
PHYSICS DEPARTMENT
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Quantum Science & Technology

Machine Learning Potentials with Long Range
Interaction

Aaron Schulz

PHYSICS DEPARTMENT
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Quantum Science & Technology

Machine Learning Potentials with Long Range
Interaction

Potentiale des Machinellen Lernens mit
Fernwirkung

Author: Aaron Schulz
Supervisor: Christian Mendl
Submission Date: 05.10.2024

I confirm that this master’s thesis in quantum science & technology is my own work and I
have documented all sources and material used.

Munich, 05.10.2024 Aaron Schulz

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Prof. Dr. Christian Mendl,
for the continuous support of my master’s thesis and his motivation, support, advice, and
knowledge.

His guidance helped me all the time during the study and writing this thesis.

Abstract

This thesis investigates the development and application of machine learning (ML) poten-
tials that incorporate long-range interactions to enhance molecular simulations. Traditional
ML models, such as neural networks, have been widely used for short-range interactions,
effectively modeling local atomic environments. However, they often fail to capture critical
long-range interactions that are essential in accurately describing the behavior of large molecu-
lar systems. In this work, a new extension of an existing ML approach is presented, leveraging
the Fast Multipole Method (FMM) to efficiently approximate long-range interactions within
neural network frameworks. This reduces the computational complexity typically associated
with direct pairwise calculations.

The proposed model integrates a grid structure, which allows distant atoms to be represented
by their collective centers of mass, significantly improving scalability while maintaining accu-
racy. The method is benchmarked against conventional neural networks and demonstrates
improved performance in predicting molecular energies. Results show that this method
yields a slightly lower Mean Absolute Error (MAE) compared to models that ignore such
interactions. Additionally, suggestions for future improvements are made to further enhance
model performance.

iv

Kurzfassung

In dieser Arbeit wird die Entwicklung und Anwendung von ML-Potenzialen (Maschinelles
Lernen) untersucht, die Wechselwirkungen über große Entfernungen berücksichtigen, mit
dem Ziel, molekulare Simulationen zu verbessern. Herkömmliche ML-Modelle, wie neuro-
nale Netze, wurden häufig für Wechselwirkungen über kurze Entfernungen verwendet und
modellieren effektiv lokale atomare Umgebungen. Sie berücksichtigen jedoch oft Wechsel-
wirkungen über große Entfernungen nicht, die für die genaue Beschreibung des Verhaltens
großer molekularer Systeme unerlässlich sind. In dieser Arbeit wird eine neue Erweiterung
eines bestehenden ML-Ansatzes vorgestellt, bei der die Fast Multipole Method (FMM) zur
effizienten Annäherung von Interaktionen mit großer Reichweite im Rahmen neuronaler
Netze eingesetzt wird. Dadurch wird der Rechenaufwand reduziert, der normalerweise mit
direkten paarweisen Berechnungen verbunden ist.

Das vorgeschlagene Modell integriert eine Gitterstruktur, die es ermöglicht, weit entfernte
Atome durch ihre kollektiven Massenschwerpunkte darzustellen, was die Skalierbarkeit bei
gleichbleibender Genauigkeit erheblich verbessert. Die Methode wird mit herkömmlichen
neuronalen Netzen verglichen und zeigt eine verbesserte Leistung bei der Vorhersage mo-
lekularer Energien. Die Ergebnisse zeigen, dass diese Methode im Vergleich zu Modellen,
die solche Wechselwirkungen ignorieren, einen geringfügig niedrigeren mittleren absoluten
Fehler (MAE) aufweist. Darüber hinaus werden Vorschläge für zukünftige Verbesserungen
gemacht, um die Leistung des Modells weiter zu steigern.

v

Contents

Acknowledgments iii

Abstract iv

Kurzfassung v

1. Machine Learning 1
1.1. Single Neuron . 2
1.2. Activation Functions . 2

1.2.1. Sigmoid . 3
1.2.2. ReLU . 3
1.2.3. ELU . 3

1.3. Neural Networks . 4
1.4. Optimization . 6

1.4.1. Gradient Based Optimization . 6
1.4.2. Stochastic Gradient Descent . 7
1.4.3. Adam Optimizer . 7

1.5. Backpropagation . 9
1.6. Initialization . 9
1.7. Dropout . 10
1.8. Layer Normalization . 13
1.9. ResNet Architecture . 15
1.10. Kernel Ridge Regression . 16
1.11. Graph Neural Networks . 17

1.11.1. Main Types of GNNs . 17
1.11.2. GNNs in Molecular Simulations . 18

2. Machine Learning for Molecular Simulation 19
2.1. Mathematical Modelling . 20

2.1.1. Deep Potentials . 20
2.1.2. Atomic Cluster Expansion . 22

2.2. Symmetries . 26
2.3. Descriptors . 27

2.3.1. Why Data Augmentation isn’t sufficient 27
2.3.2. Implementing Descriptors . 27

vi

Contents

3. Fast Multipole Method 30
3.1. Theory . 30
3.2. Algorithm . 35

4. Multipole Method for Long Range Interaction in Neural Networks 36
4.1. Baseline Model . 37
4.2. Adding Long Range Interaction . 39
4.3. Implementation . 40

4.3.1. Datasets . 40
4.3.2. Preprocessing . 40
4.3.3. Architecture . 45
4.3.4. Training . 51

5. Results: Benchmark Comparison to Conventional Neural Networks 52

6. Discussion 56

7. Outlook: What can be improved? 57
7.1. Smooth Descriptor . 57
7.2. Hierarchical Grid . 58
7.3. Larger Datasets . 58
7.4. Larger Batch Size . 58
7.5. Systematic Hyperparameter Tuning . 58

A. Appendix 59

List of Figures 62

List of Tables 63

Bibliography 64

vii

1. Machine Learning

Machine learning (ML) has emerged as a powerful tool for solving complex computational
problems across various fields, from image recognition to molecular simulations. At its core,
ML involves training models to identify patterns and make predictions based on data. One of
the most successful ML techniques is neural networks, which are inspired by the structure of
the human brain and capable of modeling highly non-linear relationships between inputs
and outputs.

Neural networks consist of interconnected layers of neurons, each neuron functioning as
a mathematical unit that processes input data. A single neuron mimics the behavior of
biological neurons, receiving weighted inputs, applying a bias, and producing an output
through an activation function. This setup allows the network to approximate complex
functions, and when multiple neurons are stacked across layers, they can model intricate data
patterns. It has been proven that neural networks with at least one hidden layer are universal
approximators, meaning they can approximate any continuous function to arbitrary accuracy,
given sufficient resources [1].

However, training these networks effectively requires several important components. Non-
linear activation functions, such as the Rectified Linear Unit (ReLU) or sigmoid, ensure
that networks can learn beyond linear relationships. Optimization methods like gradient
descent, including its stochastic variant, are used to iteratively adjust the weights of neurons
to minimize a loss function, which measures the difference between the predicted and actual
outcomes. More sophisticated techniques like the Adam optimizer adaptively adjust learning
rates to improve training stability and convergence [2][3].

Despite the power of neural networks, challenges like overfitting and vanishing gradients
must be carefully managed. Techniques such as dropout and layer normalization help
regularize the model and ensure effective training by preventing neurons from co-adapting
too much or by stabilizing input distributions across layers [4][5].

In this chapter, we will explore the foundational concepts of machine learning, with a
specific focus on neural networks, and introduce key methods and techniques that enable the
successful training of these models.

1

1. Machine Learning

1.1. Single Neuron

The structure of a single neuron of a neural network is inspired by the structure of the human
brain. A neuron in the human brain consists of dendrites, which act as signal inputs, and
axons, which act as signal outputs. Neurons are connected via dendrites and axons (Figure
1.1). In the mathematical model of the neuron, the inputs (dendrites) xi are multiplied by the

Figure 1.1.: Biological Neuron

weights of the neuron wi and then added together. Here, wi is the weight of the i-th input. If
the value of this sum is greater than a threshold value θ, the neuron fires.

y =

1, ∑
i

wixi + b ≥ θ

0, otherwise

 (1.1)

y is the output of the neuron, and b is called the bias, which is also a parameter. Without the
bias, the output of a neuron would always be 0 (regardless of the wi) if all xi = 0. In practice,
a threshold is not used due to considerations of continuity and differentiability; instead, the
sum is subsequently used as the input to a so-called activation function f (see Section 1.2):

y = f

(
∑

i
wixi + b

)
(1.2)

It can be seen that a single neuron implements a linear classifier [1].

1.2. Activation Functions

To ensure that stacking multiple neurons does not result in a purely linear function, activation
functions or non-linearities are introduced. These are scalar functions with a single number
as input [1]. In the following sections, several activation functions will be presented, along
with a discussion of their advantages and disadvantages.

2

1. Machine Learning

1.2.1. Sigmoid

The sigmoid function is mathematically expressed as

σ(x) =
1

1 + e−x . (1.3)

The real-valued input x is mapped by σ to the interval [0,1]. Large negative numbers are
mapped to 0, and large positive numbers are mapped to 1. Historically, the sigmoid function
was frequently used because it closely resembles a threshold function. However, it has two
major disadvantages:

1. When the neuron’s output is close to either 0 or 1 (i.e., it saturates), the gradient in
these regions becomes nearly zero. During backpropagation, this small gradient is
multiplied by the gradients of subsequent layers, leading to a phenomenon known as
the “vanishing gradient problem.” This issue can severely hinder the learning process,
as almost no signal is passed back through the neuron to adjust the weights effectively.
Moreover, careful weight initialization is crucial for sigmoid neurons to avoid saturation
from the start, as large initial weights can cause most neurons to saturate, leading to
minimal learning.

2. When neurons receive non-zero-centered data in later layers of a neural network, it can
affect the dynamics of gradient descent. Specifically, if the input data to a neuron is
always positive, the gradient on the weights during backpropagation will consistently
be either all positive or all negative, potentially causing zig-zagging in the gradient
updates. This can slow down the learning process. However, when gradients are
averaged across a batch of data, this issue is somewhat mitigated, making it less severe
than the vanishing gradient problem associated with saturated activation functions.

[1]

1.2.2. ReLU

The Rectified Linear Unit (ReLU) function is defined as f (x) = max(x, 0). The ReLU function
has the advantages of accelerating convergence during training with Stochastic Gradient
Descent and being a computationally efficient operation compared to the sigmoid function.
However, a neuron using the ReLU function can irreversibly ”die” (known as the ”dying
ReLU” problem), meaning it may no longer activate for any data point. This can be avoided
by using the appropriate learning rate. [1]

1.2.3. ELU

The Exponential Linear Unit (ELU) function is defined as

f (x) =

{
x, x > 0

α(exp(x)− 1), x ≤ 0

}
(1.4)

3

1. Machine Learning

where α is a hyperparameter that controls the saturation point for negative inputs. One key
advantage of ELUs over ReLUs is their ability to produce negative values, which helps to
push the mean activations of neurons closer to zero, thereby reducing the bias shift effect. This
leads to faster learning by bringing the gradient closer to the natural gradient. Additionally,
for large negative inputs, the ELU function saturates, which can make the model more robust
to noise and provide a better generalization. In contrast, ReLUs can suffer from the ”dying
ReLU” problem, where neurons get stuck during training and output zero for any input.
However, ELUs have the disadvantage of being computationally more expensive than ReLUs
due to the exponential calculation, which can slightly increase training time in practice. [6]

1.3. Neural Networks

Neuronal networks can be represented as computational graphs (see Figure 1.2). The neurons
are the nodes, which are connected by edges representing the flow of computations. The
output of one neuron can serve as the input to other neurons. If the graph is acyclic, these
networks are called feedforward neural networks because information flows in a single
direction, from input x, through various layers to output y, without any feedback loops.
When feedback is incorporated, the network becomes a recurrent neural network [2]. This
thesis focuses exclusively on feedforward neural networks.

The primary goal of a neural network is to approximate a target function f ∗, such as mapping
an input x to an output y. In this process, the network learns the parameters θ to optimize the
function approximation. x and y are often vectors, meaning they consist of multiple entries.

The term ”network” is used because these models are composed of multiple interconnected
layers, each representing a function. For instance, a network might have three functions
f (1), f (2), and f (3), forming a chain where f (x) = f (3)(f (2)(f (1)(x))). Each function f (i)

corresponds to a layer, and the depth of the network refers to the total number of layers. The
final layer is the output layer, and the intermediate ones are the hidden layers, which the
learning algorithm must optimize.

Each hidden layer is typically vector-valued, meaning it consists of several neurons that
operate in parallel. Each unit processes inputs from the previous layer, computes its activation,
and passes this result to the next layer. [2]

One type of layer is the so-called ”fully-connected layer” or ”dense layer”. In these layers, all
neurons from two consecutive layers are pairwise connected. Neurons within the same layer,
however, are not connected (see Figure 1.2).

It has been shown that neural networks with at least one hidden layer are universal approx-
imators. This means that, given any continuous function f (x) and any small error margin
ϵ > 0, there exists a neural network g(x) with one hidden layer (using a non-linearity like a
sigmoid) such that for all x, the difference between f (x) and g(x) is smaller than ϵ. In other
words, a neural network can approximate any continuous function to an arbitrary degree of

4

1. Machine Learning

Figure 1.2.: Dense Neural Networks - Two Neural Networks consisting of dense layers. Left:
2 layers with one hidden layer, three inputs, and two outputs. Right: 3 layers with
two hidden layers, three inputs, and one output. (Image source: [1])

accuracy.

While this universal approximation property sounds powerful, it is somewhat limited in
practical applications. The fact that a two-layer neural network can approximate any function
is not particularly useful. For instance, a simple function like g(x) = ∑ ci1(ai < x < bi),
which is just a sum of indicator functions, is also a universal approximator, but it is not used
in machine learning because it is not efficient for real-world data. [1]

5

1. Machine Learning

1.4. Optimization

In the previous sections, we introduced the structure of neural networks and frequently
referred to the weights of neurons, which determine the output of a neuron. But how do we
find the correct weights for the neurons in the network so that they can perform a specific
task or approximate a particular function? In other words, how do we ”learn” the weights?

The following section aims to answer this question and explain how we can use gradients to
optimize a network’s weights to represent a specific function.

We will focus exclusively on ”supervised learning”, a data-driven approach where we optimize
the weights of a network using training examples. For this, we have a training dataset of size
N, consisting of tuples (xi; yi). Here, xi is the input to the network, such as an image, and yi
is the correct output corresponding to the input, such as the object in the image, like a cat or
a dog. yi is also referred to as the ”label” or ”ground truth”. [1]

1.4.1. Gradient Based Optimization

First, we need to introduce the concept of the ”loss function” v. It serves as a metric for
evaluating the quality of a given set of parameters by assessing how closely the predicted
values align with the ground truth labels in the training data. L depends on the network’s
output ỹi and the label yi and returns a scalar value: L(ỹi, yi) ∈ R. Since ỹi(w) depends on
the network’s weights w and (xi; yi) is fixed for a training example i, L depends only on the
weights of the network: L(w). [1]

Figure 1.3.: Gradient Descent Visualization in 1D - In 1D, the gradient simplifies to the regular
derivative, denoted as d

dx . (Image source: [2])

6

1. Machine Learning

Our goal is to minimize the loss function by adjusting the weights of the network. One way
to do this is by taking a step in the direction of the steepest descent of the function L. This
direction is given by the negative gradient. We can update our weights according to the
following rule:

w′ = w − η∇wL(w), (1.5)

where η is called the ”learning rate”, and it determines the step size because the gradient only
tells us the direction of the steepest descent and not how far along we should go. To minimize
L, we repeatedly apply this update rule for different training examples. The procedure
converges when ∇wL(w) ≈ 0. Figure 1.3 illustrates an example in the 1D case. [2]

1.4.2. Stochastic Gradient Descent

The loss function from 1.4.1 calculates the loss for a single training example. However, it is
common to use a sum over many different training examples:

J (w) =
1
m

m

∑
i=1

L(ỹi(w), yi). (1.6)

When the sum includes the entire training dataset, meaning m = N, the computation can often
be too costly due to the large size of the dataset. Therefore, a subset B = {(x1; y1), ..., (xm; ym)}
with |B| = m < N is randomly selected. This subset is called a ”minibatch”, and |B| = m is
referred to as the batch size. The update rule is thus rewritten as:

w′ = w − η∇w
1
m

m

∑
i=1

L(ỹi(w), yi) (1.7)

[2]

1.4.3. Adam Optimizer

The Adam optimizer is widely regarded as one of the most effective and commonly used
optimizers for deep learning models due to its adaptive nature and strong convergence
properties. Unlike traditional optimization methods with a fixed learning rate, Adam adjusts
the learning rate for each parameter, addressing issues encountered with simpler methods
like vanilla gradient descent (shown in the update rule in equation 1.5).

Optimization methods that use a fixed learning rate, such as vanilla gradient descent, often
struggle with certain difficulties during training. One common issue is that the learning rate
remains constant across all parameters and throughout the entire training process. While
this can work in simple cases, it presents problems when the optimizer encounters complex
surfaces in the loss landscape, such as saddle points. In these scenarios, gradient descent may
struggle to make meaningful progress, getting stuck in regions where gradients are small or
oscillating chaotically.

7

1. Machine Learning

To visualize these challenges, consider the case of a saddle point, where one dimension of the
loss function curves up and another curves down. In this situation, a fixed learning rate can
cause the parameter updates to stagnate because the gradients become very small in certain
directions. This is where adaptive optimizers like Adam shine, as they adjust the learning
rate based on the history of gradients for each parameter, allowing the model to escape such
problematic areas more easily.

The Adam optimizer introduces two main components:

1. Momentum: A moving average of past gradients is used to smooth the updates,
reducing noise in the gradient estimates.

2. Adaptive Learning Rate: Adam adapts the learning rate for each parameter based
on the magnitude of its gradient, helping to balance progress across parameters that
experience different gradient scales.

Let ∇L be the gradient of the loss function and w the weights of the model. The Adam
update rule can be simplified as follows:

m′ = β1 · m + (1 − β1) · ∇L (1.8)

v′ = β2 · v + (1 − β2) · (∇L)2 (1.9)

w′ = w − η · m′
√

v′ + ϵ
. (1.10)

Here, m represents the momentum term (first moment), v is the second moment (the moving
average of squared gradients), and ϵ is a small constant added to avoid division by zero. The
key idea is that Adam keeps track of both the gradient mean and variance, enabling it to
adapt the learning rate for each parameter over time.

To further improve the convergence in the early stages of training, Adam includes a bias
correction mechanism to adjust for the fact that both m and v are initialized to zero. This
correction ensures that the optimizer does not underestimate the updates when the model
has only seen a few gradients. The full update, including bias correction and the iteration
number t, is:

mt+1 =
β1 · mt + (1 − β1) · ∇L

1 − βt (1.11)

vt+1 =
β2 · vt + (1 − β2) · (∇L)2

1 − βt (1.12)

wt+1 = wt − η · mt+1√
vt+1 + ϵ

. (1.13)

[1][3]

8

1. Machine Learning

1.5. Backpropagation

Backpropagation is a fundamental algorithm used in training feedforward neural networks
to calculate the gradient. When a neural network processes an input x to produce an
output ỹ, the information flows through the network layer by layer, a process known as
forward propagation. During this process, the input propagates through hidden units in each
layer until a final output is produced. The backpropagation algorithm enables the flow of
information to move in the opposite direction, from the output back through the network.
This reverse flow calculates the gradient of the scalar loss function L, which is essential for
updating the model’s parameters during training.

Backpropagation uses the chain rule of calculus to compute derivatives efficiently in neural
networks. The chain rule is used to determine the derivatives of functions that are composed
of other functions as long as the derivatives of the individual functions are known.

Let x ∈ Rm, y ∈ Rn, f : Rn 7→ R and g : Rm 7→ Rn. If y = g(x) and z = f (y), then

∂z
∂xi

= ∑
j

∂z
∂yj

∂yj

∂xi
, (1.14)

which can be written in vector notation as

∇xz = (
∂y
∂x

)T∇yz, (1.15)

where ∂y
∂x is the n × m Jacobian matrix of g.

In backpropagation, the gradient of a variable x can be computed by multiplying a Jacobian
matrix ∂y

∂x by a gradient ∇yz. The backpropagation algorithm is essentially a sequence of
these Jacobian-gradient products applied to each operation in the computational graph.
By recursively applying the chain rule, one can compute the gradient for each node and
parameter in the neural network graph.

1.6. Initialization

Before one can start the training of a neural network, one has to initialize the weights of the
network. Since one does not know what the final weights should be, it is a good assumption
that half of them are less than zero and the other half are greater than 0. However, if all
weights were initialized with 0, there would be no asymmetry between the neurons. As
a result, all neurons would produce the same output, calculate the same gradient during
backpropagation, and receive the same update, which means that the neurons would not
learn different features of the data. However, based on the above argument, you still want to
initialize the weights as close to zero as possible. One possibility is to initialize the weights
randomly as very small values. A multi-dimensional Gaussian or uniform distribution is
particularly suitable for this [1].

9

1. Machine Learning

1.7. Dropout

Deep neural networks (DNN) are capable of modeling complex relationships between inputs
and outputs through multiple non-linear hidden layers. However, this expressiveness comes
at a cost: with limited training data, DNNs are prone to overfitting. Overfitting occurs when a
model captures noise in the training data, leading to poor generalization when encountering
new, unseen data. Dropout is a way to address overfitting.

In theory, the most effective way to regularize a fixed-sized model is to average the predictions
of all possible parameter configurations, weighted by their posterior probabilities. This
approach, while theoretically optimal, is computationally infeasible for large models due to
the vast number of possible configurations.

Combining different models nearly always improves the performance of machine learning
methods. In reality, one can often not use this approach because tuning the hyperparameters
and training each individual neural network is a costly task.

Dropout is a regularization technique to address overfitting by combining many different
networks in a computationally efficient way. The core idea behind dropout is to randomly
drop neurons, along with their connections, during training. By doing so, dropout prevents
the units from co-adapting too much, which forces each neuron to develop more robust
features that are useful on their own (figure 1.4).

(a) Standard Neural Net-
work

(b) Applying Dropout to the
layers

Figure 1.4.: Standard NN & Dropout NN - Standard neural network (left) and network with
applied dropout (right). Crossed neurons have been dropped. (Image source: [4])

During training, dropout draws samples from an exponentially large number of different
”thinned” networks. Each is a subset of the original network with randomly selected neurons
removed. This means that each training case is presented with a slightly different model. For
a neural network with n neurons, this means the models during training are sampled from 2n

possible thinned neural networks.

At test time, instead of averaging the predictions from all these thinned networks, dropout

10

1. Machine Learning

(a) Neuron is used with probability p during
training

(b) While testing the neuron is always used
and its weights are multiplied by p

Figure 1.5.: Dropout: Training vs. Testing (Image source: [4])

uses a single, ”unthinned” network with weights scaled down by the dropout probability
(figure 1.5). This scaling ensures that the output at test time is an approximate geometric
mean of the outputs from the exponentially many thinned networks trained during the
training phase.

Consider a neural network comprising L hidden layers. Each hidden layer is indexed by
l ∈ {1, . . . , L}. The vector of inputs to layer l is represented by z(l) , while y(l) denotes the
vector of outputs from layer l (with y(0) = x being the input of the network). The weights
and biases at layer l are denoted by W(l) and b(l).

The feed-forward operation in a standard neural network (figure 1.6 a) can be expressed as
follows for l ∈ {0, . . . , L − 1} and any hidden unit i:

z(l+1)
i = w(l+1)

i y(l) + b(l+1)
i (1.16)

y(l+1)
i = f (z(l+1)

i) (1.17)

where f is any activation function.

With dropout the feed-forward operation changes to (figure 1.6 b):

r(l)j ∼ Bernoulli(p) (1.18)

ỹ(l) = r(l) ∗ y(l) (1.19)

z(l+1)
i = w(l+1)

i ỹ(l) + b(l+1)
i (1.20)

y(l+1)
i = f (z(l+1)

i) (1.21)

∗ denotes an element-wise product. For each layer l, r(l)j represents a vector of independent
Bernoulli random variables, where each element has a probability p of being 1. This vector is
sampled and applied element-wise to the layer’s outputs y(l) via multiplication, yielding the
thinned outputs ỹ(l). These thinned outputs then become the inputs to the next layer. This
process is repeated for each layer, effectively sampling a sub-network from the larger network.

11

1. Machine Learning

During training, the loss function’s derivatives are backpropagated through this sub-network.
At test time, the weights are scaled as W(l)

test = pW(l) and the neural network operates without
dropout. [4]

(a) Standard Network Architecture (b) Dropout Network Architecture

Figure 1.6.: Architecture of Standard Network and Network with Dropout (Image source: [4])

12

1. Machine Learning

1.8. Layer Normalization

Layer normalization is a technique designed to improve the training of deep neural networks
by addressing some of the limitations of batch normalization. While batch normalization
has proven effective in accelerating training and improving model performance, it relies on
the statistics of mini-batches, which can be problematic in certain scenarios, especially when
working with small batch sizes. Layer normalization works by normalizing the summed
inputs to the neurons within each layer of a neural network, but unlike batch normalization, it
does so independently for each training case. Specifically, it calculates the mean and variance
for normalization across all neurons in a layer for a single training example rather than across
a mini-batch.

Let al represent the vector of summed inputs to the neurons in the l-th hidden layer in a deep
feed-forward neural network. The summed inputs for the i-th hidden unit in the l-th layer
are computed as:

al
i = wl

i
T

hl , (1.22)

where wl
i are the weights of the i-th hidden unit in the l-th layer and hl the output of the

(l − 1)-th layer. The output hl+1
i of the layer is then calculated as:

hl+1
i = f (al

i + bl
i), (1.23)

where f (·) is an element-wise non-linear function and bl
i is the scalar bias parameter.

One of the challenges in training deep networks is the ”covariate shift” problem, where the
distribution of inputs to a layer changes during training as the parameters of the previous
layers are updated. This can slow down training since each layer must continuously adapt to
the shifting input distribution.

Batch normalization was proposed to address this issue by normalizing the inputs to each
hidden unit over a mini-batch of training data. Specifically, for the i-th summed input in
the l-th layer, batch normalization normalizes the input using the mean µl

i and variance σl
i

computed over the mini-batch:

āl
i =

gl
i

σl
i
(al

i − µl
i) (1.24)

µl
i = E

x∼P(x)
[al

i], (1.25)

σl
i =

√
E

x∼P(x)
[(al

i − µl
i)

2], (1.26)

where āl
i is the normalized summed input, and gl

i is a gain parameter that scales the normal-
ized activation before the non-linear activation function.

Layer normalization fixes the mean and variance of the summed inputs within the layer and
thus computes the normalization statistics over all hidden units in the same layer as follows:

µl =
1
H

H

∑
i=1

al
i , (1.27)

13

1. Machine Learning

σl =

√√√√ 1
H

H

∑
i=1

(al
i − µl)2, (1.28)

where H is the number of hidden units in a layer, all hidden units share the same µl and σl .
Layer normalization can thus also be used for a batch size of 1. [5]

14

1. Machine Learning

1.9. ResNet Architecture

The ResNet architecture, with its residual learning and shortcut connections, serves as the
basis for the model used in this thesis. Although ResNet was initially developed for image
recognition, the underlying principles of its architecture, such as residual learning and the
use of shortcut connections, are applicable across various domains of machine learning.
Understanding these principles provides valuable insights that can be extended to the study
of long-range interactions in more complex systems. The following section offers an overview
of the general ideas and design of ResNet, illustrating concepts that are foundational to the
broader discussions later in this thesis.

In recent years, deep convolutional neural networks (CNNs) have led to significant advance-
ments in image classification and recognition tasks. One of the pivotal developments in this
field is the introduction of the Residual Network (ResNet) architecture, which was proposed to
address the challenges associated with training very deep networks. The primary innovation
of ResNet lies in its residual learning framework, which mitigates the degradation problem
often encountered as network depth increases.

As networks grow deeper, it becomes increasingly difficult to train them effectively. Traditional
deep networks often face the degradation problem, where adding more layers to a sufficiently
deep model leads to higher training error rather than improving performance. This issue is
not necessarily due to overfitting but is rather a consequence of optimization difficulties in
very deep networks.

Figure 1.7.: ResNet Block with ”shortcut” connection (Image source: [7])

To address these challenges, ResNet introduces the concept of residual learning. Instead of
each layer learning an unreferenced function, the ResNet layers are designed to learn residual
functions with respect to the input layer. Formally, if the desired underlying mapping is
denoted as H(x), ResNet reformulates the function to learn F (x) = H(x)− x, where the
network learns the residual mapping F (x). The original function then becomes F (x) + x.

This approach is based on the hypothesis that it is easier for the network to optimize the
residual function F (x) than to directly approximate the desired mapping H(x). If the optimal
mapping is indeed close to the identity mapping, then pushing the residual to zero (i.e.,

15

1. Machine Learning

learning the identity function) becomes easier than fitting an identity mapping by stacking
nonlinear layers.

The ResNet architecture is characterized by the use of ”shortcut connections” that skip one
or more layers (see Figure 1.7). These shortcuts perform identity mappings and add the
output of these mappings to the output of the stacked layers. This design does not introduce
additional parameters or computational complexity, making the network easier to optimize
while enabling the training of very deep models. This simple yet effective design has enabled
the training of networks with unprecedented depth.

The introduction of ResNet has had a profound impact on the field of deep learning, particu-
larly in image recognition tasks. The architecture has been shown to significantly outperform
previous models, even when scaled to hundreds of layers. [7]

1.10. Kernel Ridge Regression

Kernel Ridge Regression (KRR) is a nonlinear regression method widely used in machine
learning (ML) for interpolating data while applying regularization to avoid overfitting. This
model is particularly relevant in molecular simulations, where accurate predictions of system
properties are required without direct numerical solutions of complex equations, such as the
Schrödinger equation in quantum systems. KRR provides a flexible approach to approximate
complex, high-dimensional functions by learning from training data.

KRR is formulated as follows:

f ML(x) =
NT

∑
j=1

ajk(x, xj) (1.29)

where {xj} for j = 1, ..., NT are the training data points, aj are the learned weights, and k(x, xj)

is a kernel function that measures the similarity between the input point x and the training
points xj.

The Gaussian kernel is commonly used in KRR defined as:

k(x, x′) = exp− (x − x′)2

2σ2 (1.30)

where σ is the length scale hyperparameter controlling the degree of correlation between data
points.

The weights aj are found by minimizing the loss function

L(a) =
NT

∑
j=1

(f ML(xj)− f j) + λaTKa (1.31)

where a = (a1, ..., aNT) is the weight vector, f j are the labels (or values to predict), K is the
kernel matrix with elements Kij = k(xi, xj), and λ is a regularization parameter that controls
the trade-off between fitting the training data and smoothness of the model.

16

1. Machine Learning

The two hyperparameters, the length scale σ and regularization strength λ, play crucial roles
in determining the model’s performance but are not determined by equation 1.31.

σ controls how rapidly the kernel decays with distance. For small values of σ, the kernel
becomes localized, and the model focuses on fitting individual points closely. For largeσ, the
kernel becomes broader, leading to smoother fits across the training data.

λ determines how much the model is allowed to deviate from the training data. Small λ

values force the model to fit the training data exactly, while large λ values allow the model to
smooth out noise or irrelevant fluctuations in the data and reduce overfitting. [8]

1.11. Graph Neural Networks

Graph Neural Networks (GNNs) are a class of machine learning models designed to operate
on graph-structured data, making them an ideal choice for molecular simulations, where
molecules are naturally modeled as graphs. In molecular graphs, atoms are represented as
nodes, while bonds between atoms serve as edges. This structural flexibility allows GNNs to
capture the complex relationships within molecular systems, including both local interactions
and long-range dependencies between atoms.

At their core, GNNs extend traditional deep learning methods to handle non-Euclidean data,
such as graphs, where the relationships between entities are more complex than in grid-based
structures like images. GNNs achieve this by learning node representations through a process
called message passing or neighborhood aggregation.

1.11.1. Main Types of GNNs

Recurrent Graph Neural Networks (RecGNNs): These models iteratively propagate informa-
tion between nodes until convergence. This was one of the first methods proposed for GNNs
but tends to be computationally expensive due to the repeated message passing until a stable
equilibrium is reached.

Convolutional Graph Neural Networks (ConvGNNs): Inspired by the success of CNNs in
image processing, ConvGNNs define a convolution operation on graph data. In ConvGNNs,
each node aggregates information from its neighbors through weighted combinations, much
like a convolution filter operates on pixel neighborhoods in images. This method has been
widely adopted in GNN applications due to its efficiency and scalability.

Graph Autoencoders (GAEs): These models focus on unsupervised learning, where graphs
are encoded into a latent space and reconstructed, helping in tasks such as graph generation
and node clustering.

Spatial-Temporal Graph Neural Networks (STGNNs): These models capture both spatial rela-
tionships in graphs and their dynamic changes over time, which can be useful in simulations
where molecular structures change over time.

17

1. Machine Learning

GNNs can be trained in a supervised, semi-supervised, or unsupervised manner, depending
on the nature of the task.

1.11.2. GNNs in Molecular Simulations

In molecular simulations, GNNs are used for various tasks such as: Molecular property
prediction: Predicting the chemical properties of molecules based on their graph structure.
Learning molecular fingerprints: GNNs can infer molecular fingerprints from the graph
representation, which is crucial for drug discovery and other chemical applications. Protein
interface prediction: By treating protein structures as graphs, GNNs can predict interfaces
between proteins, which is vital for understanding biological processes. [9]

18

2. Machine Learning for Molecular Simulation

As early as 1929, Paul Dirac pointed out that a large part of the physics of atoms and chemistry
was already known. However, the equations were often too difficult to solve analytically. The
challenge now was to find approximation methods that correctly described the properties of
complex atomic systems without the need for many or complex calculations. Over 90 years
later, this statement is still valid. Machine learning (ML) is one of the fastest-developing fields
of our time, which means that it also has an impact on the approximation of complex atomic
systems. As shown in detail in the previous chapter, ML allows us to find the underlying
complex relationship between input and output data. This can also be very useful for atomic
and molecular systems since the chemical properties depend on the atomic configuration. An
ML algorithm can learn this relationship with enough data without solving equations [10].

All atomic simulations require a potential energy surface (PES) as input, which describes how
the atoms interact with each other. The forces can then be derived from this. Solving the
Schrödinger equation within the Born-Oppenheimer approximation is the most precise way
to determine the PES. The most widely used method is the density function theory (DFT),
which scales with N3, where N is the number of atoms. For large systems with more than
1000 atoms and long simulation times of several nanoseconds, the computational cost is often
very high. To overcome this problem, empirical potentials are often used, which describe a
relationship between atomic positions and the energy of the system. Since many assumptions
are involved in these relationships, these approaches are significantly less computationally
intensive but also often less accurate. One thus finds oneself in a dilemma in that quantum
mechanical methods require very precise but long computing times, and empirical potentials
can be calculated more efficiently but are imprecise.[11]

19

2. Machine Learning for Molecular Simulation

2.1. Mathematical Modelling

The following section will present the mathematical modeling. The first part deals with Deep
Potentials, which will also be used in the later approach. Additionally, the Atomic Cluster
Expansion will be introduced as another approach. This has been included for clarity but
will no longer play a role in the subsequent chapters.

2.1.1. Deep Potentials

Deep Potentials (DP) are neural network potentials (NNP) that describe the Potential Energy
Surface (PES) of a system. In this context, consider a system consisting of N atoms. The
total energy of the system is a function of the atomic coordinates R = {r1, r2, ..., ri, ..., rN},
where {ri1, ri2, ri3} are the three Cartesian components of the position vector ri of atom i. The
potential energy E(R) can be accurately determined using first principle calculations. The
force Fi (Fi = {Fi1, Fi2, Fi3}) acting on atom i is the negative gradient of the potential energy
with respect to its atomic coordinates, given by

Fi = ∇ri E. (2.1)

In many atomistic simulations, periodic boundary conditions are employed to model an
infinite system using a finite number of atoms. These conditions are represented by cell
vectors organized in a matrix h = {hαβ}, where hαβ represents the β-th component of the α-th
cell vector. The virial tensor Ξ = {Ξαβ} is defined in terms of the derivative of the energy
with respect to the cell vectors:

Ξαβ = − ∂E
∂hγβ

hγβ. (2.2)

The process of training a machine learning potential (MLP) for this system falls under classical
supervised learning. Initially, the total energy, atomic forces, and virial tensors of various
system configurations are computed using first-principles methods. These computed values
serve as training labels for the MLP. The potential is represented as Eω(R), where ω denotes
the set of trainable parameters of the model. The corresponding forces Fω(R) and virial
tensors Ξω(R) are derived from Eω(R) using the equations 2.1 and 2.2. The training process
involves minimizing a loss function that quantifies the difference between the predicted and
true values of the energy, forces, and virials:

L =
1
|B| ∑

kϵB
(peL(k)

e + p fL
(k)
f + pνL(k)

ν) (2.3)

L(k)
e =

1
N
|E(R(k))− Eω(R(k)))|2 (2.4)

L(k)
f =

1
3N ∑

iα
|Fiα(R(k))− Fω

iα (R(k)))|2 (2.5)

20

2. Machine Learning for Molecular Simulation

L(k)
ν =

1
9N ∑

iα
|Ξαβ(R(k))− Ξω

αβ(R(k))|2 (2.6)

B is a mini-batch of the training data, |B| is the number of configurations in this batch and
pe, p f and pν are the prefactors which are tunable Hyperparameters.

The extensibility of the total energy in MLPs is maintained by decomposing it into atomic
contributions:

Eω =
N

∑
i=1

Eω
i =

N

∑
i=1

Eω
i (Ri) (2.7)

where Eω
i is the energy associated with atom i. We assume that the energy of an atom

depends only on its coordinates and its local environment. This local environment is defined
by a predefined cutoff radius rc, within which the interactions between atoms are considered.
The set of neighbor atoms within this cutoff distance is denoted as Nrc(i) = {j|rij = |rij| ⩽ rc}.
The cardinality of this set is Ni, and the local environment of atom i is represented by the
environment matrix Ri, which has Ni rows and 3 columns, where each row j of Ri corresponds
to the relative position of atom j with respect to atom i:

(Ri)j = (rij). (2.8)

The assumption that the atomic energy depends on the local environment is generally valid
for systems with short-range interactions. However, long-range interactions, primarily arising
from Coulombic forces within the electron density distribution, may also be significant in
some materials. In metallic systems, shielding effects make the local environment assumption
reasonable, as long-range interactions diminish rapidly with distance. Nevertheless, for
materials where long-range interactions are dominant, they must be explicitly accounted for
in the model. While various approaches have been proposed to include long-range interactions
in MLPs, there is no universally accepted method to handle them appropriately. In the deep
potential (DP) method, the focus is on systems where the local interaction assumption holds.
For extended systems, periodic boundary conditions are applied to maintain consistency with
the assumed local interactions.[11]

21

2. Machine Learning for Molecular Simulation

2.1.2. Atomic Cluster Expansion

The atomic cluster expansion (ACE) is a mathematical framework developed to provide an
accurate and transferable description of the local atomic environment in molecular simulations.
The primary goal of ACE is to offer a systematic and efficient method for representing the
potential energy of a collection of atoms by expanding it in terms of local atomic clusters. This
approach addresses the limitations of traditional many-atom expansions by ensuring rapid
convergence and scalability, making it suitable for both small clusters and bulk materials.

The energy E of a system of N atoms can be expressed as a series expansion involving
many-body interactions:

E = V0 + ∑
i

V(1)(ri) +
1
2 ∑

ij
V(2)(ri, rj) +

1
3! ∑

ijk
V(3)(ri, rj, rk) + · · · , (2.9)

where ri denotes the position of atom i, and V(k) represents the k-body interaction potential.
The potentials are symmetric and uniquely defined, with higher-order terms diminishing in
significance.

One can then separate the expansion into atomic contributions. The energy of atom i is
represented as a sum over interactions with its neighbors:

Ei = V(1)(ri) +
1
2 ∑

j
V(2)(ri, rj) +

1
6 ∑

jk
V(3)(ri, rj, rk) + · · · . (2.10)

The convergence of the expansion is slow even if a cutoff radius rc is introduced to take into
account only atoms inside the cutoff radius. Evaluating up to the (K + 1)-th term scales as
NK

c , where Nc represents the number of atoms inside the cutoff radius. The goal of ACE is to
simplify the expansion for Ei.

Ei is completely defined by the N − 1 vectors from atom i to all other atoms:

Ei(σ) = Ei(r1i, r2i, ..., rNi). (2.11)

rji = rj − ri and the collection of the N − 1 vectors is abbreviated as σ = (r1i, r2i, ..., rNi) since
their order is irrelevant.

The next step is to define the inner product between two functions f (σ) and g(σ) as

⟨ f |g⟩ =
∫

f ⋆(σ)g(σ)dσ (2.12)

where f ⋆(σ) denotes the complex conjugate of f (σ).

Let ϕν(r) with ν = 0, 1, 2, . . . be a set of orthogonal and complete basis functions that depend
only on a single bond r. For the set ϕν(r), the following holds:∫

ϕ⋆
ν(r)ϕu(r)dr = δνu (2.13)

22

2. Machine Learning for Molecular Simulation

∑
ν

ϕ⋆
ν(r)ϕν(r′) = δ(r − r′). (2.14)

A cluster α with K elements includes K bonds, denoted as α = (j1i, j2i, ..., jKi), where the order
of entries is irrelevant. The vector ν = (ν1, ν2, ..., νK) represents the list of single-bond basis
functions within the cluster. In ν, only single-bond basis functions with v > 0 are taken into
account. Then, the cluster basis function is given by

Φαν = ϕν1(rj1i)ϕν2(rj2i)...ϕνK(rjK i), (2.15)

with 0 ≤ K ≤ N − 1.

Since the orthogonality and completeness of the one-bond basis functions transfer to the
cluster basis functions, it follows:

⟨Φαν|Φβµ⟩ = δαβδνµ, (2.16)

1 + ∑
γ⊆α

∑
ν

Φ⋆
γν(σ)Φγν(σ

′) = δ(σ − σ′), (2.17)

where α represents an arbitrary cluster, and the right-hand side of the completeness relation
is the product of the corresponding right-hand sides of Eq. 2.14.

Let
k(σ, σ′) = 1 + ∑

γν

Φ⋆
γν(σ)Φγν(σ

′) (2.18)

be a kernel. One can then rewrite ACE of Eq. 2.10 into

Ei(σ) = ⟨k(σ, σ′)|Ei(σ
′)⟩ = J0 + ∑

αν

JανΦαν(σ). (2.19)

The expansion coefficients Jαν can be derived through projection

Jαν = ⟨Φαν|Ei(σ)⟩. (2.20)

If atoms j and k are of the same chemical species, exchanging the bonds ji and ki does not
alter the energy or any other atomic observable. Consequently, bonds within a cluster can be
categorized by their chemical species. For a cluster with K bonds, where kA, kB, etc., represent
the number of bonds to chemical species A, B, etc., the expansion coefficient Jαν is determined
solely by the number of bonds to each species, denoted as (JkAkB ...ν). This principle simplifies
the application of atomic cluster expansion to elements, as the expansion coefficient is fully
characterized by the number of bonds within the cluster. Therefore, for elemental materials,
the expansion coefficient can be expressed as

Jαν = J(K)ν . (2.21)

23

2. Machine Learning for Molecular Simulation

One can then rewrite Eq. 2.19 into

Ei(σ) =∑
j

∑
ν

J(1)ν ϕν(rji)

+
1
2

j1 ̸=j2

∑
j1 j2

∑
ν1ν2

J(2)ν1ν2 ϕν1(rj1i)ϕν2(rj2i)

+
1
3!

j1 ̸=j2,...

∑
j1 j2 j3

∑
ν1ν2ν3

J(3)ν1ν2ν3 ϕν1(rj1i)ϕν2(rj2i)ϕν3(rj3i)

+ ...,

(2.22)

where J0 was set to 0 and the coefficient J(K)ν contributes to the potential V(K+1).

The sum can be further transformed so that the summations become unrestricted,

Ei(σ) =∑
j

∑
ν

c(1)ν ϕν(rji)

+
1
2 ∑

j1 j2
∑
ν1ν2

c(2)ν1ν2 ϕν1(rj1i)ϕν2(rj2i)

+
1
3! ∑

j1 j2 j3
∑

ν1ν2ν3

c(3)ν1ν2ν3 ϕν1(rj1i)ϕν2(rj2i)ϕν3(rj3i)

+

(2.23)

Both equations are identical, allowing the coefficients c(K)ν to be calculated from J(K)ν .

The costly NK
c scaling can be avoided by a rearrangement of Eq. 2.23. Let the atomic basis be

defined by projecting the basis functions onto the atomic density:

Aiν = ⟨ρi|ϕν⟩ = ∑
j

ϕν(rji). (2.24)

The atomic density ρi of an elemental material is defined as

ρi = ∑
j

δ(r − rji). (2.25)

Substituting into Equation 2.23 gives

Ei(σ) =∑
ν

c(1)ν Aiν

+
ν1⩾ν2

∑
ν1ν2

c(2)ν1ν2 Aiν1 Aiν2

+
ν1⩾ν2⩾ν3

∑
ν1ν2ν3

c(3)ν1ν2ν3 Aiν1 Aiν2 Aiν3

+

(2.26)

24

2. Machine Learning for Molecular Simulation

which is a polynomial in Aiν.

The construction of the atomic basis Aiν scales linearly with the number of neighbors Nc,
while the energy evaluation, as given in Eq. 2.26, is independent of Nc. This implies that the
time required to evaluate the energy scales linearly with the number of neighbors, regardless
of the expansion order. Consequently, the atomic cluster expansion effectively addresses
the poor scaling of the traditional many-atom expansion in Eq. 2.10 (see Figure 2.1). This
improvement is crucial for the efficient evaluation of higher-order terms in densely packed
materials with hundreds of atoms within the cutoff sphere.[12]

Figure 2.1.: Illustration of Atomic Cluster Expansion - (a) Basis function evaluated for the
bonds between the central atom and its neighboring atoms (Eq. 2.10). (b) Atomic
cluster expansion is expressed as a sum of pair, three-body, four-body, and
higher-order contributions (Eq. 2.19). (c) Atomic Cluster expansion, which is a
polynomial of the atomic base and scales linearly with the number of neighbors
regardless of the expansion order (Eq. 2.26). (Image source: [12])

25

2. Machine Learning for Molecular Simulation

2.2. Symmetries

In molecular simulations, embedding known physical principles into machine learning
(ML) models provides a substantial advantage over traditional ML tasks such as image
classification. This approach ensures that the model’s predictions remain physically plausible,
thereby improving both accuracy and reliability.

For instance, in predicting the potential energy and atomic forces of the diatomic molecule
O2 in a vacuum, several physical rules must be adhered to:

1. Translational and Rotational Invariance: The energy of the molecule remains invariant
under translation or rotation. Therefore, we can choose arbitrary positions for the atoms,
reducing the energy to a function of the interatomic distance d only: U(x) → U(d).

2. Conservation of Energy: The energy is conserved. The relationship between energy
and force is given by F(x) = −∇U(x), allowing us to compute force components
accordingly.

3. Permutational Invariance: Exchanging the labels of identical atoms does not change the
energy of the system.

[10]

26

2. Machine Learning for Molecular Simulation

2.3. Descriptors

In machine learning, two primary approaches are used to handle the invariances or symme-
tries from section 2.2: data augmentation (section 2.3.1) and incorporating the invariances
directly into the ML model (section 2.3.2). [10]

2.3.1. Why Data Augmentation isn’t sufficient

Data augmentation involves learning invariances by artificially generating additional training
data and applying the known invariances to it. A given training point with positions as input
and energy/force labels, (x; U, F), can be augmented by using the translational invariance
of energy and force. This is done by adding more training data points (x + δx; U, F) with
random displacements δx. Data augmentation enhances the robustness of the ML model
and helps approximate the invariances, making it a valuable ML tool due to its ease of
implementation. However, for some invariances, embedding them directly into the ML model
can be conceptually challenging or computationally expensive.

Despite its benefits, data augmentation is statistically inefficient since it requires more training
data, and it is also inaccurate because a network without built-in translation invariance will
not predict constant energy when translating the molecule. This inaccuracy can result in
unphysical predictions if one uses this energy model in an MD integrator. [10]

2.3.2. Implementing Descriptors

To maintain energy invariance, descriptors of the atomic environment are introduced that
remain unchanged when the symmetry operations from section 2.2 are applied to the atomic
coordinates:

D(Ri) = D(URi). (2.27)

The atomic energy can thus be expressed as

Ew
i (Ri) = F (D(Ri)), (2.28)

where F is the deep neural network. To calculate the atomic forces and the virial tensor using
derivatives, the descriptor function D must be smooth.

There are two types of descriptors: non-smooth, as in [13], and smooth, as in [14], mappings
of the atomic coordinates.[11]

Non-Smooth Descriptors

Non-smooth descriptors transform each atom i and its neighboring atoms Nrc(i), which lie
within the cutoff radius rc, into a local coordinate system and then sort them based on their

27

2. Machine Learning for Molecular Simulation

distance to the central atom i. This transformation makes the atomic environment invariant
to translation, rotation, and permutation.

To construct the local coordinate system for atom i, two neighboring atoms a(i)ϵNrc(i) and
b(i)ϵNrc(i) are first selected from the local environment Nrc(i) such that atoms i, a(i), and
b(i) are not colinear. In practice, a(i) and b(i) are often chosen as the two atoms nearest to i.
The rotation matrix is defined as follows:

R(ria(i), rib(i)) =

 e(ria(i))

e
[
rib(i) −

ria(i)·rib(i)
ria(i)ria(i)

ria(i)

]
e(ria(i) × rib(i))


T

, (2.29)

where the elements in each column are the basis vectors in the local coordinate system,
and e(r) = r/|r| is the normalized vector of r. The global coordinates rij = (xij, yij, zij) are
transformed into the local coordinates r′ij = (x′ij, y′ij, z′ij) using the formula

(x′ij, y′ij, z′ij) = (xij, yij, zij) · R(ria(i), rib(i)), (2.30)

where R(ria(i), rib(i)) is the rotation matrix.

From the local coordinates, the descriptor can now be constructed. The full information is
obtained from {

Dij
}
=

{
1
rij

,
xij

rij
,

yij

rij
,

zij

rij

}sort

jϵNrc (i)
. (2.31)

For atoms that are far from the central atom i, it may be sufficient to use only the radial
information: {

Dij
}
=

{
1
rij

}sort

jϵNrc (i)
. (2.32)

The superscript ’sort’ indicates that the sorting is based on the inverse distance to atom i.

The advantage of non-smooth descriptors is that they retain complete information about the
local environment. The descriptor is non-smooth because the selection of the neighboring
atoms a(i) and b(i) is arbitrary. For example, if these are chosen as the two nearest neighbors,
a continuous change in atomic positions can result in a discontinuous change in the local
coordinate system and, thus, the local coordinates. Additionally, sorting is also not a
continuous operation, resulting in additional discontinuities in the descriptor.[13]

Smooth Descriptors

The smooth descriptor will be briefly explained here, as it will be detailed and applied in
section 4.

28

2. Machine Learning for Molecular Simulation

After constructing the environment matrix RiϵRNi×3 for atom i, it is transformed using the
function s(rij), where s is a continuous and differentiable function:

s(rji) =


1
rji

, rji < rcs
1
rji

fc(rij), rcs < rji < rc

0, rji > rc

 (2.33)

fc(rij) decreases from 1 at rcs to 0 at rc. fc should be differentiable to the second order. The
extended matrix R̃iϵRNi×4 is then obtained as follows:

(R̃i)j = s(rij)× (1,
xij

rij
,

yij

rij
,

zij

rij
). (2.34)

The embedding matrix GiϵRNi×M is then formed from the first column of the matrix R̃i.

(Gi)j = (G1(s(rij), Zj), ..., GM(s(rij), Zj), (2.35)

where (G1, ..., GM) is a mapping of a deep neural network from the scalar input s(rij) and the
atomic number Zj of the j-th neighboring atom.

The smooth descriptor Di is calculated from the extended matrix R̃i and the embedding
matrix Gi:

Di = G i1R̃i(R̃i)TG i2 , (2.36)

where i1 = M and i2 < M are the first first i2 columns of G i.

A smooth descriptor has the advantage that due to the function s(rij), the matrix only changes
slightly with a small change in the position of a neighboring atom, preventing any abrupt
jumps.[13]

29

3. Fast Multipole Method

The fast multipole method (FMM), summarized from Ref. [15], is a computational technique
designed to efficiently solve the N-body problem, which involves calculating potential fields
due to a distribution of sources. This method significantly reduces the computational
complexity from O(N2) to O(N), where N is the number of points. The FMM is applicable in
various fields, including astrophysics, electrostatics, and wave scattering.

The essence of FMM lies in approximating the interactions between distant clusters of points
rather than computing each interaction individually. There are two main categories of FMM
based on the type of kernel functions: non-oscillatory and oscillatory kernels. This chapter
explores the non-oscillatory type, providing a conceptual overview and detailing the classical
FMM algorithm.

3.1. Theory

Let X ⊂ Rd be the N target points, Y ⊂ Rd the N source points, G(x, y) a kernel function and
{ f (y) : yϵY} a set of weights. One then wants to compute the potential u(x) for each xϵX
defined by

u(x) = ∑
yϵY

G(x, y) f (y). (3.1)

In the following, X = Y = P is assumed.

For non-oscillatory kernels, such as the Coulomb potential G(x, y) = 1
|x−y| , the FMM efficiently

computes interactions between points distributed quasi-uniformly within a unit box (see
Figure 3.1). The classical FMM uses a hierarchical decomposition of the computational
domain into a quadtree structure (see Figure 3.3).

Before starting, let us first consider two disjoint squares, A and B, each containing O(n)
points. When A and B are well-separated, we can approximate the interactions between all
points in A and B using a simplified procedure. E.g., imagine A and B as two distant galaxies.
Instead of computing all pairwise interactions, we sum the masses in B to obtain a single
equivalent mass fB = ∑yϵB∩P at B’s center cB. The potential uA = G(cA, CB) fB at A’s center
cA is then computed and used to approximate the potential u(x) = uA at all points xϵX in A.
This three-step procedure is efficient, reducing the computational cost from O(n2) to O(n)
(see Figure 3.2).

30

3. Fast Multipole Method

Figure 3.1.: N points quasi-uniformly distributed in a unit box (Image source: [15])

Figure 3.2.: FFM three-step procedure - A three-step procedure efficiently approximates the
potential in region A due to sources in region B reducing the computational cost
from O(n2) to O(n) (Image source: [15]).

31

3. Fast Multipole Method

Only the potential in A from points in B were considered in this simple scenario. However,
our goal is to analyze interactions among all points, so the three-step procedure is only a
partial solution. To address this, one hierarchically partitions the domain using a quadtree
structure until each leaf box contains fewer than a predetermined O(1) number of points (see
Figure 3.3). The entire quadtree consists of O(log N) levels, with the top level labeled as level
0. At level ℓ, there are 4ℓ squares, each containing O(N/4ℓ) points due to the quasi-uniform
point distribution.

Figure 3.3.: FFM Quadtree Structure - The domain is divided using a quadtree structure until
each leaf node contains a limited number of points, bounded by a small constant
(Image source: [15]).

The algorithm begins at level 2 (see Figure 3.4 top-left). Let B be an arbitrary box at this level.
B’s near field, N(B), includes B and its neighboring boxes, while the far field, F(B), consists
of all other boxes (complement of the near field). The interaction list for B is defined as the set
of boxes in its far field. There are 42 possibilities for B, and for each B, there are O(1) choices
for A (see Figure 3.4 top-left). A and B contain O(N/42) points due to the quasi-uniform
distribution assumption. Thus, the costs on this level are

42 · O(1) · O(N/42) = O(N). (3.2)

The interaction between B and its near field has to be calculated on the next level. Let B be
a box on the next level (see Figure 3.4 top-right). We can ignore B’s interaction with the far
field of its parent since the previous level already handled it. Thus, we only need to account
for interactions between B and the near field of its parent. At this level, there are 62 boxes in
the parent’s near field. Typically, 27 of these are well-separated from A. B’s interaction list
consists of these boxes. The cost at this level is

43 · O(1) · O(N/43) = O(N) (3.3)

because each box at this level contains O(N/43) points and there are 43 possibilities for B.

For the interactions between this B and its near field, we have to move down again one level.
At a general level ℓ, there are 4ℓ possible choices for B (see Figure 3.4, bottom-left), and for
each B, there are at most 27 possible choices for A with each box at this level containing
O(N/4ℓ) points. Thus, the cost of the far-field computation is

4ℓ · O(1) · O(N/4ℓ) = O(N). (3.4)

32

3. Fast Multipole Method

Upon reaching the leaf level, interactions between a leaf box B and its neighbors still need
to be considered (see Figure 3.4 bottom-right). For these interactions, we use direct compu-
tation. Given that there are O(N) leaf boxes, each containing O(1) points and having O(1)
neighboring boxes, the overall cost of direct computation is

O(N) · O(1) · O(1) = O(N). (3.5)

Thus, the cost at each level is O(N), and there are O(log N) levels, the cost of performing the
whole algorithm is O(N log N).

Figure 3.4.: FFM algorithm at different levels. Dark-gray: boxes for which the interaction
already has been considered. Light-gray: Interactions considered at the current
level.(Image source: [15]).

To improve this algorithm, we notice that

fB = fB1 + fB2 + fB3 + fB4 , (3.6)

because B = B1 ∪ B2 ∪ B3 ∪ B4 and all of B’s children Bi being disjoint. Therefore, assuming
fBi are prepared, computing fB using the previous line is significantly more efficient than
summing over all f (y) in B (see Figure 3.5 left). Likewise, for each A, we update u(x) as

33

3. Fast Multipole Method

u(x) := u(x) + uA for all x ∈ A. Since we perform the same update for each children Ai
(i ∈ {1, ..., 4}) and each x belongs to one of these Ai, we can just more efficiently update
uAi := uAi + uA instead (see Figure 3.5 right). This means for fb, we have to visit the parent
after the children, and for uA, the children after the parent (see Figure 3.5). [15]

Figure 3.5.: Computation of fB and uA - Left: Directly compute fB from fBi . Right: Add uAi

to A’s children.(Image source: [15]).

34

3. Fast Multipole Method

3.2. Algorithm

Both improvements result in the following final algorithm with a total cost of O(N):

1. Initialization:
For each level ℓ and each box A on level ℓ, set uA to be zero.

2. Upward Pass:
For levels from the leaf level L − 1 to level 0:

• If B is a leaf box, compute fB = ∑yϵB∩P = f (y).

• If B is not a leaf box, compute fB as the sum of the equivalent sources from its
child boxes: fB = fB1 + fB2 + fB3 + fB4 .

3. Interaction Computation:
For each level ℓ, for each box B on level ℓ, and for each box A in B’s interaction list,
update uA := uA + G(cA, cB) fB

4. Downward Pass:
For level 0 to level L − 1 and for each box A

• If A is a leaf box, update u(x) := u(x) + uA.

• If A is not a leaf box, update uAi := uAi + uA for each child Ai of A.

5. Direct Computation for Near Field:
For each box B on the leaf level, update the potential: u(x) := u(x)+∑yϵN(B)∩P G(x, y) f (y)

The cost at steps 1 to 5 is O(N) because there are at most O(N) boxes in the tree, and the
cost per box is O(1), resulting in a total cost of O(N). [15]

35

4. Multipole Method for Long Range
Interaction in Neural Networks

Long-range interactions are critical to accurately modeling molecular systems, especially
when dealing with potential energy surfaces. These interactions, which span beyond imme-
diate neighbors, play a pivotal role in defining the global behavior of the system. However,
including long-range interactions in machine learning models presents a significant com-
putational challenge due to the quadratic scaling of pairwise distance calculations between
atoms.

The baseline approach from [14] focuses on efficiently representing local environments around
each atom within a cut-off radius by constructing symmetry-preserving descriptors. This
reduces the computational complexity since only near neighbors are considered. Despite its
effectiveness for short-range interactions, it does not capture the necessary long-range effects,
which are crucial for the precise modeling of molecular systems.

To incorporate long-range interactions while maintaining computational efficiency, one can
use an extension to the baseline model inspired by the Fast Multipole Method (FMM). This
extension introduces a grid-based method, where the molecular system is divided into cells,
and interactions between distant atoms are approximated by considering the center of mass of
the grid cells. This approach significantly reduces the computational complexity by focusing
on regions of space rather than individual atoms. Furthermore, this method ensures that the
long-range effects are accounted for without needing to calculate every pairwise interaction
beyond the cutoff radius, providing a scalable solution to modeling complex molecular
systems.

This chapter will show how this method is implemented, focusing on how it integrates with
the existing neural network framework to efficiently account for long-range interactions.

36

4. Multipole Method for Long Range Interaction in Neural Networks

4.1. Baseline Model

To accurately and efficiently model potential energy surfaces while maintaining the necessary
symmetries, it is essential to construct functions that inherently preserve these symmetries
by introducing a descriptor. To effectively represent a scalar function f (r) that is invariant
under translation T̂b f (r) = f (r + b), rotation R̂U f (r) = f (rU) and permutation P̂U f (r) =

f (rσ(1), rσ(2), ..., rσ(N)), where bϵR3 is an arbitrary 3-dimensional translation vector, UϵR3×3 is
an orthogonal rotation matrix, and σ denotes an arbitrary permutation of the set indices.

Neural networks have the capacity to fit various functions, and the key to ensuring that our
representation preserves symmetry is to map the original input r into symmetry-preserving
components. These components must accurately reflect the input r up to a symmetry
operation.

To achieve translational and rotational invariance, one transforms each local environment
matrix Ri in the following way:

Ωi ≡ Ri(Ri)T, (4.1)

which contains all necessary information about the point pattern around atom i and is invari-
ant under translation and rotation. However, this matrix is not invariant under permutation.

Any permutation-invariant function f (r) can be represented as ρ(∑i ϕ(ri)), where ϕ(ri) is a
multidimensional function and ρ is another general function.

For example,
∑

i
g(ri)ri (4.2)

is invariant under permutation for any scalar function g.

The approach starts with constructing the local environment matrix for each atom i of the
molecule. Let Nrc(i) be the neighboring atoms inside the cutoff radius rc of atom i and Ni the
cardinality of this set (see section 2.1.1). The local environment matrix RiϵRNi×3 is defined as

Ri = {rT
1i, ..., rT

ji , ..., rT
Nii}, rji = (xji, yji, zji) (4.3)

and is constructed by defining the relative coordinates rji ≡ rj − ri where j (1 ≤ j ≤ Ni) is
the index of the j-th neighbor of atom i. The distance between atom i and its j-th neighbor is
rji = ∥rji∥.

After constructing the local environment matrix Ri it is mapped onto generalized coordinates
R̃iϵRNi×4 by transforming each row {xji, yji, zji} of Ri into a row of R̃i:

{xji, yji, zji} 7→ {s(rji), x̂ji, ŷji, ẑji}. (4.4)

The components are defined as follows x̂ji =
s(rji)xji

rji
, ŷji =

s(rji)yji
rji

and ẑji =
s(rji)zji

rji
.

37

4. Multipole Method for Long Range Interaction in Neural Networks

s(rji) : R 7→ R is a continuous and differentiable scalar weighting function:

s(rji) =


1
rji

, rji < rcs

1
rji
{ 1

2 cos[π (rji−rcs)

(rc−rcs)
] + 1

2}, rcs < rji < rc

0, rji > rc

 (4.5)

where rcs ensures that the components of R̃i smoothly go to zero at the boundary of the local
region defined by rc and remove its discontinuity there.

R̃i =


s(r1i) x̂1i ŷ1i ẑ1i

...
s(rji) x̂ji ŷji ẑji

...
s(rNii) x̂Nii ŷNii ẑNii

 , (4.6)

Let αj and αi be the chemical species of atom j and i. Then Gαj,αi(s(rji)) is defined as the local
embedding network mapping s(rji) to M1 outputs. The network parameters depend on the
chemical species of atoms j and i. The local embedding matrix G iϵRNi×M1 is defined as:

(G i)jk = (G(s(rji)))k. (4.7)

Finally, the encoded feature matrix DiϵRM1×M2 of atom i, which serves as input for the fitting
network, is defined as:

Di = G i1R̃i(R̃i)TG i2 (4.8)

which is invariant under translational, rotational, and permutational transformations. We set
G i1 = G i and take the first M2(< M1) columns of G i to form G i2ϵRNi×M2 . Before using Di as
input for the fitting network, the matrix is flattened into a vector. The fitting network then
predicts the ”atomic energy” Ei of atom i.

G i =


G i

11 ... G i
1M2

G i
1M2+1 ... G i

1M1

G i
21 ... G i

2M2
G i

2M2+1 ... G i
2M1

...
G i

Ni1
... G i

Ni M2
G i

Ni M2+1 ... G i
Ni M1

 , (4.9)

The parameters w of the embedding and fitting network were trained using the Adam
stochastic gradient descent method, optimizing the loss function

L(pe, p f , pν) =
1
|B| ∑

kϵB
(pe|Ek − Ew

k |2 + p f |Fk − Fw
k |2 + pν||Ξk − Ξw

k ||2) (4.10)

where B is the minibatch, |B| is the batch size, k is the index of the training data, and pe, p f , pν

are tunable parameters, which were set to zero if the corresponding label was missing from
the training data.[14]

38

4. Multipole Method for Long Range Interaction in Neural Networks

4.2. Adding Long Range Interaction

In the approach presented in section 4.1, we now aim to incorporate long-range interactions.
To avoid the computational cost of calculating quadratically many pairs, we proceed similarly
to FMM described in section 3. Specifically, a grid is constructed, dividing the molecular
system into cells that contain the atoms of the molecule. For an atom i, instead of using the
pairwise distance to other atoms that are beyond a certain cutoff radius rc (everything inside
rc is considered local and is already considered in the approach of section 4.1), we employ the
center of mass of the grid cells in which these atoms lie. This approach significantly reduces
the number of distances that need to be computed while still accounting for the long-range
effects.

This technique leverages the idea that, for sufficiently large separations, the precise positions
of individual atoms become less important compared to the overall contribution from a region
of space. Hence, by utilizing the center of mass of the grid cells, the computational cost scales
better compared to the naive all-pairs approach.

Unlike some hierarchical grid-based methods, where cells are recursively subdivided to in-
crease accuracy, we deliberately avoid such recursive refinement in this model. Instead, a fixed
grid cell size is used throughout the computation to be more efficient and computationally
easier to implement.

39

4. Multipole Method for Long Range Interaction in Neural Networks

4.3. Implementation

The following section will describe the exact procedure and implementation of the idea
introduced in section 4.2. First, the preparation of the dataset, including the creation of the
grid and the computation of the centers of mass, will be explained in detail. Afterward,
the architecture and training process of the employed neural network will be described.
The code of the project can be viewed on GitHub: https://github.com/AaronJacques/

long-range-ml-potential.

4.3.1. Datasets

For the training, the dataset from [16] was used, which was calculated using Density Func-
tional Theory (DFT). The tool used was the ”ab initio materials simulations” (aims) from
the Fritz Haber Institute, known as ”FHI-aims”. The dataset provides the coordinates of the
atoms, as well as the energy and force labels. The force labels were not used further, as only
the energy was used for training. The atomic coordinates are given in Å, and the energy
labels in kcal

mol .

Table 4.1 shows the sizes of the datasets used. The molecules are grouped into small molecules
and large molecules. In addition, a maximum of 65,000 training samples were used. For
datasets with a larger number of samples, only the first 65,000 samples were utilized. The
dataset was randomly split into 80% training, 10% validation, and 10% test sets.

Molecule Number of Atoms Available Samples Used Samples
Paracetamol 20 106,490 65,000

Aspirin 21 211,762 65,000
Ac-Ala3-NHMe 42 85,109 65,000

Stachyose 87 27,272 27,272

Table 4.1.: Number of Training Samples

4.3.2. Preprocessing

During preprocessing, the data is prepared for training. The raw dataset (see section 4.3.1) is
further processed to be used directly for training. This step only needs to be performed once.
Subsequently, the dataset can be used repeatedly for training.

The following procedure is carried out for each sample of the dataset.

Grid Assignment

The preprocessing process begins with the assignment into different grid cells. Let Rk =

{r1, ..., rN} be the positions of the atoms of the k-th molecule and ri = (xi, yi, zi) with

40

https://github.com/AaronJacques/long-range-ml-potential
https://github.com/AaronJacques/long-range-ml-potential

4. Multipole Method for Long Range Interaction in Neural Networks

rc

Figure 4.1.: Grid - Illustration of the grid and its parameters in 2D. The currently processed
atom is shown in red. The rectangle defined by lmax = 1 is depicted in green. The
resulting cutoff radius rc is shown in orange. Atoms within rc are colored blue
and are included in the local matrix. Atoms outside rc are colored gray and are
included in the long-range matrix. The grid cell highlighted in black demonstrates
how cells partially covered by rc are handled. The blue atom is removed from the
cell because it lies inside rc, and the feature vector f k and the center of mass rk

m are
formed using only the gray atoms. By removing all blue atoms and subsequently
removing all empty cells, the reduced grid for the current atom is obtained.

41

4. Multipole Method for Long Range Interaction in Neural Networks

iϵ{1, ..., N}. The origin of the grid g0,0,0 is defined as

g0,0,0 = (min
iϵ{1,...,N}

xi, min
iϵ{1,...,N}

yi, min
iϵ{1,...,N}

zi) (4.11)

which is the minimum along the axes of the atomic positions. The axes of the grid run parallel
to the coordinate system, and with the grid length ∆g, the grid is uniquely defined. The
atoms are then assigned to the grid cells according to their atomic positions. Each grid cell is
assigned an x-, a y-, and a z-index, marked by the index tuple (x, y, z), which is (0, 0, 0) for the
origin. Let Nx

g be the maximum index in the x-direction, and Ny
g and Nz

g be the corresponding
maximum indices in the y- and z-directions, respectively.

Feature Vector & Centre of Mass

Let M be the total number of grid cells calculated above, ck be the k-th cell with kϵ{1, ...M}
and Mk be the number of atoms in grid cell k. The feature vector f kϵNmmax of grid cell k is a
vector of counts. Each entry represents how many atoms of a specific element are present in
the grid cell. The i-th entry in the vector corresponds to the count of atoms with the atomic
number i + 1. For example, if there is exactly one carbon atom in the cell, (f k)5 = 1, as carbon
has the atomic number 6. All atoms within the molecule that have a higher atomic number
than mmax + 1 are not considered in the feature vector. The centre of mass rk

m of the k-th cell
is defined as

rk
m =

∑Mk
i=0 zk

i · rk
i

∑Mk
i=0 zk

i

(4.12)

where zk
i is the atomic number and rk

i the position of the i-th atom of grid cell k.

Cutoff Radius

Instead of defining rc as an input parameter, the maximum number of grid levels lmax is
selected, and from this rc is determined. The 0-th level represents the cell in which the atom
itself is located, the 1-st level represents direct neighbors, and so on. Let (j, k, l) be the index
tuple of the grid cell in which the i-th atom is located, then

Gi = {g j̃,k̃,l̃ |max(|j − j̃|, |k − k̃|, |l − l̃|) ≤ lmax} (4.13)

is the set of cells that are included in the local interaction of atom i (j, j̃ϵ{1, ..., Nx
g} and

k, k̃ϵ{1, ..., Ny
g} and l, l̃ϵ{1, ..., Nz

g}).

The cutoff radius rc is then determined as follows:

rc = (lmax + 1) · ∆g +

√
2(

∆g
2
)2 = (lmax + 1 +

1√
2
) · ∆g. (4.14)

The formula for the cutoff radius is chosen such that all cells included in the local interaction
Gi lie within the cutoff radius. However, there are also cells not included in Gi that contain

42

4. Multipole Method for Long Range Interaction in Neural Networks

atoms within the cutoff radius. These atoms are also included in the local interaction (see next
paragraph). Atoms that have already been considered in the local interaction are removed
from the cell and are not included in the calculation of rk

m and f k (see Figure 4.1).

Local Matrices

For the local interaction, two matrices are created for each atom i of the molecule using
its local environment Nrc(i) = {j|rij = |rij| ⩽ rc} with Ni being the cardinality of this set.
The grid is not relevant for this step. As described in section 4.1, the matrix R̃iϵRNi×4 is
created from the local environment Nrc(i) of atom i. This matrix is henceforth called R̃i

local to
emphasize its association with the local environment. Let zi be the atomic number of atom i
and zj with jϵNrc(i) be the atomic number of the j-th atom from the local environment. This
yields the matrix

Z i =


zi z0

... ...
zi zj
... ...
zi zNi

 , (4.15)

which is sorted such that (Z i)l are the atomic numbers corresponding to the respective
distance (R̃i)l . Thus, the two matrices R̃i

local and Z i are created for each atom i of the
molecule. During the calculation of the local matrices, a copy of the grid is created for atom i,
and all atoms within the local environment Nrc(i) are removed from the grid. Subsequently,
all empty cells are also removed from the grid. This process leaves only the cells and atoms
that are outside the cutoff radius. These cells are used in the next step.

Long Range Matrices

For the long-range interaction of an atom i in the molecule, the idea of the Fast Multipole
Method (FMM) was used, where the interaction with each individual long-range partner is not
calculated directly but rather with the center of a cell/box. Cells that are not entirely within
the cutoff radius rc are considered part of the long-range interaction. These are precisely the
cells/atoms that remain after the calculation of the local matrix (see previous paragraph).

Next, for each atom i of the molecule, the long-range matrix Ri
longϵRMi×3 is calculated using

the reduced grid from the previous section, where ri is the position of the i-th atom and rk
m

the center of mass of the k-th grid cell of the reduced grid, with Mi being the number of grid
cells in it.

Ri
long = {rT

1i, ..., rT
ki, ..., rT

Mii}, rji = (xji, yji, zji) (4.16)

and is constructed by defining the relative coordinates rki ≡ rk
m − ri where k (1 ≤ j ≤ Mi) is

the index of the k-th grid cell. The distance between atom i and the centre of mass of the k-th
grid cell is rki = ∥rki∥.

43

4. Multipole Method for Long Range Interaction in Neural Networks

After constructing the long range matrix Ri
long it is mapped onto generalized coordinates

R̃i
longϵRMi×4 by transforming each row {xji, yji, zji} of Ri

long into a row of R̃i
long:

{xji, yji, zji} 7→ {s(rji), x̂ji, ŷji, ẑji}. (4.17)

The components are defined as follows s(rji) =
1
rji

, x̂ji =
xji
rji

, ŷji =
yji
rji

and ẑji =
zji
rji

.

R̃i
long =


s(r1i) x̂1i ŷ1i ẑ1i

...
s(rji) x̂ji ŷji ẑji

...
s(rMii) x̂Mii ŷMii ẑMii

 , (4.18)

In addition, for each atom i, the feature matrix F iϵRMi×(mmax+1) is defined. For the j-th
grid cell from the reduced grid of atom i, with the corresponding j-th row (R̃i

long)j =

(s(rji), x̂ji, ŷji, ẑji) from the long-range matrix and the feature vector f j, the j-th row of the
feature matrix is:

(F i)j = (zi, (f j)1, ..., (f j)mmax), (4.19)

where zi is the atomic number of the i-th atom. Thus, the complete feature matrix F i is
formed as follows:

F i =


zi (f 1)1 ... (f 1)mmax

...
zi (f j)1 ... (f j)mmax

...
zi (f Mi)1 ... (f Ni)mmax

 , (4.20)

Final Model Input

The network receives a total of four matrices as final input: for the local environment, R̃i
local

and Z i, and for the long-range interaction, R̃i
long and F i. For technical reasons, these matrices

are padded with zeros so that all R̃i
local and Z i have the same first dimension Nlocal

max . Thus,
R̃iϵRNlocal

max ×4 and Z iϵNNlocal
max ×2, with Ni ≤ Nlocal

max for all iϵ{1, ..., N}. Similarly, both long-range

matrices are padded with Nlong
max : R̃iϵRNlong

max ×4 and F iϵNNlong
max ×(mmax+1), with Mi ≤ Nlong

max for all
iϵ{1, ..., N}.

44

4. Multipole Method for Long Range Interaction in Neural Networks

4.3.3. Architecture

The network is divided into three parts: an embedding network for the local matrices, an
embedding network for the long-range matrices (see Figure 4.3), and the energy network (see
Figure 4.4).

Both embedding networks and the energy network are based on the Dense-Res-Block (see
Figure 4.2), inspired by [7]. The skip connection in this block enhances gradient flow during
training [7]. Each block receives a parameter N, which determines the output size of the
first two dense layers. The third dense layer adjusts the vector length to D, matching the
input length to the block to enable element-wise addition. To prevent overfitting and stabilize
training, a dropout layer and two layer normalization layers are included, as dense layers are
used instead of convolutional layers.

The embedding network uses only the first column of the input matrix R̃i, denoted as
si = (s(r1i), . . . , s(rNmaxi))ϵRNmax . Unlike the original approach, a single large embedding
network is used for all atom species combinations α1 and α2, instead of separate networks.
This network also incorporates atomic species information through the matrices Z i (local)
and F i (long range). After applying several Dense-Res-Blocks, the output is transformed into
the embedding matrix G iϵRNmax×K1 , where K1 is an adjustable parameter.

We set G i1 = G i and obtain G i2 by selecting the first K2 (< K1) columns of G i (see Equation
4.9). From this, the feature matrix DiϵRK1×K2 is constructed, as shown in Equation 4.8.

The energy network receives the feature matrices Dilocal and Dilong to generate the ‘atomic
energy’ Ei of the i-th atom in the molecule, which in itself has no physical meaning. To obtain
the total energy of the molecule, the entire network must be applied to all atoms i and the
resulting energies summed.

45

4. Multipole Method for Long Range Interaction in Neural Networks

Input, D-dim

Layer
Normalization

Dense
N-dim

Dense
N-dim

Dense
D-dim

Dropout
0.2

Add

Layer
Normalization

Output, D-dim

Figure 4.2.: Dense-Res-Block with N filters - After each Dense block, an ELU activation
function is applied. N is a parameter given to the block, while D depends on
the input shape of the block. The third Dense layer assures that both inputs of
the add function have the same length. The output dimension and the dropout
probability are written below the layer.

46

4. Multipole Method for Long Range Interaction in Neural Networks

R̃i Z i / F i

FlattenTake First Column

Concatenate

Dense-Res-Block
64

Dense-Res-Block
128

Dense-Res-Block
128

Dense-Res-Block
256

Dense-Res-Block
Nmax · K1

Reshape
Nmax × K1

G i

Figure 4.3.: Embedding Network - Either the local matrices R̃i
local and Z i or the long

range matrices R̃i
long and F i are used as input to the embedding network.

First, the first column of the matrix R̃i is taken, corresponding to the vector
si = (s(r1i), . . . , s(rNmaxi))ϵRNmax . Both Z i and F i are first transformed into vec-
tors by concatenating the rows of the matrix and then concatenated with vector
si. After that, five Dense-Res-Blocks are applied in sequence, with the last block
used to produce the output dimension. Finally, the output is reshaped into the
matrix G iϵRNmax×K1 . K1 is a tunable parameter.

47

4. Multipole Method for Long Range Interaction in Neural Networks

Di
local Di

long

Flatten Flatten

Concatenate

Dense
128

Dropout
0.2

Dense-Res-Block
128

Dense-Res-Block
128

Dense-Res-Block
128

Dense
1

Ei

Figure 4.4.: Energy Network - The energy network receives the feature matrices Di
local and

Di
long as input, which is invariant to translation, rotation, and permutation. These

matrices are first flattened into vectors and then concatenated. The first dense
layer produces an output of length 128 and uses the ELU activation function. A
dropout layer with a dropout probability of 0.2 is placed before the dense blocks.
The final layer uses a linear activation function to produce the output.

48

4. Multipole Method for Long Range Interaction in Neural Networks

Z i R̃i
local R̃i

long F i

Local Embedding Long Embedding

G i
local G i

long

Di
local = G i1

localR̃i
local(R̃i

local)
TG i2

local Di
long = G i1

longR̃i
long(R̃i

long)
TG i2

long

Energy Network

Ei

Figure 4.5.: The architecture of the full network

49

4. Multipole Method for Long Range Interaction in Neural Networks

Z i R̃i
local

Local Embedding

G i
local

Di
local = G i1

localR̃i
local(R̃i

local)
TG i2

local

Energy Network

Ei

Figure 4.6.: The architecture of the network without long-range interactions - Obtained by
removing the right part of figure 4.5.

50

4. Multipole Method for Long Range Interaction in Neural Networks

4.3.4. Training

For training the parameters w of both the embedding networks and the energy network, the
Stochastic Gradient Descent method with the Adam optimizer was employed. The following
loss function was minimized:

L =
1
|B| ∑

kϵB
|Ek − Ew

k |2 (4.21)

where B represents the minibatch, |B| is the batch size, and k indexes the training data.
Here, Ek denotes the true total energy of the molecule, and Ew

k is the predicted total energy
generated by the network. The predicted total energy is obtained by repeatedly applying the
network and summing the resulting ‘atomic energies’.

During training, the learning rate was exponentially decayed according to the formula:

η(t) = ηinit · 0.97
t
s (4.22)

where t is the current training step, ηinit is the initial learning rate, and s is the decay step.

For the training, |B| = 1 was used.

51

5. Results: Benchmark Comparison to
Conventional Neural Networks

In this chapter, we explore the effectiveness of the approach in predicting the energy of various
molecules. Specifically, we compare the performance of the network when incorporating
long-range interactions (see Figure 4.5) against a version without these interactions (see Figure
4.6).

For training, the datasets described in Section 4.3.1 were used.

The parameters used in the preprocessing when creating the grid are listed in table 5.1, and
the parameters used for training are listed in table 5.2.

Molecule ∆g (Å) lmax rc (Å) rcs (Å)
Paracetamol 1 6 7.71 7.51

Aspirin 1 6 7.71 7.51
Ac-Ala3-NHMe 2 2 7.41 7.21

Stachyose 2 4 11.41 11.21

Table 5.1.: Parameters used in preprocessing when creating the grid

Molecule Nlocal
max Nlong

max Klocal
1 Klong

1 Klocal
2 Klong

2 ηinit s epochs
Paracetamol 19 6 19 6 4 1 5 × 10−5 2.08 × 105 200

Aspirin 20 4 20 4 4 1 1 × 10−4 2.08 × 105 200
Ac-Ala3-NHMe 41 20 41 20 4 2 5 × 10−5 2.08 × 105 150

Stachyose 86 28 30 6 4 2 5 × 10−5 8.727 × 104 130

Table 5.2.: Parameters used for training

Nlocal
max = Klocal

1 and Nlong
max = Klong

1 were always chosen. K2 was set significantly smaller than
K1. s was chosen to be four times the size of the training dataset. The values were determined
through hyperparameter tuning.

All models were trained for the specified epochs, and the epoch with the best Mean Square
Error (MSE) on the validation dataset was selected for benchmarking on the test dataset.

52

5. Results: Benchmark Comparison to Conventional Neural Networks

The Mean Absolute Error (MAE) in kcal
mol on the test dataset are presented in table 5.3.

Molecule With long-range Only local Relative Improvement (%)
Paracetamol 2.465 3.024 22.68

Aspirin 1.670 1.657 −0.78
Ac-Ala3-NHMe 4.039 4.087 1.17

Stachyose 5.841 5.861 0.34

Table 5.3.: Comparison of MAE loss - MAE loss in kcal
mol . Relative improvement is shown in %.

As the data shows, adding long-range interactions does not significantly improve the model
predictions. The only noticeable improvement is observed with Paracetamol. This could
be due to the lack of systematic hyperparameter tuning, leading to the possibility that
only Paracetamol benefited from randomly finding very good parameters. The outcome is
particularly sensitive to the choice of parameters K1 and K2.

Figure 5.3 shows the distribution of weights in the network. It can be observed that for
all molecules, the distribution is almost identical with and without long-range interaction.
However, in the network with long-range interaction, more weights are 0 or close to 0, and
fewer weights with a larger magnitude. This suggests that the network is learning to ignore
the long-range contributions and focus only on the local contributions, which results in the
MAE loss being nearly the same for both networks.

Figures 5.1 and 5.2 illustrate the MSE energy loss during training for Paracetamol. Since the
loss is very large at the beginning of the training, the first 19 epochs have been removed from
the graph.

The validation loss fluctuates significantly, especially at the beginning, which is most likely
due to the small batch size. Additionally, it can be observed that the network without
long-range interaction converges much faster, as it has fewer parameters to learn.

53

5. Results: Benchmark Comparison to Conventional Neural Networks

50 100 150 200
Epoch

20

40

60
Lo

ss
 (k

ca
l/m

ol
)^

2
Energy Loss Paracetamol with Long-Range

Train MSE Loss
Validation MSE Loss

Figure 5.1.: Energy Loss with Long Range Interactions - MSE Energy Loss of Paracetamol
with Long Range Interaction

50 100 150 200
Epoch

20

40

60

Lo
ss

 (k
ca

l/m
ol

)^
2

Energy Loss Paracetamol without Long-Range
Train MSE Loss
Validation MSE Loss

Figure 5.2.: Energy Loss without Long Range Interactions - MSE Energy Loss of Paracetamol
without Long Range Interaction

54

5. Results: Benchmark Comparison to Conventional Neural Networks

1.0 0.5 0.0 0.5 1.0
Weight Value

0

1

2

De
ns

ity

Weight Distribution Aspirin
Without
With

(a) Aspirin

1.0 0.5 0.0 0.5 1.0
Weight Value

0

1

2

3

De
ns

ity

Weight Distribution Paracetamol
Without
With

(b) Paracetamol

1.0 0.5 0.0 0.5 1.0
Weight Value

0

2

4

De
ns

ity

Weight Distribution Ac-Ala3-NHMe
Without
With

(c) Ac-Ala3-NHMe

1.0 0.5 0.0 0.5 1.0
Weight Value

0

2

4

6

De
ns

ity

Weight Distribution Stachyose
Without
With

(d) Stachyose

Figure 5.3.: Weight distributions of the model. Blue: With long-range interactions. Orange:
Without long-range interactions. Weights smaller than -1 or greater than one have
been disregarded. 150 bins have been used to plot the distribution.

55

6. Discussion

Table 6.1 presents a comparison of the Mean Absolute Error (MAE) loss values obtained from
different computational approaches for predicting molecular properties. It is evident that
sGDML [17] consistently provides significantly better predictions for all the molecules studied.
Notably, only for Stachyose does the MAE of this approach come close to that of sGDML. This
observation suggests that this method, which incorporates long-range interactions during
preprocessing, may perform better with larger molecules. The additional computational
effort required for modeling long-range interactions might thus only be justified for complex
molecular systems where long-range interactions play a more significant role. This warrants
further investigation to fully understand the scalability and potential benefits of our approach
for larger molecules. While the architecture is capable of handling larger molecules, there
were no sufficiently large datasets available for testing at this time.

Molecule This approach with long-range DeepPot-SE [14] sGDML [17]
Paracetamol 2.465 - 0.113

Aspirin 1.670 0.155 0.047
Ac-Ala3-NHMe 4.039 - 0.391

Stachyose 5.841 - 4.002

Table 6.1.: MAE loss (kcal/mol) comparison of different methods - All approaches used
the dataset from [16]. sGDML consistently performs the best across all tested
molecules.

DeepPot-SE [14], another method, provides competitive results for Aspirin but lacks data for
the other molecules in this work. Its MAE for Aspirin is lower than that of our approach
but higher than sGDML, indicating that while DeepPot-SE is effective, sGDML still holds
an advantage in accuracy. The likely reason for the inferior performance compared to the
original method is the use of a single large embedding network for all atom types rather than
specific combinations for different atom types and the lack of systematic hyperparameter
tuning.

In conclusion, while sGDML currently outperforms our approach, especially for smaller
molecules, our method shows potential for larger molecules due to its incorporation of
long-range interactions. Continued research and development could enhance its performance,
making it a valuable tool in computational chemistry and materials science.

56

7. Outlook: What can be improved?

In this chapter, we reflect on the limitations and potential areas for improvement in the
current work. While significant progress has been made, there are still several aspects that
could be optimized or further explored to enhance the accuracy, efficiency, and applicability
of the methods developed.

7.1. Smooth Descriptor

The overall approach is divided into two parts: the local interaction and the long-range
interaction. The descriptor for the local interaction is smooth; however, the descriptor for
the long-range interaction is not. In the long-range descriptor, there are two instances where
the matrix R̃i

long undergoes abrupt changes due to slight changes in an atom’s position: the
transition between local and long-range interactions and the transition between two grid
cells. Improving the method at these points could potentially lead to further enhancements in
prediction accuracy.

Figure 7.1.: Non-Smooth Switching of Grid Cells

When the position of the red atom (Figure 7.1) is slightly altered, causing it to move into a
different grid cell, the centers of mass of both cells change abruptly. Before the shift, the center
of mass of the left cell is at the marked cross, while the center of mass of the right cell is at
the only atom (gray). After the shift, the center of mass in the left cell jumps to the gray atom,
and in the right cell, it jumps to the dotted cross. A similar situation occurs when an atom
moves out of the cut-off radius and is subsequently included in the long-range interaction.
This transition also leads to abrupt changes in the descriptors, affecting the continuity of the
interaction modeling.

57

7. Outlook: What can be improved?

7.2. Hierarchical Grid

Instead of using a fixed grid size ∆g, the matrices for the long-range interactions could be
generated using the hierarchical approach, as in the FMM (section 3). This would have the
advantage that grid cells further away from an atom would be larger than those nearby. In
this way, the spatial structure would be better incorporated into the descriptor, and the total
number of grid cells required for the computation would be reduced.

7.3. Larger Datasets

An additional improvement could involve generating larger datasets through DFT calculations.
Incorporating new DFT-generated data would allow for the exploration of a broader range
of molecular systems and enhance the representation of the selected molecules, ultimately
providing the model with more diverse and comprehensive training data.

7.4. Larger Batch Size

Due to technical limitations, a batch size of only one was used for the entire training process,
which led to significant fluctuations in the validation loss during training. This made the
training numerically unstable. Using a larger batch size could help prevent this instability.

7.5. Systematic Hyperparameter Tuning

Due to limited computational resources, systematic hyperparameter tuning could not be
performed. It is possible that the loss of the models with long-range interaction could be
further reduced. In particular, it would be valuable to examine how the loss behaves for
different parameters ∆g and lmax.

58

A. Appendix

This chapter presents the additional loss graphs.

50 100 150 200
Epoch

0

50

100

150

Lo
ss

 (k
ca

l/m
ol

)^
2

Energy Loss Aspirin with Long-Range
Train MSE Loss
Validation MSE Loss

Figure A.1.: MSE Energy Loss with Long-Range Interactions Aspirin

50 100 150 200
Epoch

0

100

200

300

Lo
ss

 (k
ca

l/m
ol

)^
2

Energy Loss Aspirin without Long-Range
Train MSE Loss
Validation MSE Loss

Figure A.2.: MSE Energy Loss without Long-Range Interactions Aspirin

59

A. Appendix

50 100 150
Epoch

0

50

100

Lo
ss

 (k
ca

l/m
ol

)^
2

Energy Loss Ac-Ala3-NHMe with Long-Range
Train MSE Loss
Validation MSE Loss

Figure A.3.: MSE Energy Loss with Long-Range Interactions Ac-Ala3-NHMe

50 100 150 200
Epoch

0

100

200

300

Lo
ss

 (k
ca

l/m
ol

)^
2

Energy Loss Ac-Ala3-NHMe without Long-Range
Train MSE Loss
Validation MSE Loss

Figure A.4.: MSE Energy Loss without Long-Range Interactions Ac-Ala3-NHMe

60

A. Appendix

50 75 100 125
Epoch

0

100

200

300

Lo
ss

 (k
ca

l/m
ol

)^
2

Energy Loss Stachyose with Long-Range
Train MSE Loss
Validation MSE Loss

Figure A.5.: MSE Energy Loss with Long-Range Interactions Stachyose

50 75 100 125
Epoch

0

100

200

300

Lo
ss

 (k
ca

l/m
ol

)^
2

Energy Loss Stachyose without Long-Range
Train MSE Loss
Validation MSE Loss

Figure A.6.: MSE Energy Loss without Long-Range Interactions Aspirin

61

List of Figures

1.1. Biological Neuron . 2
1.2. Dense Neural Networks . 5
1.3. Gradient Descent Visualization in 1D . 6
1.4. Standard NN & Dropout NN . 10
1.5. Dropout: Training vs. Testing . 11
1.6. Architecture of Standard Network and Network with Dropout 12
1.7. ResNet Block with ”shortcut” connection . 15

2.1. Illustration of Atomic Cluster Expansion . 25

3.1. N points quasi-uniformly distributed in a unit box 31
3.2. FFM three-step procedure . 31
3.3. FFM Quadtree Structure . 32
3.4. FFM algorithm at different levels . 33
3.5. Computation of fB and uA . 34

4.1. Grid . 41
4.2. Dense-Res-Block . 46
4.3. Embedding Network . 47
4.4. Energy Network . 48
4.5. The architecture of the full network . 49
4.6. The architecture of the network without long-range interactions 50

5.1. Energy Loss with Long Range Interactiosn . 54
5.2. Energy Loss without Long Range Interactions 54
5.3. Weight distributions of the model . 55

7.1. Non-Smooth Switching of Grid Cells . 57

A.1. MSE Energy Loss with Long-Range Interactions Aspirin 59
A.2. MSE Energy Loss without Long-Range Interactions Aspirin 59
A.3. MSE Energy Loss with Long-Range Interactions Ac-Ala3-NHMe 60
A.4. MSE Energy Loss without Long-Range Interactions Ac-Ala3-NHMe 60
A.5. MSE Energy Loss with Long-Range Interactions Stachyose 61
A.6. MSE Energy Loss without Long-Range Interactions Aspirin 61

62

List of Tables

4.1. Number of Training Samples . 40

5.1. Parameters used in preprocessing when creating the grid 52
5.2. Parameters used for training . 52
5.3. Comparison of MAE loss . 53

6.1. MAE loss comparison of different methods . 56

63

Bibliography

[1] Stanford. CS231n Convolutional Neural Networks for Visual Recognition. url: https :
//cs231n.github.io (visited on 07/02/2024).

[2] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016. url: http://www.deeplearningbook.org.

[3] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: CoRR
abs/1412.6980 (2014). url: https://api.semanticscholar.org/CorpusID:6628106.

[4] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. “Dropout:
A Simple Way to Prevent Neural Networks from Overfitting”. In: Journal of Machine
Learning Research 15.56 (2014), pp. 1929–1958. url: http://jmlr.org/papers/v15/
srivastava14a.html.

[5] J. Lei Ba, J. R. Kiros, and G. E. Hinton. “Layer normalization”. In: ArXiv e-prints (2016),
arXiv–1607. url: https://arxiv.org/pdf/1607.06450.

[6] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. “Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs)”. In: Under Review of ICLR2016 (1997)
(Nov. 2015).

[7] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recognition”.
In: (June 2016). url: https://doi.org/10.48550/arXiv.1512.03385.

[8] K. Vu, J. C. Snyder, L. Li, M. Rupp, B. F. Chen, T. Khelif, K.-R. Müller, and K. Burke. “Un-
derstanding kernel ridge regression: Common behaviors from simple functions to den-
sity functionals”. In: International Journal of Quantum Chemistry 115.16 (2015), pp. 1115–
1128. doi: https://doi.org/10.1002/qua.24939. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/qua.24939.

[9] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. “A Comprehensive Survey on
Graph Neural Networks”. In: IEEE Transactions on Neural Networks and Learning Systems
32 (2019), pp. 4–24. url: https://api.semanticscholar.org/CorpusID:57375753.

[10] F. Noé, A. Tkatchenko, K.-R. Müller, and C. Clementi. “Machine Learning for Molecular
Simulation”. In: Annual Review Physical Chemistry 71 (2020), pp. 90–361.

[11] T. Wen, L. Zhang, H. Wang, W. E, and D. J. Srolovitz. “Deep potentials for materials
science”. In: Materials Futures 1.2 (May 2022), p. 022601. doi: 10.1088/2752-5724/
ac681d.

64

https://cs231n.github.io
https://cs231n.github.io
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://api.semanticscholar.org/CorpusID:6628106
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/pdf/1607.06450
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/https://doi.org/10.1002/qua.24939
https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.24939
https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.24939
https://api.semanticscholar.org/CorpusID:57375753
https://doi.org/10.1088/2752-5724/ac681d
https://doi.org/10.1088/2752-5724/ac681d

Bibliography

[12] R. Drautz. “Atomic cluster expansion for accurate and transferable interatomic poten-
tials”. In: Phys. Rev. B 99 (1 Jan. 2019), p. 014104. doi: 10.1103/PhysRevB.99.014104.
url: https://link.aps.org/doi/10.1103/PhysRevB.99.014104.

[13] H. Wang, L. Zhang, J. Han, and W. E. “DeePMD-kit: A deep learning package for
many-body potential energy representation and molecular dynamics”. In: Computer
Physics Communications 228 (2018), pp. 178–184. issn: 0010-4655. doi: https://doi.
org/10.1016/j.cpc.2018.03.016. url: https://www.sciencedirect.com/science/
article/pii/S0010465518300882.

[14] L. Zhang, J. Han, H. Wang, W. Saidi, R. Car, and W. E. “End-to-end Symmetry Preserving
Inter-atomic Potential Energy Model for Finite and Extended Systems”. In: 31 (2018).
Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R.
Garnett. url: https://proceedings.neurips.cc/paper_files/paper/2018/file/
e2ad76f2326fbc6b56a45a56c59fafdb-Paper.pdf.

[15] L. Ying. “A pedestrian introduction to fast multipole methods”. In: Science China
Mathematics 55.5 (May 2012), pp. 1043–1051. url: https://doi.org/10.1007/s11425-
012-4392-0.

[16] sGDML Symmetric Gradient Domain Machine Learning. url: http://www.sgdml.org
(visited on 07/28/2024).

[17] S. Chmiela, V. Vassilev-Galindo, O. T. Unke, A. Kabylda, H. E. Sauceda, A. Tkatchenko,
and K.-R. Müller. “Accurate global machine learning force fields for molecules with
hundreds of atoms”. In: Science Advances 9.2 (2023), eadf0873. doi: 10.1126/sciadv.
adf0873.

65

https://doi.org/10.1103/PhysRevB.99.014104
https://link.aps.org/doi/10.1103/PhysRevB.99.014104
https://doi.org/https://doi.org/10.1016/j.cpc.2018.03.016
https://doi.org/https://doi.org/10.1016/j.cpc.2018.03.016
https://www.sciencedirect.com/science/article/pii/S0010465518300882
https://www.sciencedirect.com/science/article/pii/S0010465518300882
https://proceedings.neurips.cc/paper_files/paper/2018/file/e2ad76f2326fbc6b56a45a56c59fafdb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e2ad76f2326fbc6b56a45a56c59fafdb-Paper.pdf
https://doi.org/10.1007/s11425-012-4392-0
https://doi.org/10.1007/s11425-012-4392-0
http://www.sgdml.org
https://doi.org/10.1126/sciadv.adf0873
https://doi.org/10.1126/sciadv.adf0873

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Machine Learning
	Single Neuron
	Activation Functions
	Sigmoid
	ReLU
	ELU

	Neural Networks
	Optimization
	Gradient Based Optimization
	Stochastic Gradient Descent
	Adam Optimizer

	Backpropagation
	Initialization
	Dropout
	Layer Normalization
	ResNet Architecture
	Kernel Ridge Regression
	Graph Neural Networks
	Main Types of GNNs
	GNNs in Molecular Simulations

	Machine Learning for Molecular Simulation
	Mathematical Modelling
	Deep Potentials
	Atomic Cluster Expansion

	Symmetries
	Descriptors
	Why Data Augmentation isn't sufficient
	Implementing Descriptors

	Fast Multipole Method
	Theory
	Algorithm

	Multipole Method for Long Range Interaction in Neural Networks
	Baseline Model
	Adding Long Range Interaction
	Implementation
	Datasets
	Preprocessing
	Architecture
	Training

	Results: Benchmark Comparison to Conventional Neural Networks
	Discussion
	Outlook: What can be improved?
	Smooth Descriptor
	Hierarchical Grid
	Larger Datasets
	Larger Batch Size
	Systematic Hyperparameter Tuning

	Appendix
	List of Figures
	List of Tables
	Bibliography

