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Abstract

Neutral Atom Quantum Computers are a novel architecture within the field of quantum
computing. These systems are based on neutral Rubidium, Strontium, or Caesium atoms,
which are fixed in a specific arrangement using optical dipole traps [1]. With the help of
laser pulses, the individual atoms can be precisely transferred to an electronically excited
state. These states are known as Rydberg states and are characterized by a strong polarization,
which allows them to interact with other atoms. This enables the realization of arbitrary
computational operations and gates between two or more qubits. The ability to natively
implement gates with more than two qubits is one of the major advantages of NAQC, as a
three-qubit gate can often replace multiple two-qubit gates. This can significantly reduce
both the circuit depth and the number of required pulses. Since each gate introduces an
error rate into the system, this optimization also has a positive effect on the overall size of
the achievable circuits and the expected error rate. The aim of this work is to quantify the
performance gains from using multi-qubit gates. Furthermore, selected algorithms will be
optimized using four-qubit gate synthesis.
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1. Introduction

“Nature isn’t classical, dammit, and if you want to make a simulation of Nature, you’d better
make it quantum mechanical, and by golly it’s a wonderful problem because it doesn’t look so
easy” [2]. With these words, Feynman described an entirely new type of computing machines
designed specifically to simulate quantum mechanical systems and their properties [3]. In
addition to their ability to accurately simulate physical systems, quantum computers offer
several other advantages. These include the ability to factorize prime numbers in polynomial
time [4] and to accelerate search algorithms within unsorted databases [5]. Furthermore,
quantum computers enable the reliable transmission of information, known as quantum
cryptography [6]. The advantages of quantum computers over classical computers are mainly
based on two quantum mechanical principles: the superposition of individual qubits and
their entanglement.

While the fundamental principles of quantum mechanics are universal, there is no single
universal architecture for quantum computers. Instead, there are many possible architectures,
each with its own advantages and disadvantages [7]. Among the most prominent architectures
are superconducting qubits, nuclear magnetic resonance devices, and trapped ion quantum
computers [8, 9, 10]. One promising architecture is neutral atom quantum computers (NAQC).
One of the central advantages of this approach is the inherent scalability of neutral atom quan-
tum computers [11]. This scalability is essential because quantum computers differ drastically
from classical computers in terms of the resources required for error correction schemes.
While classical computers need a few tens of percent of their resource capacity, quantum
computers implement single logical qubits using an ensemble of up to 100 physical qubits [12].

The implementation of the neutral atom architecture using Rubidium-87 atoms has the addi-
tional advantage of offering various states. These include hyperfine ground states, which have
very long coherence times and do not interact with other atoms, allowing qubits in this state
to function as memory. In contrast, qubits in the Rydberg state can form strong interactions
but have a relatively short lifespan. The ability to implement both states in a single atom and
switch between them using a laser is a significant advantage of the neutral atom platform
[13]. The aforementioned Rydberg states form the basis for implementing gates between
non-adjacent atoms [14]. The use of such interactions results in reduced communication
overhead, overall gate count, and depth for compiled programs. However, when using gates
between atoms at greater distances, it is important to ensure that the resulting restriction
zones do not overlap. These zones expand with distance, limiting the ability to execute
parallel gates within the qubit array.
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1. Introduction

Additionally, the native implementation of multi-qubit operations is another advantageous
feature of the neutral atom platform compared to superconducting-based qubit technology
[14, 15, 16]. Gates acting on three or more qubits do not need to be decomposed into multiple
one- and two-qubit gates and can be executed as is. Since each gate requires a specific number
of laser pulses and has an associated error rate, this approach could potentially reduce the
pulse count and error rate of a quantum algorithm. To replace a circuit with a circuit where
multi-qubit gates are allowed, the computation performed by the latter must be sufficiently
similar to the original calculation. The Geyser framework employs the dual-annealing ap-
proach for this purpose, a stochastic method developed for parameter calculation in constraint
optimization problems [17, 15].

In its current version, the Geyser paper only addresses the optimizations made possible by
using the CCZ gate. This does not cover the entire range of optimizations enabled by the
ability to natively implement arbitrary multi-qubit gates on the neutral atom architecture.
Therefore, this work further explores the optimization of specific quantum algorithms through
the use of 4-qubit gates.
To achieve this optimization, the Geyser framework is adapted with respect to the layout
of qubit arrays. Additionally, the allocation of computational resources is modified. The
impact of a different blocking mechanism is also analyzed. The optimized algorithms are
then compared to the original algorithms to examine their similarity. Furthermore, an anal-
ysis is conducted to determine which algorithms exhibit the most significant performance
gains. Additionally, the computational effort required to calculate a specific similarity of the
optimized algorithm is presented. Based on this, an estimate is made of the computational
effort needed to optimize arbitrarily large quantum algorithms to any desired accuracy.

In Chapter 2 of this work, we first describe some theoretical concepts of quantum computing.
Subsequently, in Chapter 3, we analyze the advantages and disadvantages of the neutral
atom architecture and the physical implementation of multi-qubit gates. Chapter 4 details
the implementation and adaptation of the Geyser framework. In Chapter 5, the resulting
optimized algorithms are evaluated. Finally, Chapter 6 provides a conclusion and discusses
potential further improvements.
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2. Background

2.1. Quantum Bits

In classical computer science, bits are used to store information. Each bit can be in either state
0 or 1. Information encoded by assembling multiple such bits can then be processed through
targeted manipulation of the 0s and 1s. This is achieved using logic gates such as NOT, AND,
and OR gates. A characteristic feature of classical computers is that, except for the NOT gate,
these gates are not reversible. This becomes evident as it is impossible to deduce the initial
states of A and B from the result of A AND B = 0. The initial states could have been 00, 01, or
10. This loss of information leads to the well-known problem of heat dissipation in classical
computers [6].
In contrast, quantum computers are based on quantum bits. Like classical bits, qubits also
have two fundamental states, which can be represented as |0⟩ and |1⟩ using Dirac notation.
However, qubits can also exist in a linear combination of these basic states, a phenomenon
known as superposition, which is represented as follows:

|ψ⟩ = α|0⟩+ β|1⟩

The factors alpha and beta are complex numbers that represent the amplitudes of the
respective base states. The individual amplitudes, and consequently the quantum state as a
whole, cannot be measured directly. Instead, a measurement can only determine whether
the qubit is in state |0⟩ or |1⟩. The squares of the coefficients, |α|2 and |β|2, represent
the probabilities that a measurement will yield the respective base state |0⟩ or |1⟩. These
coefficients must adhere to Born’s rule, which states that the sum of the squares of the
amplitudes must equal 1.

|α|2 + |β|2 = 1

2.2. Quantum Gates

A key distinction between quantum computers and classical computers is the inherent
reversibility required in the former. This is justified by the Schrödinger equation and its
principle of unitary time evolution of the wave function, which governs all processes on a
quantum computer. Thus, individual gates are always represented by unitary and therefore
reversible matrices. Such a matrix has the form 2n × 2n, where n denotes the number of
qubits, and its entries are drawn from C. These gates can be applied to any number of qubits
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2. Background

for information processing, altering the current state vector of the entire circuit in the process.

U|ψ1⟩ = |ψ2⟩

An example is shown in the following equation, where an X-gate is applied to the state vector
|0⟩. This gate functions as a NOT gate because it swaps the amplitudes of the basis states of
the affected qubit.

X =

(
0 1
1 0

)
, X|0⟩ =

(
0 1
1 0

)(
1
0

)
=

(
0 · 1 + 1 · 0
1 · 1 + 0 · 0

)
=

(
0
1

)
= |1⟩

Other essential matrices for constructing quantum circuits include the Pauli-Z, Hadamard,
and U gates. These can be examined in the following representation in that same order. The
Z gate leaves the amplitude of the |0⟩ state unchanged and only inverts the sign of the |1⟩
state. The Hadamard matrix creates a superposition if the qubit was initially in a ground
state. The U3 gate is a general gate that allows arbitrary rotations of the qubit around its
three angles θ, ϕ, and λ [18].

Z =

(
1 0
0 −1

)
, H =

1√
2

(
1 1
1 −1

)
, U3 =

(
cos( θ

2 ) −eiλ sin( θ
2 )

eiϕ sin( θ
2 ) ei(ϕ+λ) cos( θ

2 )

)

2.3. Multiqubit Gates

Now that we possess all the fundamental tools for the description and manipulation of
individual qubits, we need a method to describe systems composed of multiple qubits. The
tensor product helps us combine the Hilbert spaces of individual qubits, thereby creating a
space in which we can describe the state of the entire ensemble of qubits. This space always
contains 2n vectors for n qubits. The following formula exemplifies the combined Hilbert
space for two qubits |a⟩ and |b⟩ [6].

|ψ⟩ = |a⟩|b⟩ = (|0⟩+ |1⟩)⊗ (|0⟩+ |1⟩) = |00⟩+ |01⟩+ |10⟩+ |11⟩

Based on this representation, we can now construct so-called multiqubit gates, which operate
on more than a single qubit. Their distinguishing feature is the capability of applying a
change to the state of the target qubits depending on the state of control qubits [19]. An
example of this is the CX gate, which inverts the current amplitude of the target qubit if the
control qubit has a value of 1 by applying an X gate to it. The corresponding matrix is shown
below.

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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2. Background

Beyond the CX gate illustrated above, arbitrary multiqubit gates can be constructed using
single-qubit-gates. The CCZ gate features two control qubits that, when activated simulta-
neously, invert the |1⟩ component of the third qubit. The construction of the CCZ gate is
demonstrated in the formula below.

CCZ = |0⟩⟨0| ⊗ I ⊗ I + |1⟩⟨1| ⊗ (|0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Z)

This approach can be extended to realize 4-qubit CCCZ gates and 5-qubit CCCCZ gates.
Additionally, Bayram Jumayev presents a universal formula for constructing multiqubit gates
with exactly one control qubit [19]. For the remaining qubits of the gate, a computational
operation is performed starting with G1 for the first target qubit. This results in gates such as
CXX, CHH, and CXXH, among others.

A quantum circuit is the deliberate execution of several individual gates in a predefined
sequence [15]. Since a circuit is therefore only a sequence of several gates on n qubits, it can
be described in the same way as a single gate by a unitary matrix. For a circuit with n qubits,
this matrix has dimensions 2n × 2n, with entries drawn from the set of complex numbers C.
Two circuits can have different structures yet still possess the same unitary matrix. Since this
matrix uniquely describes the entire computation performed by the circuit, the two circuits
are equivalent in terms of their computations.

An exemplary circuit can be viewed in the diagram below. On the left side, the qubits are
depicted with their respective initial states. From there, the wires, which represent single
qubits, extend horizontally to the right [20]. On these wires, individual computational opera-
tions can be applied in the form of gates at the desired times. The U gates serve as examples
of single-qubit gates. Vertical connection lines between the qubit wires in combination with
dots or boxes on the wires represent multi-qubit gates. At the right end, after all necessary
computations have been executed, measurement components are placed to capture each
single qubit.

Qubit 0 |0⟩ H U

Qubit 1 |0⟩ U

Qubit 2 |0⟩ H U
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3. Neutral-Atom-Architecture

3.1. Computation Cycles on Neutral Atom Quantum Computers

To understand the specific functioning of the neutral atom quantum computer architecture,
it is crucial to have an overview of the entire process that any algorithm undergoes on
this system. This process can be divided into the sections: register preparation, quantum
processing, and register readout [21].

3.1.1. Register Preparation

The register preparation phase encompasses all the steps necessary to enable the quantum
computer for performing computational operations. A key distinguishing feature of the
NAQC architecture is the use of individual atoms as qubits. The specific choice of atom type
significantly influences the entire system. Generally, atoms from the alkali or alkaline earth
metal groups are used, as their electronic structure offers advantageous properties for cooling
and localization [1]. The most commonly utilized atoms are rubidium (Rb87), cesium (Cs133),
ytterbium (Yb173), and strontium (Sr87) [1] [16].

To enable subsequent computations, the selected atoms must first be transferred into a register.
Initially, a dilute gas of the chosen atoms is created. This process is carried out at room
temperature using an ultra-high vacuum system. Subsequently, a small number of atoms
are cooled to approximately 1mK within Magneto-Optical Traps (MOT) [1]. This cooling is
achieved through a process called Doppler cooling, which specifically targets the atoms and
does not affect the overall room temperature. This effect is induced by lasers tuned to specific
frequencies that only interact with the desired atoms.

During the next step, spatial light modulators (SLMs) are employed. These devices focus a
laser through high numerical aperture lenses onto a configurable number of points in space.
These points, known as optical tweezers, have a diameter of approximately 1 µm, allowing
them to only hold a single atom. An individual atom can typically be held in an optical
tweezer for an average duration of 10-20 seconds [1]. The array of optical tweezers can be
arranged in any 1D, 2D, or 3D configuration. Examples for such arrangements can be seen in
figure 3.1.
After successfully completing Steps 1 and 2, each individual optical tweezer contains an atom
only 50-60% of the time [1]. Alternatively, this position is empty. Such a pattern, which
exhibits irregular vacancies, is unsuitable for computation. Therefore, the empty positions
must first be identified. This is achieved using a Charge Coupled Device (CCD) camera
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3. Neutral-Atom-Architecture

Figure 3.1.: Arbitrary 3D-configurations of Neutral Atom Registers

capable of detecting fluorescence emitted by individual atoms when illuminated with light of
the appropriate wavelength. In case the optical tweezer is empty, no fluorescence is emitted,
and therefore nothing can be detected.

By knowing the positions of individual atoms, they can now be moved accordingly, allowing
the construction of the originally required architecture. However, this success depends on
accurately estimating the expected number of vacancies at the outset and preemptively
creating a sufficient number of optical tweezers. The movement is achieved using mobile
optical tweezers, which can be generated using acousto-optical deflectors (AODs). The
programmable motion of these mobile optical tweezers achieves a success rate of over 99%. A
final image before computation is captured to ensure the structure and complete occupancy
of the arrangement.

3.1.2. Quantum Processing

During the digital quantum processing phase, quantum algorithms are decomposed into a
sequence of gates. These gates are then executed on the neutral-atom register prepared in the
preceding step. Crucial to this process is the encoding of the qubit ground states |0⟩ and |1⟩
on individual atoms. To enable the computation of extended quantum algorithms, the qubits
and more precisely their ground states must exhibit long coherence times, which requires
minimal interaction with their environment. In the case of rubidium, two hyperfine ground
states of the atom are used to implement |0⟩ and |1⟩ [1]. These are based on the spin of the
outermost electron of the rubidium atom. Alternatively, in the case of strontium, the nuclear
spin can be used as the state vector for the qubits. However, their targeted manipulation
is more challenging than that of electron spins. Nonetheless, nuclear spins exhibit longer
decoherence times. An example of the implementation of hyperfine ground states in rubidium
atoms can be seen in the graphic below.

In addition to encoding the ground states, the implementation and use of high-fidelity single-
qubit gates are essential components of quantum processing. As described in the previous
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3. Neutral-Atom-Architecture

chapter, applying these gates results in a precise rotation of the state vector on the Bloch
sphere. This can be visually illustrated with the X-gate and Z-gate on the Bloch sphere shown
below.

Figure 3.2.: (left) Rotation induced by X-gate (right) Rotation induced by Z-gate

The physical implementation of this transition relies on two lasers. These lasers create a
control field that induces so-called Raman transitions. The Raman transition starts with the
excitation of the atom by bombarding it with photons, moving it from a hyperfine ground
state to a higher-energy intermediate state [22]. This step is called Stokes-Raman scattering.
Subsequently, during the Anti-Stokes-Raman scattering process, the atom releases energy by
emitting a photon. The key aspect of this process is that the emitted energy is not exactly the
same as the initially absorbed energy. As a result, the atom ends up in a different hyperfine
ground state. The configuration of specific adjustable parameters enables precise Raman
transitions and rotations of the state vector around the X, Y, and Z axes. The key laser
parameters are the Rabi frequency Ω, the detuning δ, the relative phase φ, and the duration τ

for which the laser is active. From these parameters, the rotation values around the X, Y, and
Z axes can be determined using (Ωτ cos φ, Ωτ sin φ, δτ).

Lastly the execution of arbitrary quantum circuits during quantum processing requires a
method for implementing multi-qubit gates. DiVincenzo demonstrated in 1995 that a uni-
versal gate set can be achieved using only two-qubit gates [23]. The physical realization of
this process in the neutral-atom architecture relies on so-called Rydberg states [21]. These
states are characterized by the outermost electron being at a very large distance from the
atomic nucleus. This large separation allows for dipole-dipole interactions between multiple
atoms, which can be up to 1000 times stronger than in the ground state. The effect of this
interaction is repulsive, meaning that only atoms positioned very far apart can simultaneously
be in the Rydberg state. When the distance between two atoms is very small, the Rydberg
blockade occurs, preventing the later excited atom from reaching the Rydberg state. The
critical advancement compared to single-qubit gates is that now the behavior of the second
atom can be conditionally dependent on the state of the control atom.
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3. Neutral-Atom-Architecture

The following section illustrates a specific implementation of the CZ gate. Individual laser
pulses are targeted at the atoms and thereby induce a so called π pulse on the atoms. This
results in the atoms transitioning to the Rydberg state if and only if they previously were in
the |0〉 state. The choice of the initial ground state from which the Rydberg state is accessed
is arbitrary and adjustable. In this CZ gate, the first laser pulse is applied to the control qubit.
If the control qubit is in the |1〉 state, the pulse is off-resonant and does not induce a Rydberg
blockade. In the second step, a 2π pulse is applied to the target qubit, which is achieved by
sequentially applying two π pulses. The target atom can transition to the Rydberg state only
if it was initially in the |0〉 state and the control atom is not already in the Rydberg state, thus
avoiding a Rydberg blockade. The second π pulse then immediately returns the target atom
to the ground state.

In the third and final step, a second laser pulse is applied to the control atom. If the control
atom was previously in the Rydberg state, it returns to its initial ground state. The only
ground state combination that never reaches the Rydberg state is |11〉, as all pulses are
off-resonant and thus have no effect in this case. This distinction is crucial because reaching
the Rydberg state introduces a global phase factor of -1, making |11〉 unique compared to the
other states.

Figure 3.3.: Effect of 3 Laser pulses and the ensuing rydberg blockade on two qubits based
on their ground states.Dark blue arrows represent resonant pulses leading to a
transition into the Rydberg state, while light blue arrows symbolize off-resonant
pulses. The purple arrow at the target qubit in state |00⟩ indicates that, although
the pulse would be resonant, it is blocked due to the control qubit being in the
Rydberg state.
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3. Neutral-Atom-Architecture

Building on the CZ gate, other two-qubit gates such as the CX gate can be implemented using
additional single-qubit gates.

3.1.3. Register readout

To obtain the results of the computation, a new image of the neutral-atom register must be
taken after the process is completed. There are several methods to acquire this information.
The first approach is called destructive detection. This method relies on a Charge Coupled
Device (CCD) camera, similar to the step used in the 3D configuration of the atom register.
Fluorescent light emitted by the illuminated atoms is therefore captured by the camera.
However, the key difference in this step is that all qubits in one of the two states are ejected
from the tweezers using light of a specific energy. If the |0〉 state is chosen for ejection,
only the qubits that were initially in the |1〉 state will remain and therefore emit detectable
fluorescence. Dark spots thus no longer represent originally empty positions but instead
indicate locations where qubits were in the ground state |0〉. A drawback of the destructive
imaging method is that, on average, at least 50% of the tweezers will be empty after the
process is complete [24, 25]. Consequently, the entire three-phase process must be repeated
for the next computational cycle.

Alternatively, the process of rapid non-destructive readout can be chosen. According to the
research by Martinez-Dorantes, "Qubits encoded in the hyperfine ground states of alkali
atoms are read out using illumination that resonantly addresses a cycling transition from
one ground state while being far detuned from the other ground state" [24]. This means that
only qubits in one of the ground states absorb and subsequently emit many photons, making
them visible on the imaging device, while qubits in the other state appear as dark spots. This
method has a fidelity greater than 98% and ensures that approximately 99% of the atoms
remain in the tweezers after the readout process.

10



3. Neutral-Atom-Architecture

3.2. Advantages of the Neutral-Atom Architecture

3.2.1. Long range Interactions and restriction zones

The ability to enable interactions between qubits over long distances is an advantageous
feature of certain quantum computer architectures [21]. Superconducting qubits only allow
for so-called nearest neighbor connections, meaning interactions can only occur with directly
adjacent qubits within the register [14, 26]. On the other end of the spectrum, the trapped-ion
architecture provides global connectivity among all qubits in the register. With limited
all-to-all connectivity, the NA architecture positions itself between the two extremes. This
allows for connections between the central qubit and all other qubits within a specific radius
around it. Baker et al’s research has identified a maximum interaction radius that is four
times the distance between two qubits in the register [14]. However, this interaction radius
is determined by the strength of the Rydberg blockade and thus can be improved upon.
The strength of the blockade decreases significantly with increasing distance. However, the
literature presents varying values for this decrease. Schwarzschild et al. report a scaling of
1/r3, while Chi en Wu et al. distinguishes between short distances, where the strength scales
as 1/r3, and long distances, where it scales as 1/r6 [27, 28].

Figure 3.4.: Examples for different Interaction Radii

The primary factors affecting the strength of the Rydberg blockade, and consequently the
maximum possible interaction radius, are the chosen Rydberg state and the intensity of the
laser [1]. The Rydberg state is uniquely classified by its principal quantum number n. The
interaction strength scales with n11 [29]. Different Rydberg states thus result in blockades
of varying strengths and radii. However, the greater dipole moment, associated with the
higher Rydberg states, is also a disadvantage, as it makes them more susceptible to interfer-
ence [1, 26]. Chi En Wu considers identifying the most suitable Rydberg states essential for
achieving large interaction radii [28]. These different states can be achieved through precise
manipulation of the Rabi frequency. The formula below relates the interaction strength |C6|,
the blockade radius R6, the number of atoms Nb affected by the interaction, and the Rabi
frequency [28].
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3. Neutral-Atom-Architecture

|C6|
Rb

6
=

√
Nb Ω

In the case a program requires a long-range interaction between two distant qubits, which is
not supported by the hardware architecture, SWAP gates must be introduced. SWAP gates,
implemented using three CNOT gates, serve to exchange the states of two qubits. Practically,
this allows the state of one qubit to be moved closer to the other qubit, enabling the desired
interaction. According to Baker et al., a smaller maximum interaction radius results in any
two arbitrary qubits being a larger multiple of the maximum interaction radius apart [14]. To
run an algorithm under these conditions, a growing number of SWAP gates must be added
as the interaction radius decreases. Henriet et al.’s study illustrates this by examining the
number of SWAP gates required for different interaction radii [21]. This number is assessed
for randomly generated algorithms, with algorithm length measured by the average number
of gates per qubit on the x-axis.

Figure 3.5.: Communication Overhead due to varying maximum interaction distances [21]

The architecture represented in yellow on a 2D register illustrates nearest neighbor connec-
tivity, necessitating by far the largest number of additional SWAP gates. This trend of the
highest communication overhead due to SWAP gates is observed regardless of the algorithm’s
length. Next is the green architecture, which, with an increased maximum interaction radius
of 2.3 on the 2D register, requires significantly fewer SWAP gates. Finally, the red architecture,
also with a maximum interaction radius of 2.3, is arranged in a 3D cube. This configuration
enhances connectivity, as more qubits fall within the interaction range of a randomly selected
qubit compared to the yellow or green arrangements. This has the same effect as increasing
the maximum interaction radius on a 2D register. Consequently, the red architecture needs
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even fewer SWAP gates.

The decisive advantage of long-range interactions and the consequent avoidance of SWAP
gates lies in a lower program error rate [21]. This error rate can be influenced by two types
of errors. The first type is gate errors, which arise from the inherent error rate of each gate
during its execution. The second type is known as decoherence errors. These occur over
time due to interactions between the qubits and their environment. Programs with longer
runtimes are more susceptible to decoherence errors. The time required to execute the entire
circuit is described by the circuit depth. Reducing circuit depth, for example by eliminating
SWAP gates, can decrease this time. A lower error rate due to less decoherence errors is one
benefit, but programs with reduced depth can also be executed more frequently within the
same time interval. Due to the statistical nature of measurements, increasing the number of
executions can enhance the overall quality of the results. However, the study conducted by
Baker et al. reveals that the positive effect of increasing the maximum interaction radius is
only noticeable at very small radii [14]. Beyond a radius of 4, no significant improvements in
gate count or circuit depth were observed for most algorithms. Nonetheless, the authors note
that in much larger circuits, a maximum interaction distance of more than 4 could still lead to
significant improvements.

Figure 3.6.: Percentage of gates which could be eliminated through the use of a specific
interation radius for a selection of quantum algorithms [14]

Figure 3.7.: Reduction in depth which could be achieved through the use of a specific intera-
tion radius for a selection of quantum algorithms [14]

Implementing long-range interactions using Rydberg blockade inevitably introduces the
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drawback of the restriction zone. This restriction zone means that, aside from the qubits
intended to interact via the Rydberg blockade, no other qubits within the zone can perform
other interactions or computations simultaneously. Any such interactions would be distorted
by the existing blockade, causing unintended interactions with the qubits involved. The
radius of the restriction zone rre and the interaction radius rint both depend on the chosen
Rydberg state and the strength of its blockade [16]. However, the restriction zone radius is
always greater than or equal to the interaction radius. Mathematically, Schmid et al. express
this as rre = k · rint with k ≥ 1. A larger restriction zone thus imposes a greater limitation on
the underlying atomic register, which restricts the execution of many parallel gates.

According to Baker et al., the limitation of parallelism due to larger restriction zones is
mitigated by several factors [14]. Firstly, they note that "many quantum programs are not
especially parallel and often do not contain many other gates which need to be executed at the
same time" [14]. For instance, Baker et al.’s research identifies significant depth increases due
to the enlargement of interaction radii for the QFT-Adder and CNU algorithms. In contrast,
the depths of the Cuccaro Adder and Bernstein-Vazirani algorithms are barely affected by an
increased interaction radius. Secondly, Baker et al. identify the number of SWAP gates as the
dominant cost factor in terms of both gate count and circuit depth. Therefore, the increased
depth resulting from a larger interaction radius is often compensated by the elimination of
SWAP gates.
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3.2.2. Native multiqubit implementation

The capability to natively implement multi-qubit gates incorporating more than two qubits is
another significant advantage of the NA architecture. Similar to the two-qubit gates intro-
duced in the background chapter, multi-qubit gates can always be reduced to a combination
of control and target qubits. However, the novelty lies in the increased number of qubits,
which allows either the transformation on the target qubit to depend on more than one
control qubit or the simultaneous transformation of multiple target qubits. Furthermore,
given a sufficient number of qubits for the gate, it is possible to design a transformation that
integrates multiple control and target qubits at the same time into a single operation. The NA
architecture facilitates the direct implementation of various types of multi-qubit gates. One
prominent type is the CkNOT gate, which can have an arbitrary number of control qubits.
Isenhower et al. have succeeded in fabricating a gate with k = 35 control-qubits [30]. There
are already several physical methods for realizing this type of gate.

The first approach is based on the protocol for CZ gates introduced in the previous chapter.
As illustrated in the following diagram, CZ gates can be converted into CNOT gates by
placing Hadamard gates before and after the target qubit. To scale the CNOT gate to more
than two qubits, it is necessary to find a protocol for executing an arbitrarily large CkZ gate
instead of the CZ gate. Adjusting the pulse sequence thereby allows for the integration of
more than one control qubit.

H H

The initial strategy for realizing the aforementioned scheme entails defining a sequence in
which each control qubit is subjected to a π-pulse one after another. This procedure ensures,
that each control qubit has the opportunity, when in the correct ground state, to transition to
the Rydberg state and trigger a Rydberg blockade. Subsequently the target Qubit is exposed
to a 2π-pulse. The final step of the protocol involves reapplying a π-pulse to each control
qubit. Prior to and following the execution of the aforementioned protocol, a Hadamard gate
must be implemented on the target qubit through the use of a Raman transition. In summary,
the total resource requirements for this protocol are characterized by 2k + 2 π-pulses and 2
Raman transitions[30].

Isenhower et al. also offer an alternative approach where π-pulses are simultaneously applied
to all control qubits. This approach necessitates the selection of a distinct Rydberg state for
the control qubits, referred to as |s⟩. This state has the advantageous property of avoiding
strong interactions with other qubits in the same state, thus preventing the formation of a
Rydberg blockade among qubits also in the |s⟩ state. As a result, multiple control qubits
can simultaneously occupy the |s⟩ Rydberg state. Following this, the target qubit is excited
via a laser, which transitions it to the Rydberg state |r⟩, depending on its initial state. There
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is, however, a potential for a Rydberg blockade between the |r⟩ and |s⟩ states, which allows
for the conditional transformation inherent to the CkZ gate to be implemented. In the final
step, all control qubits in the |s⟩ state are returned to their original ground state by a single
application of the laser tuned to this Rydberg state. By parallelizing parts of the pulse protocol,
this method ensures that, regardless of the number of control qubits, the total number of
required pulses is limited to 4 π-pulses and 2 Raman transitions for the Hadamard gates.

Another independent aspect that can be adjusted in the physical implementation of this
type of gate is the manipulation of the target qubit. Saffman et al. introduce an alternative
approach that bypasses the use of two Hadamard-gates and the 2π pulse on the target qubit
[31]. Instead, once all π-pulses have been applied to the control qubits, either serially or in
parallel, an Amplitude Swap Gate is used on the target qubit. If none of the control qubits
has induced a Rydberg blockade, the Amplitude Swap Gate swaps the amplitudes of the
target qubit’s ground states |0⟩ and |1⟩, effectively performing an X-gate operation. The
implementation of this gate requires three π-pulses. Consequently, the total pulse count
for this approach amounts to 2k + 3 π-pulses if the control qubits are excited sequentially.
Conversely, when the control qubits are excited simultaneously, the total number of required
π-pulses is reduced to just 5.

The following table presents a summary of the various native protocols for CkNOT gates and
their respective costs. The summary is categorized by the method of pulse application to the
control qubits and the type of transformation implementation on the target qubit

Figure 3.8.: Pulse costs of various implementation methods for multi-qubit gates on a neutral
atom quantum computer

If a quantum algorithm requires a multiqubit gate which isn’t supported by the Hardware-
architecture, it must be decomposed into a series of single-qubit and two-qubit gates [32].
Maslov and Dueck have demonstrated that for gates with k ≥ 5 control qubits, the number of
required single and two-qubit gates is bounded by the formula 32k − 96 [33].
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Furthermore, Shende and Markov established a lower bound for estimating the resource con-
sumption of Toffoli gates. This bound applies to any number of control qubits k, showing that
at least 2k + 2 CNOT gates are necessary for decomposing any CkNOT gate [32]. However
this lower bound can only be reached if the use of additional ancillae-qubits is permitted.
In case the use of ancillae qubits is not authorized the number of required CNOT-gates
scales quadratically with the number of involved qubits. These lower bounds highlight that
even the most resource-intensive native implementation of multiqubit gates offers signifi-
cant improvements compared to the most efficient decomposition methods currently available.

This can be clearly seen with the classical Toffoli gate, which is a crucial component in many
quantum algorithms [30, 33]. The circuit depicted below represents Shende and Markov’s
decomposition of the Toffoli gate, optimized for the minimal number of CNOT gates [32]. This
decomposition employs 6 CNOT gates, costing 18 π-pulses, and requires 9 Raman transitions
for the realization of the single-Qubit Gates. In comparison, the most resource-intensive
native implementation of the same gate demands only 7 π-pulses and eliminates the need for
Raman transitions.

T

T T†

H T† T T† T H

As the number of control qubits k increases, it can be observed that the factor by which the
number of π-pulses can be reduced remains larger than the value of 3, even under the most
costly native implementation. This significant reduction in π-pulses has a favorable impact on
several key factors essential for the efficient and successful operation of quantum algorithms.
According to Schmid et al., the duration for single-qubit gates is 0.5 µs, for CZ gates is 0.2 µs,
and for CCZ gates is 1 µs [16]. This implies that a native implementation of the CCX gate
would take just 1.4 µs, whereas the decomposed approach depicted above would require
4.2 µs. Moreover, Baker et al. highlight that "efficient decomposition of multiqubit gates
often demands a large number of additional ancilla qubits" [14]. By implementing these gates
natively, the need for ancillary qubits could be eliminated, leading to more compact quantum
circuits.
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3.2.3. Scalability of Neutral Atom Quantum Computers

Another critical aspect in assessing the potential usefulness of a quantum computing archi-
tecture is its scalability. Alarcón et al. argue that “addressing any real-world problem will
require upscaling to thousands or even millions of qubits” [34]. This challenge is seen as one
of the fundamental issues in quantum computing, encompassing a broad range of technical
hurdles. However, according to Henriet et al., the neutral-atom architecture offers a significant
advantage in terms of scalability [21]. This advantage stems from the fact that the size of
the quantum register and consequently, the number of available qubits, is directly tied to
the number of optical tweezers, each capable of holding a single qubit. Since these tweez-
ers are created using lasers, increasing their number simply requires enhancing the laser’s
power. As Saffman puts it, “This is a technical and economic challenge, not a fundamental
one” [25]. Alternatively, the entire qubit register can be divided into multiple zones, with
individual lasers responsible for smaller regions. In this scenario, the required laser power
could be limited. Beals et al. conclude that, based on the lasers already available in 2008, it is
conceivable to achieve NAQCs with up to 106 qubits in a three-dimensional register [35]. This
is in stark contrast to other quantum computer architectures, which, according to Graham et
al., “require fabrication of completely new chips or traps to increase qubit number” [11].

Beyond laser power, numerous other factors could limit the scalability of the NAQC model.
Historically, one significant challenge was the stochastic loading process, which has since
been largely addressed [35, 14]. Initially, each optical tweezer had only about a 50% chance
of successfully capturing a qubit, making it exponentially harder to fill a larger register
without innovative solutions. Nonetheless recent advancements have allowed several teams
to demonstrate defect-free assembly of 2D registers with up to 100 qubits [36, 37]. Barredo
et al. estimate that with modest improvements in laser power, transport efficiency, initial
loading rates, and vacuum-limited lifetimes, their method could scale to allow loading of
defect-free structures with up to 1,000 qubits in a 50x50 trap array. Moreover, they report that
arrays with up to 1,000x1,000 microlenses have already been produced, potentially allowing
for even greater scalability.

Another prerequisite for scalable quantum computers is the ability to perform non-destructive
qubit measurements. This capability, known as quantum nondemolition (QND) state mea-
surement, is crucial. Saffman et al. stress the importance of not losing the measured atom and
ensuring that the states of neighboring qubits remain unaffected [31]. This ability is essential
for quantum error correction procedures [25]. The most widely used method for measuring
qubits, described earlier, involves detecting fluorescence photons emitted by qubits in one
of the two ground states. Saffman notes that a particular variant of this method initially
removes all qubits in one of the ground states, then detects fluorescence from the remaining
qubits [25]. However, the drawback of this approach is that it leaves about 50% of the register
empty, posing a scalability bottleneck due to the time-consuming reloading process. The non-
destructive readout technique introduced by Martinez et al. marks a significant improvement,
as it avoids the need to eject half of the atoms. By employing “adequate detuning of the state
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detection beam” and utilizing “image analysis with Bayesian inference,” this method offers a
more efficient approach [24].

Despite these advancements, challenges remain for the scalability of quantum computers,
particularly in achieving high gate fidelity and minimizing atom loss.
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4.1. Goal of multiqubit Gate Synthesis

Most computations on quantum computers are represented using quantum circuits [38].
These circuits consist of individual quantum gates, each of which is uniquely defined by a
unitary matrix. Consequently, an entire quantum circuit can be described by a single unitary
matrix, derived from the proper composition of the unitary matrices of its constituent gates.

The aim of multi-qubit gate synthesis is to create a new circuit that produces a unitary matrix
nearly identical to that of the original circuit. Schmid et al. formalize this process as the search
for a gate sequence Ũ = gN−1 ◦ · · · ◦ g0, where each gate g0, . . . , gN ∈ Σnative is drawn from
the set of native gates Σnative available on the platform [16]. The goal is, given an arbitrary
original matrix U ∈ C2n×2n

, to satisfy the equation U ≈ Ũ, with only a negligible error.

A minimal difference between the unitary matrices ensures that the synthesized circuit
performs nearly the exact same computation as the original circuit. At the same time, the
new circuit should incorporate multi-qubit gates to optimize resource usage and realize the
various benefits discussed earlier. This concept is illustrated in the images below, where the
unitary matrix of the original circuit is shown on the left, and the closely related unitary
matrix of the synthesized circuit on the right.

Figure 4.1.: (left) Original unitary Matrix (right) Synthesized unitary Matrix
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4.2. Architecture of the Geyser Framework

The framework that serves as the foundation for the experiments conducted in this research is
the Geyser Framework [15]. It comprises three key steps: Circuit Mapping, Circuit Blocking,
and Block Composition, each of which will be analyzed in detail in the following subsections.

4.2.1. Circuit Mapping Step

According to the authors of the Geyser framework, the mapping process involves translating
a logical quantum circuit into a physical circuit [15]. The resulting physical circuit must
adhere to the specific constraints and architecture of the NA platform.

The first constraint concerns the permitted gate set, which the authors have limited to the U3
and CZ gates. Consequently, all other logical gates must be decomposed into combinations of
U3 and CZ gates within the physical circuit. Another constraint involves the incorporation of
SWAP gates. These are necessary to bring qubits that need to interact in the logical circuit—yet
are initially placed too far apart in the physical layout—within the interaction range of one
another. The third piece of mapping-relevant information pertains to the spatial arrangement
of qubits. The Geyser framework exploits the flexibility offered by the NA architecture in
spatially organizing qubits within a 2D register. The authors specifically opted to arrange the
qubits in a regular triangular topology. The superiority of this approach becomes apparent
when comparing it to a quadratic topology, where forming groups of three equidistant qubits
is not possible. Executing a multi-qubit gate in such a quadratic layout would require a larger
interaction radius, leading to a larger restriction zone. The equidistant arrangement of the
triangular topology, on the other hand, allows for increased parallelism and fewer blocked
qubits, provided that the multi-qubit gates involve no more than three qubits. As illustrated
below, attempting to implement a three-qubit gate in a rectangular topology would block 11
qubits, whereas the triangular topology would block only 9.

Figure 4.2.: (left) General procedure of the mapping process (right) Mapping process on
various regular lattice structures [15]
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For the mapping process, the authors leveraged existing techniques provided by the Qiskit
compiler [39]. This was feasible because no gates involving more than two qubits had been
added to the circuit at this stage. The required compile-parameters included the allowed
gate set and the spatial topology of the qubits, along with their connectivity constraints. The
Qiskit compiler automatically handled the SWAP gate insertion as part of this process.

4.2.2. Circuit Blocking Step

Circuit blocking involves the deliberate partitioning of the physical circuit, generated in
the previous step, into smaller sub-circuits or blocks. In this process, it is not the qubits
themselves that are assigned to specific blocks but rather the computational operations. A
defining feature of these blocks is that all qubits within a block do not interact with qubits
outside of that block throughout its execution. Consequently, if the qubit sets of two blocks
overlap, the blocks must be executed in strict sequence. Notably, there are numerous possible
ways to implement circuit blocking for any given circuit.

The quality of any partitioning can be assessed based on two key criteria. First, the extent
to which it permits parallel execution of blocks. A high degree of parallelism, achieved by
minimizing overlaps between the restriction zones of the qubit sets, leads to a shorter overall
program duration. Second, the size of the formed blocks, measured by the number of pulses,
is crucial. Larger blocks facilitate easier conversion into an equivalent representation using
multi-qubit gates in the following synthesis step. However, these two goals—maximizing
parallelism and block size—are often at odds with each other. To address this, the authors
designed the algorithm to select, at each iteration, the partitioning that contains the maximum
number of pulses. An iteration includes all blocks that can be executed immediately, without
having to wait for another block due to overlaps. Consequently, both a larger number of
blocks and generally longer blocks can become the decisive factor. The pseudo-code for this
algorithm, as provided in the Geyser paper, is available in the appendix.

Figure 4.3.: (left) General procedure of the Blocking process (right) Example circuit partitioned
into blocks [15]
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4.2.3. Block Composition Step

Expansion phase

The composition process follows a cyclical sequence of phases, beginning with an "expansion
phase". During this phase, additional gates are incorporated into the circuit’s schematic.
Initially, a U3 gate is applied to each of the three qubits, followed by a CCZ gate that connects
all of them, and then another layer of U3 gates. In subsequent rounds of this phase, only a
CCZ gate followed by a layer of U3 gates is added, so that these layers alternate within the
composed circuit. This alternation arises because two consecutive U3 gates can always be
merged, where the new rotation angles are simply the sums of the corresponding angles from
each gate. This structure is also depicted in the visualization below.

Figure 4.4.: Iterative construction of the synthesized circuit using CCZ and U3 gates [15]

Computation phase: Theory

Next comes the computation phase, where the parameters of the composed block are op-
timized to ensure that its unitary matrix closely resembles that of the original block. The
specific quality metric used here is the Hilbert-Schmidt distance, which quantifies the similar-
ity or distance between two matrices. The Hilbert-Schmidt inner product is calculated as the
trace of the product of the complex conjugate transpose of the unitary matrix from the first
circuit with the unitary matrix of the second circuit:

Tr(U†
1 U2)

The result of this calculation ranges from 0 to 2n, where 2n indicates that U1 and U2 are
identical, implying no difference. Here, n denotes the number of qubits. To provide a quality
measure that is comparable across circuits with different qubit counts, the authors introduced
the HS distance. This is done by dividing the HS inner product by the maximum value 2n

and then subtracting it from 1, so that a value of 0 now represents the minimal distance:

1 −
∥∥Tr(U†U′)

∥∥
2n
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The parameters to be optimized in the composition process depend on the number of U3
and CCZ gates. For each U3 gate, three rotation parameters must be specified, each within
the range of 0 to 2π. Each CCZ gate, on the other hand, has only one parameter, which is
the position of the target qubit. This can be any value between 0 and 2, where 0 indicates
that the first qubit is the target. Notably, this parameter must be rounded. This is because a
target qubit can’t be placed on the 1.67th qubit, so the value must be rounded to the nearest
integer, which in this case is 2. In contrast, the rotation parameters determined during the
computation phase can be directly copied, as they can be realized with very high precision
within the U3 gates.

Computation phase: Dual Annealing

The most critical aspect of the entire framework lies in the fine-tuning of the parameters
previously described. This is achieved through an optimization method known as "Dual
Annealing", a stochastic approach particularly well-suited for locating minima within high-
dimensional landscapes [40, 41]. Stochastic methods have a key advantage over deterministic
ones, as highlighted by Xiang et al., in that they are much less likely to get stuck in local
minima [42]. Harold Szu illustrates this with the metaphor of a ball rolling across a hilly
landscape within a box [43]. The box must be shaken sufficiently for the ball to escape from
local minima, yet gently enough so that it eventually settles in a global minimum. The ability
to escape local depressions is especially critical when dealing with complex, high-dimensional
functions that possess numerous local minima. This makes them especially challenging to
navigate using deterministic methods.

The "Dual" in the method’s name hints at its two-layered structure. The first layer is a global
search algorithm, typically based on the Generalized Simulated Annealing approach. As
explained by Xiang et al., this approach is a hybrid, blending Classical Simulated Annealing
with Fast Simulated Annealing techniques [42]. However, the true elegance of this method
isn’t in its specific implementation, but in the conceptual inspiration drawn from the annealing
process in materials science. The purpose of annealing in solids is to transition the material
to a state of minimal energy, characterized by a highly ordered structure, similar to a crystal
lattice [40]. This process begins by heating the material to a high temperature, making it
highly malleable and allowing for extensive reconfigurations. The material is then gradually
cooled, which reduces the likelihood of random structural changes.

In the optimization context, this translates to the algorithm exploring the search space
more aggressively at high temperatures, even if this leads to poorer outcomes. Step 3 of
the pseudocode for the Dual Annealing approach clearly illustrates that "annealing allows
perturbations to move uphill in a controlled manner" [40]. However, the likelihood of this
occurring depends on the temperature and the magnitude of the worsening in the state.
Lower temperatures and greater negative changes result in a reduced acceptance probability.
As the algorithm "cools", it gradually hones in on the most promising candidates for the
global optimum, with fewer and fewer random deviations as it narrows its focus.
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Dual Annealing Algorithm Outline [44, 45]

1. Initialization:

• Choose a random starting location x and set xbest = x.

• Select a monotonically decreasing sequence of temperature values (Tt)t∈N, depend-
ing on the specific simulated annealing variant [43]:

– Classical simulated annealing: Ta(t)
T0

= 1
log(1+t)

– Fast simulated annealing: Tc(t)
T0

= 1
1+t (faster cooling)

• Set t = 0

2. Local Variation: Determine a new point y. The specific method for selecting new
points is implementation-dependent, but typically they are chosen in the neighborhood
y ∈ U(x) of the current point.

3. Selection:

• Case 1: If the new point has better quality/a lower objective function value
f (y) ≤ f (x), set x = y.

• Case 2: If the new point has worse quality/a higher objective function value
f (y) > f (x), set x = y, but only with probability exp

(
− f (y)− f (x)

Tt

)
.

4. Update: Increment t by 1: t = t + 1. Save the current best solution if f (x) < f (xbest),
and set xbest = x.

5. Local Search: Decide whether the last point is a good candidate for a global optimum
and, if so, initiate a local search.

6. Decision: If the stopping condition based on resource consumption is met, terminate
the process; otherwise, return to Step 2.

The step of Simulated Annealing can also be visualized in the following graphic, which
illustrates a 2-dimensional function and the steps toward the optimum. Red points represent
explorations made during the high-temperature phase, while blue points indicate those made
during the low-temperature phase.The more extensive exploration observed at high temper-
atures and the potential for movement against the gradient, as previously discussed, are
exemplified here. The latter phenomenon occurs, since some points with lower temperatures
are situated above points with higher temperatures.
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Figure 4.5.: Exemplary Progression of the simulated Annealing Process

Once the global search algorithm identifies a strong candidate for the global optimum, the
process transitions to a local search phase. In the Geyser framework, this is handled by the
"L-BFGS-B" algorithm.

Decision phase

Following the computation process is the decision phase. First, the total resource consumption
in terms of pulse count is determined based on all the gates in the circuit. As mentioned in
Chapter 3, each single-qubit gate requires one pulse, each CZ gate requires three pulses, and
each CCZ gate requires five pulses. If the total pulse count exceeds that of the original circuit,
the process is aborted, and the original block implementation is retained. Otherwise, it is
checked whether the Hilbert-Schmidt distance between the unitary matrices is now below
the set threshold. If this is the case, the process is successfully concluded, and the composed
block replaces the original one. Alternatively, the cycle restarts with the expansion phase,
adding another layer to the composed block. The following graphic provides a schematic
representation of the entire composition process.
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Figure 4.6.: Simplified Representation of the Decision Procedure from the Geyser Framework

4.3. Architectural Modifications and Scripts for 4-Qubit Gate
Synthesis

4.3.1. Architectural Modifications

Due to the modular structure of the Geyser Framework, only minimal adjustments are
needed to transition from the existing synthesis of 3-qubit gates to 4-qubit gates. These
architectural changes primarily concern the mapping step. The first task involved altering
the set of conditions that determine the presence of neighboring qubits in eight cardinal
and intercardinal directions. These conditions are calculated for each qubit’s position. For
instance, a qubit positioned in the top right corner of the 2D register would only satisfy
the conditions to its left, bottom-left, and below, since no qubits are present in the other
neighboring positions. Additionally, the process for determining qubit IDs had to be revised.
This process calculates the IDs of the eight neighboring qubits based on the qubit’s own
ID. In the previously used triangular pattern, only six neighboring IDs needed to be computed.

With these foundational calculations in place, all connections between qubits were established.
These connections represent the physical layout and define the constraints the compiler must
adhere to. Leveraging the long-range interactions discussed in Chapter 3, this implementation
assumes that qubits can interact with diagonally adjacent qubits, despite the increase in
distance by a factor of

√
2. Finally, the block generation process was adjusted. Here, care

was taken to always group qubits into blocks of four, ensuring that all theoretically possible
block configurations were captured. The previously defined exclusion zones were retained,
as blocks of four qubits, as long as they are arranged in a rectangle, do not require larger
restriction zones beyond the immediate neighbors. This can be seen on page 21.
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4.3.2. Experimental Methodology

The authors of the Geyser Framework indicate that their experiments were conducted using
a "local data center consisting of Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz nodes." Each
node was equipped with 128 GiB of RAM and 24 physical or 96 logical cores. Although the
exact number of nodes was not explicitly stated, we estimate, based on the results obtained in
the subsequent chapter, that the number of nodes utilized was at least 10.

For the experiments conducted in this work, various nodes provided by TUM within the
LRZ cluster were employed. The specifications of these nodes are detailed in the Evaluation
chapter. A Bash script is indispensable for utilizing the nodes of the LRZ cluster. An example
script can be found in the appendix.

Additionally, a list of all modules used can be found in the Appendix. Due to significant
changes introduced with the release of Qiskit 1.0.0, following the release of the Geyser
Framework, it is advisable to use a virtual environment when running the scripts.
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5.1. Key Quality Metrics of the Synthesis Process

The Geyser Framework offers a wide range of adjustable parameters, necessitating a careful
consideration of which parameters, and subsequently which combinations thereof, should be
explored. Additionally, it is essential to evaluate the quality of the results based on specific
metrics. We have thus decided to use Maximum Function Calls, Computation Duration, and
Pulse Count as the key variable parameters. The combination of the HS-Distance and Total
Variation Distance provides a robust means of evaluating the obtained solutions with respect
to dependent characteristics. The rationale behind the selection of each individual parameter
is presented in the following subsections. For each group of parameters, a dedicated chapter
will explore what constitutes an ideal value, along with an examination of the obtained results
and the values that are realistically attainable.

5.1.1. Maximum Function Calls, Maximum Iterations & Computation Duration

One of the most crucial criteria for the viability of any program or calculation is its runtime.
A division of the Geyser framework into a Mapping & Blocking Phase and a Composition
Phase revealed that the latter exhibits runtime variations that are drastically dependent on
the chosen parameters. This phenomenon is illustrated in the graph below by the rapidly
increasing blue bars. For the maximum number of function calls (maxfun), a value of 1e1
(10) was used for the left bar across all algorithms. The middle bars were calculated with 1e2
(100), while the right bars utilized 1e3 (1000). A consistent maximum of 1000 iteration steps
was set, as defined by the default maxiter parameter. Calculations were performed on an
M1 Mac equipped with 8 GB of RAM and 8 CPU cores. Although the resulting maximum
value of approximately 500 seconds seems relatively low, the Geyser paper standardly uses a
value of 1e8 for maxfun. Thus, the extent of computation time and its development are of
crucial importance for the feasibility of the algorithm on hardware that does not meet the
specifications of a data center.
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Figure 5.1.: Computation time for various quantum algorithms with 1e1 (left), 1e2 (center),
and 1e3 (right) maximum allowed global function calls

As evident from the previous discussion and the accompanying graph, the central factors
influencing computation time are the permitted maximum number of function calls and the
maximum iterations. To reach this conclusion, it was necessary to examine all parameters of
the Python implementation of the Dual Annealing computation method. These parameters
are: Iterations, Maxfun, Maxfun_local, Initial_temp, Visit, and restart_temp_ratio. Initial_temp
and restart_temp_ratio pertain only to the starting temperature and the amount of cooling
required before resetting the temperature to its initial value. Consequently, these parameters
have a minimal impact on the total number of computational steps. Their primary effect is on
the number of local minima found and, consequently, on the types of computational steps
performed. The Visit parameter determines the distribution of points tested by the algorithm
(see Chapter 4.2.3, Algorithm Outline, Point 2). In most cases, variations in this value do not
lead to a significantly different runtime.

Maxfun_local represents the maximum number of function calls allowed for the local opti-
mization algorithm. It does not affect the total computational resources but restricts how
many resources a single local search can consume. With a high value, it is possible that
instead of many local searches with limited resources, only a few local searches with extensive
resources may be initiated before the resource budget is exhausted. For this reason, the
local maxfun parameter can only impact the total computation time if the maximum number
of globally allowed function calls significantly exceeds the number of iterations, and the
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algorithm identifies numerous promising locations for local searches. In such a scenario, a
low maxfun local limit would curtail the local search, even though global resources would still
be available. Regarding the quality of the solution, the maxlocal parameter can potentially
have an impact due to enabling a more extensive local search.

The way in which the Maxiter parameter can influence the overall runtime is analogous to
the Maxlocal parameter. Therefore, it must be set appropriately when there is a large number
of globally allowed function calls, to avoid artificially constraining the resource budget. For
example, if the number of iterations is mistakenly set to 10 and the number of function
calls required per iteration due to small blocks is only 25, while 1000 global function calls
are available, only 250 function calls would be utilized. During the experiments, such an
inappropriate setting of the Maxiter parameter was observed significantly more frequently
compared to the Maxfun local parameter. A possible explanation lies in the relatively low
frequency with which the Dual Annealing method initiates a local search. This led us to
conclude that the Maxiter parameter is one of the two parameters with a significant impact
on the overall computation time, warranting further investigation.

Since the global Maxfun parameter directly sets the hard limit for resource consumption, it is
clear that it also plays a crucial role in determining both the computation time and the ability
to find acceptable solutions for synthesis.

5.1.2. Total Pulse Count

Minimizing the total pulse count is a pivotal objective in the multiqubit gate synthesis process.
Achieving the same functionality with fewer pulses not only streamlines execution but also
potentially reduces error rates, depending on the fidelity of the multiqubit gate. Yet, more
pulses enable the incorporation of additional gates into the composed circuit, which can result
in a more accurate representation of the original circuit. To balance these factors, we treat
pulse count as a variable parameter, setting it to a specific value to ensure a reduction in the
total pulse count. We then explore whether synthesis remains viable with these constraints.

5.1.3. Total Variation Distance & Hilbert Schmidt Distance

As outlined in the Composing chapter, the Hilbert-Schmidt distance is employed to assess the
similarity between two unitary matrices. The authors emphasize its advantage, particularly
its "lower computational overhead" compared to other metrics [15].

Additionally, this study employs the Total Variation Distance (TVD) as a secondary measure.
The TVD is calculated as half the sum of the absolute differences between two probability
distributions:

1
2

2n

∑
k=1

|p1(k)− p2(k)|
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It is crucial to understand that the TVD is applicable only for comparing the probability
distributions of all possible outcomes k for a specific input, such as 3, between the original
and the composed circuit. Thus, to fully assess the differences between two unitary matrices,
the TVD must be computed for every possible input. To enable comparisons across matrices
of varying sizes and different sets of possible inputs, the arithmetic mean of these distances
can be used.

Together, these two metrics are central to evaluating the quality of the synthesis process and
are essential for assessing the effectiveness of circuits synthesized with 4-qubit gates.

5.2. Influence of the Maximum Function Calls & Computation Time

This chapter explores how varying resource allocations affect both computation time and
the attainable HS-distance. To this end, six different resource budgets were established. The
smallest allows the annealing process a maximum of 10.000 global function calls and 100
local calls. For each subsequent budget, the number of global calls was tripled, and local calls
were doubled. The number of maximum iterations remained fixed at the default value of
1.000, as previous studies showed this parameter was never a limiting factor, and the original
Geyser framework did not modify it. All experiments were conducted on the "serial_std" parti-
tion of the LRZ cluster, utilizing 50 cores, 50 GB of RAM, and a maximum runtime of 96 hours.

The quantum algorithms targeted for optimization included the addition algorithm with 4 and
9 qubits, the variational quantum eigensolver with 4 qubits, and the advantage algorithm with
9 qubits. However, only the results for the 4-qubit algorithms are presented here. The 9-qubit
addition algorithm could not be computed in most cases due to excessive time requirements,
exceeding the 96-hour limit. Regarding the 9-qubit advantage algorithm, the conclusions
of the Geyser framework authors apply even for the 4-qubit synthesis: if the algorithm’s
structure does not permit long blocks without interactions with external qubits, multi-qubit
synthesis is generally ineffective and yields little to no improvements. This was similarly
observed in the 4-qubit gate synthesis.
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A recurring trend, also evident in later chapters, is that increasing the resource budget
generally leads to improved distance values. However, in the case of 3-qubit gate synthesis,
more resources can occasionally produce worse results. This happens when the method, with
greater resources, finds an equivalent 3-qubit or 4-qubit gate representation that still contains
an error. In earlier experiments with fewer resources, this error was larger, causing the new
circuit for that block to be discarded in favor of the original circuit, which had an error of 0
and thus no distance.

This phenomenon can be seen in the 3-qubit gate synthesis for ADDER_4. For example, the
run with 243e4 global function calls had almost ten times the calls of the 27e4 run. However,
the resulting distance of 0.1804 was significantly higher than the 0.0045 achieved in the
lower-resource run. This discrepancy is explained by the fact that the resource-constrained
attempt only eliminated 23 pulses, whereas the higher-resource trial managed to optimize 47
pulses. Nevertheless, a fundamental observation across all test series is that a larger resource
budget generally correlates with better results.

A notable trend is that the distances achieved with 4-qubit gate synthesis frequently resemble
those obtained with 3-qubit gate synthesis. This is particularly evident in trials 3 and 4 of the
VQE_4 algorithm, where the distances are 0.628 (3-qubit) compared to 0.480 (4-qubit) and
0.461 (3-qubit) compared to 0.446 (4-qubit), respectively. For the ADDER_4, a more noticeable
disparity is observed in the fifth trial, with distances of 0.068 (3-qubit) and 0.204 (4-qubit).
Nevertheless, these distances remain comparable according to the previously mentioned
explanation.

A key consideration for the feasibility of 4-qubit gate synthesis is its runtime. This runtime
increases as more resources are allocated. Specifically, in 4-qubit gate synthesis, the rise
in runtime correlates closely with the factor by which the limit on global function calls is
increased. The fourth trial of the VQE_4 algorithm with 4-qubit gate synthesis is the only
instance with an unusually small increase in computation time. If this trial is disregarded,
the average growth rate of runtime for the two algorithms using 4-qubit gate synthesis is 2.47.
The increase in computation time for 3-qubit gate synthesis often does not align directly with
the expansion factor of the resource budget. This might be due to the fact that processing
multiple blocks can better utilize hardware and tap into unused capacity. On average, the
factor by which computation time grows is around 1.635.

More critical than this growth rate is the comparison between 4-qubit and 3-qubit gate
synthesis with the same resource budget. For instance, in the fifth trial of both methods,
the 4-qubit gate synthesis for the ADDER_4 algorithm requires 227.097 seconds, which is
nearly 22 times longer than the 10.343 seconds needed for the 3-qubit synthesis. Similarly,
for the VQE_4 algorithm, the time factor is even more pronounced, nearing 44. These
substantial differences in time consumption and less favorable growth factors suggest that
achieving an HS-distance of 0.01 or lower while using the 4-qubit gate synthesis demands a
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disproportionately large increase in resources for all algorithms.

5.3. Influence of the Total Pulse Count

The experiments focusing on the Total Pulse Count aim to investigate how the achievable
distance changes when the synthesis algorithm is permitted to utilize more pulses, thereby
increasing the number of multi-qubit gates. In this context, a total of five trials were conducted
on the "teramem_inter" partition of the LRZ cluster. The setup specified 96 cores, 4000 GB of
RAM, and a maximum runtime of 96 hours. While the first trial was limited by a maximum
of 1.25 × 104 allowed function calls, the limit was doubled for each subsequent trial. As a
result, the fifth experiment had access to a total of 2e5 permitted function calls. All other
parameters, such as the local Maxfun value or the number of iterations, remained fixed at 5e2
and 1000, respectively.

The algorithm that was approximated in this setup using 4-qubit gate synthesis is the
Variational Quantum Eigensolver (VQE) with 4 qubits. In its original configuration, the
algorithm utilizes 457 pulses. However, since the original Geyser framework already achieves
a reduction to approximately two-thirds of the original pulse count, this study only examined
the progression up to 300 pulses. The results from the five experimental series are presented
in the figure below and will be analyzed in greater detail in the following paragraph.

Figure 5.2.: Comparison of the evolution of the HS-distance with gradual increases in the
amount of allowed pulses for different computation time budgets
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For all experiments, it is evident that the HS distance can be minimized at some point by
increasing the budget of allowed pulses. This is expected, as with more pulses the annealing
process gains more flexibility to adjust the composed unitary matrix towards the original
unitary matrix. However, the changes in pulse quantities, the extent of improvement, and the
achievable minimal distance vary among the experiments.

A general trend is that most improvements occur when extending the pulse sequence while
the total pulse count is still below half of the maximum allowed. Beyond 200 pulses (two-
thirds of the maximum), no further optimization was observed in any trial. The phase where
the distance stagnates and cannot be further optimized will be referred to as the "plateau
phase" in the following discussion. The experiments differ significantly in when they reach
this plateau phase. For the trials with 2.5e4 and 5e4 pulses, this happens relatively early, at 59
and 92 pulses, respectively. In contrast, trials with either higher or lower resource budgets
enter the plateau phase much later.

One possible explanation is that, beyond a certain number of pulses, the function call budget
is insufficient to explore the entire parameter space. More pulses thus hinder rather than
facilitate finding an optimal solution, as the algorithm becomes "overwhelmed" by the in-
creased number of combinations. Visually, one can imagine that for each pulse count and
corresponding gates, an optimal configuration exists that minimizes the distance between
unitary matrices. With more pulses, the potential to minimize the distance further exists, but
significantly more resources are needed to find this optimal configuration. Once the number
of pulses requires excessive resources to find the optimal configuration, the algorithm is only
able to reproduce the previously found optimal solution. Finding a suitable alternative circuit
with multi-qubit gates and a very low number of pulses thus seems unlikely, as especially
the three experiments with the most ressources show more or less similar values for for the
VQE_4 with fewer than 75 pulses. Increasing the resource budget in this range appears to be
rather ineffective.

Except for the trial with the lowest resource budget, all other experiments achieve an HS
distance within 0.02 of 0.7 in the first iteration. Despite similar starting points, improvements
vary significantly. Notably, trials with larger resource budgets consistently show better
quality measures upon reaching the plateau phase. The most substantial improvement is
seen between the third and fourth trials, with the latter reducing the minimum achievable
distance from 0.58 to 0.299. Other adjacent trials generally differ by less than 0.03. Thus, a
larger resource budget appears essential for finding viable alternatives with 4-qubit gates.
However, based on the results, it is not possible to precisely predict whether a usable HS
distance of 0.001 or less can be achieved or the amount of resources required.

Before reaching the minimal distances, it is observed that experiments with lower resource
budgets sometimes achieve smaller distances than those with higher budgets. For instance,
the series with 1e5 pulses for 114 pulses has a value of 0.362, which is better than the series
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with 2e5 pulses at 0.401. This discrepancy can be attributed to the stochastic nature of the
dual annealing approach, which cannot guarantee the attainment of a specific threshold with
certainty.

5.4. Implications of the achievable Total Variation Distance &
Hilbert Schmidt Distance

The viability of the synthesis method using 4-qubit gates depends on how closely the results
match the original circuits. A universal bound for HS-distance or TV-distance applicable to
all algorithms cannot be established. Instead, each algorithm must be individually assessed
to define its specific acceptance criteria. Equally relevant is the observation from the previous
chapter that HS distance reflects an average of deviations. This arises from calculating output
deviations for every possible input and then averaging them. For instance, an HS distance of
0.4 might result from each input having a deviation of 0.4, or from some inputs exhibiting
high deviations of 0.7, balanced by other inputs with deviations as low as 0.1. Given the way
HS distance is calculated, a value of 0.1 does not always correspond directly to a deviation rate
of 0.1. Only in the case of the later discussed “deterministic” algorithms these metrics align.
Therefore, this metric should be seen as a rough estimate. A more meaningful conclusion
can be drawn from the TVD, provided it is calculated individually for each possible input.
This directly reveals the proportion of outcomes that do not align with the desired distribution.

The following evaluates the quality of distance values using the addition algorithm as an
example. As depicted in Figure 4.1, which shows the algorithm’s unitary matrix, it is a
"deterministic" algorithm. This means that a given input always maps to the same output.
The evaluation of these distance values can thus be extended to other deterministic algorithms,
such as the quantum multiplication algorithm discussed in the Geyser paper. The benefit
of deterministic algorithms is that the error rate is calculated as the sum of probabilities
leading to incorrect outputs, rather than just shifts in certain probabilities. Incorrect and
correct results are thus in disjoint sets. If the output is correct with a probability of 50% + ϵ

and the individual tests are stochastically independent, the error rate can be further reduced
through repeated testing combined with a majority vote. For example, with ϵ = 0.05 (yielding
a correctness probability of 0.55), n = 518 trials are needed to achieve a 99% confidence level
in the majority result. For ϵ = 0.15 and ϵ = 0.25, only 52 and 16 trials, respectively, are
required. This calculation can be verified using the formula below. Alternatively, the values
can be approximated using the Chernoff bound.

Let X be a binomially distributed random variable representing the number of correct results.
We seek the value of n such that

P(X > 0.5n) ≥ 0.99.

This probability can be expressed as:
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P(X > 0.5n) =
n

∑
i=⌈0.5n⌉

(
n
i

)
· pi

correct · pn−i
incorrect,

where pcorrect is the probability of a correct result and pincorrect is the probability of an
incorrect result.

We therefore need to find n such that:

n

∑
i=⌈0.5n⌉

(
n
i

)
· pi

correct · pn−i
incorrect < 1 − significance level.

A drawback of the majority vote is the need for frequent execution of the circuit. This negates
the benefits that were intended to be gained through the use of 4-qubit gates.

An HS distance of 0.15 could be considered acceptable for a deterministic algorithm, provided
the TVD for each individual input closely matches this 0.15. The critical factor is the input
with the highest TVD. As previously mentioned, inferring TVD from HS distance is only
applicable to "deterministic" algorithms due to their calculation method. Additionally, there
must be a willingness to perform n = 6 repetitions per trial and to consider an error rate of
0.01 as acceptable.

Figure 5.3.: Comparison of the original unitary matrix with the matrices obtained through
the two synthesis methods

The best HS distance achieved for the Adder_4 algorithm, using 2.7e5 maxfun global, 8e2
maxfun local and 1000 Iterations over 36.5 hours, was 0.149. To contextualize this best error
rate for 4 Qubit Gate synthesis, we compare it with the corresponding 3-qubit gate circuits
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from the original Geyser framework. For this comparison, the original settings of 1e8 maxfun
global, 1e4 maxfun local and 1000 Maxiter were used. The resulting HS distance of 1.226e-10
highlights a significant difference.

A thorough examination analyzed the TVD for each of the 16 possible inputs from 0000 to
1111, with each input tested 10.000.000 times. The results showed that no incorrect outputs
were observed in any of the trials. Therefore, the 3-qubit gate circuit, obtained with relatively
few resources, matches the original precisely, with only a negligible deviation. These results
indicate that the 4-qubit gate circuits achievable with current computational resources do
not meet the standards of the 3-qubit circuits. This discrepancy is illustrated in the previous
image, which compares the unitary matrices of the original circuit, the 3-qubit circuit, and
the 4-qubit circuit. The significant differences between the 4-qubit gate circuit and the 3-qubit
circuit are clearly visible. However, many patterns of similarity are also apparent. For
example, each row consistently features the correct single entry with the highest probability,
a characteristic inherent to deterministic algorithms, which the 4-qubit gate synthesis has
managed to capture. Thus, there is potential that with a substantial increase in resources or
further optimizations in computation time, the results of the 4-qubit circuit could approach
those of the original Geyser framework.
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6.1. Conclusion

Neutral atom quantum computers represent a novel architecture within the realm of quan-
tum computing, offering several advantages that have drawn significant attention from the
scientific community. Among these are their capability to facilitate long-range interactions
and the native implementation of multi-qubit gates. However, a significant drawback is the
loss rate of atoms serving as qubits, particularly during gate operations. This creates a need
for algorithms that minimize the number of gates and pulses used. The Geyser Framework
addresses this by attempting to reduce gate and pulse counts through the use of 3-qubit gates,
specifically employing U3 and CCZ gate combinations. The goal is to design circuits that
approximate the original with minimal error.

This work focused on whether the Geyser Framework could be extended to accommodate
4-qubit gates. To this end, modifications to the mapping procedure within the Geyser Frame-
work were made. Additionally, preparations were completed to utilize the high-performance
computing resources of the TUM-LRZ cluster.

A series of computationally intensive tests followed. The first experiment evaluated the theo-
retically achievable HS distances, along with the corresponding computation time, for a given
resource allocation. Results showed that the HS distances obtainable with the same amount
of resources were comparable between the original 3-qubit synthesis approach and the newly
introduced 4-qubit synthesis. However, the 4-qubit approach required disproportionally more
time, with factors ranging from 20 to 50 times greater. The conclusion of this experiment is
that further optimization will necessitate significantly increased resource investment.

The second experiment series examined the number of pulses required to achieve optimal
distance values. It was observed that when resource budgets were insufficient, an increased
number of available pulses and gates could not improve the distance. For higher resource
budgets, it became evident that reducing pulses by more than 50% is unlikely to succeed.

In the final section, a sample calculation was presented to estimate which HS distances might
be practical for the subset of "deterministic" quantum algorithms. The upper limit for a
majority decision was identified as a maximum TVD of 0.5 for each input. However, practical
applications would require circuits with distances as low as 0.01, a value not yet achieved with
the 4 qubit synthesis process. For comparison, the original Geyser Framework demonstrated
distances as low as 10−8.
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6.2. Outlook

In summary, without further optimizations in resource consumption or distance, the current
results of the 4-qubit gate synthesis for the algorithms tested in this study are deemed
impractical. However, a final assessment of the viability of 4-qubit gate synthesis will
inevitably require the examination of larger quantum algorithms. Additionally, the use of
alternative approximation algorithms could be of interest. The method currently employed
for local search in the dual annealing process could potentially be replaced by more effective
alternatives.
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A. General Addenda

The following link leads to a GitHub repository containing all files relevant to this work. This
includes the result text files from both experimental series, as well as the Geyser framework
in both its original form and my modified version. Additionally, the repository contains a file
detailing my adjustments and bug fixes in the Geyser code. I have also included a list of all
used packages and the Python files for generating my plots.

https://github.com/Philippwon/Bachelor-Thesis-Computer-Science-Multiqubit-Gat
e-Synthesis.git
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