In Fig. 6.1, the
calculated wavefunctions at a bias field strength of 11 kV cm−1 are illustrated. Here, we use the tight-binding
states to adequately describe the physical properties within the active gain medium. Each period comprises
five wavefunctions, which are labeled according to the assumed role. Furthermore, the two injection states
|INJ1⟩ and |INJ2⟩ of the adjacent period are presented to highlight the carrier injection into the upper laser level
|ULL⟩. Using the tight-binding approximation, we obtain for the two injection pairs the anticrossing energies
ℏΩINJ1,ULL ≈ 1.18 meV and ℏΩINJ2,ULL ≈ 1.38 meV, respectively. The anticrossing energies are comparably
strong, however, the tunneling transition INJ2→ ULL is more pronounced due to the strong resonance condition
between level |INJ2⟩ and |ULL⟩.

There exist two lower laser levels |LLL1⟩ and |LLL2⟩. In the literature [55], the dipole moment was analyzed
for both optical transitions and it was found that the optical transition between |ULL⟩ → |LLL1⟩ is the most
likely to occur. We, therefore, decided to only take into account one optical transition for the dynamical modeling
and set a dipole moment of 4 nm × 𝑒 for the optical transition |ULL⟩ → |LLL1⟩. Nevertheless, non-radiative
transitions from |ULL⟩ into |LLL2⟩ remain possible and are modeled by including the corresponding scattering
rate in the scattering matrix. The remaining two levels |DEP1⟩ and |DEP2⟩ are referred to as depopulation
levels. Due to the periodicity of the QCL structure, the depopulation levels correspond to the injection levels
of the next period. By applying periodic boundary conditions, we can summarize the aforementioned levels
and add the scattering rates between the two lower laser levels and the injector levels of the next period. The
simulation setup for the THz QCL consisting of an active period with five eigenstates is illustrated in Listing 6.1.

Listing 6.1 Code snippet of the Python script for the THz OFC QCL setup at a bias field strength of 11 kV cm−1 given in
[72].

# Hamiltonian
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energies = [ 4.065e-3 * mb.E0, 0, 0, -0.016 * mb.E0, -0.02087 * mb.E0 ]
off_diagonales = [ 0, -1.18e-3 * mb.E0 , -1.38e-3 * mb.E0 , 0, 0, 0, 0,

0, 0, 0 ]
H = mb.qm_operator(energies , off_diagonales)

# dipole moment operator
dipoles = [ 0, 0, 0, 0, 0, -4e-9 * mb.E0 , 0, 0, 0, 0]
u = mb.qm_operator ([ 0, 0, 0, 0, 0], dipoles)

# relaxation superoperator
# scattering rate matrix R
rates = [ [ 0, 0.4947e12 , 0.0974e12 , 0.8116e12 , 1.0410 e12 ],

[ 0.8245e12 , 0, 0.1358e12 , 0.6621e12 , 1.1240 e12 ],
[ 0.0229e12 , 0.0469e12 , 0, 0.0794e12 , 0.0357 e12 ],
[ 0.0047e12 , 0.0029e12 , 0.1252e12 , 0, 0.2810 e12 ],
[ 0.0049e12 , 0.0049e12 , 0.1101e12 , 0.4949e12 , 0 ] ]

# pure dephasing rates
deph_inj1_ull = 1 / 0.3e-15
deph_inj2_ull = 1 / 0.6e-12
deph_xxx_xxx = 1 / 1e-12

pure_deph = [0, deph_inj1_ull , deph_inj2_ull , deph_xxx_xxx ,
deph_xxx_xxx , deph_xxx_xxx , deph_xxx_xxx ,
deph_xxx_xxx , deph_xxx_xxx , deph_xxx_xxx ]

relax_sop = mb.qm_lindblad_relaxation(rates , pure_deph)

# initial density matrix
rho_init = mb.qm_operator ([ 0, 0, 1, 0, 0 ])

# quantum -mechanical description
qm = mb.qm_description (5.6e21 , H, u, relax_sop)

Based on the quantum-mechanical description in Listing 6.1, we can start with the time-domain simulations
and characterize the optical properties of the THz-QCL. Therefore we investigate the design in a slab waveguide
with a length of 5 mm. In the experiment, the spectral gain profile as well as the strength of the chromatic
dispersion can be determined using the so-called THz time-domain spectroscopy (THz-TDS) technique [374]–
[376]. In the simulation, we can extract the gain and dispersion characteristics of the QCL quantum system
with the help of the corresponding pump-probe measurement. Here, we excite the system with a Gaussian field
pulse 𝐸𝑧 (0, 𝑡) = 𝐴 exp[−(𝑡 − 𝑡0)/𝜏]2 sin (2𝜋 𝑓0𝑡) at the left facet of the setup and measure the amplified field
at the position 𝑥 = 𝐿 = 4 mm. The pulse parameters are 𝐴 = 1 × 10−3 V m−1, 𝜏 = 0.707 ps, 𝑡0 = 30 ps, and
𝑓0 = 3.8 THz. The following command for the Gaussian pulse source has to be added to the Python script for
the simulation setup:

# add source
sce.add_source(mb.gaussian_pulse("gauss", 0.0, mb.source.hard_source ,

1e-3, 3.8e12 , 30e-12, 0.707e-12))

In the following, we will denote the electric field of the injected seed pulse as 𝐸in(𝑡) and the recorded electric
field as 𝐸out(𝑡). We further obtain the Fourier transforms 𝐸in(𝜔) and 𝐸out(𝜔) with the angular frequency 𝜔.
The field amplitude of the seed pulse is set to a small value to obtain a linear response of the gain medium.
The active gain medium can then be described by a complex refractive index 𝑛(𝜔) = 𝑛(𝜔) + i𝜅(𝜔). For the
amplitude gain coefficient, we obtain 𝑔(𝜔) = −𝜅(𝜔)𝜔/𝑐, which can be calculated with the Fourier transforms
of the recorded electric fields 𝐸in(𝜔) and 𝐸out(𝜔) by

𝑔(𝜔) = 1
𝐿

ln
( |𝐸out(𝜔) |
|𝐸in(𝜔) |

)
. (6.1)

Here, we can exploit the dependence between seed and output field, which is given by 𝐸out(𝜔) = 𝐸in(𝜔)
× exp

(
i𝜔𝑛𝐿/𝑐) . The resulting spectral gain profile of the THz QCL gain medium is depicted as the blue line in

Fig. 6.2. We observe two gain peaks at 𝑓 = 3.63 THz and 𝑓 = 4.13 THz and a peak gain value of 𝑔p = 19.7 cm−1.



72

3.4 3.6 3.8 4 4.2 4.4
10

12

14

16

18

20

Frequency in THz

G
ai

n
in

cm
−1

0.96

0.98

1

1.02

1.04

𝑣 g
𝑛

0/
𝑐

Figure 6.2 Simulated spectral gain profile (blue curve, left y-axis) together with the normalized group velocity 𝑣g𝑛eff/𝑐
(orange curve, right y-axis).

The two states |ULL⟩ and |INJ2⟩ form a doublet of states separated by approximately the anticrossing energy
2ℏΩINJ2,ULL and optically interact with the lower laser level |LLL1⟩. The relative radiative coupling strength
between the individual level pairs depends on the detuning from resonance. In literature, it was found [295] that
below the resonant bias, the high-frequency lobe of the gain dominates the transition, whereas above resonance
the low lobe does.

We further calculate the group velocity 𝑣g by

𝑣g(𝜔) =
[
𝜕𝑘 (𝜔)
𝜕𝜔

]−1
, (6.2)

with the wavenumber 𝑘 (𝜔) = 𝑛(𝜔)𝜔/𝑐. Fig. 6.2 shows the group velocity normalized to the central frequency’s
phase velocity 𝑐/𝑛eff (orange curve). The low- and high-frequency components in correspondence to the strong
resonances at 𝑓 = 3.63 THz and 𝑓 = 4.13 THz are delayed with respect to each other. Therefore, the normalized
group velocity approaches values of 0.978 and 0.982 for the low- and high-frequency gain peaks, respectively.
The doubly peaked resonant nature of the transition causes dispersion in the cavity without taking into account
bulk or waveguide dispersion. The influence of dispersion on the frequency comb generation will be discussed
below, but first, we will analyze the behavior of the absorbing PML boundary conditions in terms of the influence
of the quantum system on the absorption quality.

6.1.1 Reflection Error of PML Absorbing Boundary Conditions

We validate the numerical stability of our modified PML model by investigating the light propagation in the
aforementioned THz QCL gain structure for two different simulation setups, as depicted in Fig. 6.3. Setup 1
consists of an active region of length 5 mm, which is terminated by a perfect magnetic conductor layer on the
left and a 200 gridpoints long PML region on the right facet. Setup 2 has a simulation domain twice as long as
in setup 1 and is terminated with a PMC boundary layer on both sides. To ensure that there are no reflections
from the right boundary during the time-stepping span of interest, we use a sufficiently long waveguide in setup
2. The chromatic dispersion in the investigated THz structure arises not only from the quantum system but
also from the background material and the waveguide itself. Here, we will neglect the chromatic dispersion
introduced by the background system, as we are only interested in the interaction of the PML region with the
quantum system. The propagation of the Gaussian pulse is schematically illustrated in setup 2 of Fig. 6.3.
The light pulse is amplified due to the interaction with the quantum system, while the dispersion caused by the
quantum system leads to a spatial distortion of the pulse. This behavior can be deduced from the aforementioned
gain and dispersion analysis and is documented in different theoretical and experimental investigations [14],
[55], [56]. We will discuss this in more detail below.
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Figure 6.3 Illustration of the two different simulation setups under numerical investigation. Setup 1 describes a THz gain
medium with length 𝐿1 = 5 mm truncated with a PML boundary containing 200 gridpoints terminated by a PMC layer,
setup 2 is based on the same material system with twice the length and two PMC layers at the facets. Here, the propagation
of the Gaussian pulse is schematically demonstrated, resulting in an amplification and distortion of the initial pulse.
Adapted from J. Popp et al., "Reducing the reflection error of PML absorbing boundary conditions within a generalized
Maxwell-Bloch framework" [360].
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Figure 6.4 Reflection error for two PML configurations. The blue curve represents the reflection error including the
macroscopic polarization of the QS in the PML region, whereas the orange curve represents the results obtained from the
original PML formulation introduced by Gedney [357], [358]. (a) Time-domain analysis. Reprinted with permission from
J. Popp et al., "Reducing the reflection error of PML absorbing boundary conditions within a generalized Maxwell-Bloch
framework" [360]. (b) Frequency-domain analysis.
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For the PML characterization, we use the Gaussian pulse with the same parameters as introduced in the
gain-dispersion analysis. We now quantify the reflection behavior at the PML boundary by introducing the
reflection error 𝑒r in time-domain, computed as

𝑒r(𝑡) = |𝐸1(𝑡) − 𝐸2(𝑡) |
max ( |𝐸2(𝑡) |)

����
𝑥=4 mm

, (6.3)

with 𝐸1(𝑡) being the reflected electric field in setup 1. The field 𝐸2(𝑡) from setup 2 is used as reference value.
Apart from the temporal behavior, we are also interested in the reflection error 𝑒r in the frequency-domain,
given by

𝑒r(𝜔) =
����𝐸1(𝜔) − 𝐸2(𝜔)

𝐸2(𝜔)

����
𝑥=4 mm

. (6.4)

Here, we use the Fourier transforms of the recorded electric fields 𝐸1(𝜔) and 𝐸2(𝜔) for the error determination.
As already pointed out, we include the quantum system of the active region in the adjacent PML region to

obtain better impedance matching. The amplitude gain displayed in Fig. 6.2 now also acts on the outgoing
electric field in the PML layer. The artificially introduced losses from Eq. (5.5) outperform the unintended
amplification by far and the light gets efficiently absorbed in the PML region. In Fig. 6.4, we compare the results
of our implementation to a similar PML region, where we omit the quantum system (QS) in the boundary.
The results for the obtained reflection error in time-domain are illustrated in Fig. 6.4(a). If we do not take
into account the QS within the PML layer, we obtain a maximum reflection error of 𝑒r ∼ −36 dB arising
from the corresponding impedance mismatch. By taking into account the QS in the PML layers, we obtain a
reflection error 𝑒r of less than −118 dB. For the frequency-domain, we obtain a similar behavior for the two
PML configurations with respect to the undesired reflections. For the PML without QS a maximum reflection
error of 𝑒r ∼ −33 dB is obtained, while for the PML layer with QS a significantly reduced reflection error with
a peak value of 𝑒r ∼ −111 dB is present. In both cases, the spectrum of the reflection error indicates the two
frequency lobes. This means that the reflected light has been amplified again on the way back to the detection
point at 4 mm.

6.1.2 Group Velocity Dispersion in Terahertz Frequency Combs

To correctly simulate the QCL structure, we need to analyze the influence of chromatic dispersion on the
coherent emission behavior. Therefore, we choose the parameters for the Lorentz dispersion model to match
the GaAs bulk material. Using the values for the Reststrahlen region found in literature [363], [377], we define
the Lorentz susceptibility as given in Listing 6.2 and add it to the active region material in the Python script for
the QCL frequency comb simulation setup.

Listing 6.2 Code snippet of the Python script of the Lorentz dispersion model for n-doped gallium arsenide [326].
#Lorentz -pole
with_disp_L = True
omega_L = 2 * math.pi * 8.070 e12
delta = 2 * math.pi * 37.474 e9

# permittivity at low and high frequency
eps_low = 10.89
eps_high = 12.96
delta_epsilon = eps_low - eps_high

Lorentz_model = mb.Lorentz_model("Lorentz␣model", omega_L ,
delta_epsilon , delta , with_disp_L)

mat_ar.add_susceptibility(Lorentz_model)

The phononic resonance frequency of the n-doped GaAs is approximately at 8 THz, so it is unfeasible to operate
a laser at this frequency. However, for devices like our QCL frequency comb structure (≈ 4 THz) operating
near this pole, the chromatic dispersion resulting from the varying relative permittivity can affect the laser
performance and should be considered within the simulation. In Fig. 6.5 (a), the real and imaginary part of the
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Figure 6.5 (a) Real and imaginary part of the permittivity for the Lorentz susceptibility model of the bulk material GaAs.
The recorded Gaussian pulse at the second interface of the QCL waveguide is shown in (b) without the explicit dispersion
model, and in (c) applying the model. Adopted from L. Seitner et al., "Group velocity dispersion in terahertz frequency
combs within a generalized Maxwell-Bloch framework" [326] (CC BY 3.0).

complex permittivity function is plotted, where the relative permittivity values for a frequency of 4 THz are
highlighted. The real part of the relative permittivity has a value of about 13.64 with a positive slope at this
frequency. This affects the group velocity dispersion and leads to different round trip times of the individual
frequency modes in the laser resonator. The same pole near 8 THz can be identified in the imaginary part. The
imaginary part of the function is responsible for additional losses. Therefore, field components with a frequency
close to the pole experience a large attenuation. This also means that the total field strength inside the cavity is
lower compared to the non-dispersive case, while the total power is distributed over a wider frequency range.

In order to analyze this in more detail, we will execute a pump-probe measurement with the previously
introduced Gaussian pulse. We again use two different setups, one with and one without the Lorentzian
susceptibility given in Listing 6.2. In Fig. 6.5 (b), no explicit group velocity dispersion within the bulk material
is considered. The interaction of the optical field with the quantum system leads to an amplification of the
pulse. In addition, the original pulse is broadened and distorted by the chromatic dispersion caused by the
quantum system, as already stated. In Fig. 6.5 (c), the recorded pulse is illustrated by additionally taking into
account the classical group velocity dispersion of the gain material. It can be seen that the broadening effect is
even more pronounced. This is consistent with the above explanation of a longer round trip time and increased
damping. The pulse in Fig. 6.5 (c) arrives at the second interface about 5 ps later, which is due to the increased
real part of the permittivity. The amplified field strength in the case of an additional dispersion is lower due to
the attenuation caused by the imaginary part of the relative permittivity.

Summarizing these results, it is found that there are two contributions to the total dispersion: one part is
caused by the interaction of the optical field with the quantum system and the other part by the classical material
dispersion. Experimental results show that a special dispersion grating can be used in such a way that both
contributions roughly balance each other out. This results in improved laser performance [14]. Here, we do
not model this complex grating and instead investigate the effect of the classical material dispersion of bulk
GaAs on the frequency comb generation. Therefore, the electric field is randomly initialized with a mean value
of zero and a standard deviation of approximately 5 × 10−16 V m−1 at each grid point within the cavity. For
the quantum system, we assume an almost perfect population inversion at the beginning in order to amplify the
light-matter interaction. The system then propagates for 60 ns, i.e., about 500 roundtrips of the optical field in
the cavity. The electric field strength at the interface of the cavity is recorded for further data analysis.
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Figure 6.6 Simulation results of the THz frequency comb and the RF beatnote. Without background and waveguide GVD,
there are two clear and distinct lobes of an OFC (a) and a sharp beat (b). When this type of GVD is included, the frequency
comb broadens and loses intensity (c). The beatnote becomes more distorted (d). Reprinted from L. Seitner et al., "Group
velocity dispersion in terahertz frequency combs within a generalized Maxwell-Bloch framework" [326] (CC BY 3.0).

Frequency domain results

The laser enters a stable operating state after around 250 cycles. The recorded field data from this point can
be Fourier-transformed to obtain the output spectrum of the laser. The resulting frequency comb spectra are
shown in Fig. 6.6, for the "non-dispersive" case (a) and (b), and for the dispersive case (c) and (d). Firstly, we
will analyze the case in which only the dispersion due to the quantum system is present. Fig. 6.6 (a) clearly
shows that two distinct frequency lobes have formed. The one at lower frequencies, displayed in orange color,
has a center frequency of about 3.72 THz and the higher frequency lobe, plotted in blue color, is formed around
4.02 THz. The different colors are used to get an overview of the different modes when viewing the results
over time. To divide the spectrum, we apply a bandpass filter to each of the lobes. In this normalized linear
intensity diagram, about 20 different comb modes can be counted, whereby those of the higher frequency lobe
clearly dominate. On a logarithmic scale, even up to 70 modes can be detected in the frequency range under
consideration. This result agrees well with the results of the same structure simulated with the RWA [55], where
chromatic dispersion due to the quantum system was also taken into account. Furthermore, the RF beatnote of
the field is presented in Fig. 6.6 (b). At 8.1 GHz a distinct peak can be identified, which quickly drops to −20 dB
and for more distant frequencies even to less than −50 dB. The different field modes mainly move at a similar
group velocity. However, the frequency resolution is here limited by the Fourier transform to about 16 MHz.
A more detailed investigation of the beatnote would require a much longer simulation time with our full-wave
approach and would go beyond the scope of these investigations.

Let us now compare the results presented with the case in which the dispersion of bulk solids and waveguides is
also included. Fig. 6.6 (c) clearly shows that both lobes have a reduced intensity and a broadened spectrum. For
better comparison, the intensities in the graph are normalized to the highest intensity mode of the non-dispersive
comb. We find that the number of identified modes increases, while the power is more equally distributed.
The integration over all modes provides approximately the same total power in both the non-dispersive and the
dispersive case. We see that material dispersion creates additional modes that carry some energy of the previous
modes. The system behavior becomes more irregular and the efficient generation of the desired comb spectrum
is impaired. This is also confirmed by the RF beatnote shown in Fig. 6.6 (d). Compared to the case without
waveguide dispersion, more power is distributed to side modes, which have different round-trip frequencies.
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Figure 6.7 Electric field envelope at the interface of the laser cavity for the last three simulated round trips. In the absence
of bulk and waveguide dispersion (a) a clear temporal separation between the higher and lower frequency lobe is visible.
By inclusion of this kind of chromatic dispersion (b) the field is distributed to more modes with less intensity and the clear
temporal separation is lifted. Reprinted from L. Seitner et al., "Group velocity dispersion in terahertz frequency combs
within a generalized Maxwell-Bloch framework" [326] (CC BY 3.0).

The most prominent peak is almost −3 dB weaker than in Fig. 6.6 (b). The shift in the center frequency below
8 GHz results from the increased permittivity due to the pole in the spectral function and the associated longer
round trip time.

Time-domain results

In addition to the spectral results, it is also worth taking a brief look at the time-resolved fields. In Fig. 6.7,
two plots are depicted in which the field envelopes are displayed. The indicated time covers the last three round
trips, and the fields refer to (a) the dispersion-free case and (b) the case with dispersive waveguide material. The
division into an orange and a blue part for the lower and higher frequency contributions can again be recognized
in these diagrams. In Fig. 6.7 (a), a clear differentiation of the field into a higher and a lower frequency lobe
can be detected. The blue lobe dominates the temporal behavior and corresponds to the greater intensity of the
higher frequency lobe in Fig. 6.6 (a). Both components alternate in time. This has already been observed both
experimentally and in simulations and has been called "temporal hole burning" [55], [378]. It is assumed that
the reason for this behavior lies in the strong anticrossing of the injector quantum states. For the dispersive case
depicted in Fig. 6.7 (b), a lower intensity and strong distortions of the envelopes can be observed. Here, we
also normalize the field to the highest intensity in the non-dispersive case. It turns out that even in the presence
of many parasitic modes, the periodicity and the exchange of field components or "temporal hole burning", is
still present. The explicitly included dispersion model does not directly affect the quantum system, but only
influences the propagating field in the cavity.

Nevertheless, these results indicate that the dispersion of the waveguide is detrimental to stable frequency
comb operation. Therefore, we can support the assumption that a dispersion compensation grating in the
waveguide is required for stable THz frequency comb operation [14].

6.2 Superfluorescence and Amplified Spontaneous Emission

The derived Maxwell-density matrix Langevin approach is tested using a SF setup in a two-level configura-
tion [233], [373]. This setup describes the spontaneous build-up of a macroscopic coherent dipole moment in
an initially inverted system, resulting in a collective emission of a superfluorescent pulse. This behavior can
be reproduced numerically within our mbsolve framework by simulating an ensemble of excited ions and using
a dephasing time 𝑇2 = 100 ps. All other parameters required for the simulation are taken from [233]. There,
an excited state’s lifetime 𝑇1 = 76 ns, carrier number density 𝑛3D = 8.53 × 1019 m−3, carrier number per cell
𝑁cell = 3×104, transition frequency 𝑓 = 477 THz, dipole length 𝑑 = 6.875×10−2 nm and equilibrium inversion
𝑤0 = −1 are specified. We further investigate a device with length 𝐿 = 7 mm using a grid discretization
Δ𝑥 = 70 nm.
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Figure 6.8 Simulation results for a superfluorescence test setup [233] in an initially inverted two-level system using
the Maxwell-density matrix Langevin equations. (a) Cooperative emission characteristic of superfluorescence for the
dephasing time 𝑇2 = 100 ps. (b) Amplified spontaneous emission pulse for the dephasing time 𝑇2 = 14.3 ps. Reprinted
from J. Popp et al., "Modeling of fluctuations in dynamical optoelectronic device simulations within a Maxwell-density
matrix Langevin approach" [59] (CC BY 4.0).

The simulated SF pulse is illustrated in Fig. 6.8(a), and compares well with previous numerical and experi-
mental findings [233], [372], [373]. By increasing the collisional dephasing rate within the system, the SF pulse
is significantly disturbed and gets broadened until the spontaneous build-up of the coherent dipole moment is
prevented. For a dephasing time 𝑇2 = 14.3 ps below the critical point, the SF pulse is replaced by ASE. The
increased noise amplitude accompanying the smaller dephasing time is crucial for the modeling of ASE, which
cannot be reproduced otherwise. The ASE simulation results are presented in Fig. 6.8(b).

Furthermore, the degree of decoherence is studied using the quantity 𝜌3/𝜌B, where 𝜌B =
√︃
𝜌2

1 + 𝜌2
2 + 𝜌2

3 is
the length of the Bloch vector. When the dephasing time 𝑇2 is high (Fig. 6.8(a)), the population inversion 𝜌3 is
quickly depleted through the spontaneous buildup of the macroscopic dipole moment and the SF emission, which
clearly surpasses the decay of 𝜌1 and 𝜌2 and results in a rapid drop of 𝜌3/𝜌B. In the second case (Fig. 6.8(b))
we have used a smaller dephasing time 𝑇2, which prevents the macroscopic dipole moment build-up and limits
the radiative decay. This decoherence state indicates a very slow decay of 𝜌3/𝜌B, which stays close to one.

6.3 Summary

The extensions to the mbsolve simulation library are verified in this chapter using different simulation setups.
Firstly, we have applied the ADE-FDTD implementations to a THz QCL gain medium and have conducted
a comprehensive study of the optical quantum system, including the characterization of gain and intrinsic
dispersion. The THz-QCL setup is then used to study the advanced PML absorbing boundary conditions,
demonstrating effective attenuation of the outward propagating fields. Here, the integration of the quantum gain
system into the PML region assures an improved outcoupling of the optical field, and a significantly reduced
reflection error as compared to previous PML models can be achieved.

We further have used the simulation setup to analyze the influence of chromatic dispersion on optical frequency
comb formation in THz QCLs. The results show a degradation of frequency comb formation in the presence
of group velocity dispersion, which is consistent with experiments and current literature. The extension of
our simulation approach towards the modeling of chromatic dispersion can be used for accurate performance
predictions of quantum-optical devices. In particular, this makes it possible to design the chromatic dispersion
based on the bulk material and the waveguide geometry in such a way that it compensates for other dispersion
mechanisms, e.g., by choosing a waveguide design with an integrated grating.
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Finally, we have proved the validity of our derived Maxwell-density matrix Langevin approach for modeling
the fluctuations accompanying electronic transport and spontaneous emission in the dynamical simulations of
light-matter interaction in multilevel optoelectronic quantum systems. Therefore, we have used a superfluores-
cence setup, proving the validity of our implementation by an excellent agreement with previous experimental
and theoretical results. Detailed simulations of noise properties are required for the development of low-noise
optoelectronic quantum sources, which will receive more and more attention in the context of exploring and
utilizing nonlinear and nonclassical properties.
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7 Simulation and Optimization of Photovoltaic
Quantum Cascade Detectors

Intersubband photodetectors are a suitable choice for the detection of light in the mid-IR and THz regimes.
They are categorized into two main classes based on their working principle: photoconductive quantum well-
infrared photodetectors and photovoltaic quantum cascade detectors. Here, we focus on QCDs, which operate
at zero bias and thus exhibit superior noise behavior due to the absence of dark current noise [130]. Together
with quantum cascade lasers, they are suitable for integration in on-chip applications such as gas sensors.
Lattice matched QCDs are based on the material system In0.53Ga0.47As/In0.52Al0.48As with a conduction
band offset of 520 meV. The detection wavelengths for lattice-matched QCDs are thus limited to values
well above 4 µm. However, short wavelength QCDs based on strain-compensated material systems, e.g.,
In0.61Ga0.39As/In0.45Al0.55As [379], can be fabricated. A CBO of 610 meV is determined for this material
system using the model solid state theory [94], [271].

We present simulation results of QCDs in the mid-infrared and THz regime. For this purpose, we use the
modeling approach presented in Chapter 3, which is based on a rate equation model for the calculation of the
extraction efficiency and a Kirchhoff resistance network for noise modeling. The scattering rates are extracted
here from the ensemble Monte Carlo transport approach. Firstly, we investigate two devices, which are based
on an InGaAs/InAlAs material system lattice matched to the InP substrate [124], [126], [130], [380]. We
further present simulation results of a strain-compensated QCD detecting at 4 µm [124], [379]. Finally, a THz
design, which consists of a GaAs/AlGaAs-based superlattice structure on a semi-insulating GaAs substrate, is
analyzed [281]. The detection wavelength for this QCD is 84 µm.

A Bayesian optimization algorithm in combination with a scattering-based simulation approach is used for
the optimization of quantum cascade detectors. The appropriate surrogate model of Bayesian optimization is
based on Gaussian process regression, which can handle noisy offsets on the objective function evaluations
inherent in ensemble Monte Carlo simulations. Here, we focus on the optimization of a matured mid-infrared
QCD design detecting at 4.7 µm. For optimization, we choose as the figure of merit the specific detectivity,
which gives us a measure for the signal-to-noise ratio. The trade-off between high extraction efficiency and low
detector conductance is important for good detection performance. We search for the perfect layer composition
and vary the thicknesses of different cascade layers. A simulation temperature of 300 K is chosen due to the
high-temperature requirements, which are of interest for low-cost and mobile on-chip sensor applications. Our
optimization strategy yields an improvement of specific detectivity by a factor of ∼ 2 − 3 at room temperature
using two different parameter sets. Furthermore, we investigate the sensitivity of our approach to fabrication
tolerances, showing the robustness of the optimized designs against growth fluctuations under fabrication
conditions.

Section 7.1 is largely based on Section IV of C. Jirauschek, J. Popp, M. Haider, et al., “Ensemble Monte Carlo modeling of quantum
cascade detectors”, J. Appl. Phys., vol. 130, no. 20, p. 203 103, 2021. doi: 10.1063/5.0065540, an open access article published
under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited. I was in the lead in conceptualizing and writing
of Section IV [5].

In Section 7.1, the simulation results for the QCD design N1037 are partially reproduced with permission from J. Popp, M. Haider, M.
Franckié, et al., “Monte Carlo modeling of a short wavelength strain compensated quantum cascade detector”, in 2021 Conference
on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 2021, pp. 1–1. doi:
10.1109/CLEO/Europe-EQEC52157.2021.9542111 | 978-1-6654-1876-8 /21/$31.00 © 2021 EU.

Section 7.2 is largely based on Section 5 of J. Popp, M. Haider, M. Franckié, et al., “Bayesian optimization of quantum cascade
detectors”, Opt. Quant. Electron., vol. 53, no. 5, p. 287, 2021. doi: 10.1007/s11082-021-02885-0, an open access article published
under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

https://doi.org/10.1063/5.0065540
https://doi.org/10.1109/CLEO/Europe-EQEC52157.2021.9542111
https://doi.org/10.1007/s11082-021-02885-0
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The Chapter is organized as follows: In Section 7.1, the EMC-based modeling approach for photovoltaic QCD
operation is validated against experimental results of mid-infrared and THz QCD designs. For the presented
THz QCD, we provide a comparison with NEGF results contributed by Martin Franckié from the Quantum
Optoelectronics group at the ETH Zurich. In addition, we investigate a short-wavelength QCD, which is based
on a strain-compensated InGaAs/InAlAs material system. In Section 7.2, results of the Bayesian optimization
of a QCD using two different parameter sets are depicted. Here, we focus on the well-established mid-IR QCD
design N1022 with a detection wavelength of 4.7 µm, and discuss the obtained results of improved spectral
detectivity. The last section of this chapter summarizes the simulation and optimization results of the present
work and provides a brief outlook on future applications.

7.1 Ensemble Monte Carlo Results of Quantum Cascade Detectors

In the following, we present the simulation results of QCDs in the mid-infrared and terahertz regime. The three
simulated devices detecting in the mid-infrared region have their absorption maxima at wavelengths of 4 µm,
4.7 µm and 7.5 µm, respectively. Two devices are based on a lattice-matched InGaAs/InAlAs material system,
and a third device for detecting short wavelengths is based on a strain-compensated InGaAs/InAlAs material
system [124], [126], [130], [379], [380]. The terahertz structure consists of a GaAs/AlGaAs-based superlattice
structure on a semi-insulating GaAs substrate and exhibits a detection wavelength of 84 µm [281].

7.1.1 Mid-Infrared Quantum Cascade Detectors

The investigated devices in the mid-infrared range have the sample identifier names N1021 (7.6 µm), N1022
(4.7 µm) and N1037 (4 µm). The active region of the two lattice-matched designs consists of 30 periods and
the strain-compensated N1037 design uses 10 repetitions of the active period. In this configuration, a 45°
wedge geometry mesa-structure with a double-pass waveguide is considered for the simulation. The facet
transmittance is assumed to be 70 %. Further information about these designs, along with experimental data
used for comparison purposes in this work, can be found in the literature, where also details on the measurements
are given [124], [126], [130], [379], [380].

The strongly delocalized Bloch-type wavefunction solutions of the Schrödinger equation for perfectly periodic
potentials are not adequate for describing carrier transport in realistic QCD structures, since any amount of
disorder due to, e.g., growth irregularities and impurities, leads to the formation of localized states [381], [382].
In addition, scattering-induced dephasing suppresses multiple-tunneling processes, and thus also contributes to
a localization of states [383], [384]. Hence, we restrict the spatial simulation window in our Schrödinger-Poisson
solver such that wavefunction solutions extending over multiple periods are avoided. The resulting conduction
band profile and energy eigenstates are shown in Fig. 7.1 for the QCD N1021. The lattice constant of InGaAs at
room temperature is 0.587 nm, and the thinnest well of the structure has a width of 2.8 nm. Interface roughness
is included in our carrier transport simulations using typical values of 0.1 nm for the average root-mean-square
roughness height and 10 nm for the in-plane correlation length. Absorption takes place in the active well of
each period between the ground level g and the two closely spaced absorption levels a1 and a2. As explained
in Section 3.2, the weighted average for the extraction efficiency 𝑝e of the transitions 𝑔 → 𝑎1 and 𝑔 → 𝑎2 is
calculated using Eq. (3.25). Both absorption levels extend over two wells and give rise to resonant tunneling
transport through the thick barrier between the active well and the subsequent well. Transport through the
cascade is mediated by LO phonon-assisted scattering and to a lesser extent by interface roughness scattering.
Efficient extraction is achieved by arranging the energy spacing between two consecutive states close to the LO
phonon energy of 32 meV in In0.53Ga0.47As. More specifically, the quantum well structure is engineered to
optimize detectivity, which involves a trade-off between close to unity extraction efficiency 𝑝e and high detector
resistance 𝑅d. For the design N1021, the extractor states are localized in their respective wells. Since in this
case, the overlap between adjacent states mainly results from the wavefunction leakage into the thick barrier
regions, the corresponding scattering rates tend to be considerably lower than in QCLs, which typically feature
thinner barriers and more delocalized wavefunctions.
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Figure 7.1 Calculated conduction band profile and probability densities of the investigated mid-infrared QCD structure
N1021 detecting at 7.6 µm [130], [380]. Starting from the leftmost well, the layer sequence (in nm) of one period with
barriers in boldface and n-doped layers (3 × 1017 cm−3) underlined is 8.2/6.0/2.8/5.7/3.4/5.5/4.2/5.1/5.5/5.8. Space
charge effects are included by self-consistently solving the Schrödinger and Poisson equation. The electron densities in the
states are modeled accounting for thermal equilibrium under zero external bias and no incident light for a lattice temperature
of 300 K. Reprinted from C. Jirauschek et al., "Ensemble Monte Carlo modeling of quantum cascade detectors" [42] (CC
BY 4.0).
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Figure 7.3 Comparison of simulated (x marks) and experimental (squares) results for the detector structure N1021. (a)
Extraction efficiency 𝑝e (solid lines) and peak absorption 𝜂abs,p (dashed lines) as a function of temperature 𝑇 . (b) Detector
resistance-area product 𝐴d𝑅d as a function of the inverse temperature 𝑇−1. The lines represent the Arrhenius plots with
calculated activation energies 𝐸act. Reprinted from C. Jirauschek et al., "Ensemble Monte Carlo modeling of quantum
cascade detectors" [42] (CC BY 4.0).

The simulated responsivity spectrum for the detector structure N1021 is depicted in Fig. 7.2. At 300 K, we
obtain a peak responsivity of 0.61 mA W−1, in comparison to a measured value of 1.69 mA W−1. For lower
temperatures, the simulated and measured responsivities show considerably better agreement. The simulated
peak responsivity increases to 3.1 mA W−1 for 100 K, as compared to a measured value of 3.8 mA W−1.
At a temperature of 300 K the simulated peak detection wavelength is 7.8 µm in comparison to 7.62 µm
in the experiment. This slight blueshift of the experimental detection energy was also recognized in the
design process [126] and is attributed to process uncertainties in the fabrication, which can lead to thickness
variations of the active QW. The observed redshift with increasing operation temperature, which is attributed to
nonparabolicity and band filling, is replicated in the simulations by the inclusion of energy-dependent effective
subband masses.

To validate our detector model, we evaluate the simulation results for the extraction efficiency 𝑝e, power
absorption efficiency 𝜂abs and device resistance 𝑅d, and compare them with the experimentally measured
values. Results are illustrated in Fig. 7.3 for 100 K to 300 K.

The power absorption efficiency in Fig. 7.3(a) decreases linearly from 20 % at 100 K to 11 % at 300 K for the
simulated results and is ∼3 % smaller than in experiment. Due to broadening effects and reduced population
of the ground level 𝑔 with rising temperatures, the absorption efficiency and thus the responsivity get reduced.
For decreasing temperature, a shift of the probability density maximum of state 𝑎1 to the right thinner QW
and of state 𝑎2 to the left active QW occurs due to the change in band bending associated with space charge
effects. The peak absorption of the transition 𝑔 → 𝑎2 thus increases significantly and becomes the dominating
absorption transition. The responsivity depends furthermore on the extraction efficiency 𝑝e, which is also
displayed in Fig. 7.3(a). Over the plotted range, the simulated 𝑝e decreases linearly with increasing temperature,
whereas the experimental values saturate to 𝑝e,300 K = 5.9 % for temperatures above 200 K. Evaluation of the
simulated scattering rates shows that LO phonon emission is the dominant mechanism for relaxation from the
two absorption levels 𝑎1, 𝑎2 to the ground level 𝑔. Extraction to the cascade is dominated by interface roughness
and LO phonon scattering. Furthermore, the calculation of the individual extraction efficiencies in one period
exhibits that backscattering in the extraction cascade affects significantly the behavior of 𝑝e over temperature.
Backscattering by LO phonon absorption degrades due to the thermal reduction of the phonon occupation
for low temperatures. By reducing the temperature, backscattering in the extraction cascade gets suppressed,
which results in an efficient charge extraction to the ground state of the adjacent period [29]. Lastly, the device
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Figure 7.4 Comparison of simulated (x marks) and experimental (squares) results for the predefined figures of merit of the
detector structure N1022. (a) Peak responsivity 𝑅p as a function of temperature 𝑇 . (b) Detector resistance-area product
𝐴d𝑅d as a function of the inverse temperature 𝑇−1. The lines represent the Arrhenius plots with calculated activation
energies 𝐸act. Reprinted from C. Jirauschek et al., "Ensemble Monte Carlo modeling of quantum cascade detectors" [42]
(CC BY 4.0).

resistance 𝑅d is presented in Fig. 7.3(b). Experimentally, the device resistance 𝑅d was determined from dark
current measurements at zero bias. In the temperature range 100 K to 300 K the exponential behavior of the
detector resistance is replicated. The calculated activation energy of 𝐸act = 133 meV is in good agreement with
the experimentally obtained value of 𝐸act = 129 meV. The close correspondence of the experimentally obtained
resistance values with the simulated ones confirms the validity of the resistance model presented in Section 3.2
for the investigated temperature range.

The second mid-infrared detector N1022 exhibits a similar layer composition as N1021. Here, the thickness
of the active well is reduced from 82 Å (N1021) to 51 Å, and the cascade is extended by three extractor levels.
The structure modifications result in a higher detecting energy of 268 meV. The peak responsivity 𝑅p and
detector resistance-area product 𝐴d𝑅d for the temperature range 100 K to 300 K are presented in Fig. 7.4(a) and
7.4(b), respectively. The simulated peak responsivity 𝑅p decreases from 5.3 mA W−1 at 100 K to 1.0 mA W−1

at 300 K similar to the experimental data. At 300 K, the values 𝑝e = 17.2 % and 𝜂abs = 4.63 % are obtained
from the simulated scattering rates, which is in good agreement with the experimentally obtained values of
𝑝e = 12.5 % and 𝜂abs = 9 % at room temperature. As illustrated in Fig. 7.4(b), the device resistance shows
the Arrhenius plot behavior. The high-temperature activation energy of 𝐸act = 237 meV calculated from the
simulated detector resistance values compares well with the experimentally obtained value of 𝐸act = 210 meV.
Below 150 K, the experimental values for the resistance-area product deviate from the Arrhenius plot slope and
exhibit a flattening trend, which cannot be replicated in the simulation. This behavior is ascribed in literature to
the presence of parasitic parallel resistance, generated e.g., by defects or surface currents [28].

For the investigated mid-infrared QCD structure N1037, the calculated wavefunctions and conduction band
profile from the Schrödinger-Poisson solver are given in Fig. 7.5. Here, the nonparabolicity and the effects of
strain on (parallel and perpendicular) effective mass and bandgap energy are taken into account [29], [265].
The normalized responsivity spectra are depicted in Fig. 7.6(a) for temperatures of 100 K to 300 K. The
experimentally documented broadening of the absorption spectra attributed to thermal band filling can also
be observed in the simulation. However, the redshift with increasing temperature is not as pronounced as
experimentally measured and has to be investigated in further simulations. At 150 K, we obtain a simulated
peak responsivity of 13.9 mA W−1, which is slightly higher than the measured value of 10.7 mA W−1. The
Johnson noise limited detectivity of QCDs is modeled by a noise-equivalent resistance network replicating
the intersubband transitions in the active region. In Fig. 7.6(b), the simulation results together with the
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Figure 7.5 Calculated conduction band profile and probability densities of the investigated mid-infrared
QCD structure N1037 detecting at 4µm [124], [379]. Starting from the leftmost well, the layer se-
quence (in nm) of one period with barriers in boldface and n-doped layers (1 × 1018 cm−3) underlined is
4.5/6.0/1.0/5.0/1.3/4.0/1.6/3.5/1.9/3.0/2.2/3.0/2.7/2.6/3.3/4.0. Space charge effects are included by self-
consistently solving the Schrödinger and Poisson equation. The electron densities in the states are modeled accounting
for thermal equilibrium under zero external bias and no incident light for a lattice temperature of 300 K. Reprinted with
permission from J. Popp et al., "Monte Carlo Modeling of a Short Wavelength Strain Compensated Quantum Cascade
Detector" [385] | 978-1-6654-1876-8 /21/$31.00 © 2021 EU.
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Figure 7.6 (a) Normalized simulated responsivity 𝑅p of the QCD structure N1037 as a function of energy in the temperature
range 100 K to 300 K. (b) Simulated (x marks) and experimentally measured (squares) specific detectivity as a function
of temperature 𝑇 . Adopted with permission from J. Popp et al., "Monte Carlo Modeling of a Short Wavelength Strain
Compensated Quantum Cascade Detector" [385] | 978-1-6654-1876-8 /21/$31.00 © 2021 EU.
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Figure 7.7 Calculated conduction band profile and probability densities of the investigated terahertz QCD struc-
ture detecting at 84 µm for a lattice temperature of 10 K. Starting from the leftmost well, the layer se-
quence (in nm) of one period with barriers in boldface and n-doped layers (6 × 1015 cm−3) underlined is
18.0/3.4/21.0/1.5/10.0/4.5/11.0/4.0/13.5/3.8/14.5/3.6. Reprinted from C. Jirauschek et al., "Ensemble Monte Carlo
modeling of quantum cascade detectors" [42] (CC BY 4.0).

experimentally measured values in the temperature range 100 K to 300 K are illustrated. Here, the exponential
behavior of the Johnson noise-limited detectivity is replicated. The simulated detectivity of 5.06×107 cm

√
Hz/W

at 300 K compares well with the experimental value of 4.9 × 107 cm
√

Hz/W.

7.1.2 Terahertz Quantum Cascade Detector

Furthermore, our approach has been applied to a GaAs/AlGaAs-based terahertz QCD operating at a wavelength
of around 84 𝜇m [281]. Here, we assume again a 45° double-pass waveguide mesa configuration with a
transmittance at the air/GaAs interface of 70 %.

In Fig. 7.7, the conduction band diagram and energy eigenstates obtained with a Schrödinger-Poisson solver
for a lattice temperature of 10 K are shown. Here, we choose a conduction band offset of 135 meV for the
calculation of the wavefunctions. The thinnest barrier has a width of 1.5 nm, which is approximately three
lattice constants (0.565 nm for GaAs). Figure 7.8 displays the simulated and measured spectral responsivity at
a temperature of 10 K, showing good agreement. Our simulation yields a peak responsivity of 10.6 mA W−1

at 109 cm−1, which compares well with the experimental value of 8.6 mA W−1 at 119 cm−1. The simulated
extraction efficiency of 𝑝e = 0.36 is in reasonable agreement with the experimental estimate of 𝑝e ≈ 0.5,
which was obtained under idealized assumptions [281]. For the two relevant transitions 𝑔 → 𝑎1 and 𝑔 → 𝑎2
absorption efficiencies of 2.4 % and 3.8 % are obtained from the simulation, which agrees reasonably well with
the estimate of 3 % for both transitions, inferred from the calculated dipole matrix elements [281]. However,
the experimentally measured absorption values were below 2 %, which was in part attributed to trapping of
electrons by impurities [281]. In addition to experimental uncertainties, certain effects may be relevant that are
not considered in the simulation, in part because their quantitative influence is not well known. For example,
the measured photocurrent, and therefore the derived responsivity, depends on the extraction from the device
contacts, which are not included in the model.

Furthermore, we have compared the EMC results with simulation results obtained by Martin Franckié from
the Quantum Optoelectronics group at ETH Zurich using a non-equilibrium Green’s function approach [34],
[386], [387]. Here, the responsivity is calculated by simulating the photocurrent under irradiation. This model
has been developed for simulating QCLs under operating conditions, where small (several A/cm2) uncertainties
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Figure 7.8 Responsivity spectrum 𝑅p as a function of wavenumber for the 3.5 THz QCD structure at a temperature of 10 K,
as obtained from the simulation and extracted from experimental photocurrent measurements. Furthermore, a comparison
between EMC and NEGF simulation results is shown for 50 K. Reprinted from C. Jirauschek et al., "Ensemble Monte
Carlo modeling of quantum cascade detectors" [42] (CC BY 4.0).

in the current density due to the limited number of periods and basis states considered are acceptable. However,
the dark currents and photocurrents in QCDs are on a similar order of magnitude as this uncertainty. Therefore,
we have subtracted from the photocurrent a constant offset defined as the photocurrent at a high frequency (160
cm−1) where the simulated absorption is close to zero. The obtained responsivity spectra of both the EMC and
NEGF simulations for a lattice temperature of 50 K are illustrated in Fig. 7.8. The two responsivity peaks of
10.4 mA W−1 at 109 cm−1 and 14.6 mA W−1 at 129 cm−1 from the NEGF simulations are in good agreement
with the EMC results of 7.2 mA W−1 at 110 cm−1 and 6.7 mA W−1 at 129 cm−1. Notably, both the EMC and
NEGF spectra are red-shifted with respect to the measured one. The depolarization shift, not considered in
our simulations, is estimated to be ∼ 0.1 meV [388], and is thus too small to account for the discrepancy.
Another explanation might be that similar fabrication uncertainties as described for the mid-infrared designs
lead to slightly higher measured peak absorption energies. In general, the peak responsivity decreases with
increasing temperature due to the thermal activation of electrons and the resulting occupation of higher-lying
states. According to the EMC simulations, this results for an increase from 10 K to 50 K in a peak responsivity
reduction of 32.1 % at 109 cm−1 and 53.5 % at 129 cm−1, respectively.

Fig. 7.9 shows the simulated current-voltage characteristics of the terahertz QCD without illumination. The
simulated results of the NEGF and EMC models are compared to the experimentally measured values for the
three temperatures 50 K, 100 K and 150 K. As mentioned above, the currents in QCDs are significantly smaller
than in QCLs, which makes the dark current simulation of such terahertz QCD devices with NEGF and EMC
at small biases rather unpractical. In fact, the NEGF simulations only converged for certain bias points and
only showed robust results at 50 K when electron-electron interaction was included [287]. As illustrated in
Fig. 7.9, the experimentally measured dark currents for applied biases below 0.2 V cannot be reproduced by
both simulation approaches. This problem becomes even more manifest for temperatures of 50 K and below,
resulting in even smaller dark current densities. For higher biases, both simulation models can replicate the
measured current-voltage characteristics.

From the experimentally measured dark current at 50 mV [281], we estimate a zero-bias resistance-area
product 𝑅d𝐴d = 300Ω cm2 at 10 K under the assumption that this bias is already in the linear regime. The
simulated resistance-area products of 𝑅d𝐴d = 3Ω cm2 (EMC) and 𝑅d𝐴d = 1Ω cm2 (NEGF) are two orders of
magnitude smaller. For temperatures below 20 K, the dark current is expected to be dominated by a temperature-
independent contribution based on direct tunneling processes [281]. This effect is not included in the EMC



89

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−1

100

101

Voltage in V

Cu
rr

en
td

en
sit

y
in

A
cm
−2

150 K
100 K
50 K

Figure 7.9 The measured current-voltage characteristics of the THz detector design (dots) is compared to results obtained
from EMC (squares) and NEGF including electron-electron scattering (crosses) simulations for 50 K, 100 K and 150 K.
Fits to the experimental results (solid lines) as well as to the simulation results for EMC (dashed lines) and NEGF (dotted
lines) are included using a polynomial function of second degree. Reprinted from C. Jirauschek et al., "Ensemble Monte
Carlo modeling of quantum cascade detectors" [42] (CC BY 4.0).

10 50 100
10−1

100

101

102

103

104

1000/𝑇 in K−1

𝐴
d𝑅

d
in

Ω
cm

2

Exp.
EMC
NEGF

Figure 7.10 Detector resistance-area product 𝐴d𝑅d as a function of the inverse temperature 𝑇−1, as obtained from EMC
and NEGF simulations and extracted from experimental dark current measurements. Reprinted from C. Jirauschek et al.,
"Ensemble Monte Carlo modeling of quantum cascade detectors" [42] (CC BY 4.0).



90

approach but fully accounted for in the NEGF simulations, thus it does not explain the observed discrepancy
between theory and experiment. In Fig. 7.10, the temperature-dependent resistance-area product 𝑅d𝐴d extracted
from the measured current-voltage characteristics and obtained with EMC and NEGF is displayed logarithmically
as a function of the inverse temperature 𝑇−1.

A simulated specific detectivity 𝐷∗ = 1.05 × 109 cm
√

Hz/W is calculated from the EMC scattering rates
at 10 K. By substituting the experimentally measured responsivity 𝑅p = 8.6 mA W−1 and resistance-area
product into Eq. (3.26), we obtain a specific detectivity 𝐷∗ = 6.6 × 109 cm

√
Hz/W at 10 K. Experimentally,

the specific detectivity was measured using a QCL with an emitting wavelength of 87 µm [280] to estimate
the noise equivalent power (NEP) of the THz QCD. With the measured NEP = 7 nW a specific detectivity
of 5 × 107 cm

√
Hz/W at 10 K was obtained [281], which is two orders of magnitude smaller than the value

obtained from the dark current measurement. As it was pointed out above, the dominant noise mechanism
for temperatures below 20 K is not temperature dependent, and thus the simulated detectivity based on our
Kirchhoff’s resistance model, taking into account Johnson noise as the main noise mechanism, cannot replicate
the experimentally measured specific detectivities. The resulting discrepancy between the measured specific
detectivity and the one deduced from the dark current measurements implies a second noise source appearing
in the photocurrent measurements, e.g., additional blackbody radiation entering through the cryostat window of
the measurement setup.

7.2 Bayesian Optimization of Quantum Cascade Detectors

In this section, we present a Bayesian optimization of a QCD device using our monacoQC framework.
The device N1022 detects at a wavelength of 4.7 µm and is based on the lattice-matched material system
In0.53Ga0.47As/In0.52Al0.48As grown on an InP substrate [126]. The conduction band profile and the calculated
wavefunctions are illustrated in Fig. 7.11(a) for the operation temperature 300 K. The QCD structure consists
of multiple periods comprising a doped active quantum well (QW) and an adjacent extraction cascade of QWs
with varying thicknesses. Photo-excitation occurs between the ground level 𝑔 and the two degenerate absorption
levels 𝑎1, 𝑎2 in the active QW, followed by the extraction through the staircase of subbands via longitudinal
optical phonon-assisted tunneling to the ground state of the adjacent period.

The structure N1022 was validated both with our scattering rate model and the EMC approach and the
experimentally measured results compare well with the simulated ones [126]. Here, we investigated the specific
detectivity 𝐷∗, the responsivity 𝑅p, extraction efficiency 𝑝e and resistance 𝑅d in the temperature range 100 K
to 300 K. At 300 K, we obtain a specific detectivity 𝐷∗Matlab = 1.36 × 107 Jones and 𝐷∗EMC = 1.09 × 107 Jones,
respectively. The simulation values show good agreement with measured values of 𝐷∗exp. ∼ 2×107 Jones [126].

The aim of this work is to improve the signal-to-noise ratio of the mid-IR QCD N1022 for the elevated
temperature regime. Therefore, we decided to concentrate on the layer sequence [𝑤1𝑏1𝑤2𝑏2] indicated in
Fig. 7.11(a). To reduce the optimization complexity, the sequence was divided into two subsystems with each
parameter set consisting of three consecutive layers. Furthermore, we can analyze the impact of the changes
in individual layer width on device parameters and thus have more flexibility in the selection of the best layer
composition.

For the BO, we chose a step width of 0.1 Å and a testing interval dW ∈ [−2 Å, 2 Å] added to the nominal
layer width of each considered layer. As an evaluation method, we used the Matlab function calc-scatt. We
performed the BOs with 2000 evaluations using multiple cores to get enough training data for a GP, which is
used to analyze the optimization results. The conduction band profile and wavefunctions of the most successful
scheme in each subset are illustrated in Fig. 7.11(b), (c). The optimization scheme is based on the parameter
set 1, changing the layer sequence [𝑏1𝑤2𝑏2] shown in Fig. 7.11(b), and parameter set 2 by changing the layer
sequence [𝑤1𝑏1𝑤2] depicted in Fig. 7.11(c). In the following, the results of both optimization runs are explained
in detail. In the concluding discussion, we compare both setups and justify the model accuracy and emerging
challenges regarding fabrication tolerances.
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Figure 7.11 Calculated conduction band profile and probability densities of (a) the investigated mid-IR QCD
structure N1022 [126] and the two optimized structures (b) r1_1 and (c) r2_1. The N1022 layer se-
quence of one period with InAlAs barrier layers in boldface and n-doped layers (4 × 1017 cm−3) underlined is
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vestigated parameters for the optimization of the nominal structure N1022. The two optimization schemes (b) [𝑏1𝑤2𝑏2]
and (c) [𝑤1𝑏1𝑤2] are illustrated by blue boxes, respectively. Reprinted from J. Popp et al., "Bayesian optimization of
quantum cascade detectors" [24] (CC BY 4.0).
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Figure 7.12 Dependence of specific detectivity 𝐷∗ (a), (b), peak responsivity 𝑅p (c), (d) and resistance-area product 𝐴d𝑅d
(e), (f) on pairs of parameters, starting from the nominal structure N1022 and using the BO results of parameter set 1 with
layer sequence [𝑏1𝑤2𝑏2]. The red, yellow and blue pentagons indicate the layer sequence of the nominal design N1022
and the optimized structures r1_2 and r1_1, respectively. The labels are defined in Fig. 7.11. Reprinted from J. Popp et
al., "Bayesian optimization of quantum cascade detectors" [24] (CC BY 4.0).
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7.2.1 Parameter Set 1

The parameter set 1 consists of the three layers [𝑏1𝑤2𝑏2] next to the active well. With the layer sequence,
we intend to increase the absorption efficiency 𝜂abs, while keeping Johnson noise low and the extraction
efficiency 𝑝e high. The detection wavelength should only be slightly affected by the optimization, since the
active well layer and thus the absorbing transition are not directly changed. The optimized structure r1_1,
illustrated in Fig. 7.11(b), exhibits a change of the investigated layer sequence by [1.2 Å, 1.2 Å,−0.9 Å]. The
simulation results of this structure are given in Table 7.1. We obtain an improvement of the simulated detectivity
𝐷∗opt. = 2.73 × 107 Jones by factor ∼ 2. As illustrated in Fig. 7.11(b), the change in layer composition results
in a displacement of the two absorption levels. Here, the absorption maximum is shifted to the higher lying
absorption level 𝑎2, whereas the lower lying absorption level 𝑎1 acts then mainly as an extraction level. In this
context, the oscillator strength between the ground level 𝑔 and the absorbing level 𝑎2 is increased significantly.
In summary, the peak responsivity is increased by 100 % and accounts for the great improvement of the specific
detectivity.

Table 7.1 Layer sequence with barrier layers in boldface, peak wavelength 𝜆p, extraction efficiency 𝑝e, peak responsivity
𝑅p, resistance-area product 𝐴d𝑅d and specific detectivity 𝐷∗ of the nominal structure N1022 and the optimized structures.

ID layer sequence 𝜆p 𝑝e 𝑅p 𝐴d𝑅d 𝐷∗

[𝑤1𝑏1𝑤2𝑏2] (nm) (µm) (%) (mA W−1) (Ω cm2) (·107Jones)
N1022 5.1/7.5/1.25/6.5 4.77 19.14 1.22 2.07 1.37
r1_1 5.1/7.62/1.37/6.41 4.72 17.10 2.41 2.11 2.73
r1_2 5.1/7.3/1.15/6.31 4.71 14.45 2.19 2.56 2.73
r2_1 4.9/7.67/1.27/6.5 4.57 24.34 3.03 2.32 3.58
r2_2* 4.8/7.57/1.23/6.5 4.50 28.18 3.32 2.50 4.07

To analyze the obtained optimization results in more detail, we used a GP, trained with the simulation results
of the BO run. Using GP regression, we can predict the changes in specific detectivity 𝐷∗ with variation of
the given layer sequence. In Fig. 7.12, the dependence of the specific detectivity 𝐷∗, peak responsivity 𝑅p and
resistance area product 𝐴d𝑅d on pairs of layer thicknesses in the parameter set is shown. The position of the
nominal structure N1022 is marked by a red pentagon. The specific detectivity 𝐷∗ is influenced mostly by the
well width𝑤2, as depicted in Figs. 7.12(a), (b). Here, we obtain a maximum at the well width of𝑤2 = 11.5 Å and
𝑤2 = 13.5 Å, respectively. The impact of barrier widths 𝑏1 and 𝑏2 on the specific detectivity 𝐷∗ is rather small.
For characterization, we can divide the specific detectivity 𝐷∗ into two parts: the responsivity, depending on the
absorption and extraction efficiency, as a measure for the signal strength, and the detector resistance accounting
for the current noise sensitivity. The optimized structure r1_1, representing the group of optimized structures
at maximum 𝑤2 = 13.5 Å, exhibits a significantly improved peak responsivity due to the increased absorption
efficiency. The structure r1_2 given in Table 7.1 belongs to the other group with maximum 𝑤2 = 11.5 Å. Here,
both the area resistance product 𝐴d𝑅d as well as the peak responsivity 𝑅p are increased [Figs. 7.12(c)-(f)]. An
increased resistance at the cost of reduced extraction efficiency leads to smaller responsivity values, which
explains the difference between both maxima in Figs. 7.12(c), (d). In summary, both optimized structures listed
in Table 7.1 exhibit similar signal-to-noise behavior and an absorption wavelength of ∼ 4.7 µm, which is close
to the absorption wavelength of the nominal structure N1022. Structure r1_1 seems to be more robust with
respect to fluctuations in layer width 𝑤2 than structures r1_2 (Figs. 7.12 (a), (b)). As the first design r1_1 offers
better signal strength and the second design r1_2 favors low noise behavior, one can choose the best-suited
design for different applications.
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7.2.2 Parameter Set 2

The parameter set 2 consists of the three layers [𝑤1𝑏1𝑤2] starting with the active well 𝑤1. Here, we are also
interested in the influence of the layer width of the active well 𝑤1 on the device performance. In order to keep
the absorption frequency shift small, we introduce a new figure of merit

𝑓 (𝑥) = 𝐷∗(𝑥) ×
(
1 − | 𝑓0 − 𝑓p,opt. (𝑥) |

𝑓0

)
, (7.1)

where the specific detectivity 𝐷∗ is multiplied by a weighting factor including the peak absorption frequency 𝑓0
of the nominal structure N1022 and the peak absorption frequency of the sampled structure 𝑓p,opt.. The value 𝑥
represents the parameter set consisting of the layer sequence [𝑤1𝑏1𝑤2].

For the optimized design r2_1, a specific detectivity 𝐷∗ = 3.58 × 107 Jones is achieved, which implies even
better results in absolute values as in BO run 1. The wavelength of 4.57 µm for the optimized design r2_1
is slightly smaller than in BO run 1. Due to the change of well width 𝑤1 = 49 Å, both the ground level 𝑔
and the absorption level 𝑎2 are shifted to higher energy values. The change in energy of absorption level
𝑎2 exceeds that of the ground level 𝑔, which results in a lower absorption wavelength. For all investigated
structures, the transition rate from the absorption level 𝑎2 to level 𝑎1, as well as to the next extraction level, is
dominated by interface roughness scattering. In the case of structure r2_1 we observe an increased scattering
from 𝑎2 → 𝑎1 combined with an attenuated extraction from 𝑎1 to the next extraction level. By comparison of
Fig. 7.11(b) and Fig. 7.11(c), one identifies an increased energy gap between level 𝑎1 and the next extraction
level of structure r2_1, which implies a shift of the dominating scattering mechanism from interface roughness
to longitudinal optical phonon emission. The extraction efficiency 𝑝e = 24.34 % and the resistance-area product
𝐴d𝑅d = 2.32Ω cm2 can thus simultaneously be increased, which results in superior signal-to-noise behavior.

In Fig. 7.13 the specific detectivity 𝐷∗, peak responsivity 𝑅p and wavelength 𝜆p are shown for variation of
pairs of parameters starting with the nominal structure values. Here, we see again a small dependence of the
merit function on the layer width of barrier 𝑏1. As explained before, the decrease of well width 𝑤1 results in
a significant increase of the specific detectivity 𝐷∗ at the expense of a detection wavelength shift. For thicker
well widths 𝑤1, the opposite effect is observed. As illustrated in Figs. 7.13(b), (d) and (f), a strong correlation
between the well widths 𝑤1 and 𝑤2 arises. Here, a balanced choice of these two layer widths is necessary for
the optimization.

The optimization went to the edge of the parameter range for well width 𝑤1 (Figs. 7.13(a), (c)). Therefore,
we decided to extend the optimization range and did a third BO run starting from the optimized structure r2_1.
By further decreasing the well width 𝑤1 = 4.8 Å, the optimized structure r2_2* with a specific detectivity
𝐷∗ = 4.07× 107 Jones can be found. The simulation parameters of structure r2_2* are detailed in Table 7.1. By
shrinking the well width 𝑤1, the specific detectivity can be substantially enhanced at the expense of an undesired
wavelength shift.

7.2.3 Discussion

In this work, we focused on two different parameter sets for the Bayesian optimization of the detector design
N1022 [126], [130]. The parameter set 1 with layer sequence [𝑏1𝑤2𝑏2] ensures a stable optimization of the
specific detectivity without fluctuations or drifts in the detection wavelength. As a consequence of BO run 1, we
identify the influence of barrier width variations (𝑏1 and 𝑏2) on the simulated device parameter to be rather small.
The second parameter set includes the active well 𝑤1 of the QCD. Here, we use specific detectivity multiplied
with a weighting factor as the new figure of merit to ensure a rather stable detection wavelength. The transitions
from absorption level 𝑎2 to the following extractor levels are mainly based on interface roughness. By changing
the well widths 𝑤1 and 𝑤2, we can improve the extraction from level 𝑎2 to 𝑎1 and increase the energy gap from
level 𝑎1 to the next extraction level, which induces a transition of the dominating scattering mechanism from IF
to LO phonon scattering. Here, the reduced scattering leads to an increased detector resistance. Furthermore,
we can improve the absorption efficiency of all optimized structures due to the increased oscillator strength
of 𝑔 → 𝑎2. The important simulation parameters of the optimized structures are listed in Table 7.1, and
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Figure 7.13 Dependence of specific detectivity 𝐷∗ (a), (b), peak responsivity 𝑅p (c), (d) and resistance-area product 𝐴d𝑅d
(e), (f) on pairs of parameters, starting from the nominal structure N1022 and using the BO results of parameter set 2 with
layer sequence [𝑤1𝑏1𝑤2]. The red and orange pentagons indicate the layer sequence of the nominal design N1022 and
the optimized structure r2_1. The labels are defined in Fig. 7.11. Reprinted from J. Popp et al., "Bayesian optimization of
quantum cascade detectors" [24] (CC BY 4.0).
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the responsivity spectra of the different structures together with the nominal structure N1022 are displayed in
Fig. 7.14(a).

As mentioned before, the influence of specific layer widths on the wavefunctions and thus the detector
behavior can vary significantly. Therefore, we decided to use smaller parameter sets, such that we could
analyze correlations and sensitivities between layer widths and device parameters in more detail. The optimized
structures of parameter set 2 imply better results than parameter set 1 in terms of signal-to-noise ratio. On the
other hand, if a specific detection wavelength is crucial, one should concentrate more on parameter set 1. The
defined goals of an optimization run are thus strongly dependent on the given constraints and thus the choice of
the right input parameters is important.

In this BO, we used the scattering model based on Fermi’s golden rule, which does not consider e-e scattering.
EMC simulations including e-e scattering exhibit similar results for the mid-infrared detector N1022, which
confirms the validity of our optimization. For simulations of terahertz structures in the low-temperature regime,
e-e scattering becomes more important and has to be considered [41].

Furthermore, we investigated the sensitivity of our optimization results on variations in the parameter set [22].
These variations can arise through growth fluctuations in the fabrication. Starting from the optimal structure of
each parameter set, a GP was trained to predict changes in the specific detectivity with respect to fluctuations in
the well and barrier widths of the investigated layer sequence. By sampling ∼ 500000 points, we can visualize
the sensitivity of our model by plotting the predicted specific detectivity 𝐷∗ over distance from the optimal
structure r1_1 and r2_1, respectively. Here, the distance is the radius of a hypersphere in the three-dimensional
parameter space. The results are illustrated in Fig. 7.14(b) and show the variation of specific detectivity 𝐷∗
when diverging from the optimal values to a distance of 2 Å. Within a radius of 1 Å the variations of both
structures are small, which ensures robustness against fluctuations. Even for longer distances up to 2 Å, both
structures promise better results than obtained with the nominal structure N1022. As reported in the literature,
small deviations of the period thickness in the range of 1 % to 2 % can be accomplished with the modern
molecular-beam-epitaxy technology [21], [180], [389]. Applying this to the layer sequence [𝑤1𝑏1𝑤2], possible
deviations in the range =1.4 Å to 1.4 Å for this layer sequence can occur during the device growth. Within
this tolerance, our optimization results are still reasonable, and the designs r2_1 and r1_1 show promising
alternatives to the nominal design N1022.
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7.3 Summary

We have presented simulation results for photovoltaic QCD operation in the mid-infrared and THz regime
using an EMC-based modeling approach. The comparison with experimental data yields good agreement for
both mid-infrared and terahertz QCD designs. For the modeling of the short-wavelength design based on a
strain-compensated material system, we have calculated the material parameters including strain effects. The
results are in good agreement with the experiment. Furthermore, the EMC results of the investigated terahertz
structure are compared to NEGF simulations, yielding good agreement. Notably, for low temperatures the
simulated zero-bias resistance of this structure is much lower than the value extracted from the experiment. Due
to its accuracy, versatility and relative numerical efficiency, the presented simulation approach is well-suited for
the systematic optimization of QCD structures.

Therefore, we have combined it with the Bayesian optimization algorithm and used the QCD design N1022 as
a test setup. The approach exhibits precise and robust optimization results. Investigating two different parameter
sets, the specific detectivity 𝐷∗ of the nominal structure can be improved by a factor of ∼ 2 − 3. The oscillator
strength between ground level 𝑔 and absorption level 𝑎2 leads to a significantly increased absorption efficiency
𝜂abs, thus resulting in peak responsivities 2-3 times higher than for the nominal structure N1022. Using a
GP trained with the simulation results of the BO runs, we can make assumptions about the sensitivity of the
optimized designs regarding fabrication tolerances. The optimized structures of both parameter sets appear to
be quite robust against growth layer variations. For this optimization approach, we have used a scattering model
based on Fermi’s golden rule. For further optimizations, we will also use the self-consistent EMC model for
the evaluation of QCD figures of merit, and compare them with the scattering rate approach used in this work.

For the design and optimization of on-chip applications in environmental sensing based on quantum cascade
devices, this approach could be useful, e.g., for temperature optimization. It further enables the investigation
of the robustness of a design against manufacturing tolerances by stochastic sampling of points in the design
parameter space.
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8 Multi-Domain Modeling of Free-Running
Frequency Comb Formation in Quantum
Cascade Lasers

Optical frequency comb emission in quantum cascade lasers is highly attractive for applications in metrology
and sensing. Here, the large third-order nonlinearity 𝜒 (3) present in QCLs leads to broadband FWM processes,
that trigger mode proliferation. Recently, coherent OFC mode-locking in a novel operation regime with large
intermodal spacing was demonstrated in QCLs. These self-starting harmonic frequency combs show highly
phase-stable operation and promise interesting perspectives toward optical or even quantum communication.
Aiming for a full understanding of the physical mechanisms behind the HFC generation and harmonic ordering,
a detailed theoretical characterization of the QCL gain medium is required. Here, we present a numerical
study of coherent OFC emission in QCLs based on our self-consistent multi-domain modeling approach. Our
theoretical characterization is divided into stationary carrier transport simulations, based on the ensemble Monte
Carlo method, and dynamical simulations of the light-matter interaction, based on multilevel Maxwell-density
matrix equations. We investigate the influence of the chosen eigenstate basis on the gain spectrum and present
self-consistent simulation results of stable HFC operation in a double metal terahertz QCL. In our simulations,
the studied QCL gain medium shows self-starting harmonic mode-locking for different bias and waveguide
configurations, resulting in a mode spacing of up to twelve times the cavity round trip frequency. Furthermore,
we characterize the spectral time evolution of the coherent HFC formation process, yielding the spontaneous
build-up of a dense multimode state which is gradually transferred into a broad and clear harmonic OFC state.
Finally, we also analyze the noise contributions to the comb characteristics using the Langevin extensions.

Gas sensors based on THz OFC QCL sources show great potential for mobile applications. Unfortunately,
direct THz quantum cascade laser frequency comb generation is currently not achievable at room temperature.
However, THz comb generation based on intracavity difference frequency generation in mid-infrared QCLs
is a promising alternative. Here, DFG in the active region of a dual-wavelength mid-IR QCL is considered
for the generation of THz radiation. The mixing process and thus THz generation requires a high second-
order intersubband nonlinear susceptibility in the QCL active region, and can be obtained by targeted quantum
engineering. The associated nonlinear effects are included in the Hamiltonian of our Maxwell-density matrix
simulation approach. Notably, such simulations require a full-wave Maxwell-density matrix solver which does
not employ the common rotating wave approximation, as a broadband optical field extending from the THz
to the mid-IR region is investigated. Our modeling approach and the obtained simulation results for two THz
DFG-QCL comb setups are validated against experimental data, showing reasonable agreement. Furthermore,
we obtain a locked frequency-modulated comb state for the mid-IR and THz regimes.

Section 8.1 is largely based on Section III of J. Popp, L. Seitner, F. Naunheimer, et al., “Multi-domain modeling of free-running
harmonic frequency comb formation in terahertz quantum cascade lasers”, IEEE Photonics J., vol. 16, no. 2, p. 0 600 711, 2024.
doi: 10.1109/JPHOT.2024.3370189, an open access article published under the terms of the Creative Commons Attribution 4.0
International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

The noise characteristics presented in Subsection 8.1.3 are reproduced from Section III B of J. Popp, J. Stowasser, M. A. Schreiber, et
al., “Modeling of fluctuations in dynamical optoelectronic device simulations within a Maxwell-density matrix Langevin approach”,
APL Quantum, vol. 1, no. 1, p. 016 109, 2024. doi: 10.1063/5.0183828, an open access article published under the terms of
the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Section 8.2 is largely based on Section III of J. Popp, L. Seitner, M. A. Schreiber, et al., “Modeling of self-starting harmonic
mode-locking in THz quantum cascade lasers”, in Infrared Terahertz Quantum Workshop (ITQW 2023), Jun. 2023, an open access
article published under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.
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The chapter is structured as follows: In Section 8.1, simulation results for self-starting harmonic mode-
locking in a THz QCL are presented. Since several theoretical analyses of QCL gain media have shown that
the chosen wavefunction basis has a significant influence on the gain properties, we first analyze the influence
of the eigenstate basis on the laser output state. The influence of the basis set on the gain characteristics and
the harmonic mode-locking behavior is discussed here. Additionally, we illustrate frequency-resolved results of
the unsaturated gain profile, obtained by pump-probe dynamical simulations, and long-term simulations of the
four quantum well QCL in harmonic comb operation. We investigate the influence of the applied bias and the
waveguide geometry on the harmonic ordering and characterize the spectral time evolution of the self-starting
harmonic mode-locking mechanism. Furthermore, we discuss the effects of noise contributions on the THz HFC
characteristics. Section 8.2 presents simulation results of intracavity terahertz comb difference frequency gener-
ation in mid-infrared quantum cascade lasers. Firstly, we present stationary charge carrier transport simulations
of the given structures based on the EMC method and compare them with the corresponding experimental data.
Secondly, dynamic simulations of the light-matter interaction using the open-source Maxwell-density matrix
simulation tool mbsolve are provided. The chapter concludes with a short summary.

8.1 Self-Starting Harmonic Mode-Locking in Terahertz Quantum Cascade
Lasers

In the following, we present simulation results for a self-starting THz HFC QCL setup [73], [181]. The device
consists of a four quantum well active region, which is embedded in a double-metal waveguide featuring high
facet reflectance. A schematic of the THz HFC QCL setup is illustrated in Fig. 1.4. As described above,
we investigate the influence of the chosen eigenstates basis on the gain spectrum and present self-consistent
simulation results of stable HFC operation with a mode spacing of 4 × 𝑓rt. Furthermore, we investigate the
influence of the applied bias and waveguide geometry on the harmonic ordering. Finally, we characterize the
spectral time evolution of the self-starting harmonic mode-locking mechanism.

8.1.1 Influence of Wavefunction Basis Sets on the Coherent Operation in THz HFC QCLs

For an adequate optical and electrical description of the THz QCL active gain medium, we take into account five
wavefunctions in one active period. The QCL system is investigated using extended and localized wavefunction
configurations within the SP solver. Electron injection into the upper laser level is governed by resonant tunneling
from the injector state of the adjacent period [blue rectangle in Fig. 2.7(b)] and can be appropriately described
within the tight-binding model [35], [36]. Additionally, we take into account further coherences arising from
closely aligned energetic levels by applying an EZ-transformation [184]. Here, eigenstates separated by an
energy of less than 5 meV are summarized within a multiplet of states. These subsets of eigenstates are
diagonalized with respect to the dipole moment operator [184]. A transformed triplet of states within the
investigated THz QCL configuration is schematically illustrated in Fig. 2.7(c) by an orange rectangle. For
the characterization of the full dynamical range extending from single-mode operation to fundamental and
harmonic comb states, carrier transport simulations over an extended bias range have been conducted for the
two configurations, respectively. In the following, we analyze the unsaturated gain behavior of the four quantum
well QCL gain medium.

In Fig. 8.1, the peak gain and center frequency for the bias range 40 mV/period to 60 mV/period are illustrated.
We can identify two operating regimes. In the lower bias range < 51 mV/period, both the peak gain and center
frequency for the localized states tend towards higher values compared to the extended states. Due to the strong
localization of ULL and LLL in space, the transition exhibits a smaller lifetime broadening for the optical
transition, resulting in narrower gain curves with increased peak values. The center frequency is also higher, as
the EZ-transformation shifts the eigenenergies of the triplet of wavefunctions [LLL, depopulation level 1 (DP1),
and 2 (DP2)] towards a collective energy level, which is below the LLL eigenenergy of the extended states. In
the second bias interval > 51 mV/period, the peak gain value for the extended states collapses, while the optical
frequency continues to increase successively. The wavefunctions depicted in Fig. 2.7 are obtained for an applied
bias of 50 mV/period, which is close to the intersection of the two intervals. The energy position of the two
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Figure 8.1 Monte Carlo simulation results of the THz QCL gain medium using extended (orange diamonds) and localized
states (blue squares). Simulated unsaturated peak gain values (a) and center frequencies (b) are shown as a function of
the applied bias 𝑉 . The bias window is divided into two operating regimes, which are highlighted by shades of green and
blue. The specific characteristics of the different configurations within the two regimes are explained in the text. Reprinted
from J. Popp et al., "Multi-domain modeling of free-running harmonic frequency comb formation in terahertz quantum
cascade lasers" [178] (CC BY 4.0).

wavefunctions INJ and LLL at the injection barrier becomes crucial within the second interval [green rectangle
in Fig. 2.7(a)]. By increasing the bias, the anticrossing energy gap is gradually reduced until the crossing point
of eigenenergies is reached. This crossing process for the extended states is accompanied by a wavefunction
extension for the INJ and ULL levels across the injection barrier. The increasing impurity dephasing rate due to
the ionized donors in the injection well results in a broadened gain curve with a reduced peak value. In contrast,
we have a strong spatial localization of these wavefunctions in the localized states configuration as illustrated
in Fig. 2.7(c) (blue rectangle), leaving the gain characteristics unaffected by artificial broadening mechanisms.
At 55 mV/period, we identify a small frequency drop for the localized states configuration, as the energy gap
between the lower laser level LLL and the depopulation level DP1 exceeds 5 meV and the EZ-transformation for
this subset of wavefunctions is no longer conducted. The wavefunctions of the LLL have a similar shape in both
configurations. Besides, the peak gain value in the extended states configuration gradually grows for increasing
bias values, as the two wavefunctions INJ and ULL separate again in energy. The presented carrier-transport
results are publicly available and can be found in the monacoQC GitHub repository [254].

From the stationary carrier transport simulation results, we can extract the quantum-mechanical description
of the QCL active gain medium and use it as input for the dynamical Maxwell-DM solver. To specify the
influence of the tunneling transition INJ → ULL on the spectral gain profile, we perform a dynamical gain
analysis within the Maxwell-DM framework. As incoherent tunneling is absent in the extended state basis, but
this is the major injection mechanism to the ULL in the diagonal transition design, we do not consider this
configuration in the following dynamical simulations. For the modeling of the gain characteristics within the
mbsolve framework, we seed a weak Gaussian pulse on the left facet and record the electric field at the middle
of the 4 mm waveguide to measure the light amplification within the active gain medium [55], [360]. A linear
field loss term 𝛼0 = 6.5 cm−1 extracted from COMSOL simulations for a copper-copper (Cu-Cu) double-metal
waveguide [73] is included in the simulation setup and has to be taken into account for the interpretation of the
dynamical simulation results. The obtained unsaturated gain spectrum is depicted in Fig. 8.2 for the localized
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Figure 8.2 Spectrum of the Maxwell-DM simulation setup at a bias of 𝑉 = 50 mV/period. The individual comb lines
follow well the unsaturated gain curve, proving the validity of the self-consistent multi-domain simulation approach. Inset:
Zoom on the radiofrequency beatnote with a numerical frequency resolution of 1 MHz. Reprinted from J. Popp et al.,
"Multi-domain modeling of free-running harmonic frequency comb formation in terahertz quantum cascade lasers" [178]
(CC BY 4.0).

states configuration. We obtain a strong gain lobe for the optical transition accompanied by a weak side gain
lobe at the lower frequency, which results from the incorporation of the tunneling transition INJ→ ULL in the
system Hamiltonian.

In recent years, the linewidth enhancement factor has become an important parameter for the description
of QCL dynamics [51], [70]. It gives a measure for the coupling between amplitude and phase fluctuations
in semiconductor lasers with fast gain dynamics and was initially introduced in the linewidth theory of semi-
conductor lasers, going beyond the Schalow-Townes limit [390]. Microscopic models of varying complexity,
e.g., based on EMC [391] and NEGF [392] simulation approaches, were used to calculate the LEF factor in
QCLs. In our full-wave Maxwell-DM equations, the LEF factor is introduced by the gain asymmetry resulting
from the tunnel coupling between the INJ and ULL states, while assuming that other contributions, e.g., due
to nonparabolicity, play a secondary role in this THz QCL. To extract the LEF, we carry out pump-probe
simulations with a Gaussian pulse as seed, where we iteratively increase the pulse power until the gain clamping
condition is reached. The LEF, also known as 𝛼-factor, can be computed at the center frequency 𝜔c using

𝛼 =
𝜕𝐼ℜ𝔢{𝜒(𝜔c)}
𝜕𝐼ℑ𝔪{𝜒(𝜔c)} . (8.1)

Here, 𝜒(𝜔) is the complex susceptibility of the QCL gain medium. By slightly changing the pulse power in
the dynamical simulations, we can calculate a LEF in the QCL design. An 𝛼-factor of ∼ −0.1 is obtained for
a bias of 50 mV period−1. This is in good agreement with experimental and theoretical findings [52], [176],
[392]–[395].

Furthermore, we conduct long-term simulations with an end time of 𝑡e = 1 000 ns to characterize the particular
mode-locking behavior. We obtain harmonic comb emission with a mode spacing of 4× 𝑓rt, located around the
center of the gain maximum, determined by the pump-probe simulations. The intensity spectrum is depicted in
Fig. 8.2, illustrating HFC emission with seven clear and narrow comb lines. The appearance of the associated
harmonic beatnote, and the absence of the fundamental beatnote and its intermediate harmonic beatnotes, prove
the purity of the harmonic state. A linewidth substantially below the numerical frequency resolution of 1 MHz
is detected in the inset at 35.7 GHz of Fig. 8.2.
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8.1.2 Analysis of Harmonic Mode-Locking Regimes in THz QCL Waveguides

In this section, we proceed with dynamical simulations using the QCL system based on the localized states
configuration. From the simulation results in Fig. 8.2, we find that the contribution of the gain lobe caused
by injection tunneling to the HFC mode proliferation is negligible. This is reflected in the small magnitude of
the 𝛼-factor, as discussed above. Furthermore, all HFC modes lie within the gain lobe arising from the optical
transition between ULL and LLL. Therefore, we omit the Rabi energies corresponding to injection tunneling
in the quantum-mechanical description and include additional scattering rates for the carrier injection. In the
following, we present a HFC analysis of different bias values and waveguide geometries. Furthermore, we
analyze the temporal evolution of the HFC modes.

Applied Bias

Initially, we set the facet reflectance to 0.5, which arises from the high impedance mismatch in double-metal
waveguides [55], [73], [396]. Here, the facet reflectance can vary between 𝑅 = 0.5 − 0.9 depending on the
waveguide dimensions relative to the wavelength [6], [396]. The chosen reflectance value is thus at the lower
limit. Various strategies for reducing the waveguide loss and attenuating the lasing of higher-order transverse
modes in THz QCL setups are discussed in the literature [118]. Harmonic comb emission in THz QCLs was
recently demonstrated by the use of a low loss Cu-Cu waveguide [73]. In contrast to gold-gold waveguides,
where the HFC gradually builds up from a single mode, the HFC in Cu-Cu waveguides emerges spontaneously
and alternates over the operating bias range with fundamental comb and high-noise states. The lower waveguide
loss in Cu-Cu waveguides leads to a wider dynamic range and increased intracavity fields. The latter becomes
important for the FWM processes, which are proportional to the cube of the electric field intensity. Harmonic
comb states at bias points far above the laser threshold are detected. We conduct simulations for different bias
values within the operation regime presented in Section 8.1.1 and obtain HFC emission spectra of varying
harmonic orders. The distinct coherent comb regimes for three representative bias points are illustrated in
Fig. 8.3. At smaller bias values of around 48 mV/period we obtain a dense/fundamental comb [Fig. 8.3(a)
top]. A clear beatnote at 9.05 GHz is detected. The radiofrequency spectrum is shown in Fig 8.3(b) top, also
containing higher beatnotes arising from the beating of wider-spaced modes. A regular field pattern consisting
of a periodically repeating waveform at each roundtrip is retrieved, where a snippet of two roundtrips is depicted
in Fig. 8.3(c) top. In recent years, the spectral and time domain properties of free-running THz QCLs have
been extensively investigated both theoretically [50], [52], [55], [119], [120] and experimentally [110], [111],
[114], [116], [118]. Self-starting OFC emission in THz QCLs is characterized by a simultaneous frequency-
and amplitude-modulated signal. In the upper panel of Fig. 8.3(c), parts of the electric field profile exhibit
a flat behavior, which can be explained by the help of the time-varying instantaneous frequency profile, also
illustrated in Fig. 8.3(c). In the first time interval of ∼ 20 ps, the electric field is governed by a single frequency
mode, which acts as the dominant one in the intensity spectrum in Fig. 8.3(a). By applying a higher bias of
50 mV/period a harmonic comb with a mode spacing of 4× 𝑓rt ≈ 36.12 GHz is obtained [see Fig. 8.3(a) middle],
similar to the HFC results in Section 8.1.1. The associated RF spectrum is presented in Fig. 8.3(b) middle.
In the time domain, a periodic waveform with four repetitions per roundtrip is visible [Fig. 8.3(c) middle].
As expected, the corresponding instantaneous frequency features the same periodicity as the amplitude. On
closer inspection, it is clearly visible that only the strongest modes within a ∼ 10 dB power range of the optical
spectrum contribute significantly to the temporal behavior of the instantaneous frequency. The quasilinear chirp
is in good agreement with recently published experimental results for THz QCL OFCs [116], [118]. By further
increasing the bias towards regimes of decreasing unsaturated gain values, the separation of the locked modes
reduces again [see Fig. 8.3(a) bottom]. At a bias value of 54 mV/period a beatnote at the second harmonic
roundtrip frequency of 17.83 GHz is detected [see Fig. 8.3(b) bottom]. The harmonic time signal repeats twice
per roundtrip and is together with the instantaneous frequency shown in Fig 8.3(c) bottom. Here, the linear
chirp trend is even more pronounced as for the HFC of the fourth order. By increasing the bias further, we
obtain a noisier state, which however reveals tendencies towards higher-order harmonics. The system is then
apparently not stable enough to evolve into a clear HFC state.
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Figure 8.3 Comparison of three coherent regimes in a 4 mm long THz QCL device with a metal-metal waveguide at
80 K [73]. Results of a fundamental frequency comb (top panel, 48 mV/period), harmonic combs of 4× 𝑓rt (middle panel,
50 mV/period) and with a mode spacing of 2× 𝑓rt (bottom panel, 54 mV/period) are presented. (a) Intensity spectra of the
optical radiation for the three regimes exhibiting clear mode spacings. (b) RF spectra with beatnotes at the fundamental
(9.05 GHz), fourth harmonic (36.12 GHz), and second harmonic (17.83 GHz) roundtrip frequency 𝑓rt, respectively. (c)
Time-resolved electric field amplitudes and calculated instantaneous frequency from the Hilbert transform of the simulated
electric field. Arrows indicate the individual waveform period for the three regimes. Reprinted from J. Popp et al., "Multi-
domain modeling of free-running harmonic frequency comb formation in terahertz quantum cascade lasers" [178] (CC
BY 4.0).

The obtained results are in good agreement with experimental findings [73], [170], where OFC states of
varying order are retrieved and the transition from a dense state to a harmonic comb state and back for bias
sweeping in a given interval is documented. Furthermore, we can reproduce the bias-dependent alternation
between different comb states, as it is documented for Cu-Cu waveguides [73]. Obviously, a change in bias
results in a change of center frequency and gain shape, and also the dynamical properties of the quantum
system, e.g., the level lifetimes and dephasing rates, vary with the bias. It is worthwhile mentioning that in our
simulations only one optical transition is considered. This implies that self-starting harmonic mode-locking
can also emerge without the assistance of an asymmetric gain profile, which has been interpreted in earlier
theoretical approaches to be essential [73].

Waveguide Geometries

In the experimental studies, the THz HFC QCL setup was characterized for different waveguide configurations
with variations in the cavity length and width [73]. In order to emulate the changed impedance mismatch for
different waveguide widths in our simulations, we vary the facet reflectance 𝑅 for the THz HFC QCL setup
at an applied bias of 50 mV/period. In addition to the results of Fig. 8.3, we present simulation results for
facet reflectances of 0.32 and 0.8, which represent a single-plasmon and a second double-metal waveguide with
different geometries, respectively. For the reflectance of 0.32, a HFC emission spectrum with a mode repetition
rate of 3 × 𝑓rt is obtained [see Fig. 8.4(a)]. Interestingly, two twin lobes around the center frequency evolve. A
similar shape of the optical spectrum can be derived from experiments in which a HFC state with a mode spacing
of 5× 𝑓rt is obtained at a drive current of 800 mA [73]. In Fig. 8.4(b), the emission spectrum for a reflectance of
0.8 is presented, revealing a HFC state with eighth harmonic order. The changed intracavity dynamics appear
to have an emphasized effect on the harmonic mode ordering. For increased reflectance values, we obtain
higher intracavity fields, affecting both the FWM processes and the spatial hole burning, i.e., the arising spatial
gain modulation in a linear cavity with standing waves. For a noisy operating regime with tendencies towards
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Figure 8.4 Intensity spectra of two harmonic states in a THz QCL at an applied bias of 50 mV/period and a temperature
of 80 K. Simulation results for a facet reflectance of 0.32 (a) and 0.8 (b) are presented. Reprinted from J. Popp et al.,
"Multi-domain modeling of free-running harmonic frequency comb formation in terahertz quantum cascade lasers" [178]
(CC BY 4.0).

higher-order harmonics, an increase of the field strength within the cavity could result in a stabilization to a
coherent state. We therefore execute a simulation of the THz QCL at a bias voltage of 55 mV per period and
facet reflectance of 0.8. A stable HFC with a mode spacing of 12 × 𝑓rt is retrieved. It is obvious that the
free-running THz QCL system is very sensitive to the different environmental parameters, highly affecting the
dynamic behavior of the quantum system and thus the optical output.

Spectral Time Evolution

To gain an intuitive understanding of the spectral time evolution of the harmonic mode-locking in the THz
HFC QCL setup, we investigate the OFC dynamics in the first 50 ns of the Maxwell-DM simulations. Here,
we present simulation results for the three QCL configurations with facet reflectances of 0.32, 0.5 and 0.8 (see
Fig. 8.5). The optical field within the THz QCL cavity is triggered by spontaneous emission events and starts
from dense multimode lasing. From that, it evolves into the HFC state. The temporal characteristics of the
three configurations are similar, whereby small deviations are evident. In Fig. 8.5(a), the HFC formation for
the QCL setup with a reflectance of 0.32 is illustrated. Here, a strong center mode only changes weakly, while
the energy of the emerging harmonic sidemodes increases gradually. The transition from the dense multimode
state to a broad and clear HFC state with a mode repetition rate of 3 × 𝑓rt is clearly recognizable. In the QCL
configuration with a facet reflectance of 0.5, we observe a more inert behavior during the HFC generation [see
Fig. 8.5(b)]. The sub-comb lines with a mode spacing of 1 × 𝑓rt from the strong harmonic pump modes only
slowly fade out over time. This operation regime corresponds to the middle panel of Fig. 8.3(a), where we
identify three strong central modes with similar intensity. In contrast, the two configurations with 𝑅 = 0.32 and
𝑅 = 0.8 (Figs. 8.4, and 8.5(a), (c), respectively), do not show similarly strong modes at the center frequency.
Either the center mode is rather weak, with two stronger side lobes or the center mode is strong, with a strong
decay of intensity in the side modes.

The QCL gain medium features a large third-order nonlinearity 𝜒 (3) [12], [15], which leads in combination
with SHB to a broadband FWM process and strong mode proliferation. In the case of harmonic mode-locking,
the interaction of strong harmonic pump modes reduces the gain in their close spectral environment and thus
acts as parametric suppression of adjacent sidemodes [81]. In addition, a parametric enhancement of widely
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Figure 8.5 Time evolution of the spectral intensity 𝐼 for self-starting harmonic mode-locking in three THz HFC QCL
waveguide configurations at an applied bias of 50 mV/period and a temperature of 80 K. Simulation results for a facet
reflectance of 0.32 (a), 0.5 (b) and 0.8 (c) are presented. Reprinted from J. Popp et al., "Multi-domain modeling of
free-running harmonic frequency comb formation in terahertz quantum cascade lasers" [178] (CC BY 4.0).

detuned modes is present and can clearly be observed in Fig. 8.5(c), showing the spectral time evolution of
the HFC with eighth harmonic order for the QCL setup with a facet reflectance of 0.8. During the temporal
evolution of the HFC, the adjacent sidemodes still get populated by degenerate FWM processes [55]. As long
as the parametric suppression is too weak, the sidemodes can survive and no clear harmonic state evolves. In
the case of the HFC state with the three dominant modes being equally strong and neighboring [see Fig. 8.3
second row and Fig. 8.5(b)], the parametric suppression competes with the seeding of the sidemodes, which
results in a more inert behavior. A supplementary movie in [178] shows the evolution of the twelfth-order HFC
state at a bias of 55 mV/period and for a reflectance value of 0.8. Here the above-mentioned dynamics in the
initial phase of HFC evolution can be clearly seen.

8.1.3 Noise Characteristics in THz QCL Harmonic Frequency Comb Emission

Concerning the experimental investigation of intensity correlations in QCLs [83], we aim to characterize the
noise properties of the self-starting THz QCL HFC setup. The charge carrier transport in the active gain medium
at a bias of 50 kV/period is analyzed using our in-house Monaco framework. For an appropriate description of
the physical properties, we consider five wavefunctions in the active quantum well heterostructure. Furthermore,
one incoherent tunneling transition from the injector state into the upper laser level and one optical transition
are specified for the quantum-mechanical description of the QCL system in the dynamical simulation. The
Python script forrer_2021_50mVperperiod.py with the simulation setup to start the mbsolve simulation is
given in Listing A.1 of Appendix A.1.1 and is furthermore included in the GitHub repository [58]. Here, all
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Figure 8.6 Maxwell-density matrix Langevin simulation results of HFC emission with a mode spacing of 5 FSR in a 4 mm
long THz QCL device with a metal-metal waveguide at 80 K and for𝑉 = 50 mV/period. (a) Intensity spectra of the optical
radiation at the facet. (b) Simulated instantaneous intensity at the facet and calculated instantaneous frequency from the
Hilbert transform of the simulated electric field over a single roundtrip time (rt). Reprinted from J. Popp et al., "Modeling
of fluctuations in dynamical optoelectronic device simulations within a Maxwell-density matrix Langevin approach" [59]
(CC BY 4.0).

input parameters for the full description of the quantum system are extracted from self-consistent DM-EMC
simulations.

In the following, we present simulation results for a 4 mm long double-metal THz QCL with a free spectral
range (FSR) of 9.94 GHz. The intensity spectrum of the THz HFC at 3.5 THz with a mode spacing of 5 FSR is
illustrated in Fig. 8.6(a). The THz QCL emits a broadband HFC with a cavity repetition rate of 49.7 GHz. We
here obtain a slightly different emission behavior as compared to the simulation results without noise presented
in Section 8.1.1. The reflectivity here is increased to 𝑅 = 0.64, which results in an increase of the mode spacing
by 1 FSR. In Fig. 8.6(b), the temporal evolution of the intensity at the facet and the calculated instantaneous
frequency are depicted. We can identify a regular field pattern, which shows a periodic repetition with five
times the roundtrip time. Here, only the three strongest modes are involved in the temporal evolution of the
instantaneous frequency, as their intensities are of similar magnitude and contribute most to the overall comb
emission power.

To specify the degree of coherence of the obtained HFC and for comparison with the experimental findings,
we investigate the RF spectrum using an observation time window of 2 μs. The obtained simulation results
are shown in Fig. 8.7(a), and the clear appearance of the harmonic beatnote proves the purity of the harmonic
state. The linewidth is substantially below the numerical frequency resolution of 500 kHz, which is confirmed
by the zoom on the extremely narrow harmonic beatnote in the inset of Fig. 8.7(a). In addition, we can identify
sub-beatnotes, which arise due to the beating of the center mode with the sub-comb lines. These sub-comb
lines are generated by FWM processes, where the strong harmonic sidemodes act as pump modes and generate
weak sidebands with a frequency spacing of 1 FSR from the corresponding pump modes. As can be seen in
Fig. 8.6(a), the intensities of the sub-modes are at least ∼ 5 orders of magnitude smaller than those of the pump
modes.

To further analyze the noise characteristics of the THz QCL HFC setup, we calculate the relative intensity
noise (RIN) for the total output power and for the power of the five harmonic comb lines contributing most to
the HFC emission. Here, the RIN spectrum can be calculated by

RIN𝑖 ( 𝑓 ) = lim
𝑇→∞

1
𝑇

|
∫ 𝑇

0 [𝑃𝑖 (𝑡) − ⟨𝑃𝑖 (𝑡)⟩]e−i2𝜋 𝑓 𝑡 d𝑡 |2
⟨𝑃𝑖 (𝑡)⟩2

, (8.2)

where 𝑃𝑖 is either the power of a specific mode 𝑖 or the total power 𝑃all. By numerically filtering the electric
field at the facet 𝐸facet(𝑡) using a filter with a 3 dB bandwidth of 20 GHz, we can extract the temporal electric
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Figure 8.7 (a) Simulated RF spectrum of the THz QCL HFC setup with a clear beatnote signal at 49.7 GHz. Inset, zoom on
the harmonic beatnote, indicating a narrow linewidth below the numerical frequency resolution (500 kHz). (b) Calculated
RIN spectra associated with the total power 𝑃all (blue) and the modal power 𝑃𝑖 of each of the five harmonic modes
contributing most to the HFC emission. The colors of the individual RIN spectra correspond to those of the individual
comb lines in Fig. 8.6(a). Reprinted from J. Popp et al., "Modeling of fluctuations in dynamical optoelectronic device
simulations within a Maxwell-density matrix Langevin approach" [59] (CC BY 4.0).

field components 𝐸𝑖 (𝑡) of the individual modes. The RIN results are depicted in Fig. 8.7(b) for the total
power 𝑃all and the power of the five central harmonic modes 𝑃𝑖 with indices 𝑖 = 1 . . . 5. The total power RIN
is around −180 dBc Hz−1, while for the three central harmonic modes having a similar power a RIN around
−155 dBc Hz−1 is calculated. For the remaining two weaker modes 1 and 5 a higher RIN is obtained. This
is in very good agreement with the experimental findings of a three-mode mid-IR HFC QCL setup [83]. For
increasing power, the RIN of the sidemodes decreases to that of the central mode, while sidebands closer to
threshold exhibit a noisier behavior. Furthermore, we identify an overlapping RIN for sidemodes featuring a
comparable power level, which indicates a comparable noise level. A similar result could be retrieved from the
mid-IR HFC RIN measurements [83].

8.1.4 Discussion

With our multi-domain simulation approach, we can replicate the experimental results for stable self-starting
HFC generation of higher orders in THz QCLs. Furthermore, we provide a detailed analysis of the active gain
medium and investigate the influence of the applied bias and waveguide geometries on the HFC formation. Har-
monic states of different orders are retrieved for the different configurations and the experimentally documented
behavior of alternating fundamental and harmonic comb states over the operating bias range is replicated in the
simulations. To better categorize the results, we give a brief overview of existing simulation results of HFC
emission in QCLs based on the MB equation system and compare them with our approach. Furthermore, we
discuss ideas for the next steps to shed light on the physical origins of harmonic mode coupling in QCLs.

Numerical simulation results of QCL harmonic comb generation using a three-level Maxwell-density matrix
model were presented in [75]. For the generation of HFCs of varying order, the simulation was seeded with
an electric field consisting of a weak central mode and very weak sidemodes at higher orders of the intermodal
spacing. Here, they could demonstrate, that the harmonic states are sustained after switching off the electric
field seeding and can describe the typical QCL dynamics when interacting with a strong coherent laser field.
The seeded HFC states were found to be only stable for a few thousand roundtrips, however, degrading to
dense/fundamental states in the long run. More recently, simulation results of fundamental and harmonic
comb generation in QCLs embedded in a Fabry-Perot cavity were published based on the ESMB equation
approach [50], [52]. An extensive study on dense and harmonic regimes was provided and experimental
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features such as the simultaneous amplitude and frequency modulation behavior could be reproduced. However,
self-starting HFC operation could only be demonstrated in second-order using the ESMB equations.

The simulation approaches used in the aforementioned publications for the simulation of self-starting HFC
generation in QCLs are based on the common rotating wave/slowly varying envelope approximation, generally
used to reduce the numerical effort associated with the fast field oscillations [43], [47]. Optical interference
effects such as SHB in Fabry-Perot resonators significantly influence the QCL dynamics and are taken into
account by an inversion grating [47], [54], [67], [68], [70], [122], [159]. Further extensions towards third-order
polarization grating were proposed and considered in studies of Risken-Nummedal-Graham-Haken instabilities
in QCLs [69]. The ESMB equations additionally include a non-zero LEF to account for certain semiconductor
specifics, such as asymmetric gain and dispersion profiles. Within our multi-domain simulation approach,
we utilize the full-wave Maxwell-DM equations and thus intrinsically account for all required effects of self-
starting HFC formation, e.g., higher-order polarization and population gratings, nonlinearities and off-resonant
dynamics. We have extended this approach by the inclusion of stochastic noise terms derived from the quantum
Langevin equations to characterize the noise properties of the THz QCL HFC setup. The simulation results
show good agreement with the experimental results. In fact, this realistic spontaneous emission noise is not
amplified to macroscopic distortions but is intrinsically kept at low values. Therefore, the intermodal beatnote
is still observed to be extremely narrow (below the numerical frequency resolution limit of ≈ 1 MHz), indicating
a high purity of the observed comb states. Higher-order nonlinearities and grating terms were omitted in earlier
HFC simulations employing the RWA, as their importance for HFC formation was considered negligible. Due
to the complexity of our simulation approach, it is not possible to abstract the model. The higher-order grating
terms and nonlinearities, which we will refer to as beyond-RWA effects, appear to have an essential influence
on self-starting HFC formation in QCLs. To provide insights into the governing mechanisms of self-starting
harmonic mode-locking, the crucial beyond-RWA effects have to be identified and characterized using simplified
models. Possibly, the adiabatic elimination of specific terms may provide additional insights. This approach has
already been used for the prediction of purely frequency-modulated combs in mid-IR QCLs [70] or recently for
the description of passive single-pulse mode-locking in THz QCLs with distributed saturable absorbers [67].

Our numerical approach also shows great potential for the modeling of harmonic comb operation in mid-IR
QCLs. The full-wave framework to model THz OFCs created by difference frequency generation in mid-
IR QCLs is presented in the next section, showing good agreement with experimental data [90]. Numerically
reproducing the entire optical spectrum spanning from the THz to mid-IR regime, is only possible by considering
full-wave Maxwell-DM simulations. Broadband mid-IR HFC spectra with large intermodal spacing up to 26
times the free spectral range of the laser cavity were experimentally demonstrated [79], [171], pushing towards
the intrinsic bandwidth limitations of MB models invoking the RWA. For such scenarios, our here-discussed
approach might not only be applicable, but even necessary.

8.2 Intracavity Terahertz Comb Difference Frequency Generation by
Mid-Infrared Quantum Cascade Lasers

In the following, we present simulation results for two different THz DFG-QCL setups. One setup consists of
a single-phonon resonance depopulation (SPR-depopulation) structure [192], whereas the other setup is based
on a dual-upper state active region [193]. The conduction band profile together with the probability densities
of the wavefunctions for both QCL setups are illustrated in Fig. 8.8. For a complete characterization of the
electrical and optical properties we divide this section into two parts: Firstly, we present stationary charge
carrier transport simulations of the given structures based on the EMC method [29] and compare them with
the corresponding experimental data [192], [193], [397]. Secondly, dynamic simulations of the light-matter
interaction using the open-source Maxwell-density matrix simulation tool mbsolve are provided. Here, we can
reproduce the experimentally obtained results and demonstrate THz frequency comb generation in DFG-based
QCLs by self-consistent modeling [205], [206].
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Figure 8.8 Investigated conduction band profiles and probability densities of the two mod-
eled THz DFG-QCL structures. (a) Single-phonon resonance depopulation scheme based
on a strain-balanced In0.37Al0.63As/In0.65Ga0.35As/In0.53Ga0.47As material system at a lat-
tice temperature of 293 K [192]. The layer sequence (in nm) of one period is
2.7/2.1/0.9/3.2/2.6/0.9/3.0/2.1/1.7/2.4/1.5/1.5/2.0/1.3/1.6/1.8/1.3/1.7/2.8/1.9/2.8/2.4/2.8, well layers with
In0.53Ga0.47As are highlighted in italic, for the underlined layers a doping density of 1.7 × 1017 cm−3 (n-type)
is assigned, and the applied bias is 50 kV cm−1. Here, tight-binding (solid lines) and extended states (dashed
lines) are illustrated. (b) Bandstructure of the dual-upper state active region based on a strain-compensated
In0.6Ga0.4As/In0.44Al0.56As material system at a lattice temperature of 78 K [193]. The layer sequence (in nm) of one
period is 3.7/2.4/2.6/6.0/0.9/4.9/1.1/4.5/1.2/3.6/1.5/3.2/1.6/3.0/1.8/2.9/2.1/2.8/2.4/2.7/2.8/2.6, barriers are in
boldface, and n-doped layers (Si, 1 × 1017 cm−3) are underlined. The applied bias is here 56 kV cm−1. (c) Schematic
description of the DFG processes in the single-phonon resonance depopulation structure (Fig. 8.8(a)). (d) Schematic
description of the DFG processes in the dual-upper state active region (Fig. 8.8(b)). Reprinted from J. Popp et al.,
"Self-consistent simulations of intracavity terahertz comb difference frequency generation by mid-infrared quantum
cascade lasers" [90] (CC BY 4.0).
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8.2.1 Stationary Carrier Transport Simulations

To classify the efficiency of the nonlinear mixing process and the potential for broadband THz comb emission,
we investigate the gain spectrum in the mid-IR regions and characterize the strength of the nonlinearity in
the active gain region. Here, the optical gain is calculated with Eq. (3.28) and the second-order nonlinear
susceptibility 𝜒 (2) with Eq. (3.30).

Single-Phonon Resonance Depopulation Structure

The modeled THz DFG-QCL design consists of a SPR-depopulation structure emitting at 𝜆 ∼ 7.8 µm and is
based on strain-balanced InGaAs/InAlAs; experimental data can be found in [192], [205]. At the operation
temperature of 293 K, a CBO of 740 meV was specified in literature [192], and is used in this work for the
calculation of the wavefunctions. Here, we investigate the THz DFG-QCL device for two potential approaches,
as is illustrated in Fig. 8.8(a). On the one hand, we use a tight-binding potential 𝑉tb for the calculation of
nine wavefunctions per period giving rise to one upper laser level and three lower laser levels. The injection
of charge carriers into the upper laser level is modeled here by resonant tunneling from two injector states
of the adjacent period. The calculated coupling strengths of the two narrowest anticrossed pairs of tunneling
states are 2ℏΩ45 = 14 meV and 2ℏΩ35 = 17.8 meV, which is in good agreement with the coupling strength
2ℏΩ = 16.5 meV determined in the experimental paper [192]. Notably, the tunneling transitions fully contribute
to the DFG process in the dynamic Maxwell-density matrix simulations. However, no predictions about their
contributions to the second-order nonlinear susceptibility can be made within the tight-binding approach, as the
dipole moments 𝑑45, 𝑑35 are insignificantly small due to the strong localization of the states to the left and right of
the injection barrier. It is important to take into account also the extended state approach for the characterization
of the nonlinear susceptibility since it was proposed in the experimental paper [192] that the injector levels
can have a substantial impact on the DFG process. With the actual potential 𝑉 we can determine the extended
states. One of the injector states in the tight-binding approach now acts as an additional upper laser level. The
lower laser levels as well as the depopulation miniband for the actual potential 𝑉 do not change significantly
in position and probability densities in comparison to the corresponding tight-binding levels. For the carrier
transport simulations of the SPR-depopulation QCL design an average interface roughness height Δ = 0.06 nm
is selected to obtain realistic simulation results [102]. With the interface parameter product ΔΛ ≈ 1 nm2, the
experimental estimate for the InGaAs/InAlAs material system [398], [399], a correlation length Λ = 16.67 nm
is calculated.

In Fig. 8.9(a), the normalized gain curve from the EMC simulation for tight-binding as well as extended states
and the experimentally measured electroluminescence (EL) curve from [192] are illustrated. We obtain simulated
linewidth values of ∼ 412 cm−1 and ∼ 442 cm−1 for tight-binding states and extended states, respectively. The
experimentally measured linewidth of ∼ 380 cm−1 is slightly narrower, however, the EL measurement was
performed at a higher bias compared to the simulation. The bias change gives rise to varying lasing channels,
thus the dominant optical transition in the simulation is 5 → 1, while in the EL setup, 4 → 2 is the dominant
optical transition. The applied QCL bias in this work is adjusted for efficient THz DFG-QCL comb generation
and is derived from the P-I-V characterization given in [205]. In addition, we see a small blue shift of the
simulated curves with respect to the measured spectrum, although calculated wavefunctions and eigenstates are
in good agreement with the ones shown in [192] at the given bias of 65 kV cm−1. Minor inaccuracies in the
calculation of the simulation parameters, e.g., CBO, could arise with the natural limitation of our theoretical
model. On the other hand, small deviations could also stem from process uncertainties during the fabrication,
i.e., layer thickness variations, which we cannot account for in the simulation [400].

In Fig. 8.9(b), the level broadening 𝛾𝑖 and the relative level occupation 𝜌𝑖𝑖 in the relevant period are shown
as a function of the subband energy. We obtain a similar thermalized behavior of relative level occupations
in the lower lying levels for both approaches. Level 3 acts as an efficient injector to upper laser level 5 in the
tight-binding approach, whereas in the extended state approach, it acts more like an electron trap. With the
given average doping of the active region ∼ 2.1×1022 m−3 [192] we obtain mean population inversion densities
Δ𝑁5,ext ≈ 1.9 × 1021 m−3, Δ𝑁5,tb ≈ 2.5 × 1021 m−3, and Δ𝑁4,ext ≈ 2.8 × 1021 m−3 for extended and tight-
binding states, respectively. The level broadenings of the lower laser levels are almost identical for extended
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Figure 8.9 Simulation results of the SPR-depopulation design. (a) Normalized gain vs. wavenumber for simulated
tight-binding (tb) (solid line) and extended (ext) states (dashed line), together with the measured EL curve (dotted line,
from [192]). The spectral range of the FP comb at 𝜔2 and of the single DFB mode at 𝜔1 is indicated by the shaded area
and dashed line, respectively. (b) Simulated level broadening 𝛾𝑖 (circles) and relative level occupation 𝜌𝑖𝑖 (squares) of
the extended states (open marks) and tight-binding states (filled marks) for one QCL energy period as a function of the
subband energy (see Fig. 8.8(a)). Reprinted from J. Popp et al., "Self-consistent simulations of intracavity terahertz comb
difference frequency generation by mid-infrared quantum cascade lasers" [90] (CC BY 4.0).

Table 8.1 Near-resonance DFG triplets of states and resulting second-order nonlinear susceptibility 𝜒 (2) for the SPR-
depopulation QCL active gain medium. All parameters are considered for extended states, except the triplet of state
(1)’, where the tight-binding solutions are presented. Listed are the resonance energy ℏ𝜔𝑖 𝑗 , pure dephasing energy 𝛾𝑖 𝑗 ,p
(interface roughness contribution) in meV and transition dipole moments 𝑧𝑖 𝑗 in nm for the mid-IR pump frequencies (𝜔1,
𝜔2) and the THz mode (𝜔THz). Reprinted from J. Popp et al., "Self-consistent simulations of intracavity terahertz comb
difference frequency generation by mid-infrared quantum cascade lasers" [90] (CC BY 4.0).

Triplet
𝜔1 𝜔2 𝜔THz

𝜒 (2) / nm V−1
ℏ𝜔𝑖 𝑗 𝑧𝑖 𝑗 𝛾𝑖 𝑗 ,p ℏ𝜔𝑖 𝑗 𝑧𝑖 𝑗 𝛾𝑖 𝑗 ,p 𝑧𝑖 𝑗 𝛾𝑖 𝑗 ,p

(1) 184.7 1.15 6.18(61 %) 166.6 1.01 9.55(55 %) 7.99 1.76(75 %) −1.79 + i1.42
(1)’ 178.3 −1.49 8.60(80 %) 160.2 1.30 12.83(72 %) 8.07 1.77(75 %) −4.99 + i3.38
(2) 166.6 1.01 9.55(55 %) 153.5 −0.65 11.46(40 %) 6.58 2.37(68 %) −2.04 + i0.31
(3) 171.5 −0.75 8.28(42 %) 7.99 1.76(75 %) −1.55 + i1.25
(4) 184.7 1.15 7.57(50 %) 171.5 −0.75 8.28(56 %) 6.58 2.38(68 %) −1.89 + i0.09
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and tight-binding states, where we obtain the averaged values 𝛾1 = 7.96 meV, 𝛾2 = 8.14 meV. For the two
upper laser levels in the tight-binding approach, the level broadenings 𝛾4 = 11.17 meV and 𝛾5 = 11.66 meV are
extracted from the EMC simulations and are relatively high due to the tunneling contributions. In comparison,
the corresponding level broadenings for the extended states are considerably smaller, with 𝛾4 = 6.66 meV
and 𝛾5 = 7.02 meV. In Fig. 8.8(c), the four triplets of states contributing most to the resonant second-order
nonlinear susceptibility 𝜒 (2) in the extended state configuration are illustrated. For the tight-binding approach,
we investigate only a single triplet of states (1)’, which corresponds to the extended states triplet (1) consisting
of the states 5, 2 and 1. All additional parameters for the calculation of the second-order nonlinear susceptibility
are summarized in Table 8.1. If we compare the pure dephasing energies for the two corresponding triplets
(1) and (1)’, we identify shifts in the scattering contributions. The main mechanism accounting for the pure
dephasing is interface roughness scattering, however, due to the extension of the upper laser levels for the
actual potential 𝑉 into the doping region, ionized impurity scattering plays a more important role in the
extended state configuration. Taking this into account, we calculate the total dephasing energy for the mid-IR
transitions of triplets (1) and (1)’ and obtain Γ52,ext. = 17.02 meV, Γ51,ext = 13.72 meV, Γ52,tb = 22.66 meV, and
Γ51,tb = 18.53 meV. These values are in good agreement with values stated in literature [192], giving a transition
linewidth of ∼ 15 meV to 20 meV. For the THz transition, total pure dephasing energies Γ21,ext = 9.76 meV
and Γ21,tb = 9.88 meV are calculated, respectively. As schematically indicated in Fig. 8.9(a), the mid-IR pump
wavelengths (𝜆1, 𝜆2) are specified at the DFB mode 𝜆DFB = 7.25 µm and at FP modes around 𝜆FP ∼ 7.81 µm.
The transition dipole moments and calculated susceptibilities 𝜒 (2) for the five triplets are listed in Table 8.1.
The four triplets in extended state configuration add up constructively, resulting in a total susceptibility value
|𝜒 (2) | = 7.82 nm V−1. For the tight-binding triplet (1)’ a total value |𝜒 (2) | = 6.03 nm V−1 is obtained. The
values are somewhat smaller than the one given in [192] of |𝜒 (2) | = 20 nm V−1. This is attributed to the fact that
the given wavelengths 𝜆DFB and 𝜆FP could be inappropriate for the calculation of |𝜒 (2) | based on the simulation
results, as we obtain a blue shift (∼ 40 cm−1) compared to the experimental data.

Dual-Upper State Active Region

The investigated QCL is based on a DAU active region with 𝜆 ∼ 6.8 µm and consists of strain-compensated
InGaAs/InAlAs layers; experimental data can be found in [82], [193], [397]. For the operation temperature
of 78 K a CBO of 670 meV is calculated. As depicted in Fig. 8.8(b), the active gain medium constitutes
12 wavefunctions per period with two strongly anticrossed upper and multiple lower laser levels (miniband).
Injection takes place via resonant tunneling from the electron states of the adjacent period. In the simulation,
tunneling transitions from the lowest-lying injector level into the upper laser levels 4, 5 are found to be the
strongest with coupling strengths of 2ℏΩ56 = 8.8 meV and 2ℏΩ54 = 8.6 meV, respectively. Multiple lasing
channels from the upper laser levels to the lower-lying miniband, featuring equal transition oscillator strengths,
contribute to an extremely broad gain spectrum [397]. An improved device performance at room temperature
compared to the BTC designs is obtained even without the need for heterogeneous cascades. In Fig. 8.10(a), the
simulated and normalized gain curves for operating temperatures of 78 K and 300 K are depicted. Additionally,
the measured EL spectrum from [397] for a mesa device in pulsed operation at a bias of 56.9 kV cm−1 (𝑉 =
13.7 V) and a temperature of 300 K is plotted. The simulated linewidth of ∼ 484 cm−1 compares well with the
experimentally measured linewidth of ∼ 490 cm−1. The linewidth of DAU QCL designs is quite insensitive to
bias variations due to similar spatial localization of the upper laser levels [397].

In Fig. 8.8(d), the five triplets of states contributing most to the resonant second-order nonlinear susceptibility
𝜒 (2) are illustrated. All important microscopic quantities relevant for the determination of the optical nonlinearity
can be extracted from the carrier transport simulations. In Fig. 8.10(b), the level broadening 𝛾𝑖 and the relative
level occupation 𝜌𝑖𝑖 in the relevant period as a function of the subband energy are shown. For the relative
occupations of the five levels contributing most to the optical gain and to the nonlinear mixing process, the
simulation yields 𝜌11 = 0.038, 𝜌22 = 0.036, 𝜌33 = 0.030, 𝜌44 = 0.202, and 𝜌66 = 0.094. The mean population
inversion density between upper laser levels 6, 4 and depleted miniband (3, 2, 1) is Δ𝑁 ≈ 2.8 × 1021 m−3

and Δ𝑁 ≈ 1 × 1021 m−3, respectively. Furthermore, level broadenings 𝛾1 = 5.69 meV, 𝛾2 = 4.58 meV,
𝛾3 = 4.22 meV, and 𝛾4 = 5.61 meV are obtained. For the upper laser level 6, we obtain a relatively high level
broadening 𝛾6 = 11.65 meV compared to the other levels, which is mainly due to increased interface roughness
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Figure 8.10 Simulation results of the DAU design. (a) Normalized gain as a function of wavenumber simulated at an
operating temperature of 78 K (solid line) and 300 K (dashed line) together with the measured EL curve (dotted line,
from [397]). The spectral ranges of the FP comb at 𝜔2 and single DFB mode at 𝜔1 are indicated by the shaded area and
dashed line, respectively. (b) Simulated level broadening 𝛾𝑖 (circles) and relative level occupation 𝜌𝑖𝑖 (squares) for one
QCL energy period as a function of the subband energy (see Fig. 8.8(b)). Reprinted from J. Popp et al., "Self-consistent
simulations of intracavity terahertz comb difference frequency generation by mid-infrared quantum cascade lasers" [90]
(CC BY 4.0).

Table 8.2 Near-resonance DFG triplets of states and resulting second-order nonlinear susceptibility 𝜒 (2) for the DAU QCL
active gain medium. Resonance energy ℏ𝜔𝑖 𝑗 , pure dephasing energy 𝛾𝑖 𝑗 ,p (interface roughness contribution) in meV and
transition dipole moments 𝑧𝑖 𝑗 in nm for the mid-IR pump frequencies (𝜔1, 𝜔2) and the THz mode (𝜔THz). Reprinted from
J. Popp et al., "Self-consistent simulations of intracavity terahertz comb difference frequency generation by mid-infrared
quantum cascade lasers" [90] (CC BY 4.0).

Triplet
𝜔1 𝜔2 𝜔THz

𝜒 (2) / nm V−1
ℏ𝜔𝑖 𝑗 𝑧𝑖 𝑗 𝛾𝑖 𝑗 ,p ℏ𝜔𝑖 𝑗 𝑧𝑖 𝑗 𝛾𝑖 𝑗 ,p 𝑧𝑖 𝑗 𝛾𝑖 𝑗 ,p

(1) 189 1.43 7.46(80 %) 168.3 −1.17 9.83(68 %) −6.99 0.58(31 %) −1.92 + i6.51
(2) 211.5 −0.54 8.98(69 %) 189 1.43 7.46(80 %) −8.16 0.51(47 %) −0.97 + i1.59
(3) 212.8 1.15 5.84(82 %) −5.05 0.61(95 %) −1.50 + i0.84
(4) 192.1 −1.19 8.77(70 %) 168.3 −1.17 9.83(68 %) −0.24 + i1.71
(5) 212.8 1.15 6.17(61 %) 192.1 −1.19 8.28(42 %) −6.99 2.37(68 %) −0.44 + i0.90

scattering from the second upper laser level 4. For the carrier transport simulations of the DAU QCL design,
we choose an average interface roughness height Δ = 0.1 nm and a correlation length Λ = 10 nm.

According to Eq. (3.29) and the pure dephasing rates of Table 8.2, we calculate the total dephasing energies
for the five mid-IR transitions to be in the range of 12.5 meV to 16.7 meV, resulting in slightly higher values
compared to the experimental estimate of 12.5 meV given in [82], [200]. In literature, the additional linewidth
broadening in strain-compensated DFG-QCLs is associated with the increased CBO and pronounced interface
roughness [192], [398]. The contribution of interface roughness to the pure dephasing energy for the investigated
triplets is illustrated in Table 8.2, yielding a significant impact for the mid-IR transitions. Taking also into
account the reasonable match of simulated linewidth and experimental data, our simulated dephasing energies
for the mid-IR regime appear to be reasonable. For the three investigated THz transitions, we obtain the
total dephasing energy Γ21 = 5.65 meV, Γ32 = 4.98 meV, and Γ64 = 9.24 meV. The simulated THz values
in the miniband compare well with the experimental assumption of 4 meV from [82], [200], except for the
increased dephasing rate Γ64 arising from a larger level broadening 𝛾6 due to interface roughness. As it
is schematically indicated in Fig. 8.10(a), the mid-IR pump wavelengths (𝜆1, 𝜆2) are specified at the DFB
mode 𝜆DFB = 6.5 µm and at FP modes around 𝜆FP ∼ 6.9 µm. The transition dipole moments and calculated
susceptibilities 𝜒 (2) (𝜔THz = 𝜔DFB −𝜔FP) for the five triplets are listed in Table 8.2. The five triplets contribute
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Figure 8.11 Simulation setups for the Maxwell-density matrix simulation of the two considered THz DFG-QCL frequency
comb setups. (a) FP reference waveguide model. (b) Waveguide model of the SPR-depopulation QCL setup including
a single-period DFB grating. (c) Waveguide model of the DAU QCL design including a single-period DFB grating.
Reprinted from J. Popp et al., "Self-consistent simulations of intracavity terahertz comb difference frequency generation
by mid-infrared quantum cascade lasers" [90] (CC BY 4.0).

constructively, although the product of transition dipole moments for the triplets (3) and (4) differs from the
others in sign. This results from the different DFG configuration of the triplets compared to (1), (2) and (5),
which is shown schematically in Fig. 8.8(d). Summing up the individual contributions for the given frequency
𝜔THz, a total second-order nonlinear susceptibility value |𝜒 (2) | = 12.6 nm V−1 is obtained, which is slightly
higher than the experimental estimate of |𝜒 (2) | = 7.8 nm V−1.

8.2.2 DFG-QCL Frequency Comb Simulations

In this section, we present dynamical simulation results of THz DFG-QCL frequency comb emission for the
two different QCL setups. The description of the quantum-mechanical system is derived from the stationary
carrier transport simulations. Furthermore, waveguide models for both QCL designs have to be specified and
added to the simulation input script. Here, the investigated setups are based on integrated DFB gratings, defined
in the experimental papers [205], [206]. The different DFB waveguide models are compared to the common
FP waveguide model, as illustrated in Fig. 8.11. For the characterization of DFB gratings usually the coupling
constant 𝜅DFB is used, which basically describes the field reflectance per unit length. In a first-order structure
the period length is defined by ΛDFB = 𝜆B/2𝑛eff with the effective refractive index 𝑛eff and the Bragg wavelength
𝜆B. It is assumed that the DFB wavelength 𝜆DFB ≈ 𝜆B. We could derive from test simulations that the Bragg
wavelength 𝜆B should be set roughly 0.1 µm smaller than the desired DFB wavelength 𝜆DFB. The coupling
constant 𝜅DFB of the DFB grating is defined within the coupled-mode theory and can be written as [401], [402]

𝜅DFB =
𝜋

𝜆DFB

Δ𝑛
2
, (8.3)

where Δ𝑛 is the modulation of the modal refractive index 𝑛eff .
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Figure 8.12 Simulated mid-IR (a) and THz (b) spectra of the DFG-QCL at a temperature of 293 K and an applied bias of
45 kV cm−1. Experimental results are presented in [205]. Reprinted from J. Popp et al., "Self-consistent simulations of
intracavity terahertz comb difference frequency generation by mid-infrared quantum cascade lasers" [90] (CC BY 4.0).

Single-Phonon Resonance Depopulation Structure

For the dynamical simulation of the SPR-depopulation setup, we use the carrier transport simulation results
obtained for the tight-binding potential at a bias of 45 kV cm−1. One tunneling pair is specified and the
corresponding Rabi frequency Ω45 is added to the Hamiltonian. Two DFG triplets comprising one upper laser
level and three lower laser levels are added. By taking into account these transitions for the dipole moment
operator and the pure dephasing rates, we derive the complete quantum-mechanical description for the reduced
SPR-depopulation structure.

Here, a 4 mm-long waveguide is patterned with a 1.5 mm DFB grating and terminated with an HR coated back
facet. The single period DFB grating defined by e-beam lithography and dry etching is designed for single mode
DFB lasing at 𝜆DFB = 7.25 𝜇m, which is detuned by 80 cm−1 from the FP comb emission frequency to minimize
laser dispersion affected by the DFB structure. Due to the fact that the simulated gain curve is blue-shifted by
roughly ∼ 40 cm−1 compared to the measured EL spectrum extracted from [192], we decided to choose a DFB
frequency of 𝜆DFB = 6.8 𝜇m to retrieve the correct THz DFG frequency comb behavior. The DFB grating is
defined by a period length ΛDFB = 1.15 µm, and a coupling constant 𝜅DFB = 35 cm−1 was estimated from the
experimental subthreshold emission spectra. For our simulation, we set 𝜅DFB,sim = 20 cm−1, as a simulative
characterization of the DFB grating indicates this as best fit for a spectral separation of 3.5 cm−1 from the
DFB wavenumber. Furthermore, an effective refractive index 𝑛eff = 3 with a modulation Δ𝑛 = 1.5 × 10−2 is
calculated. We use 𝑁𝑥 = 20000 spatial gridpoints and set a simulation endtime of 50 ns, corresponding to ∼ 600
roundtrips. The resulting Python script that starts a simulation in mbsolve is depicted in Appendix A.1.2 of the
supplementary material. Here, a simulation time step of 1 ns takes approximately 45 minutes with a machine
based on two AMD Epyc 7713 sockets with 64 cores each and 512 GB of RAM.

The obtained simulation results for the mid-IR spectrum and THz frequency comb of the SPR-depopulation
setup are depicted in Fig. 8.12(a) and (b), respectively. Broadband FP frequency comb emission is obtained at
a wavelength of around 𝜆FP ∼ 7.55 𝜇m, which is slightly lower than the measured one at 7.81 𝜇m and can be
attributed to the blue-shifted gain in the simulation. By mixing the mid-IR FP comb with the DFB reference
mode, a THz comb extending from 3.5 THz to 4.5 THz is generated. In comparison to the experimental data,
which are presented in [205] and where the THz DFG frequency comb is located around 3 THz, a small blueshift
is obtained. A smaller sidecomb extending from 4.7 THz to 5.5 THz is also visible, which is more than one
order of magnitude smaller as compared to the main comb. Furthermore, we investigate the amplitude and
phase dynamics of the field at the facet, both in the mid-IR and THz regimes.

As a reference, we simulate the SPR depopulation structure in a conventional Fabry-Perot waveguide,
without considering dipole moments of THz transitions. Thus, we can validate if the well-studied hybrid
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Figure 8.13 Simulation results of the QCL device in a FP waveguide and at a temperature of 293 K. The simulation
parameters are determined in ensemble Monte Carlo simulations for a bias of 45 kV cm−1. Experimental results are
presented in [205]. (a) Simulated mid-IR intensity spectrum at the facet. (b) Simulated instantaneous intensity at the facet
and calculated instantaneous frequency from the Hilbert transform of the simulated electric field. Reprinted from J. Popp
et al., "Self-consistent simulations of intracavity terahertz comb difference frequency generation by mid-infrared quantum
cascade lasers" [90] (CC BY 4.0).

frequency/amplitude modulation properties of a mid-IR QCL frequency comb are present [115], [117]. The
simulated spectrum and time trace of the intensity and instantaneous frequency are depicted in Fig. 8.13. In
Fig. 8.13(a) a broad frequency comb, ranging from 1 360 cm−1 to 1 420 cm−1, can be observed, where most of
the modes have comparable individual power. It can be identified clearly from Fig. 8.13(b), that a linear chirp
in the instantaneous frequency is present. This result is comparable to the first experimental demonstration of
such a chirp in [115], with intermodal phase measurements based on the SWIFTS technique. The calculated
instantaneous frequency chirp extends from 1 360 cm−1 to 1 420 cm−1, covering the full intensity spectrum of
the mid-IR FP frequency comb. Furthermore, the distinct AM state, with a very short characteristic time, is
in good agreement with the experimental and theoretical findings [115], [119]. These discussed properties
are strong indications of phase-locked FM comb operation. Notably, using our detailed multilevel simulation
approach, we do not need to explicitly add a linewidth enhancement factor in order to obtain this type of comb,
whereas for reduced models this has been reported to be necessary [70].

Besides this well-studied state, we analyze the temporal characteristic of the DFG-QCL setup within the
DFB waveguide configuration shown in Fig. 8.11(b). The obtained results for the mid-IR and THz regimes
are illustrated in Fig. 8.14(a) and (b), respectively. The temporal evolution of the instantaneous frequency in
the mid-IR regime clearly shows linear behavior from 1 300 cm−1 to 1 365 cm−1, thus covering the whole FP
frequency comb given in Fig. 8.12(a). Furthermore, the distinct AM state with a very short characteristic spike
at the end of the periodic time signal is in good agreement with the experimental and theoretical findings [115],
[119]. In comparison to the FP setup, we see a clear redshift of the mid-IR comb arising from the mode
suppression introduced by the DFB grating. In the temporal dynamics of the mid-IR component, shown in
Fig. 8.14(a), we identify numerous very fast intensity modulations, which are absent in mid-IR combs without
DFB grating (compared to Fig. 8.13(b) and [110]). The reconstructed time trace of the THz signal is illustrated
in Fig. 8.14(b). Here, a linear chirp over a considerable part of the roundtrip time is identified and extends from
3.5 THz to 4.5 THz, corresponding to the dominant lobe of the simulated THz spectrum in Fig. 8.12(b). The
THz signal shows a mirrored characteristic as compared to the mid-IR signal, which illustrates the coupling
arising from the DFG mixing.
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Figure 8.14 Simulation results of the DFG-QCL device at a temperature of 293 K. The simulation parameters are
determined in EMC simulations for a bias of 45 kV cm−1. Simulated instantaneous intensity at the facet and calculated
instantaneous frequency from the Hilbert transform of the simulated electric field for the mid-IR FP components (a) and
THz components (b). Reprinted from J. Popp et al., "Self-consistent simulations of intracavity terahertz comb difference
frequency generation by mid-infrared quantum cascade lasers" [90] (CC BY 4.0).

Dual-Upper State Active Region

In the carrier transport simulations, we have identified five main DFG triplets formed by different combinations
of the two upper laser levels 6, 4 and three lower laser levels 3, 2, and 1, as illustrated in Fig. 8.8(d). The dipole
moments of all mid-IR transitions (𝜔1,𝜔2) and THz transitions are added to the dipole moment operator. Carrier
injection is modeled by resonant tunneling, where four anticrossed tunneling pairs, formed by two injector states
(7, 5) and two upper laser levels (6, 4), are included. The calculated anticrossing energies are added to the
system Hamiltonian 𝐻̂s. For all quantum coherence terms considered in our Maxwell-density matrix model,
we have to add the corresponding pure dephasing rates, while the level broadenings 𝛾𝑖 are directly calculated
from the specified scattering rate matrix. Both terms are summarized in a relaxation superoperator class object
and form together with the system Hamiltonian 𝐻̂s and dipole operator 𝑑 the quantum-mechanical description
of the active region.

The QCL waveguide consists of a single-period DFB grating, which is defined by nanoimprint lithography.
The first order grating period is ΛDFB = 1.04 µm. To avoid the suppression of the broadband FP comb emission,
the DFB mode has to be largely detuned from the gain maximum. Here, the single mode DFB wavelength is
chosen to be 𝜆DFB = 6.5 µm and FP frequency comb modes are generated around 𝜆FP = 6.9 µm. The coupling
constant is estimated in [206] as 𝜅DFB ∼ 7 cm−1. Based on that, we calculate an effective refractive index
𝑛eff = 3.08 with a modulation Δ𝑛 = 2.9 × 10−2 for the DFB grating. An overlap factor Γ = 0.6 and field
losses 𝛼0 = 3.2 cm−1 are assumed for the two materials comprising the DFB grating period. The device with a
cavity length 𝐿 = 3 mm is HR coated on the back facet and for the front facet we use PRL boundary conditions
specified by the reflectance 𝑅 = |𝑛eff − 1|2/|𝑛eff + 1|2. To assure an adequate spatial discretization, we specify
the number of spatial gridpoints 𝑁𝑥 = 15000. The simulation endtime was set to 100 ns, which equals around
∼ 1500 roundtrips. The simulation setup consisting of a device and a scenario is summarized in a Python
script, which is depicted in Appendix A.1.3 and can be used to start a dynamical DFG-QCL simulation with
the open-source tool mbsolve. For this quite complex and computationally demanding application, we use a
machine based on two AMD Epyc 7713 sockets. Nevertheless, a simulation time of 1 ns takes approximately
45 minutes.

The obtained DFG-QCL simulation results are depicted in Fig. 8.15(a) for the mid-IR spectrum and in
Fig. 8.15(b) for the THz frequency emission. We clearly identify a single DFB mode, which proves the validity
of the implementation of the DFB grating in the mbsolve simulation framework.



119

1,460 1,480 1,500 1,520 1,540 1,560 1,580

Wavenumber in cm−1

In
te

ns
ity

at
fa

ce
ti

n
a.

u.

(a)

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
Frequency in THz

In
te

ns
ity

at
fa

ce
ti

n
a.

u.

(b)

2 4 6 8 10 12 14 16 18 20
−60

−40

−20

0

Frequency in GHz

Po
w

er
in

dB

(c)

Figure 8.15 Simulated mid-IR (a), THz (b) spectra and RF beatnote (c) of the DFG-QCL at a temperature of 78 K and a
bias of 56 kV cm−1. Experimental results are presented in [206]. Reprinted from J. Popp et al., "Self-consistent simulations
of intracavity terahertz comb difference frequency generation by mid-infrared quantum cascade lasers" [90] (CC BY 4.0).
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Figure 8.16 Simulation results of the QCL device in a FP waveguide and at a temperature of 78 K. The simulation
parameters are determined in ensemble Monte Carlo simulations for a bias of 56 kV cm−1. (a) Simulated mid-IR intensity
spectrum at the facet. (b) Simulated instantaneous intensity at the facet and calculated instantaneous frequency from the
Hilbert transform of the simulated electric field. Reprinted from J. Popp et al., "Self-consistent simulations of intracavity
terahertz comb difference frequency generation by mid-infrared quantum cascade lasers" [90] (CC BY 4.0).

As our simulated gain curve exhibits a slight blue shift in comparison to experimental results, also the
simulated mid-IR FP spectrum is slightly shifted towards higher frequencies, relative to the measured spectrum
in [206]. The simulated spectrum spans from ∼ 1 460 cm−1 to 1 510 cm−1, which is still in good agreement with
the experimental bandwidth. To compensate for that we decided to also shift the DFB mode in the simulations
towards a higher wavenumber of 1 567 cm−1. The intracavity mixing between the mid-IR FP multimodes and
single DFB mode leads to a downconversion to the THz spectrum extending from 1.9 THz to 3.3 THz. The
simulation results are in reasonable agreement with the experimentally measured ultra-broadband THz emission
extending from 1.8 THz to 3.3 THz, as reported in [206]. In the experiment, a relatively flat plateau at the gain
peak was measured, which constitutes a relative gain variation of less than 5 % within the FP spectral range from
1 420 cm−1 to 1 480 cm−1. In contrast, a more distinct gain peak is obtained in the stationary carrier transport
simulations. Here, a relative gain variation of ∼ 20 % in the aforementioned FP spectral range is calculated. The
mid-IR FP bandwidth and in consequence the THz spectrum shows a more pronounced lobe for the dynamical
simulation, resulting in less intense sidemodes.

Additionally, we analyze the RF beatnote of the electric field at the facet, depicted in Fig. 8.15(c). The main
peak at 16 GHz corresponds to the inverse of the roundtrip time. Two additional beatnotes appear in the RF
spectrum close to the main beatnote, at 14.5 GHz and 17.5 GHz, as well as higher-order sidebands. Therefore,
a narrow beatnote spacing of 1.5 GHz is given, which can be explained by the formation of sub-combs. Similar
behavior has been observed in [403], where the dynamics of comb formation in THz QCLs were investigated.
The emergence of spectrally separated sub-combs was previously also detected in microresonator combs, where
four-wave mixing processes induce mode proliferation [404]. The sidepeaks in the RF signal arise from the
coexisting sub-combs in the cavity, which feature the same mode spacing but exhibit slightly different carrier
offset frequencies. At the simulated bias point of 56 kV cm−1 the DFG QCL device appears to not fully
operate in the stable fundamental frequency comb regime in our simulations. It rather exhibits a state where
the coexistence of different sub-combs hinders the build-up of a fundamental comb. In the time-trace of the
intensity and instantaneous frequency this results in alternating frequency and amplitude modulated behavior,
similar to the results in [115].

A more turbulent spectral and temporal intensity profile for both cases, i.e., with and without the presence of
the DFB grating and active THz transitions, is observed. In Fig. 8.16(a) the mid-IR spectrum of the Fabry-Perot
device is depicted, showing significant modal contributions from 1 450 cm−1 to 1 575 cm−1. However, single
modes tend to have large and random intensity fluctuations, compared to the adjacent ones. For the overall
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Figure 8.17 Simulation results of the DFG-QCL device at a temperature of 78 K. The simulation parameters are determined
in ensemble Monte Carlo simulations for a bias of 56 kV cm−1. Simulated instantaneous intensity at the facet and calculated
instantaneous frequency from the Hilbert transform of the simulated electric field for the mid-IR FP components (a) and
THz components (b). Reprinted from J. Popp et al., "Self-consistent simulations of intracavity terahertz comb difference
frequency generation by mid-infrared quantum cascade lasers" [90] (CC BY 4.0).

intensity time-trace in Fig. 8.16(b) this results in a rather irregular pattern. However, the instantaneous frequency
reveals that a linear frequency chirp is still present, but is repeatedly interrupted by amplitude modulations. We
assume that this behavior is a result of the interaction with the undesired sub-combs and should disappear at a
differently chosen bias point.

In Fig. 8.17, the intensity and instantaneous frequency of two roundtrips are shown under the presence of
the DFB grating and THz field, in Fig. 8.17(a) for the mid-IR component, and in Fig. 8.17(b) for the THz
component. Now, the behavior appears to be even more irregular, in agreement with the results of the SPR
structure. Nevertheless, in the mid-IR component, some intervals of a rather linearly modulated frequency can
be observed, e.g. from 40 ps to 60 ps and from 100 ps to 120 ps. Interestingly, for these times the THz signal
has a rather constant frequency and a strong amplitude modulation.

Even in this state, the emission of multimode THz radiation could be simulated and can unambiguously be
assigned to the DFG process in a mid-IR QCL, necessitating the elaborate full-wave approach. In order to
retrieve a complete understanding of the different dynamical regimes, including the fully locked DFG QCL
comb state, a detailed study with an extended bias sweep would be required and will be addressed in future
works.

8.3 Summary

Firstly, we have provided a substantial theoretical analysis of self-starting THz HFC emission in QCLs. The
simulation results of harmonic combs featuring different orders are conducted using a self-consistent multi-
domain modeling approach, coupling a DM-EMC carrier transport simulation tool to a dynamical Maxwell-
DM solver. The investigation of different basis states reveals their influence on the gain characteristics and
the formation of HFC states in THz QCLs. By comparing extended to localized states in the here simulated
QCL structure, we have identified an underestimation of the injection transition into the upper laser level in
the extended configuration. The resulting small gain appears to be unsuitable for the formation of a HFC in
this setup. In contrast, the more pronounced gain spectrum in the localized state basis with a dominant optical
transition ULL→ LLL alleviates the formation of a dense FC comb, which evolves over time into a harmonic
comb. Additionally, we have investigated the influence of the applied bias and waveguide geometry on the HFC
formation and obtained different dynamical regimes with varying harmonic orders. We have characterized the
spectral time evolution of the self-starting harmonic mode-locking mechanism, providing new insights into the
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HFC creation process. We have also analyzed the noise properties of a coherent THz QCL HFC setup and
obtained a good match with experimental findings [73], [83]. In the future, we aim to pin down the physical
mechanisms enabling harmonic mode-locking by reducing the model complexity.

Secondly, we have presented THz DFG-QCL frequency comb simulation results. For the calculation of the
important material parameters, e.g., CBO, we fully take into account important environmental influences such as
strain and nonparabolicity effects. We have investigated the THz frequency comb formation by DFG in two QCL
designs, consisting of a single-phonon resonance depopulation scheme and a dual-upper state active region,
respectively. The experimentally obtained broad gain curve and calculated high second-order nonlinearity are
closely reproduced by our stationary carrier transport simulations. Furthermore, we have performed dynamical
full-wave simulations of THz frequency comb emission based on difference frequency generation for both
setups, where the THz comb is obtained by nonlinear mixing of a largely detuned DFB mid-IR single mode and
a mid-IR FP comb. All in all, the THz DFG-QCL comb results are in good agreement with the experimental
measurements. For the SPR-depopulation QCL setup, we obtain a linear instantaneous frequency chirp at the
investigated bias, in reasonable agreement with experimental findings. Furthermore, the obtained THz time
trace follows the mid-IR signal and thus corroborates the concept of DFB downconversion from the mid-IR FP
comb into a THz comb. In the dynamical simulations of the dual-upper state DFG QCL setup we have identified
sidepeaks in the RF beatnote spectrum at the investigated bias, indicating the coexistence of sub-combs, which
affect the modulation behavior of the fundamental comb. For both setups, the simulated mid-IR FP frequency
comb is slightly shifted towards higher frequencies. Therefore, we have obtained a smaller frequency gap
between the FP comb and DFB mode with respect to the experimental data, and the resulting THz frequency
comb is somewhat red-shifted. We have retrieved broad THz spectra for both designs and reproduced the
measured ultra-broadband THz emission in the DAU device. The reasonable agreement with experimental
data shows that our simulation approach contains all the relevant effects. Thus, it constitutes a suitable tool for
systematic design optimization of THz DFG-QCL comb structures, which can be speeded up by using a quantum
system model with a reduced number of levels that includes all the optical and nonlinear effects responsible for
the DFG description.
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9 Conclusion and Outlook

In this work, we have dealt with the theoretical modeling and numerical simulation of intersubband quantum
cascade devices. Therefore, we have focused on QCLs as optically coherent light sources and QCDs as their
photovoltaic counterparts. In Chapter 1 the basic operating principles of both devices including nonlinear and
nonclassical effects were discussed and the enormous potential for future applications in the fields of metrology,
sensing and quantum technologies was outlined. In order to systematically improve the performance in terms of
operating temperature, efficiency and spectral range a deep theoretical understanding of the physical mechanisms
is required. Therefore, we implemented the object-oriented monacoQC framework for the development and
improvement of optoelectronic QC devices [254], which was presented in Chapter 2. Special physical properties
of semiconductors and environmental influences such as temperature, strain in the semiconductor lattice and
nonparabolicity effects were here taken into account for the calculations of certain material parameters such as
the energy band gap or the effective mass. In addition, the Schrödinger-Poisson solver library was described,
which is integrated into the monacoQC framework and can be used for the design and engineering of quantized
electron states in heterostructures with respect to e.g., their eigenenergy or shape. We further gave an overview
of the Bayesian optimization tool, which is used in combination with a scattering-based simulation approach
for the optimization of quantum cascade devices.

In Chapter 3, advanced self-consistent carrier models for quantum cascade devices were discussed and their
potential for integration into the monacoQC framework was analyzed. More specifically, we focused on the
in-house DM-EMC solver and a rate equation solver model. Firstly, the most important scattering mechanisms
in the quantum well heterostructure were characterized and the corresponding scattering rates were calculated
using Fermi’s Golden Rule. With these scattering rates as input, the in-house DM-EMC solver for carrier
transport simulations of QCLs was described in more detail. Since direct EMC modeling of photovoltaic QCDs
is not feasible, a robust and compact approach based on a rate equation model and a Kirchhoff resistance network
was introduced. By exploiting thermodynamic equilibrium relations, we derived expressions for the responsivity
and specific detectivity. Different physical quantities such as absorption coefficient, extraction efficiency, and
resistance for QCDs and gain profiles or the second-order nonlinear susceptibility in QCLs were calculated
using the stationary simulation results. For dynamical simulations, a reduced quantum system description is
required and can be composed using the presented mbsolve_sim module of the monacoQC framework.

A full-wave Maxwell-density matrix simulation tool including c-number stochastic noise terms was presented
in Chapter 4. This is especially important for the simulation of spatiotemporal dynamics in active photonic
devices, e.g., quantum cascade lasers. Here, the coherent light-matter interaction plays an important role in the
generation of frequency combs and other nonlinear and nonclassical optical phenomena. Since the emergence
of nonlinear and nonclassical features is directly linked to the noise properties, detailed simulations of the noise
characteristics are required for the development of low-noise QCL sources. We calculated the stochastic noise
terms of the quantum Langevin equations and derived the generalized description of the Maxwell-density matrix
Langevin equations for a QCL laser system. For the calculation of drift and diffusion operators in the quantum
Langevin theory, we considered the influence of various surrounding reservoirs on our laser system. The noise
implementations in the mbsolve dynamic simulation framework are publicly available [58].

An overview of the complete open-source solver tool mbsolve was given in Chapter 5. Here, we evaluated
numerical methods for the Maxwell-density matrix Langevin equations. Additionally, we reviewed the exist-
ing codebase and introduced new implementations, e.g., the truncation of the optical field at the simulation
boundaries, the treatment of chromatic waveguide dispersion and the calculation of the fluctuations terms. The
numerical treatment of the equation system with the auxiliary differential equation FDTD method for Maxwell’s
equations and the matrix exponential method for the density matrix were discussed in detail. We concluded
with a brief overview of the new generalized update equations and explained the simulation main loop. The
simulation framework and the code extensions were verified in Chapter 6. Therefore, we used an active gain



124

Monaco framework

mbsolve framework

Eigenstates
Schrödinger equation in Ben Daniel-Duke model[
− ℏ2

2 𝜕𝑧
1

𝑚∗ (𝑧) 𝜕𝑧 + 𝐸c(𝑧) − 𝐸p𝑧/𝐿p + 𝑉̃ (𝑧)
]
𝜓𝑖 (𝑧) = 𝐸𝑖𝜓𝑖 (𝑧)

Space charges
Poisson equation
𝑒−1𝜕𝑧

[
𝜀(𝑧)𝜕𝑧𝑉̃ (𝑧)

]
= 𝑒

[
𝑛D(𝑧) −

∑
𝑛s
𝑖 |𝜓𝑖 (𝑧) |2

]
Carrier transport
e.g., DM-EMC
𝜕𝑡 𝑓𝑖,𝒌 =

∑
𝑠

∑
𝑗 ,𝒌

(
𝑊 (𝑠)

𝑖𝒌 , 𝑗𝒌′ 𝑓 𝑗 ,𝒌′ −𝑊
(𝑠)
𝑗𝒌′,𝑖𝒌 𝑓𝑖,𝒌

)
Optical resonator modeling
1D slab waveguide structure

Electron dynamics
density matrix Langevin equation
𝜕𝑡 𝜌̂ = −iℏ−1 [𝐻̂0 + Δ𝑉̂tb + 𝐻̂I, 𝜌̂] + D( 𝜌̂) + F ( 𝜌̂)

Optical field
Maxwell’s equations in 1D
𝜕𝑡𝐻𝑦 = 𝜇−1𝜕𝑥𝐸𝑧

𝜕𝑡𝐸𝑧 = 𝜖−1 (−𝜎𝐸𝑧 − Γ𝜕𝑡𝑃𝑧,qm − 𝜕𝑡𝑃𝑧,class + 𝜕𝑥𝐻𝑦
)

𝜓𝑖

𝐸𝑖 , 𝜓𝑖

𝑛s
𝑖

𝑉̃ (𝑧)

𝐻̂s, 𝜇̂𝑧

D( 𝜌̂), F ( 𝜌̂)

𝐸𝑧

𝜕𝑡𝑃𝑧 = 𝑛3D Tr
{
𝑑𝑧 𝜌̂

}
𝜖 ,𝜎,Γ

Figure 9.1 Schematic illustration of the multi-domain simulation approach for intersubband QC devices.

medium based on a well-studied THz quantum cascade laser design for OFC generation and an incoherent
two-level system for superfluorescence. By taking into account impedance mismatch effects arising from the
internal quantum system within our PML implementations, improved absorbing characteristics for the truncation
of active gain media were obtained. Further simulations were executed to characterize the influence of group
velocity dispersion on the formation of THz frequency combs. We validated our fluctuation implementation with
a superfluorescence setup, where we could prove the validity of our implementation by an excellent agreement
with previous experimental and theoretical results.

By combining both simulation tools (monacoQC and mbsolve), a multi-domain modeling approach is realized
that can be used for fully time-dependent and self-consistent simulations of intersubband QC devices. A
schematic illustration of this multi-domain simulation approach is depicted in Fig. 9.1. The monacoQC
framework comprises a Schrödinger-Poisson solver for the calculation of the wavefunctions and eigenenergies
in the QC conduction band heterostructure and the DM-EMC tool for the simulation of the stationary charge
transport behavior, including the calculation of scattering rates, dephasing rates and occupations. The obtained
simulations results are used as input parameters for the mbsolve simulation tool, to generate the active QC
setup file consisting of e.g., the Hamiltonian, and the dipole matrix elements. Here, the electron dynamics are
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described by the Lindblad equation, the optical field by the classical Maxwell’s equations and the light-matter
interaction is taken into account by the quantum-mechanical polarization 𝑃𝑧,qm.

The development of low-noise intersubband detectors, as required for the detection of non-classical features
in the optical output of QCLs and especially in QCL-based frequency combs, was one important aspect of this
work. With a view to future commercial applications, we concentrated on increasing the operating temperature
in order to achieve operation at room temperature with moderate effort, e.g., through thermoelectric cooling. A
reliable simulation approach that is self-consistent, i.e., that does not require empirical or fitting parameters as
input, is essential for systematic design optimization. In Chapter 7, we first evaluated our simulation approach
by applying it to QCD designs in the mid-infrared and terahertz range. We obtained good agreement with
the experimental data. For the terahertz structure studied, the EMC results were also compared with NEGF
simulations, yielding good agreement. However, the simulated zero-bias resistance of this structure is much
lower than the experimentally determined value at low temperatures. Since the predominant noise mechanism for
temperatures below 20 K is not temperature dependent, our Kirchhoff resistance model, which considers Johnson
noise as the main noise mechanism, is not suitable for reproducing the experimental results for temperatures
close to 0 K. Secondly, our Bayesian optimization approach within the monacoQC framework was tested using
the mid-IR QCD design N1022. Our optimization strategy yields an improvement of specific detectivity by a
factor of ∼ 2−3 at room temperature using two different parameter sets. The oscillator strength between ground
level 𝑔 and absorption level 𝑎2 leads to a significantly increased absorption efficiency 𝜂abs. Furthermore, we
investigated the sensitivity of our approach to fabrication tolerances, showing the robustness of the optimized
designs against growth fluctuations under fabrication conditions. For this optimization approach, we used a
scattering model based on Fermi’s golden rule. For further optimizations, we will also use the self-consistent
EMC model for the evaluation of QCD figures of merit, and compare them with the scattering rate approach
used here.

In Chapter 8, we first provided a substantial theoretical analysis of self-starting THz HFC emission in QCLs.
The simulation results of harmonic combs featuring different orders were conducted using the self-consistent
multi-domain modeling approach. The investigation of different basis states reveals their influence on the gain
characteristics and the formation of HFC states in THz QCLs. Additionally, we investigated the influence of
the applied bias and waveguide geometry on the HFC formation and obtained different dynamical regimes
with varying harmonic orders. We characterized the spectral time evolution of the self-starting harmonic
mode-locking mechanism, providing new insights into the HFC creation process. We also analyzed the
noise properties of a coherent THz QCL HFC setup and obtained good agreement with experimental results.
Furthermore, simulation results of THz frequency comb emission in QCLs based on intracavity difference
frequency generation using the self-consistent multi-domain simulation approach were presented in Chapter 8.
We investigated the THz frequency comb formation by DFG in two QCL designs, consisting of a single-phonon
resonance depopulation scheme and a dual-upper state active region, respectively. The experimentally obtained
broad gain curve and calculated high second-order nonlinearity are closely reproduced by our stationary carrier
transport simulations. Furthermore, we performed dynamical full-wave simulations of THz frequency comb
emission based on difference frequency generation for both setups. All in all, the THz DFG-QCL comb results
are in good agreement with the experimental measurements. The reasonable agreement with the experimental
data shows that our simulation approach includes all relevant effects.

The Bayesian optimization algorithm in combination with the presented simulation approach proves to be an
efficient tool for the optimization of QCDs. We therefore plan to use it for the design and optimization of QC-
based on-chip applications for environmental sensing. In particular, the systematic design optimization of QCLs
with respect to nonlinear and nonclassical optical effects will be very important. Our multi-domain simulation
approach shows great potential for modeling harmonic THz comb operation at room temperature based on
the DFG of a mid-IR QCL comb. Furthermore, the physical mechanisms that enable harmonic mode-locking
could be analyzed by reducing the model complexity. Higher-order gratings and nonlinearities seem to have a
significant impact on self-starting HFC formation in QCLs. To gain insight into the underlying mechanisms, the
crucial nonlinear effects need to be identified. Possibly, the adiabatic elimination of specific terms within the
Maxwell-density matrix equations may provide additional insights. It has already been used for the prediction of
pure FM combs in mid-IR QCLs and for the description of passive single-pulse mode-locking in THz QCLs with
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distributed saturable absorbers. Our modeling approach, which is based on the generalized Maxwell-density
matrix Langevin equations, opens up great perspectives for the theoretical investigation of intermodal intensity
correlations in photonic devices and the development of low-noise integrated light emitters. With respect to the
generation of nonclassical light, the semiclassical model will serve as a starting point for the development and
validation of fully quantum optical approaches.
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A Appendix

A.1 Mbsolve Simulation Setups

Here, the Python scripts for setting up and running mbsolve simulations of the presented QCL setups are given.
The scripts include all input parameters for the description of the quantum system and the simulation scenario.
The quantum-mechanical description comprises the level occupations 𝜌𝑖𝑖 , the system Hamiltonian 𝐻̂s with
eigenenergies 𝐸𝑖 and anticrossing energies ℏΩ𝑖 𝑗 , the dipole moment operator 𝑑𝑧 , the scattering rates 𝑟𝑖 𝑗 and the
dephasing rates 𝛾𝑖 𝑗 . For the one-dimensional dynamic Maxwell-density matrix simulations, the energy-resolved
dephasing rates are simulated within the EMC approach and have to be averaged over the population inversions
of the involved subbands.

A.1.1 Four Quantum Well Diagonal Transition Design

Listing A.1 Code snippet of the Python script for the THz HFC QCL setup in [73].

import mbsolve.lib as mb
import mbsolve.solvercpu
import mbsolve.writerhdf5
import mbsolve.readerhdf5

import math
import time

# Hamiltonian
energies = [ 0.0097 * mb.E0, 0.0082 * mb.E0, -0.0047 * mb.E0 ,
-0.0083 * mb.E0, -0.0097 * mb.E0 ]
off_diagonales = [ 0.0005 * mb.E0 , 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
H = mb.qm_operator(energies , off_diagonales)

# dipole moment operator
off_dipoles = [ 0, -2.9500e-09 * mb.E0, 0, 0, 0, 0, 0, 0, 0, 0 ]
diag_dipoles = [ 0, 0, 0, 0, 0 ]
u = mb.qm_operator(diag_dipoles , off_dipoles)

# relaxation superoperator
# scattering rate matrix R
rates = [ [ 0, 1.8815e+09, 2.1290e+10, 4.0984e+09, 5.6000e+09 ],

[ 3.5006e+09, 0, 3.2437e+08, 2.2854e+10, 2.0029e+12 ],
[ 6.5578e+10, 6.2829e+08, 0, 8.0333e+11, 6.1577e+09 ],
[ 6.8416e+09, 3.6845e+08, 6.6107e+11, 0, 4.7378e+12 ],
[ 5.2192e+08, 6.7259e+10, 4.7554e+09, 4.7726e+12, 0 ] ]

# pure dephasing rates
pure_deph = [ 3.5857e+12, 9.3257e+11, 0, 0, 0, 0, 0, 0, 0, 0 ]
relax_sop = mb.qm_lindblad_relaxation(rates , pure_deph)

# initial density matrix
rho_init = mb.qm_operator ([ 0.3705 , 0.4937 , 0.0741 , 0.0333 , 0.0285])

h = 15e-6
w = 60e-6
A = h*w
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N = 6.35 e21
N_x = 2000
l_device = 4e-3
d_x = l_device / N_x
f_noise = 1
N_cell = N * A * d_x * f_noise

qm = mb.qm_description(N, N_cell , H, u, relax_sop)
loss = 760
mat_ar = mb.material("AR_Forrer", qm , 12.96 , 1, loss , 1.0)
mb.material.add_to_library(mat_ar)

dev = mb.device("5lvl")

dev.add_region(mb.region("Active␣region", mat_ar , 0.0, l_device ))

# Scenario
ic_d = mb.ic_density_const(rho_init)
ic_e = mb.ic_field_const (0.0)
sce = mb.scenario("hc_noise_forrer2021", N_x , 2200e-9, ic_d , ic_e , ic_e)
sce.add_record(mb.record("e1" ,0,4e-3))

# run solver
sol = mb.solver.create_instance("cpu -fdtd -5lvl -reg -cayley -qnoise", dev , sce)
print(’Solver␣’ + sol.get_name () + ’␣started ’)
tic = time.time()
sol.run()
toc = time.time()
print(’Solver␣’ + sol.get_name () + ’␣finished␣in␣’ + str(toc - tic) + ’␣sec’)

# write results
wri = mb.writer.create_instance("hdf5")
outfile = dev.get_name () + "_" + sce.get_name () + "." + wri.get_extension ()
results = sol.get_results ()
wri.write(outfile , sol.get_results (), dev , sce)
outfile_autosave = dev.get_name () + "_" + sce.get_name () + \

"_autosave." + wri.get_extension ()
sim_data = sol.get_sim_data ()
wri.autosave(outfile_autosave , sim_data , dev , sce)

A.1.2 Single-Phonon Resonance Depopulation Structure

Listing A.2 Code snippet of the Python script for the THz DFG-QCL frequency comb setup in [205].
# import mbsolve libraries
import mbsolve.lib as mb
import mbsolve.solvercpu
import mbsolve.writerhdf5

import math
import time

# Hamiltonian
energies = [ 0.1093 * mb.E0, 0.1049 * mb.E0, 0.0993 * mb.E0 , 0.0881 * mb.E0 ,
0.0682 * mb.E0 , -0.0522 * mb.E0 , -0.0726 * mb.E0 , -0.0868 * mb.E0 ,
-0.1093 * mb.E0 ]
off_diagonales = [ 0, 0, 0, 0, 0, 0.0072 * mb.E0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
H = mb.qm_operator(energies , off_diagonales)

# dipole moment operator
off_dipoles = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0914e-09 * mb.E0 , 0, 0,



129

0, 0, -1.5024e-09 * mb.E0, 0, 0, -7.7231e-09 * mb.E0, 0, 0,
8.5270e-10 * mb.E0 , 0, 0, 0, -9.6066e-09 * mb.E0 , 0, 0, 0, 0, 0, 0, 0, 0 ]
diag_dipoles = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
u = mb.qm_operator(diag_dipoles , off_dipoles)

# relaxation superoperator
# scattering rate matrix R
rates = [ [ 0, 6.3404e+12, 8.2476e+11, 9.8128e+11, 3.0317e+11, 1.0214e+12,
2.2912e+12, 2.0735e+12, 2.5442e+12 ],

[ 7.0585e+12, 0, 8.6532e+11, 1.0740e+12, 3.2796e+11, 1.2142e+12,
1.7981e+12, 2.1488e+12, 3.2406e+12 ],

[ 5.9908e+11, 7.3614e+11, 0, 6.3595e+10, 3.9869e+12, 5.4609e+10,
1.6018e+11, 1.0369e+11, 3.3741e+11 ],

[ 1.7823e+12, 1.7633e+12, 7.7225e+10, 0, 3.3881e+12, 7.5580e+11,
6.2112e+11, 9.0933e+11, 2.4700e+12 ],

[ 8.5771e+11, 8.5734e+11, 4.3316e+12, 5.5535e+12, 0, 2.0688e+11,
2.6087e+11, 4.5472e+11, 1.2056e+12 ],

[ 3.5943e+11, 3.7340e+11, 1.0512e+11, 1.4468e+11, 2.5631e+10, 0,
2.4215e+12, 2.1533e+12, 8.8086e+11 ],

[ 9.2614e+11, 6.5962e+11, 3.6980e+11, 1.4087e+11, 4.5674e+10,
3.0169e+12, 0, 2.8364e+12, 9.4669e+11 ],

[ 1.0467e+12, 9.6775e+11, 2.2926e+11, 2.5742e+11, 8.5454e+10,
3.3164e+12, 3.6008e+12, 0, 1.6133e+12 ],

[ 1.9550e+12, 2.2559e+12, 3.9631e+11, 1.0249e+12, 3.2138e+11,
2.0770e+12, 1.8605e+12, 2.5300e+12, 0 ] ]

# pure dephasing rates
pure_deph = [ 0, 0, 0, 0, 0, 1.5060e+13, 0, 0, 0, 0, 0, 0, 2.2374e+13, 0, 0,
0, 0, 1.4928e+13, 0, 0, 4.2425e+12, 0, 0, 1.7950e+13, 0, 0, 0, 3.5116e+12, 0,
0, 0, 0, 0, 0, 0, 0 ]
relax_sop = mb.qm_lindblad_relaxation(rates , pure_deph)

# initial density matrix
rho_init = mb.qm_operator ([ 0.1123 , 0.1233 , 0.1537 , 0.1584 , 0.2212 , 0.0387 ,
0.0492 , 0.0588 , 0.0842])

n_D = 1.0747e+22
# quantum -mechanical description
qm = mb.qm_description(n_D , H, u, relax_sop)

# DFB grating
# Period length in m
L_p = 1.15e-6
# Grating coupling in m^-1
kappa = 2000
# Effective refractive index
lambda_DFB = 6.7e-6 # in m
n_eff = lambda_DFB / (2 * L_p)
# Length grating
L_g = 1.5e-3
# Amplitude variation refractive index grating.
delta_n = 2 * kappa * lambda_DFB / math.pi

# material 1
n_1 = n_eff - delta_n / 2
eps1 = pow(n_1 , 2)
mat_DFB1 = mb.material("mat_DFB1", qm, eps1 , 0.6, 60)
mb.material.add_to_library(mat_DFB1)

# material 2
n_2 = n_eff + delta_n / 2
eps2 = pow(n_2 , 2)
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mat_DFB2 = mb.material("mat_DFB2", qm, eps2 , 0.6, 60)
mb.material.add_to_library(mat_DFB2)

# set up device with reflecting boundary conditions
dev = mb.device("lu2019")

## DFB setup
# Number of periods
num_period = math.ceil(L_g / L_p)
x1 = 0
x2 = L_p/2
for i in range(num_period ):

if i!=0:
x1 = x1 + L_p/2
x2 = x2 + L_p/2

dev.add_region(mb.region("DFB␣1", mat_DFB1 , x1 , x2))
x1 = x1 + L_p/2
x2 = x2 + L_p/2
dev.add_region(mb.region("DFB␣2", mat_DFB2 , x1 , x2))

# Length device
L = 4e-3
dev.add_region(mb.region("DFB␣1", mat_DFB1 , x2, L))

## FP setup
# eps_eff = pow(n_eff , 2)
# mat_FP = mb.material (" mat_FP", qm, eps_eff , 0.6, 60)
# mb.material.add_to_library(mat_FP)
# dev.add_region(mb.region ("DFB 1", mat_FP , 0, L))

R = pow(n_eff - 1, 2) / pow(n_eff + 1, 2)
dev.set_bc_field(mb.bc_PMC(), mb.bc_field_reflectivity(R, 1, 400))

# scenario
ic_d = mb.ic_density_const(rho_init)
ic_e = mb.ic_field_random (0.0, 1.0, 1e-6)
ic_m = mb.ic_field_const (0.0)
sce = mb.scenario("Basic", 20000 , 50e-9, ic_d , ic_e , ic_m)
sce.add_record(mb.record("e0", 0.0, 0.0))
sce.add_record(mb.record("e1", 0.0, L))

# run solver
sol = mb.solver.create_instance("cpu -fdtd -9lvl -reg -cayley", dev , sce)
sol.run()

# write results
wri = mb.writer.create_instance("hdf5")
outfile = dev.get_name () + "_" + sce.get_name () + "." + wri.get_extension ()
results = sol.get_results ()
wri.write(outfile , sol.get_results (), dev , sce)
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A.1.3 Dual-Upper State Active Region

Listing A.3 Code snippet of the Python script for the THz DFG-QCL frequency comb setup in [206].
# import mbsolve libraries
import mbsolve.lib as mb
import mbsolve.solvercpu
import mbsolve.writerhdf5

import math
import time

# Hamiltonian
energies = [ 0.1602 * mb.E0, 0.1511 * mb.E0, 0.1410 * mb.E0 , 0.1274 * mb.E0 ,
-0.0409 * mb.E0, -0.0617 * mb.E0, -0.0841 * mb.E0, -0.1070 * mb.E0 ,
-0.1216 * mb.E0, -0.1376 * mb.E0, -0.1511 * mb.E0, -0.1602 * mb.E0 ]
off_diagonales = [ 0.0033 * mb.E0 , 0, 0.0044 * mb.E0 , 0.0032 * mb.E0 , 0,
0.0043 * mb.E0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
H = mb.qm_operator(energies , off_diagonales)

# dipole moment operator
off_dipoles = [ 0, 0, 0, 0, -5.0471e-09 * mb.E0 , 0, 0, -1.1892e-09 * mb.E0 ,
0, -1.1712e-09 * mb.E0, 0, 1.1508e-09 * mb.E0, 0, 1.4275e-09 * mb.E0,
-6.9890e-09 * mb.E0, 0, 0, 0, -5.4386e-10 * mb.E0, 0, -8.1558e-09 * mb.E0 , 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
diag_dipoles = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
u = mb.qm_operator(diag_dipoles , off_dipoles)

# scattering rate matrix R
rates = [ [ 0, 2.3650e+10, 3.3405e+12, 1.1677e+10, 1.0484e+11, 1.5182e+11,
4.3028e+11, 8.0841e+11, 9.8779e+11, 2.0537e+12, 1.1839e+12, 3.1250e+12 ],

[ 2.8765e+10, 0, 4.2016e+10, 5.1157e+12, 3.7948e+10, 6.9304e+10,
4.8488e+10, 7.3111e+10, 7.3028e+10, 5.9399e+10, 7.1742e+10, 1.4924e+11 ],

[ 6.8605e+12, 5.8135e+10, 0, 2.7775e+10, 2.6069e+10, 4.3583e+10,
7.8223e+10, 2.0511e+11, 3.1951e+11, 9.8743e+11, 8.2653e+11, 2.6700e+12 ],

[ 3.0134e+10, 1.2980e+13, 4.0697e+10, 0, 5.3005e+10, 1.0809e+11,
9.1430e+10, 1.3380e+11, 1.2148e+11, 8.9938e+10, 8.2512e+10, 7.7550e+10 ],

[ 2.3160e+10, 5.9644e+10, 4.5862e+09, 4.5986e+10, 0, 1.5660e+12,
8.8725e+11, 4.9303e+11, 3.9650e+11, 2.8588e+11, 2.5934e+11, 1.7008e+11 ],

[ 3.4251e+10, 1.6395e+11, 7.0068e+09, 1.6352e+11, 1.8325e+12, 0,
1.3278e+12, 6.2432e+11, 4.6777e+11, 3.1556e+11, 1.9244e+11, 1.5394e+11 ],

[ 1.0269e+11, 1.0759e+11, 1.3373e+10, 1.1062e+11, 1.2677e+12,
1.8340e+12, 0, 1.4766e+12, 8.3224e+11, 5.0183e+11, 3.9581e+11, 3.3313e+11 ],

[ 2.1665e+11, 1.3278e+11, 3.2674e+10, 1.3408e+11, 7.2202e+11,
9.8705e+11, 1.9423e+12, 0, 2.2626e+12, 8.9217e+11, 5.0611e+11, 4.1263e+11 ],

[ 2.8656e+11, 1.5280e+11, 5.4202e+10, 1.3420e+11, 6.2519e+11,
7.6856e+11, 1.2494e+12, 2.6601e+12, 0, 1.5068e+12, 8.7770e+11, 4.8869e+11 ],

[ 7.1796e+11, 9.4419e+10, 1.8298e+11, 6.4174e+10, 5.6404e+11,
6.1309e+11, 9.0199e+11, 1.5309e+12, 2.1689e+12, 0, 1.6595e+12, 1.4171e+12 ],

[ 4.9164e+11, 1.2731e+11, 1.7519e+11, 7.3334e+10, 6.1918e+11,
4.5092e+11, 8.3076e+11, 9.8865e+11, 1.5616e+12, 2.0487e+12, 0, 1.9082e+12 ],

[ 1.7408e+12, 1.8384e+11, 7.5227e+11, 6.9276e+10, 5.1718e+11,
4.4865e+11, 8.8865e+11, 1.0070e+12, 1.0889e+12, 2.4328e+12, 2.6033e+12, 0 ] ]

# pure dephasing rates
pure_deph = [ 1.1394e+13, 0, 1.8234e+13, 1.7919e+13, 9.2799e+11, 1.3005e+13,
0, 1.3491e+13, 0, 1.5143e+13, 0, 8.9466e+12, 0, 1.1436e+13, 8.7776e+11, 0, 0,
0, 1.3809e+13, 0, 7.8725e+11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0 ]
relax_sop = mb.qm_lindblad_relaxation(rates , pure_deph)
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# initial density matrix
rho_init = mb.qm_operator ([ 0.1149 , 0.0954 , 0.1941 , 0.2032 , 0.0306 , 0.0361 ,
0.0388 , 0.0430 , 0.0466 , 0.0543 , 0.0655 , 0.0775])

# quantum -mechanical description
qm = mb.qm_description (1.6915e+22, H, u, relax_sop)

# DFB grating
# Period length in m
L_p = 1.04e-6
# Grating coupling in m^-1
kappa = 700
lambda_DFB = 6.3e-6 # in m
# Effective refractive index
n_eff = lambda_DFB / (2 * L_p)
# Length device
L = 3e-3
# Amplitude variation refractive index grating.
delta_n = 2 * kappa * lambda_DFB / math.pi

# material 1
n_1 = n_eff - delta_n / 2
eps1 = pow(n_1 , 2)
mat_DFB1 = mb.material("mat_DFB1", qm, eps1 , 0.6, 320)
mb.material.add_to_library(mat_DFB1)

# material 2
n_2 = n_eff + delta_n / 2
eps2 = pow(n_2 , 2)
mat_DFB2 = mb.material("mat_DFB2", qm, eps2 , 0.6, 320)
mb.material.add_to_library(mat_DFB2)

# device
dev = mb.device("consolino2021")
# number of periods
num_period = math.ceil(L / L_p)
x1 = 0
x2 = L_p/2
for i in range(num_period ):

dev.add_region(mb.region("DFB␣1", mat_DFB1 , x1 , x2))
x1 = x1 + L_p/2
x2 = x2 + L_p/2
dev.add_region(mb.region("DFB␣2", mat_DFB2 , x1 , x2))
x1 = x1 + L_p/2
x2 = x2 + L_p/2

R = pow(n_eff - 1, 2) / pow(n_eff + 1, 2)
dev.set_bc_field(mb.bc_PMC(), mb.bc_field_reflectivity(R, 1, 400))

# Scenario setup
ic_d = mb.ic_density_const(rho_init)
ic_e = mb.ic_field_random (0.0, 1.0, 1e-6)
ic_m = mb.ic_field_const (0.0)
sce = mb.scenario("Basic", 15000 , 100e-9, ic_d , ic_e , ic_m)
sce.add_record(mb.record("e0", 0.0, 0))
sce.add_record(mb.record("e1", 0.0, L))

# run solver
sol = mb.solver.create_instance("cpu -fdtd -12lvl -reg -cayley", dev , sce)
sol.run()

# write results
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wri = mb.writer.create_instance("hdf5")
outfile = dev.get_name () + "_" + sce.get_name () +"." + wri.get_extension ()
results = sol.get_results ()
wri.write(outfile , sol.get_results (), dev , sce)
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𝛼 Linewidth enhancement factor

𝛼, 𝛽 Strain parameters

𝛼′, 𝛽′ Nonparabolicity parameters

𝛼0 Linear loss term

𝛼p Power absorption coefficient

𝛼V, 𝛽V Varshni parameters

𝜒, 𝜒 (2) ,𝜒 (3) Nonlinear susceptibility, second- and third-order

Δ Standard deviation of interface roughness

Δ𝐸 Energy subintervals

Δ𝑖 𝑗 Energy separation between levels 𝑖 and 𝑗

Δ𝑁 , Δ𝑁𝑖 Population inversion density (of level 𝑖)

Δ𝑛 Modulation of the modal refractive index 𝑛eff

Δ𝑛 Length of the 𝑛th segment

ΔΩ/Ω Volume change arising from biaxial strain

ΔSO Spin-orbit splitting

Δ𝑉̂tb Coupling of electron states in two adjacent periods within the tight-binding model

Δ𝑡 Temporal discretization size

Δ𝑥 Spatial discretization size

Δ𝑧 Uniform grid spacing

𝛿 Damping constant

𝛿𝐸 Electric field values of the thermal noise sources

𝛿th RMS amplitude of the noise field

𝝐 , 𝜖 ∥ , 𝜖⊥ Strain tensor, in-plane and perpendicular strain

𝜖𝑖 Energy of level 𝑖

𝜖n Gaussian noise term

𝜀 Permittivity, 𝜀 = 𝜀0𝜀𝑟
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𝜀0 Vacuum permittivity

𝜀r, 𝜀r,s, 𝜀r,∞ Relative permittivity, static, infinite frequency, effective relative permittivity 𝜀r,eff

𝜂0 Free-space wave impedance

𝜂abs Absorption efficiency

Γ Confinement factor

𝛾𝑖 Level broadening of level 𝑖

Γ𝑖 𝑗 Total dephasing energy between level 𝑖 and 𝑗

𝛾𝑖 𝑗 Dephasing rate between level 𝑖 and 𝑗
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𝛾p Inverse of the pole relaxation time

𝜅 Cavity decay rate; imaginary part of the complex refractive index 𝑛

𝜅DFB Coupling constant

Λ Interface roughness correlation length

ΛDFB DFB period length

𝜆 Wavelength

𝜆B Bragg wavelength

𝜆P Peak wavelength

𝜇 Permeability, 𝜇 = 𝜇0𝜇r, effective relative permeability 𝜇r,eff
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𝜇0 Vacuum permeability

𝜇c Chemical potential

∇ Nabla operator
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𝜔c Center frequency
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𝐸𝑖 − 𝐸 𝑗

)/ℏ
𝜔𝑙 2𝜋𝑙/𝜏sim

𝜔LO LO phonon frequency

𝜙 Angle in xy-plane (Bloch sphere)

𝜙𝑖,𝒌 Slowly varying envelope wavefunction of level 𝑖

Ψ Atomic wavefunction
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Ψ𝑛,𝒌 Bloch theorem state

𝜓𝑖,𝒌 1D wavefunction of level 𝑖

𝜌̂ Density matrix
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𝜌B Bloch vector

𝜌 Space charge
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𝜎 Material conductivity

𝜎2
0 Covariance amplitude
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𝜎2
l Characteristic length scale

𝜎n Noise standard deviation

𝜎p Conductance per unit area of a single QCD period

𝜎𝑥 Conductivity in the PML layer

𝜃 Propagation angle; hyperparameter GP; tipping angle (Bloch sphere)

𝜃c Cherenkov emission angle

𝜏𝑖 Lifetime of level 𝑖

𝜏sim Simulation time

𝝃 (𝑡) Vector with real, independent Gaussian random numbers

𝜉𝑖 𝑗 Real and complex Gaussian random numbers

𝐴 In-plane cross-sectional area of the quantum wells

𝐴d Detector area

𝑎̂†(𝑎̂) Creation (annihilation) operator of the radiation field

𝑎(𝑥) Acquisition function

𝑎c, 𝑎v Hydrostatic deformation potential in conduction and valence band

𝑩 Noise matrix

𝑏s Shear deformation potential

𝐶̂ Linear chosen ordering operator

𝐶 Courant number; bowing parameter (ternary alloys)

𝑐 Speed of light, 𝑐0/𝑛
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𝑐0 Speed of light in vacuum

𝐷̂𝜇, 𝐷̂c
𝜇 Drift operator, c highlights the chosen order

2⟨𝐷̂𝜇𝜈⟩R Diffusion coefficient in the quantum Langevin equations

𝑫 Diffusion matrix

𝑫, 𝑫𝑧 Electric flux density

𝐷∗ Specific detectivity

2⟨𝐷𝜇𝜈⟩R Diffusion coefficient in the c-number Langevin equations

𝐷𝜇 (𝑡) C-number drift term

𝐷𝑛 Normalized energy density of the blackbody radiation

D Dissipation superoperator

𝑑, 𝑑𝑧 , 𝒅 Dipole moment operator

𝑑 Dipole length

𝒅𝑖 𝑗 , 𝒅𝑖 𝑗 ,𝑧 Dipole matrix element for transition from level 𝑖 to 𝑗 , −𝑒𝑧𝑖 𝑗
𝑬, 𝑬𝑧 Electric field

𝐸act Activation energy

𝐸c Conduction band edge energy

𝐸g Bandgap energy

𝐸in, 𝐸out Electric field of the injected seed pulse, recorded electric field

𝐸p Bias drop over a single QC device period

𝐸HH
v , 𝐸LH

v , 𝐸SO
v , 𝐸V Heavy-hole, light-hole and split-off valence band energy

𝐸𝑖 Eigenenergy of state 𝑖

𝒆𝑧 Unit vector in 𝑧 direction

𝑒 Elementary charge

𝑒r Reflection error

𝐹̂𝜇, 𝐹̂c
𝜇 Fluctuation operator, c highlights the chosen order

𝐹 Kane parameter

𝐹𝑖𝑖 , 𝐹𝑖 𝑗 Diagonal and off-diagonal fluctuation terms

𝐹𝜇 (𝑡) C-number fluctuation term

F Langevin fluctuation superoperator

𝑓c Center frequency

𝑓𝑖 Carrier distribution function in subband 𝑖

𝑓rt Roundtrip rate
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𝑮 Conductance matrix

𝑔 Dipole coupling constant

𝑔(𝜔) Power gain coefficient

𝑔𝑖 𝑗 Conductance matrix elements

𝑔p Peak gain value

𝐻̂′ Perturbation Hamiltonian

𝐻̂0 Unperturbed Hamiltonian

𝐻̂F Hamiltonian of the optical field

𝐻̂I Interaction Hamiltonian

𝐻̂s System Hamiltonian

𝑯, 𝑯𝑦 Magnetic field

ℏ Reduced Planck constant

𝐼out Detector photocurrent

𝑲 Covariance matrix

𝒌 3D bulk/2D in-plane wavevector

𝑘 , 𝑘𝑥 , 𝑘𝑦 Wavenumber, x- and y-direction

𝑘B Boltzmann constant

𝑘 (𝑥, 𝑥′) Covariance function

𝑘𝑛 Wavenumber in segment 𝑛

𝑘̃𝑛 𝑘𝑛/𝑚∗𝑛
𝐿𝜇 (𝑡) C-number coherent term corresponding to the commutation of 𝐴̂𝜇 (𝑡) with the system

Hamiltonian 𝐻̂s

𝐿p Length of a single QC device period

𝐿 Cavity length

L Liouville superoperator

𝑀𝜇 (𝑡) 𝐿𝜇 (𝑡) + 𝐷𝜇 (𝑡)
𝑚∗ Γ-valley effective mass

𝑚∗⊥, 𝑚∗∥ Perpendicular and in-plane effective mass

𝑚0 Electron mass

𝑁BL Number of gridpoints in the boundary layer

𝑁cell Number of carriers in one grid cell

𝑁p Number of periods
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𝑁t Number of temporal gridpoints

𝑁x Number of spatial gridpoints

𝑛 Complex refractive index, 𝑛 + i𝜅

𝑛3D Carrier number density

𝑛D Donor concentration

𝑛, 𝑛eff Refractive index, effective refractive index

𝑛g Group effective refractive index

𝑛2D
𝑖 2D density of states per unit area and energy

𝑛p Number of passes of the optical field through the absorbing region

𝑛s Total sheet density per QC device period

𝑛s
𝑖 Electron sheet density of level 𝑖

𝑛th Number of thermal photons in the lasing mode

𝑷, 𝑷𝑧 Polarization, macroscopic polarization, classical polarization 𝑃𝑧,class = 𝜖0𝜒𝐸𝑧

𝑷𝑧,qm Quantummechanical polarization

P Momentum matrix element

𝑃all Total optical power

𝑃c
𝜖 , 𝑃v

𝜖 Relative shift in conduction and valence band energy due to strain

𝑃𝑖 Optical power of lasing mode 𝑖

𝑃in Incident optical power

𝒑̂ Momentum operator

𝒑 Occupation probability vector

𝑝e Extraction efficiency

𝑝𝑖 Occupation probability of subband 𝑖

𝑄̂𝜇 Function of system operators

𝑸 Transition rate matrix

𝑸 Phonon wave vector

𝑄 𝜖 Energy shift parameter due to biaxial strain, −𝑏s
(
𝜖 ∥ − 𝜖⊥

)
𝑞 Carrier charge

𝑹 Period in a bulk semiconductor crystal

𝑅 Facet reflectance

𝑅d Total device resistance

𝑅p Responsivity
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𝒓 Microscopic position vector

𝑟𝑖 𝑗 Transition rate from subband 𝑗 to 𝑖

𝑟p Photon-induced rate

𝑆 In-plane cross-sectional area

𝑇 Temperature

𝑇1 Excited state lifetime

𝑇2 Dephasing time

𝑇f Facet transmittance

𝑡e Simulation endtime

𝑢𝑛,𝒌 Periodic Bloch function of band 𝑛

𝑢p Voltage drop per period

𝑉̂ext Extended conduction band potential

𝑉 Potential energy

𝑉̃ Electrostatic potential energy

𝑉 𝑗𝒌′,𝑖𝒌 Potential matrix element for elastic scattering processes

𝑉±
𝑗𝒌′,𝑖𝒌 Potential matrix elements for inelastic scattering processes

𝑉p Volume of a QC device period

𝑉tb, 𝑉̂tb Tight-binding potential

𝑉 𝑖
𝑧 ,𝑊 𝑖

𝑧 Non-physical quantities for the ADE-FDTD update step

V Update superoperator

𝑣g Group velocity

𝑊 𝑗𝒌′,𝑖𝒌 Transition rate from an initial state |𝑖𝒌⟩ to the final state | 𝑗 𝒌′⟩
𝑤0 Equilibrium inversion

𝑤± Reservoir spectral densities

𝑧 Position operator in growth direction

𝑧 Coordinate in growth direction

ABC Absorbing boundary conditions

ADE Auxiliary differential equation

Al Aluminum

AM Amplitude-modulated

API Application programming interface
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As Arsenic

ASE Amplified spontaneous emission

BO Bayesian optimization

BTC Bound-to-continuum

CBO Conduction band offset

CN Crank-Nicolson

Cu Copper

CW Continuous wave

DAU Dual-upper state

DFB Distributed feedback

DFG Difference-frequency generation

DM Density matrix

DM-EMC Density matrix Ensemble Monte Carlo

DP Depopulation level

EC External cavity

EI Expected improvement

EL Electroluminescence

EMC Ensemble Monte Carlo

ESMB Effective semiconductor Maxwell–Bloch

eV Electronvolt

FACE Fourier-transform analysis of comb emission

fcc Face-centered cubic

FDTD Finite-difference time-domain

FFT Fast Fourier transform

FM Frequency-modulated

FP Fabry-Perot

FSR Free spectral range

FWM Four-wave-mixing

Ga Gallium

GP Gaussian Process

GVD Group velocity dispersion

HDF Hierarchical Data Format
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HFC Harmonic frequency comb

HH Heavy-hole

HR High-reflection

IAPT Information algorithm with parallel trials

ICL Interband cascade laser

IF Interface roughness

In Indium

INJ Injection level

IR Infrared

LEF Linewidth enhanced factor

LH Light-hole

LLL Lower laser level

LO Longitudinal optical

MB Maxwell–Bloch

MBE Molecular beam epitaxy

ME Matrix exponentials

MOCVD Metalorganic chemical vapor deposition

NEGF Nonequilibrium Green’s function

NEP Noise equivalent power

OFC Optical frequency comb

PC Phosphorus

PC Predictor corrector

PEC Perfectly electric conductor

PMC Perfectly magnetic conductor

PML Perfectly matched layer

PRL Partially reflecting layer

PSTD Pseudo-spectral time-domain

QC Quantum cascade

QCD Quantum cascade detector

QCL Quantum cascade laser

QCRF Quadratic complex rational function

QD Quantum dot
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QDash Quantum dash

QS Quantum system

QW Quantum well

QWIP Quantum well infrared photodetector

RF Radio frequency

RIN Relative intensity noise

RK Runge-Kutta

rt Roundtrip

RWA Rotating wave approximation

SCL Semiconductor laser

SDE Stochastic differential equation

SF Superfluorescence

SHB Spatial hole burning

SI Semi-insulating

SIT Self-induced transparency

SO Split-off

SP Schrödinger-Poisson

SPR Single-phonon resonance depopulation

STL Standard template library in C++

SWIFTS Shifted-wave interference Fourier-transform spectroscopy

TDS Time domain spectroscopy

THz Terahertz

TMM Transfer matrix method

ULL Upper laser level

UPML Uniaxial perfectly matched layer

VCA Virtual crystal approximation
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