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Abstract

This work gives a complete overview of performing dense matrix multiplication and accumulating
floating-point operations on NVIDIA Tensor Cores. In 2017, NVIDIA unveiled the first generation
of Tensor Cores as part of the Volta architecture. Nowadays, Tensor Cores are an essential part of
the computation hardware of data centers worldwide. As NVIDIA GPUs and these computation
units developed, the possibilities expanded. This work reviews the current capabilities of Tensor
Cores and how to leverage their performance. Tensor Cores are well-established in numerous
applications that are not sensible to precision losses. This work proves that Tensor Cores are not
limited to those applications and should be exploited for any application that performs dense
matrix multiplication and accumulating floating-point operations. An API for carrying out
Tensor Cores operations has been implemented as part of this work. The API shows real Tensor
Cores programmability using two different approaches. A benchmark proving Tensor Core’s
performance and precision has been developed as part of this work as well.
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1 Introduction and Related Work

Unveiling the Volta architecture in 2017, NVIDIA GPUs first incorporated a new specialized
compute unit called Tensor Cores [15].

Tensor Cores, a unique hardware innovation designed to meet the demands of emerging
data-intensive and deep-learning applications, are instrumental in facilitating dense matrix-matrix
multiplication. This operation, that forms the foundation of learning and inference tasks in
multi-layered neural networks, is where Tensor Cores truly shine [16].

Tensor Cores introduced reduced precision, which consists of floating point representations
with less than the 32 bits traditionally used for single-precision representation.

This innovation significantly reduces the storage and computing resources required, making
Tensor Cores a game-changer in the field of deep learning.

Many different deep learning models can be trained using Tensor Cores’ reduced precision
with no loss in accuracy, reducing their computation times notoriously. Research conducted in
the literature achieved speed-ups from 2 to 6 times [7].

HPC applications relying on dense matrix-matrix multiplication could, in a first impression,
not benefit from Tensor Cores. Precision is a critical aspect of HPC.

However, since the launch of Tensor Cores, researchers have conducted studies to leverage
this module for high-performance applications. Previous work successfully incorporated em-
ulation algorithms, tensorization, and instruction-level optimizations on Tensor Cores. These
enhancements enabled Tensor Cores use in Scientific Computing with bearable precision loss [2].
The study achieved speedups over non-Tensor kernels ranging from 3 to 11 times in operation
throughput and 1.3 to 1.8 times in specific applications.

Work on a comprehensive overview of Tensor Cores’ programmability, performance, and
precision was conducted previously [5]. The study reviews the available APIs and Tensor Cores
targeting modes. The study benchmarks Tensor Cores, which deliver single-precision through
reduced precision operations and precision refinement. The speedup reached was 5 times. The
precision loss was also covered, achieving limited loss on matrices with large dimensions thanks
to the refinement techniques.

The previously mentioned studies use CUDA 9 and first-generation Tensor Cores. Since
NVIDIA revealed the first architecture implementing Tensor Cores, significant breakthroughs
have occurred in AI and analytics, such as large language models or computer vision. As these
types of applications evolve, the operation throughput they require also increases. New-generation
Tensor Cores reduce energy requirements to meet rising costs and environmental compromises.
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1 Introduction and Related Work

This thesis analyzes all floating point operations in NVIDIA Tensor Cores last generation and
discusses the benefits of NVIDIA Tensor Cores vs. NVIDIA CUDA Cores. The evaluation is
conducted using CUDA 12. Performance and accuracy are the features involved in the comparison.

Proving that last-generation Tensor Cores is the best hardware accelerator for high-performance
applications is the motivation of this thesis.
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2 Tensor Cores

2.1 NVIDIA Hardware Implementation

Streaming Multiprocessors (SMs) provide the base of the NVIDIA GPUs architecture. Multipro-
cessors are designed to execute hundreds of threads concurrently. To manage this vast number of
threads, it employs the SIMT (Single-Instruction, Multiple-Thread) architecture [9].

In the SMIT architecture, the multiprocessor creates, manages, schedules, and executes threads
in groups of 32 parallel threads called warps.

Figure 2.1: SIMT architecture [4].

In the figure 2.1, it can be observed that the threads receiving the same instruction (black) and
different data (white) produce different results (grey).

2.2 Operation Description

Tensor Cores perform the operation:

𝑫 = 𝛼𝑨𝑩 + 𝛽𝑪

In-place operation 𝑪 = 𝑫 is supported as well.

The BLAS convention [1] describes the operation performed by Tensor Cores:

• The first character in the name denotes the matrix’s data type.

3



2 Tensor Cores

• The second and third characters refer to the kind of matrix involved. Tensor Cores operate
with matrices that are general rectangular, corresponding to letters GE.

• The characters in positions four and fifth denote the type of operation. Tensor Cores perform
matrix-matrix product, corresponding to letters MM. The MM operation consists of the
multiplication of two matrices A and B and the addition of a third one C.

Therefore, Tensor Cores perform BLAS GEMM operations (omitting the data type character).

2.3 Generations

Tensor Cores generations:

• First-generation Tensor Cores are integrated into the Volta architecture. Each SM contains
eight mixed-precision matrix arithmetic Tensor Cores supporting half-precision.

First-generation Tensor Cores operate with the input matrix elements represented in half-
precision and the output matrix elements represented in half-precision or single-precision.

• Second-generation Tensor Cores are integrated into the Turing architecture [14]. Each SM
contains eight mixed-precision matrix arithmetic Tensor Cores that support half-precision
and new INT8 and INT4 precision modes.

• Third-generation Tensor Cores are integrated into the Ampere architecture. Each SM
contains four mixed-precision Tensor Cores supporting half, alternate floating point,
sub-byte, and double-precision matrix arithmetic.

• Fourth-generation Tensor Cores are integrated into the Ada Lovelace architecture. This
unit supports the same configuration as the third generation, adding FP8.

2.4 Data Types

All NVIDIA compute devices follow the IEEE 754-2008 standard [3] for binary floating-point
arithmetic with some minor deviations.

Throughput is directly related to precision. Precision increases at the expense of operation
throughput. This trade-off is a core feature in the Tensor Cores architecture. This work only
covers floating-point operations, although Tensor Cores also supports sub-byte operations. The
data types supported are 4-bit, signed and unsigned GEMM (Integer GEMM), and 1-bit GEMM
(Boolean GEMM).

Thus, this 1-bit operation is the most performant option regarding operations completed per
time unit. In this option, 32 matrix elements are packed in 1 storage element. Increasing the

4



2 Tensor Cores

Figure 2.2: CUDA 12 floating-point data types.

number of bits available to describe the matrix elements makes broader representations possible.
However, this implies dwindling performance.

For this reason, CUDA 12 offers intermediate representations to leverage reduced precision
performance with limited precision losses. As shown in figure 2.2, CUDA 12 provides four
floating-point representations for 32 bits or less.

• Extended precision:

– FP64 or double.

• Single precision:

– FP32 or float.

• Reduced precision:

– FP16 or half precision provides half of the bits of FP32. It can represent a small
subset of the values represented by FP32.

• Alternate floating point:

– TF32 or tf32 provides the same range as FP32 and reduced precision.

– BFLOAT16 or nv_bfloat16 provides the same range as FP32 and reduced precision.

Double precision implies 64 bits for representation.
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2 Tensor Cores

The DGEMM (Double GEMM) operation holds the potential to be a significant breakthrough.
It allows for direct Tensor Cores usage without precision loss, which theoretically will deliver
Tensor Cores throughput with extended precision. This advancement could remove the previous
deterrent of precision loss, making the usage of Tensor Cores feasible in high-performance
applications.

2.5 Tensor Cores Targeting

CUDA 12 provides three APIs for targeting Tensor Cores: WMMA, cuBLASLt, and cuTENSOR.

• WMMA is a set of Warp Matrix Functions that is part of the C/C++ CUDA Language extension.
The API provides the lowest level of programmability of Tensor Cores GEMM operations.
Cooperation from all threads in a warp is required. All threads in the warp must execute
the same function calls and evaluate identically under control structures.
template<typename Use, int m, int n, int k, typename T, typename Layout=void> class fragment;

void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned ldm);
void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned ldm, layout_t layout);
void store_matrix_sync(T* mptr, const fragment<...> &a, unsigned ldm, layout_t layout);
void fill_fragment(fragment<...> &a, const T& v);
void mma_sync(fragment<...> &d, const fragment<...> &a, const fragment<...> &b, const

fragment<...> &c, bool satf=false);

Listing 2.1: WMMA namespace

The first step is initializing an opaque CUDA data structure containing information relative
to the operation configuration.

As shown in listing 2.1, a fragment contains information relative to one of the matrices
involved in the GEMM operation. It specifies the corresponding GEMM operand, the
dimensions of all the operands, the type, and the data layout. The data is distributed across
all threads in the warp. The API supplies functions to load, fill, and retrieve data from the
structure.

The mma_sync function performs the GEMM operation. It is a locking function. The
warp-synchronous GEMM operation is performed after all warp threads have called it.

This set of functions can carry out all GEMM operation modes currently supported in
Tensor Cores; however, dimension constraints must be satisfied. Some precision options
are experimental and might be subject to change.

• cuBLASLt: cuBLAS [8] is a GPU-accelerated Basic Linear Algebra Library. It contains
several API extensions to provide standard BLAS and GEMM APIs. These are highly
optimized for NVIDIA GPUs.
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2 Tensor Cores

The cuBLASLt are highly expressive multi-stage APIs for GEMM operations. It provides
customizable precision, algorithms, and heuristics with reduced API programmability
complexity.

The library automatically uses Tensor Cores whenever possible.

The API executes the GEMM operation via the cublasLtMatmul function.

cuBLASLt operands must be in column-major storage, and the operation parameters are
portable between different instances of the operations using specific structures and API
calls.

• cuTENSOR [10] is a GPU-accelerated library for tensor contraction, reduction, and element-
wise operations. The library contains just-in-time compiled kernels for tensor contraction.

CUTLASS [19] is a collection of CUDA C++ templates for implementing high-performance
GEMM computations on all levels and scales in CUDA kernels. The aim is to create module-
composable GEMM parts abstracted by C++ template classes, whose composition can express
and perform GEMM operations subjected to the programmer’s needs and preferences and specific
CUDA kernels.

2.6 Third-Generation Tensor Cores Architecture

The launch of the NVIDIA Ampere architecture implemented third-generation Tensor Cores.
This new generation added comprehensive support for high-performance and deep-learning

data types and a new sparsity feature. There are two classes of Ampere-architecture GPUs:

• GA100 [13].

• GA10x [12].

TF32, BFLOAT16, and IEE 754-compliant FP64 are the new data types that are supported.
The BFLOAT16 operation delivers the same throughput as FP16.

However, GA10x GPUs do not include Tensor Cores acceleration for double-precision (FP64)
operations, as provided in GA100. The new sparsity feature theoretically improves up to 2x the
throughput of the predecessor generation.

A NVIDIA A100 Tensor Core GPU is based on GA100 and has 108 SMs. The A100 includes
432 third-generation Tensor Cores. Using Tensor Cores, each SM in a A100 computes 64 FP64
FMA operations/clock (or 128 FP64 operations/clock).

The GA102 is the most potent Ampere architecture GPU in the GA10x lineup. It has 84 SMs
and 336 third-generation Tensor Cores.

The NVIDIA NVIDIA GeForce RTX 3080 Ti is based on the GA102.
Table 2.1 shows the A100 and GeForce RTX 3080 Ti theoretical performance.
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2 Tensor Cores

Metric (TFLOPS) A100 GeForce RTX 3080 Ti
Peak FP16 (non-Tensor) 78 35.6
Peak BF16 (non-Tensor) 39 35.6
Peak FP32 (non-Tensor) 19.5 35.6
Peak FP64 (non-Tensor) 9.7 -
Peak FP16 Tensor with FP16 Accumulate 312 142
Peak FP16 Tensor with FP32 Accumulate 312 71
Peak BF16 Tensor with FP32 Accumulate 312 71
Peak TF32 Tensor 156 35.6
Peak FP64 Tensor 19.5 -

Table 2.1: A100 and GeForce RTX 3080 Ti theoretical performance.

Figure 2.3: GA100 SM. Figure 2.4: GA10x SM.
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3 Matrix Multiplication Complexity

In algorithmic complexity, matrix multiplication is an ongoing topic. Plenty of research has
already been conducted.

Suppose the multiplication of two n × n matrices needs O(𝑛𝛼) operations. In that case, the
least upper bound for 𝛼 is called the exponent of matrix multiplication and is denoted by 𝜔.

The naive way to perform matrix multiplication proceeds as follows:
If A is an 𝑚 × 𝑛 matrix and B is an 𝑛 × 𝑝 matrix,

A =

©­­­­«
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
...

... . . . ...
𝑎𝑚1 𝑎𝑚2 · · · 𝑎𝑚𝑛

ª®®®®¬
, B =

©­­­­«
𝑏11 𝑏12 · · · 𝑏1𝑝
𝑏21 𝑏22 · · · 𝑏2𝑝
...

... . . . ...
𝑏𝑛1 𝑏𝑛2 · · · 𝑏𝑛𝑝

ª®®®®¬
,

the matrix product C = AB (denoted without multiplication signs or dots) is defined to be the
𝑚 × 𝑝 matrix

C =

©­­­­«
𝑐11 𝑐12 · · · 𝑐1𝑝
𝑐21 𝑐22 · · · 𝑐2𝑝
...

... . . . ...
𝑐𝑚1 𝑐𝑚2 · · · 𝑐𝑚𝑝

ª®®®®¬
,

such that

𝑐𝑖 𝑗 = 𝑎𝑖1𝑏1 𝑗 + 𝑎𝑖2𝑏2 𝑗 + · · · + 𝑎𝑖𝑛𝑏𝑛 𝑗 =

𝑛∑︁
𝑘=1

𝑎𝑖𝑘𝑏𝑘 𝑗 ,

for 𝑖 = 1, . . . ,𝑚 and 𝑗 = 1, . . . , 𝑝.

Thus, the naive approach needs 𝑖 ∗ 𝑗 ∗ 𝑛 operations, which represents a 𝜔 of 3.

In 1969, Volker Strassen [18] developed an algorithm with a lower complexity than the naive
approach, which is based on a divide-and-conquer approach.

Strassen’s algorithm achieves a complexity of O(𝑛log2 (7) ). This new 𝜔 = log2(7) remained the
upper bound for matrix multiplication for a long time.
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3 Matrix Multiplication Complexity

After that, a lower bound of O(𝑛2 log2 (𝑛) ) was proved by R. Raz [17].
Researchers conducted studies to improve Strassen’s algorithm, achieving a new theoretical

upper bound of 𝜔 < 2.371866 [20].
Nevertheless, Strassen’s algorithm is the only one with a practical application. Approaches

with lower complexity require unachievable resources, such as infinite memory.
Multiple libraries implement Strassen’s algorithm, for example, cuBLASLt.
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4 Experimental Set-Up

I have developed an API for tracking NVIDIA Tensor Cores performance 1.
The API offers a simple set of functions to perform matrix-matrix multiplication using different

accelerators. The API provides three execution modes:

• naiveMatrixMultiply employing a CUDA Kernel with a naive non-optimized GEMM
algorithm.

• wmmaMatrixMultiply employing a CUDA Kernel executing the GEMM operation through
WMMA namespace calls.

• cublasMatrixMultiply performing the GEMM operation using the cuBLASLt API.

The first execution mode uses regular CUDA Cores, and the last two leverage Tensor Cores.

The API offers a Matrix_2D object that encapsulates all the required functionality to perform
the GEMM operation using the abovementioned functions.
Matrix_2D abstracts the kernel functionality and manages host and device storage.

The API offers further related functionality. It provides a member function fillRandom
that fills the matrices using a pseudo-random generator contained in the C++ standard library:
std::mersenne_twister_engine, which is a random number engine based on the Mersenne
Twister algorithm. Mersenne Twister is a 623-dimensionally equidistributed uniform pseudo-
random number generator [6].

The benchmark makes use of this API. Two different accelerators have executed the benchmark:

• RTX 3080 Ti accelerator connected to an AMD EPYC 7402 host. The operating system
is Ubuntu 20.04.2 LTS, kernel 5.4.0-81. The accelerator uses CUDA 12.0 with compute
capability 8.6. The GNU compiler for host code compile is 9.4.0. The nvcc compiler flags
-g -gencode arch=compute_86,code=sm_86 -x cu -c.

• A100 accelerator connected to an Intel Xeon 8358 host. The operating system is Red
Hat Enterprise Linux 8.7 (Ootpa). The accelerator uses CUDA 12.1 and driver version
530.30.02.

1https://doi.org/10.5281/zenodo.13325208
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4 Experimental Set-Up

I measured the performance of NVIDIA Tensor Cores using the GEMM operation 𝐷 =

𝛼𝐴𝐵 + 𝛽𝐶 with 𝛼 = 1.0 and 𝛽 = 0 and in-place operation 𝐶 = 𝐷.

The benchmark tracks the TFlop/s using square matrices of size N for each dimension. It
creates the A and B matrices and randomly fills them using the fillRandom member function.
The function generates each value in double precision and then converts it to a reduced precision if
required. Then, the benchmark calls the three execution modes. The execution functions initialize
all C values with 0.

The main figure of merit for performance regarded is TFlop/s. The API performs the operation
considering the following:

• Execution time is exclusively the execution time of the kernel. It is obtained through NVIDIA
Nsight Compute CLI [11] with the flags --csv --metrics=gpu__time_duration.

• GEMM complexity is O(𝑛3), and thus, the number of floating point operations performed
on a complete GEMM operation is 𝑛3. It is necessary to note that the CuBLAS API calls
have been performed, providing the API with 4 ∗ 𝑁 ∗𝑀 bytes of available space, with 𝑁𝑥𝑀

being the dimensions of the result matrix. This space is essential to store intermediate
values when executing algorithms with complexity smaller than O(𝑛3).

12



5 Results

The benchmark tracks the performance of the GEMM operation for each of the floating-point
real-number data types supported by the cublasLtMatmul function. Table 5.1 presents these
combinations:

• The first column describes the possible values of the enumerator cublasComputeType_t.
Table 5.2 describes them. This enumerator determines the data type of matrix C and D as
the potential down-conversion used to speed up the calculations.

• The second and third columns describe the cudaDataType_t enumerator possible values.
Table 5.3 describes them. This enumerator represents the data types displayed in section
2.4.

– The second column determines the values of scalars 𝛼 and 𝛽.

– The third column determines the values of matrices A and B.

computeType scaleType Atype/Btype
CUBLAS_COMPUTE_16F CUDA_R_16F CUDA_R_16F

CUBLAS_COMPUTE_32F CUDA_R_32F
CUDA_R_16F
CUDA_R_16BF
CUDA_R_32F

CUBLAS_COMPUTE_32F_FAST_16F
or
CUBLAS_COMPUTE_32F_FAST_16BF
or
CUBLAS_COMPUTE_32F_FAST_TF32

CUDA_R_32F CUDA_R_32F

CUBLAS_COMPUTE_64F CUDA_R_64F CUDA_R_64F

Table 5.1: cublasLtMatmul operation modes supported.
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5 Results

Value Meaning

CUBLAS_COMPUTE_16F

Default and highest-performance mode for
16-bit half precision floating point and all
compute and intermediate storage preci-
sions with at least 16-bit half precision.
Tensor Cores will be used whenever possi-
ble.

CUBLAS_COMPUTE_32F
Default 32-bit single precision floating
point and uses compute and intermediate
storage precisions of at least 32-bits.

CUBLAS_COMPUTE_32F_FAST_16F

Allows the library to use Tensor Cores with
automatic down-conversion and 16-bit half-
precision compute for 32-bit input and out-
put matrices.

CUBLAS_COMPUTE_32F_FAST_16BF

Allows the library to use Tensor Cores with
automatic down-conversion and bfloat16
compute for 32-bit input and output matri-
ces.

CUBLAS_COMPUTE_32F_FAST_TF32
Allows the library to use Tensor Cores with
TF32 compute for 32-bit input and output
matrices.

CUBLAS_COMPUTE_64F
Default 64-bit double precision floating
point and uses compute and intermediate
storage precisions of at least 64-bits.

Table 5.2: Enumerator cublasComputeType_t.

Value Meaning
CUDA_R_16F 16-bit real half precision floating-point
CUDA_R_16BF 16-bit real bfloat16 floating-point
CUDA_R_32F 32-bit real single precision floating-point
CUDA_R_64F 64-bit real double precision floating-point

Table 5.3: Enumerator cudaDataType_t.
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5 Results

Five GEMMs are considered: HGEMM (halfGEMM), half to floatGEMM, nv_bfloat16
to float GEMM, DGEMM (double GEMM) and FGEMM (float GEMM). The benchmark
has tracked each one with matrix sizes from 𝑁 = 256, doubling the size until 𝑁 = 16384, and
performs the procedure described in chapter 4.

HGEMM (half GEMM) operation performance is shown in figures 5.1 and 5.2. Compared
with the cublasMatrixMultiply, the wmmaMatrixMultiply is 7 and 12 times slower, and the
naiveMatrixMultiply is 188 and 300 times slower, respectively, for the RTX 3080 Ti and
A100 accelerators. The A100 accelerator offers almost twice the TFlop/s of the RTX 3080 Ti.
half to float GEMM operation performance and the nv_bfloat16 to float GEMM

operation performance are shown in figures 5.3, 5.4, 5.5 and 5.6. In the two GEMMs, compared
with the cublasMatrixMultiply, the wmmaMatrixMultiply is 4 and 12 times slower for the
RTX 3080 Ti and A100 accelerators. The naiveMatrixMultiply performs HGEMM in the
four figures.

The benchmark achieves the same peak of 151 TFlops/s for HGEMM, half to float GEMM
and nv_bfloat16 to float. cublasMatrixMultiply execution mode achieves this peak with
a matrix size of 𝑁 = 16384 using the A100 accelerator.

Every measured reduced precision Tensor Cores GEMM is equally performant. As stated in
section 2.4, reduced precision representations half and nv_bfloat16 occupy the same number
of bits. This equality indicates that Tensor Cores data type width is directly related to performance.

All reduced precision Tensor Cores GEMM have the same theoretical 312 TFlop/s peak. Table
2.1 shows NVIDIA’s theoretical Tensor Cores peak performance.

Anyhow, the measured performance is less than half the theoretical performance provided by
NVIDIA.
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5 Results
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Figure 5.1: Half to Half on RTX 3080 Ti.
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Figure 5.2: Half to Half on A100.
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Figure 5.3: Half to Float on RTX 3080 Ti.
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Figure 5.4: Half to Float on A100.
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Figure 5.5: BFloat16 to Float on RTX 3080 Ti.
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Figure 5.6: BFloat16 to Float on A100.
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5 Results
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Figure 5.7: Double to Double on RTX 3080 Ti.

256 512 1024 2048 4096 8192 16384
Matrix Size N

0

1.50

3

4.50

6

7.50

9

TF
lo

p/
s

AB Type: double | CD Type: double
Kernel Name

naiveMatrixMultiply<double>
wmmaMatrixMultiply<double, double>
cublasMatrixMultiply<double, double>

Figure 5.8: Double to Double on A100.
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5 Results

DGEMM (double GEMM) operation performance is shown in figures 5.7 and 5.8. The
naiveMatrixMultiply, wmmaMatrixMultiply, and cublasMatrixMultiply are equally
performant on the RTX 3080 Ti accelerator. While on the A100 accelerator, compared with the
cublasMatrixMultiply, the naiveMatrixMultiply and wmmaMatrixMultiply are respec-
tively 56 and 4 times slower. The benchmark achieves a peak of 9.8 TFlop/s Tensor Cores for
DGEMM with cublasMatrixMultiply execution mode and a matrix size of 𝑁 = 16384 using
the A100 accelerator.

For DGEMM, the number of bits of the data type increases 4 times, dwindling the TFlop/s
peak by 15 times. The decrease factor of performance is 4 times the bit width increase factor.

The measured performance is less than half the theoretical performance provided by NVIDIA.
FGEMM (float GEMM) operation performance is shown in figures 5.9, 5.10.
Five execution modes are represented in the figures and depicted in the legend. In the legend, the

first entry corresponds to thenaiveMatrixMultiply and the last four tocublasMatrixMultiply
with different down-conversion strategies as described in table 5.2. The last four legend entries
omit the name of the execution mode and show only its parameterization for presentation purposes.
There are two types of parameterizations:

• Without down-conversion: all compute, and intermediate storage precisions are 32-
bits. The naiveMatrixMultiply execution mode is 41 and 28 times slower than
cublasMatrixMultiply on the RTX 3080 Ti accelerator and on the A100 accelerator,
respectively. The implementation of optimizations and Strassen’s algorithm in the cuBLAS
library are responsible for these speed-ups as, in this operation mode, the library is not
using Tensor Cores.

The cublasMatrixMultiply execution mode without down-conversion executes non-
Tensor FGEMM and is equally performant in the RTX 3080 Ti as in the A100.

• With down-conversion: this operation mode allows the library to use half, nv_bfloat16
or tf32 Tensor Cores.

cublasMatrixMultiply execution mode without down-conversion is, on average, 6 and
8 times slower than the cublasMatrixMultiply execution mode with down-conversion
on the RTX 3080 Ti accelerator and on the A100 accelerator, respectively. The benchmark
achieves a FGEMM with down-conversion 81 peak TFlop/s. half down conversion
execution mode achieves this peak with a matrix size of 𝑁 = 16384 using the A100
accelerator.

Figures 5.11 and 5.12 represent the precision loss of the execution modes that allow down-
conversion. The benchmark performs the epsilon calculation considering as ground truth the
result of the execution mode without down-conversion. The down-conversion data type that
achieves the lowest epsilon is half for both accelerators. The RTX 3080 Ti accelerator shows
more precision loss than the A100 accelerator for every execution mode with down-conversion.
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Figure 5.9: Float to Float on RTX 3080 Ti.
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Figure 5.10: Float to Float on A100.
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Figure 5.11: Float to Float epsilon on RTX 3080 Ti.
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Figure 5.12: Float to Float epsilon on A100.
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6 Conclusion and Further Work

NVIDIA GPUs are currently the most valued and demanded computer hardware and will also be an
essential asset in the future. Existing applications, such as artificial intelligence, high-performance
applications, and computer vision, have established GPUs as the best hardware accelerator for
computing-intensive tasks. This work proves that Tensor Cores GEMM kernels provide more
excellent acceleration than CUDA non-Tensor GEMM kernels.

NVIDIA’s cuBLAS library, the CUDA Basic Linear Algebra Subroutine library, is hailed as
the optimal method for executing any linear algebra subroutines in NVIDIA GPUs. However, this
research goes a step further to prove that cuBLASLt outperforms any benchmarked implementation
for Tensor and non-Tensor GEMM. It also demonstrates thatcuBLASLt offers all the functionality of
Tensor Cores with enhanced performance, while maintaining a lower programmability complexity
than the WMMA namespace.

While NVIDIA initially launched the first-generation Tensor Cores to accelerate artificial
intelligence applications, the unveiling of subsequent generations has broadened their potential
applications. This research highlights high-performance computing as one of the many fields that
could benefit from Tensor Cores’ acceleration. It also demonstrates that the GA100 GPU offers
IEE-754-compliant extended-precision GEMM with excellent acceleration, a feat that the GA10x
GPU cannot match.

This work also shows how the GA10x GPU and GA100 GPU can accelerate single-precision
GEMMs using the cuBLASLt library. Moreover, that cuBLASLt with down-conversion Tensor
Cores can accelerate the operation with reduced precision losses. The best benchmarked down-
conversion data type is half in terms of performance (peak TFlop/s) and precision loss (maximum
epsilon).

This work studies NVIDIA Tensor Cores precision and performance for targeting high-
performance applications, although further work is required to apply this novel technique to real
applications.

The Tensor Cores acceleration for IEE-754-compliant extended-precision GEMM is a break-
through. NVIDIA Tensor Cores improve up to two times the performance of non-Tensor CUDA
Cores. High-performance applications should benefit from this performance improvement and
adopt the fastest available GPU cores for time-consuming extended-precision operations. Further
study is needed to benchmark the performance improvement of Tensor Cores in these applications.
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