
Data Engineering and Analytics
Technische Universität München

Master’s Thesis

SWIM in Point Clouds: Sampling Weights for
PointNet

Zi Hen Lin

Data Engineering and Analytics
Technische Universität München

Master’s Thesis

SWIM in Point Clouds: Sampling Weights for PointNet

Author: Zi Hen Lin
Examiner: Prof. Dr. Felix Dietrich
Assistant advisor: Erik Lien Bolager
Submission Date: 1st October, 2024

I hereby declare that this thesis is entirely the result of my own work except where otherwise
indicated. I have only used the resources given in the list of references.

1st October, 2024 Zi Hen Lin

Acknowledgments

I would like to express my deepest gratitude to my TUM advisor, Erik Bolager, and my
Infineon supervisors, Dr. Thomas Ramcke and Dr. Michael Stadler, for their invaluable
patience and feedback. I could not have undertaken this journey without the support of

Prof. Dr. Felix Dietrich.
I extend my special thanks to my family and partner, Melody Teng, for their unconditional
moral support. I also extend my sincere thanks to Ajvi Meçe for the fruitful discussions and

her support.

iv

Abstract

3D machine learning has received growing attention from the industries due to the
potential to offer significant time gain over the classical numerical approaches. We introduce
a sampling approach to construct PointNet using point clouds, with orders of magnitude
better efficiency compared to the conventional iterative gradient descent, at the expense of a
small performance loss. This sampling is an extension of Sampling Where It Matters (SWIM).
We propose two approaches to preserve the geometric properties in point cloud, namely
KDTree and Recursive Sampling. For the latter, we leverage quantile and the length-squared
distribution of point coordinates to enhance the sampled representations. The research
also tackles space complexity by implementing batch-wise weight and bias updates. Our
approach is proven effective and efficient under large-scale settings, specifically, sampled
PointNet preserves more than 90% of PointNet’s accuracy on classifying the standard 3D
benchmark ModelNet40 at the costs of less than 10% of PointNet’s GPU training time on a
CPU, assuming that the point clouds share a standard orientation.

v

Contents

 Acknowledgements iv

 Abstract v

 1 Introduction 1

 2 Preliminaries 5
 2.1 PointNet . 5

 2.1.1 Geometric Deep Learning on 3D data 7
 2.1.2 Architecture . 8
 2.1.3 Optimization . 10

 2.2 Sampling Where It Matters . 11
 2.2.1 Sampling Algorithm . 12
 2.2.2 Optimization . 13

 2.3 High Dimensional Nearest Neighbour Search 13
 2.3.1 KDTree . 14
 2.3.2 Dimension Reduction . 16

 2.4 Problem Statement . 17
 2.4.1 Problem Definition . 17
 2.4.2 Validation data . 18
 2.4.3 Related Work . 19

 3 Sampling Weights for PointNet 20
 3.1 Steep Gradients & Permutation Invariance 21

 3.1.1 Sampling using KDTrees . 23
 3.1.2 KDTree & Sampling Distribution . 23
 3.1.3 KDTree & Dimension Reduction . 24
 3.1.4 Results . 24
 3.1.5 Discussion . 28

 3.2 Rotational Invariance . 29
 3.2.1 T-Net: Joint Alignment Network . 30
 3.2.2 Data Augmentation . 31
 3.2.3 Spherical Coordinates . 32
 3.2.4 Results . 33
 3.2.5 Discussion . 36

vi

Contents

 3.3 Scale-up Density and Augmentations . 37
 3.3.1 Point Cloud Density . 37
 3.3.2 Number of Data Augmentations . 37
 3.3.3 Coupling Effects . 38
 3.3.4 Results . 38
 3.3.5 Discussion . 45

 3.4 Recursive Sampling . 46
 3.4.1 Naive Approach . 46
 3.4.2 Sampling Good Pairs . 48
 3.4.3 Sampling Diverse Good Pairs . 52
 3.4.4 Results . 53
 3.4.5 Discussion . 59

 3.5 Discrete Online Learning . 60
 3.5.1 Weight Evolution . 60
 3.5.2 Batching Matters . 62
 3.5.3 Results . 62
 3.5.4 Discussion . 65

 3.6 Architecture Optimality . 66
 3.6.1 Results . 66
 3.6.2 Discussion . 70

 3.7 ModelNet40 . 70
 3.7.1 Results . 71
 3.7.2 Discussion . 72

 4 Conclusion 73

 Bibliography 75

vii

1 Introduction

In our three-dimensional (3D) world, computational 3D modeling has become integral to
industries like semiconductor, automotive, architecture, and medicine, enhancing design
and manufacturing processes with improved precision and reduced experimental costs.
This iterative approach generates an abundance of 3D data, represented mathematically for
computer processing. While classical numerical methods such as finite element analysis
have been pivotal in simulating physical properties of complex 3D geometries, their fine-
grained approach often results in slow runtimes. The recent success of deep learning in
various domains has sparked interest in using neural networks as efficient surrogates for
these methods.

In business contexts, the use of 3D machine learning aims to amortize the cost of slow
classical methods upfront into training robust deep learning models, potentially offering
significant time gains during inference while maintaining good accuracy. A deep learning
model learns by optimizing its weights and biases through iterative gradient descent. The
training process of the model could be too expensive to justify a switch from classical
approaches, due to its iterative nature and the intricate dimensionality of 3D objects. This
text is concerned with sampling the weights and biases of a 3D deep learning model using
the differences among inputs to significantly speed up the process without sacrificing the
performance too much.

Two early examples, Extreme Learning Machines [Rahimi and Recht , 2008] and Random
Projection Networks [Huang et al. , 2006], have successfully demonstrated the massive
speedup gained of randomizing the weights and biases of classical machine learning
models. Extending these ideas to deep learning, Giryes et al. [2016] propose the data-
agnostic randomized deep neural network. Galaris et al. [2022] highlight the importance of
incorporating inputs in the sampling process but report no further than low-dimensional
settings. Recently, Bolager et al. [2023] build on this foundation and show that data-driven
random sampling of weights and biases are possible in high dimensional ambient space.
They also design a probability distribution to facilitate the sampling process instead of
using the original uniform distribution. The proposed method, Sampling Where It Matters
(SWIM), has shown superior performance against the previous data-agnostic methods and
is comparable to modern deep learning methods on several tasks.

The essence of weight construction through SWIM lies in computing the differences
between inputs. It is straightforward to identify different 3D objects, however, it is non-
trivial to represent the differences numerically due to the inherent irregular hierarchical
structures. Fortunately, 3D data in general use cases often adheres to specific formats, which
helps ensure accurate geometric representation. By exploiting the underlying geometric

1

1 Introduction

properties in these formats, it is possible to compute the differences meaningfully. We
consider three common 3D representations: point clouds, meshes, and voxels, as visualized
in Figure 1.1 . All three are subject to some forms of discretizations: a point cloud contains
points sampled from the surfaces of a 3D object; a mesh represents the shape and surfaces
using multiple triangles with different sizes; and a voxel fits an object into a cubified space
under a chosen resolution. To understand how the differences can be computed, we review
the data structures of these representations.

Figure 1.1: This figure is taken from Hoang et al. [2019] to illustrate three different represen-
tations of 3D data. Left: Point cloud. Middle: Voxel. Right: Mesh.

Computationally, point clouds are matrices in Rn×k with the rows representing n points,
and the columns for k features, including the coordinates and additional features; meshes
are represented with vertex matrices with the coordinates (Rn×3), face matrices which spec-
ify the vertices of the triangles with the index triplets (Rn×3) and additional feature matrices;
since voxels implicitly denote the coordinates, usually tensors in Rx×y×z×k — where the
first three axes (x, y, z) shape the coordinate boundaries with the desired granularity, and
k is the number of the dimension of the features — are required computationally for this
geometric representation. It is technically feasible to compute the differences between the
matrices or tensors, but the outcomes might not be geometrically meaningful. Hence, it is
of importance to understand the geometry of each representation.

3D meshes are a popular choice for computational modeling because of their flexible
triangulated structure, which accurately encodes geometric and material information of
a 3D object. However, the number of triangles generated by various meshing algorithms
can significantly differ, leading to local inconsistency. 3D mesh inconsistency presents a
challenge for general machine learning models: ensuring robustness against the meshing
algorithms. Inconsistent representations may mislead models, unless all inconsistencies can
be mapped to a single object. This mapping typically requires a large number of examples
for accurate registration. Furthermore, this makes computing directions between two
meshes more difficult, as the triangulation patterns may not align due to different software
implementations.

Voxels are often favored in the machine learning community over meshes, as they are the
3D extension of images — a successful early application in deep learning. 3D voxels have
an advantage in geometry: they are locally consistent with the same resolution, simplifying

2

direction computations between two voxel grids. In particular, the local consistency allows
for straightforward direction computations, by directly calculating cube-to-cube differences.
This is because voxels maintain a uniform resolution, meaning that each cube (voxel) has
the same size and orientation. As a result, determining the directional relationship between
two voxels is as simple as comparing their positions in the grid, which is computationally
less intensive than dealing with the variable triangle counts and structures found in meshes.
However, this consistency comes at the cost of disproportionate computational memory
requirements, which can be a significant drawback in memory-constrained environments.

Point clouds offer a compelling alternative to both meshes and voxels as a 3D representa-
tion. They strike a balance between the flexibility of meshes and the consistency of voxels.
Meshes rely on complex triangulation and structural assumptions. These assumptions
about connectivity and continuity can can amplify the impact of local variations, affecting
the interpretation of the entire representation. Without any inherent connectivity, point
clouds are more robust to local inconsistencies. Consequently, point clouds allow for more
flexible and intuitive spatial comparisons. Compared to voxels, point clouds can represent
3D objects more efficiently, especially for sparse or detailed structures, as they do not
require a fixed grid resolution. This efficiency translates to lower memory requirements
and potentially faster processing times. To this end, it makes sense to choose point clouds
as our target representation, as we take both performance and computational resources into
account.

Once we have chosen a suitable representation, we survey for a fitting model. Classical
machine learning methods often struggle with the unordered and variable-sized nature
of point clouds. Traditional approaches typically require structured input with a fixed
dimensionality, which point clouds do not naturally provide. Moreover, these approaches
either require hand-crafted features or consume the raw inputs without respecting the
implicit geometric properties, which leads to unnecessary parameters and over-complicated
optimization landscape. This is where geometric deep learning architectures like Point-
Net [Qi et al. , 2017a] come into play. PointNet is specifically designed to handle the unique
characteristics of point clouds. It uses a series of shared Multi-Layer Perceptrons (MLPs)
to process each point identically, followed by a symmetric function to aggregate informa-
tion across all points. This architecture is invariant to point permutations and can handle
input point clouds of varying sizes. PointNet can learn to extract meaningful features
directly from the raw point cloud data with significantly fewer parameters, credit to the
weight-sharing design.

This thesis explores the application of SWIM to PointNet. We analyze SWIM-PointNet
compatibility and extend SWIM to capture geometric properties using KDTree for nearest
neighbor calculations. The robustness of sampled PointNet against rotations is evaluated
through three distinct approaches. We investigate SWIM’s scalability in terms of runtime
and performance against increasing data augmentations and point cloud densities. To
maintain SWIM’s speed advantage, we propose a recursive sampling approach to replace
KDTree, addressing the curse of dimensionality. We evaluate SWIM’s sampling distribution
effectiveness and suggest an alternative using quantiles and length squared distribution of

3

1 Introduction

point coordinates. To reduce space complexity, we enable SWIM to update weights and
biases with data batches. Finally, we search for the optimal sampled PointNet architecture
before evaluating the optimized architecture on a standard 3D deep learning dataset,
ModelNet40.

The following sections are organized as such: Section 2 covers the necessary foundations
and reviews the relevant literature; Section 3 documents our main research questions with
corresponding solutions together with the respective results and interpretations; Section 4

concludes this journey with future outlook.

4

2 Preliminaries

In this section, we introduce the foundations which we build upon for our main work. Our
main work aims to construct PointNet [Qi et al. , 2017a] with good performance and reduced
training costs using Sampling Where It Matters (SWIM) [Bolager et al. , 2023]. We will also
discuss high dimensional nearest neighbour search as it is the pillar of our contributions.
At the end of this section, we state our problem definition and review the related literature.

2.1 PointNet

PointNet is an instance of deep learning models, in particular, a neural network. A neural
network is a machine learning model intended to mimic the biological neural networks in
brains. Conceptually, it contains arbitrary number of layers with arbitary number of neurons
as shown in Figure 2.1 . The architecture of neural network in the figure is called Multi-Layer
Perceptron (MLP) with the layer type called Fully-Connected layer

1
 . In the figure, its first

layer is the input layer with three neurons, which projects the data from input space to a
3D latent space, in which becomes the input space of the second layer, the hidden layer.
Similarly, the hidden layer projects the outputs from the input layer to a 4D latent space,
before the output layer projects its 4D inputs to the 2D output space. Computationally, these
projections between layers are done via matrix multiplication with non-linear activation
functions such as sigmoid, tanh, or ReLU. Each column of the matrix is a j-dimensional
vector which corresponds to a neuron in the layer and takes in j-dimensional inputs. The
number of neurons represents the number of output dimensions.

Using the hidden layer with a single input datum as an example, it is represented as a
weight matrix in R3×4 with its input being a R3 vector, and the multiplication of the input
vector and the weight matrix produces an output vector in R4. Mathematically, a layer
projection can be denoted as:

H(l) = σ(W (l)H(l−1) +B(l)), (2.1)

where l indicates l-th layer, H is the layer output, W is the layer weights, B is the layer biases

1In deep learning literature, the terminology of architecture can have two meanings: the overall design of a
neural network model including the number of layers, the number of neurons, and the layer types, or the
type of a layer such as Fully-Connected layer. To avoid confusion, in this thesis, we refer architecture to
the former, and for the latter we term it neural network operator. Therefore, a typical MLP — regardless of
the number of layers and neurons — is a generic architecture consists only more than one Fully-Connected
layer.

5

2 Preliminaries

and σ(·) is a non-linear activation function. The weights W and biases B are randomly
initialized and optimized via iterative gradient-based methods [Goodfellow , 2016].

Neural networks are often referred to as universal function approximators, as proven
by Hornik et al. [1989]. The Universal Approximation Theorem shows that a neural network
with sufficient neurons can approximate any continuous function, effectively mapping be-
tween two spaces. This greatly enhances the practicality of neural networks and diversifies
their application domains. Instead of designing complex algorithms, one can simply train
a neural network to map inputs to desired outputs (although without any guarantee that
the mapping is good), with the training procedures being largely the same across many
different domains, such as classifying protein molecules and semiconductor chips. How-
ever, a standard MLP is not an efficient architecture, as it considers all input dimensions
individually, leading to a huge number of weights, especially for high-dimensional inputs
like 1, 000× 1, 000 pixel images, which are increasingly common in modern deep learning.

This limitation of standard MLPs has led to the development of several specialized neural
network operators, such as Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), and Graph Neural Networks (GNNs). These operators are designed
to handle different data modalities, such as grids, sequences, and graphs, respectively, by
enabling weight-sharing mechanisms and a localized learning approach that considers
only the neighboring inputs instead of all inputs (for a collective introduction, see the
textbook written by Murphy [2022]). The universal approximation properties of these
specialized neural network operators have been proven by Zhou [2020] for CNNs, Schäfer
and Zimmermann [2006] for RNNs, and Brüel Gabrielsson [2020] for GNNs. Furthermore,
 Bronstein et al. [2021] have provided an overarching theoretical framework, known as
Geometric Deep Learning, which explains how these neural network operators can exploit
the geometric structures of input data to facilitate the learning process in an efficient manner.

Figure 2.1: This figure visualizes the basic form of neural network — Multi-Layer Percep-
tron. Taken from Wikipedia [Wikipedia].

6

2.1 PointNet

2.1.1 Geometric Deep Learning on 3D data

Before the introduction of PointNet by Qi et al. [2017a], there were two main deep learning
approaches to learn from 3D data: image-based [Su et al. , 2015] and voxel-based [Maturana
and Scherer , 2015 , Wu et al. , 2015]. Both approaches rely heavily on a modern primitive
neural network operator, namely convolutional neural network (CNN). The former converts
a 3D object into multiple images from different views before feeding into 2D CNNs, while
the latter operates on voxelized (or cubified) 3D objects using 3D CNNs. Convolutional-
based approaches demand inputs with regular format because this stream of approaches
fundamentally partitions the input space into grids. The partitioned space establishes
a strong assumption to simplify input geometries and enable learning the translational
equivariance properties using convolutional kernel [Bronstein et al. , 2021]. A g-equivariant
function f is defined mathematically as:

f([g(x1), . . . , g(xn)]) = [g(f(x1)), ..., g(f(xn))], (2.2)

where g(·) is an action and x is the input. In the context of translational equivariance, this
means that the translated inputs will map to translated outputs with the same translations.

This space-partitions assumption, however, introduces two disadvantage from local and
global point of view. Locally, it is analogous to the approximation of integral using Riemann
sums, as known as the Rectangle method. The higher the resolution, the more accurate the
approximation. This suggests that the space partition turns 3D object representation into an
accuracy versus computational resources trade-off, since finer granularity requires more
entries given the same space. From the global perspective, regular input format indicates
that the ”space” has to be a box which can contain the largest value in each axis. The finer
the resolution, the more the blank grids, resulting in an inefficient representation with bad
scalability due to the curse of dimensionality.

PointNet considers an alternative representation of 3D modality — point clouds, which
instances of sets. At its most basic form, a point cloud X — X = {x1, x2, . . . , xn},X ∈
Rn×k, xi ∈ Rk, ∀i ∈ {1, 2, . . . , n}, where n is the number of points in X, k is the number
of dimension of a point — is an unordered set of 3D coordinates in the Euclidean space.
Geometric properties such as normals or domain properties can be added as addition
features. In practice, a point cloud is often sampled from the surfaces a mesh to describe
the 3D shape using sparse scattered points.

Unlike an image or a voxel, a point cloud does not possess strong geometric assumption,
which is a double-edged sword. On one hand, a point cloud cannot presume the coordinates
— which are implicitly modeled with grids — and relies on model’s capability to discover
the underlying structure by including the coordinates as features; on the other hand, this is
a very efficient representation as it can describe the irregular shapes of 3D objects precisely,
without forcing the shapes into a cubified space. As the volume of 3D data grows, the
efficiency of point cloud is increasingly favourable. Given sufficient data, it is feasible
to obtain comparable or even better performance without the geometric bias of grids,

7

2 Preliminaries

analogous to end-to-end deep learning emerges as a superior option compared to feature
engineering in big data era.

Based on these practical considerations, PointNet was the first modern neural network
architecture proposed to specifically train on point clouds. Qi et al. [2017a] propose two key
geometric properties of point clouds: unordered and invariant under geometric transforma-
tions. The authors tackle the former from the perspective of permutation invariance which
disregards the order of inputs by enforcing PointNet to approximate symmetry functions
on sets, and the latter with joint alignment networks to embrace the rotational invariance.
By capturing these properties, PointNet can be seen as a primitive neural network operator
for point clouds, where it concatenates a few layers of Fully-Connected layers with a max
pooling function. This max pooling function outputs the maximum values of the input
features, effectively aggregating the point features into a single vector.

It is also important to note the work on DeepSets [Zaheer et al. , 2017], which was proposed
around the same time as PointNet. DeepSets focuses on the theoretical foundations of
a similar neural network operator for sets, using summation instead of the max pooling
function employed by PointNet. Specifically, Zaheer et al. [2017] characterizes the properties
of permutation invariant functions, and Qi et al. [2017a] proves that the permutation
invariant operators used in PointNet can perform universal approximation on continuous
set functions that are permutation invariant. Next, we carefully review each component of
PointNet’s architecture to understand their individual contributions to the overall model
performance.

2.1.2 Architecture

Figure 2.2 illustrates the architecture of PointNet, which on the top row is pivoted by 5
shared Fully-Connected layers and a MaxPool layer as the operator to extract global features
of the point clouds. For classification tasks, one can add a classifier (which the authors
use a three-layer MLP) to produce classification logits for the output classes. In case of
segmentation tasks, PointNet needs to generate the class logits for each point. Therefore, it
concatenates the 64D outputs from the third shared Fully-Connected layer together with
n-times 1024D outputs of MaxPool layer before feeding the 1088D concatenated latent
features into another MLP consisting 5 shared Fully-Connected layers. For each (shared)
Fully-Connected layer, it follows by a ReLU non-linear activation layer and a BatchNorm
layer. We purposely leave out the input transform block and feature transform block for
now, as these two components are not part of the vanilla PointNet architecture.

Shared Fully-Connected layer is the weight-sharing variant of Fully-Connected layer. In
the context of point clouds, a shared Fully-Connected layer would optimize the weights in
Rdin×dout — where din is the number of input dimensions and dout is the number of output
dimensions — for all points, while a typical Fully-Connected layer will have weights in
Rn×din×dout , that is, each point of n points has its own treatment. Qi et al. [2017a] do not
explicitly mention the reason of using shared Fully-Connected layer instead of the regular
other than processing each point individually and identically. We believe two additional

8

2.1 PointNet

advantages are the reduced number of parameters, and the flexibility of accepting point
clouds with varying number of points. The MaxPool layer is a function which takes the
maximum of the input along the given dimension, in the case of PointNet, it extracts the
maximum values of the 1024 latent features across all points. It is the secret ingredient for
PointNet to approximate symmetry functions and achieve permutation invariance.

Figure 2.2: The architecture of PointNet. Taken from the literature [Qi et al. , 2017a].

ReLU non-linear activation layer can be mathematically formulated as max(0, x), that
is, to preserve the positive values and eliminate the negative values of inputs x. This
simple function is important to add a hint of non-linearity to PointNet, since the matrix
multiplications of Fully-Connected networks are linear in nature. Therefore, the sandwiches
of (shared) Fully-Connected layers with ReLU layers are essentially MLPs, as indicated in
Figure 2.2 with the adjacent brackets including corresponding layer widths.

The injections of BatchNorm layers stabilize the training process of mini-batch iterative
gradient descent by preventing internal covariate shift. It is a common practice for neural
network to split datasets into small batches, as known as mini-batch, due to limited com-
putational memory. The distribution of each batch could be vastly different from the rest,
causing drastic changes in gradients. Therefore, a BatchNorm layer contains two learnable
parameters — which scales and shifts the distribution of outputs as necessary — to rectify
the differences in distributions across the batches, leading to stabler gradients and easier
training process.

Up to now, we have discussed the components to build a vanilla PointNet. Note that the
machine learning literature would sometimes omit ReLU and BatchNorm when describing
the architecture, since these two layers are usually coupled with a neural network operator
such as a Fully-Connected network. A vanilla PointNet has an encoder consists of 5 layers
of shared Fully-Connected layer with sizes of [64, 64, 64, 128,1024] and a MaxPool layer.
The architecture of the decoder depends on downstream tasks, as previously mentioned.

A vanilla PointNet can capture the first geometric properties of point cloud, unordered,
since the order of the points would not change the outcome due to the identical treatments

9

2 Preliminaries

of shared MLPs and the symmetry of MaxPool layer. However, this does not embrace invari-
ance against geometric transformations. The geometric transformations do not permute the
order of the points, but instead, these operations change the values of the features such as
coordinates. However, it is an exhausting task to manually neutralize these transformations.
In light of this, Qi et al. [2017a] propose an alignment technique to automatically align all
inputs in a learned standardized orientation through Transformation Network (T-Net).

A T-Net is essentially a reduced vanilla PointNet — three shared Fully-Connected layer
with sizes of [64, 128, 1024] and a MaxPool layer as the encoder, and two Fully-Connected
layers of width 512 and 256 respectively, as the decoder. It is tasked to predict the inverse of
the rotation matrix of a rotated point cloud. Ideally, by applying the 3× 3 rotation matrices
generated by T-Net, all inputs with random orientations will be aligned. This is shown
as the input transform block in Figure 2.2 . The authors extend this concept to align the
feature space, resulting in the feature transform block which multiplies the outputs of the
second shared Fully-Connected layer with the 64× 64 (inverse) transformation matrices to
align the high dimensional latent features in feature space. It is difficult to discover such
transformation matrices, especially in high dimensions. This is where optimization comes
into play.

2.1.3 Optimization

In previous sections, we did not mention how PointNet optimizes its randomly initialized
weights and biases. In general, neural networks are paired with an objective function during
training phase. The objective function, also known as cost function, acts as a guidance in the
optimization process. Under the settings of supervised learning, an objective function C(·)
takes in two parameters: the ground truths and the predicted variables. The optimization
problem is usually defined to find the configurations of weights and biases, such that the
objective function can be minimized given the inputs and corresponding ground truths.

The training process of neural networks, including PointNet, relies on the gradients of the
cost function to update the weights and biases across all layers through backpropagation
and the chain rule. Each training iteration comprises two essential phases: the forward
pass and the backward pass. During the forward pass, the model performs inference,
generating predicted outputs. The cost function then evaluates these predictions against
the ground truth labels. Subsequently, the backward pass utilizes the computed gradients
to update the weights and biases of the network. This iterative optimization procedure
is commonly referred to as gradient descent. It is important to note that in the case of
PointNet, the two T-Net modules are integral components of the overall computation graph.
Consequently, their weights and biases are updated concurrently with those of the main
network body during the backward pass. This simultaneous optimization ensures that
all parts of the network, including the input and feature transformation modules, evolve
together to improve the model’s overall performance.

To solve the instability of the second T-Net, which produces high dimensional trans-
formation matrices, Qi et al. [2017a] insert a regularization term to the cost function of

10

2.2 Sampling Where It Matters

PointNet:
C̃(·, A) = C(·) + ||I −AAT ||2F , (2.3)

where C̃(·, A) is the regularized cost function, and A is the 64× 64 transformation matrix
generated by the second T-Net. The regularization term is the squared Frobenius norm
(the counterpart of Euclidean norm for matrix norm) of the difference between an identity
matrix, and the matrix multiplications of the transformation matrix A and its transpose. In
the ideal case where A is orthogonal, this regularization term will be 0.

Intuitively, this acts as a soft penalty to guide the PointNet to optimize the second T-
Net such that it can produce valid transformation matrices which is orthogonal. This is a
celebrated technique — joint optimization or indirect supervised learning — tightly coupled
with iterative gradient methods and backpropagation. According to Qi et al. [2017a], it
takes approximately 3-6 hours for PointNet to converge within 20,000 epochs using gradient
descent to learn classification and part-segmentation using the corresponding standard
datasets on a GTX1080 GPU. Doing a similar training on a laptop CPU requires 35 days to
finish 1,000 epochs. Therefore, we turn our attention to Sampling Where It Matters (SWIM),
which can train a model swiftly by orders of magnitude using a CPU under specific caveats.

2.2 Sampling Where It Matters

Sampling is a crucial concept in statistics and machine learning. It involves selecting a
subset of samples from a larger population to estimate its characteristics. Various sampling
techniques exist, with random sampling being the most common. This method can be
uniform, where all members have an equal chance of selection, or weighted, using a specific
probability distribution. Stratified sampling, another important technique, divides the
population into mutually exclusive subgroups before sampling, ensuring representation
across all subgroups and allowing for greater control over sample composition. This
approach can be proportional, maintaining the population’s distribution, or disproportional,
useful for addressing imbalanced datasets. In machine learning, proportional stratified
sampling is often employed to create representative train, validation, and test sets, while
disproportional stratified sampling can help mitigate the effects of class imbalance in
classification tasks.

Sampling could also be a hierarchical process called subsampling. A basic subsampling
has two-stages sampling process. The initial process draws samples from the population,
and the drawn samples become the sampling frame of the second sampling process. Two
stages of sampling could adopt different sampling techniques. For example, a common
practice in 3D machine learning is to first sample a dense point cloud with 2048 points
from the surfaces of a 3D object, then down-sample to 64 points using a scheme called
farthest point sampling, which iteratively samples the farthest point from current point to
ensure the entire 3D shape is well represented [Qi et al. , 2017a]. SWIM’s sampling algorithm
— which we will discuss the details in next section — can also be abstractly viewed as a
subsampling process. This algorithm is the backbone of SWIM and the main reason behind

11

2 Preliminaries

the huge speedup of runtime compared to iterative gradient descent. Ultimately, sampling
is designed to approximate good enough solution with lightweight, one-shot selections
while iterative gradient optimization aims to find the best solution available.

2.2.1 Sampling Algorithm

At the time of writing, SWIM can only sample weights and biases for Fully-Connected
layers. A sampled Fully-Connected layer is referred as a Dense layer throughout the
remaining sections of this thesis for convenience. To construct a neural network using
SWIM, we need only four ingredients: inputs, ground truths, Dense layers, and arbitrary
linear optimization layers. The non-linear activation layers such as ReLU or tanh are not
explicitly needed, because the non-linear activation is already incorporated as part of the
weight construction.

To illustrate the training scheme of SWIM, we consider the simple architecture as shown
in Figure 2.1 , except we optimize the output layer by minimizing a linear least square
problem. The sampling procedure for the first two Fully-Connected layers are the same:

1. Given n inputs x ∈ Rdin where din is the number of features, layer width dout, n out-
puts y ∈ Rdgt where dgt is the ground truth dimension, randomly sample max(n, dout)
pairs (x1, x2) from the inputs with a uniform distribution to construct a candidate
pool S . Two elements in a pair must be different, x1 ̸= x2.

2. Derive the gradient ||y(i)1 −y
(i)
2 ||∞

max(||x(i)
1 −x

(i)
2 ||2,ϵ)

— where ϵ is the lower bound constant for

distances between pairs — for all pairs (x
(i)
1 , x

(i)
2) ∈ S, i ∈ {1, . . . ,max(n, dout)} and

normalize into a probability distribution P.

3. Sample m pairs with replacement from S following the sampling distribution P as a
collection denoted as S̃.

4. Construct m weights w(i) = s1
x
(i)
1 −x

(i)
2

||x(i)
1 −x

(i)
2 ||22

— where w(i) ∈ Rdin , s1 ∈ R, (x(i)1 , x
(i)
2) ∈

S̃, i ∈ {1, 2, . . . ,m} — and m biases b(i) = −⟨w(i), x
(i)
1 ⟩ − s2, where b(i) ∈ R, s2 ∈ R.

The choice of non-linear activation functions can be determined by choosing specific s1 and
s2 as reported by Bolager et al. [2023]. For ReLU, s1 = 1 and s2 = 0; for tanh, s1 = 2s2 and
s2 =

ln(3)
2 . Step 1 can be considered the second stage of a subsampling process, following

the initial stage of sampling the training data from the population. It is worth noting that
here we specify the norms — || · ||∞ and || · ||2, both are instances of the Lp-norms — to be
consistent with the implementation while Bolager et al. [2023] adopt generic notations for
Lp-norms.

Figure 2.3 illustrates the desired samples graphically. Instead of random sampling (first
two items from left in the figure), SWIM samples the input pair directions which are
located near large gradient (two items from right in the figure), as defined in Step 2 above.

12

2.3 High Dimensional Nearest Neighbour Search

This data-driven approach has been proven effective. Compared to iterative gradient
optimization which contains multiple forward and backward pass (materialized by matrix
multiplications), the computations of this sampling algorithm are much quicker and mostly
linear in terms of time complexity, on top of one (instead of multiple) regular forward pass.

Figure 2.3: The intuition of SWIM sampling weights on large gradient compared to the
data-agnostic approach. Taken from the literature [Bolager et al. , 2023].

2.2.2 Optimization

For the input layer in Figure 2.1 , SWIM constructs the weights and biases using the raw
inputs, and this Dense layer (sampled input layer) then projects the raw inputs to establish
the sampling frame for next layer, through the sampled weight matrix and sampled biases.
The second layer samples from the outputs of the input layer, and projects the embeddings
to a 4D latent space in similar fashion. These embeddings, even have the same dimensions
as output space, can not provide accurate predictions because they are not projected with
the weights optimized against the ground truths. The least square optimization at the
output layer in Figure 2.1 is responsible to do the heavy lifting here.

This least square layer is not a mandatory option. We can replace it with any other
linear optimizer as necessary, as long as the last layer can optimize weights to project
the embeddings to the correct output space. This limits the application of SWIM to only
supervised learning settings. Nonetheless, this simple setup works surprisingly well on
various popular supervised learning tasks, and its universal approximation properties is
also well proven by Bolager et al. [2023]. However, its efficacy on point clouds is untested.
Abstractly, point clouds contain two levels: object level and point level. It is non-trivial to
compute the distance and direction between two point clouds.

2.3 High Dimensional Nearest Neighbour Search

Unlike the direction, which is not well-defined for point clouds, the distance between two
point clouds can be precisely measured as a metric between their respective sets of points.
Among the various metrics available, Chamfer Distance and Hausdorff Distance are two
widely used and well-defined measures for comparing two sets of points. Formally, given
two point clouds, P1 = {xi ∈ Rk}ni=1 and P2 = {xi ∈ Rk}mi=1, where k is the number of

13

2 Preliminaries

features including the coordinates, n and m are the respective number of points, Chamfer
distance and Hausdoff distance are defined as

chamfer(P1, P2) =
1

2

Mean Aggregation︷ ︸︸ ︷
1

n

n∑
i=1

|xi − NN(xi, P2)|, (2.4)

hausdorff(P1, P2) =
1

2
max
x∈P1︸︷︷︸

Max Aggregation

|xi − NN(xi, P2)|, (2.5)

where NN(x, P) = argminx′∈P ||x− x′|| is a nearest neighbour function, which selects the
nearest point from another point clouds in terms of distance. We understand these two
metrics using a hierarchical view with two layers: point level and object (point cloud) level.
To measure the distance at object level, it boils down to choosing an aggregation strategy
for the distances computed at point level, where Chamfer distance chooses average, and
Hausdoff distance chooses maximum. The distances at point level are trivial to compute,
but there is no standard method to pair up points from two point clouds. In this context,
both the Chamfer Distance and Hausdorff Distance employ a nearest neighbour function,
serving to pair points from one point cloud with their closest counterparts in the other point
cloud.

The nearest neighbor function is a fundamental concept in computational geometry and
machine learning. It aims to find the closest point in a dataset to a given query point, based
on a specified distance metric (commonly Euclidean distance). This function is essential in
various applications, including classification, clustering, and, as mentioned in the context
of point cloud comparisons, finding corresponding points between two sets of data. The
efficiency of nearest neighbor search becomes crucial when dealing with large datasets or
when real-time performance is required.

2.3.1 KDTree

One efficient data structure for implementing the nearest neighbor search is the KDTree
(K-Dimensional Tree) [Friedman et al. , 1977]. As illustrated in Figure 2.4 , KDTree is a binary
tree that recursively partitions the space along different dimensions, allowing for quick
elimination of large portions of the search space. The left part of the figure shows a 2D space
with points A through F, while the right part displays the corresponding tree structure.
The algorithm works by building a tree where each non-leaf node represents a splitting
hyperplane (alternating between x and y axes in this case), and the leaves contain the actual
data points. During construction, the space is divided at each level, with points to the left
of the splitting plane in the left subtree and points to the right in the right subtree.

The KDTree search process, as illustrated by the black cross in Figure 2.4 , efficiently
traverses the tree to identify potential nearest neighbors. The search initiates at the root
(point A) and descends, making decisions based on which side of each splitting plane

14

2.3 High Dimensional Nearest Neighbour Search

Figure 2.4: The intuition of KDTree construction and query in a 2-dimensional space. Taken
from Baeldung [Hristov , 2023].

the query point falls. At each node encountered, the algorithm updates the current best
distance if necessary. The dashed circle in the figure represents this current best distance.
Upon reaching a leaf node (node C), the algorithm begins to unwind upwards. During
this ascent, every non-leaf node undergoes a ”bounds-overlap-ball” test, as proposed by

 Friedman et al. [1977]. This test determines whether the splitting plane intersects with the
sphere defined by the current best distance, indicating the potential need to explore the
opposite branch. In our example, the hyperplane of node B intersects with the query point.
However, searching the other branch of node B is unnecessary, as node D is farther away
and cannot improve the current best distance. The algorithm then ascends to node A, where
the ”bounds-overlap-ball” test yields a positive result, prompting exploration of A’s right
branch. Descending to node F updates the current best distance, after which the algorithm
unwinds to node E. The search terminates when the ”bounds-overlap-ball” test at node
E fails, indicating that no node on the opposite side of this plane can be closer than the
current best distance.

The strength of the KDTree lies in its logarithmic average-case search time complexity.
This efficiency makes it significantly faster than brute-force approaches, particularly for low-
dimensional data. By strategically dividing the search space and employing the ”bounds-
overlap-ball” test, the KDTree algorithm minimizes unnecessary comparisons, resulting
in rapid nearest neighbor queries. However, KDTree’s performance degrades in high
dimensional spaces due to the curse of dimensionality, where the tree structure becomes
less effective at pruning the search space. This is because in high dimensions, a random
splitting plane is less likely to partitioning the space effectively. Figure 2.4 doesn’t show

15

2 Preliminaries

this limitation directly, but imagine extending the concept to many more dimensions — the
neat partitioning would become less clear-cut. This weakness often necessitates the use
of dimension reduction techniques to maintain efficiency in high dimensional scenarios,
paving the way for more advanced methods in complex data spaces.

2.3.2 Dimension Reduction

Dimension reduction is a technique in data analysis and machine learning, which transforms
high dimensional data into a lower dimensional representation while preserving essential
information. This process is a common approach to manage high dimensional data with
a few benefits: it helps in visualizing complex data, reduces computational complexity,
mitigates the curse of dimensionality, and can reveal underlying structures in the data.

Dimension reduction techniques can be broadly categorized into linear and non-linear
methods. Linear methods, such as Principal Component Analysis, assume that the data
lies on or near a linear subspace of the high dimensional space. These methods are com-
putationally efficient and work well when the relationships in the data are indeed linear.
However, they may fail to capture important non-linear structures. Non-linear methods can
reveal more complex and curved manifolds in the data. These techniques are particularly
useful when dealing with datasets that have intricate relationships in the high dimensional
space. While non-linear methods can capture more complex structures, they are often more
computationally intensive and may be prone to overfitting on small datasets.

Ultimately, the choice between linear and non-linear methods depends on the nature of
the data: if the relationships are primarily linear or if computational efficiency is a priority,
linear methods may suffice. For datasets with complex structures, non-linear methods are
more appropriate, provided there’s sufficient data to support their use. Here are some
popular dimension reduction techniques along with their brief descriptions:

• Principal Component Analysis (PCA) [Pearson , 1901]: A linear technique that identi-
fies the principal components (directions) of maximum variance in high dimensional
data. It projects the data onto these components, effectively reducing dimensionality
while preserving as much variability as possible.

• Kernel PCA [Schölkopf et al. , 1997]: An extension of PCA that uses kernel methods
to perform nonlinear dimensionality reduction. It first maps the data into a feature
space with higher dimensions using an arbitrary kernel function, then applies PCA in
this space, allowing it to capture nonlinear relationships in the original data.

• Locally Linear Embedding (LLE) [Roweis and Saul , 2000]: A non-linear technique that
preserves local relationships between neighboring points. It reconstructs each data
point as a weighted sum of its neighbors, then finds a lower dimensional embedding
that preserves these local relationships. This is an effective procedure to learn the
global structure of non-linear manifolds.

16

2.4 Problem Statement

• Isomap [Tenenbaum et al. , 2000]: A non-linear method that attempts to preserve
geodesic distances between points on a manifold. It constructs a neighborhood graph,
approximates the geodesic distances using this graph, and then uses multidimensional
scaling to find a lower dimensional embedding that preserves these distances.

• Diffusion Map [Coifman and Lafon , 2006]: A non-linear technique based on defining
a diffusion process on the data. It constructs a graph representing the data, defines
a random walk on this graph, and uses the eigenvectors of the resulting operator to
embed the data in a lower dimensional space, capturing the intrinsic geometry of the
data.

We can see that some non-linear techniques already use a nearest neighbour function (usu-
ally also implemented using KDTree) in their procedure. Therefore with these techniques,
ideally, the possible use case should be fitting a high dimensional space once and embed
the fitted model as part of the data transformation pipeline for repeated queries of KDTree.
Otherwise, the entire process (dimension reduction + KDTree) would require more the
computational resources than a KDTree partitioning high dimensional space.

2.4 Problem Statement

The introduction thus far spans across 3 most important areas that constitute our work:
PointNet, SWIM, and high dimensional nearest neighbour search. Before we begin our
journey, it is important to define our problem and objectives clearly.

2.4.1 Problem Definition

In this thesis, we aim to train PointNet with low training time on a CPU and good perfor-
mance. Specifically, we train PointNet using a state-of-the-art weight construction technique,
namely Sampling Where It Matters (SWIM), instead of iterative gradient methods. We
define low training time on a CPU numerically as 10% of the training time on a GTX1080
GPU reported by Qi et al. [2017a], which is 18 minutes to 36 minutes for classification using
ModelNet40. We also define good performance as retaining more than 90% performance of
PointNet.

To obtain good performance, we need to sample the point cloud pairs with steep gradients,
in addition to capturing two geometric properties of point clouds: unordered and geometric
transformation invariance, which can be re-defined as permutation invariance and rotational
invariance on standardized point clouds. Note that a steep gradient refers to two inputs
with close proximity and large output differences. Therefore, the final objectives for a
sampled PointNet are:

• 18 minutes to 36 minutes training time using ModelNet40,

• Sample point cloud pairs with steep gradient,

17

2 Preliminaries

• Permutation invariance,

• Rotational invariance.

2.4.2 Validation data

To evaluate the performance of a sampled PointNet during development, we use Model-
Net10 [Wu et al. , 2015]. ModelNet10 is a dataset of Object File Format (OFF) files for 3D
object classification, comprising 10 classes. The dataset contains 3,991 training samples
and 908 test samples. Our data preprocessing involves several steps. First, we convert
the mesh representations to point clouds using the open-source Python library Trimesh
[Dawson-Haggerty et al.] to load the mesh files. We then sample 64 points from each mesh,
extracting points proportionally to the surface area of each face. The impact of the number
of points sampled will be examined in later sections. Finally, the resulting point clouds are
standardized to unit spheres before being input to the model.

For our experiments, we use ModelNet10 to test all hypotheses presented in this thesis.
To prevent potential data leakage when later evaluating on ModelNet40 (a superset of
ModelNet10), we create a custom split of the ModelNet10 training set. This split consists
of 2,673 samples for training and 1,318 samples for validation. During development, we
evaluate our models exclusively on this validation set. We assess the performance of the
Sampled PointNet using three key metrics: accuracy, the one-versus-rest variant of the
Area Under the Receiver Operating Characteristic curve (AUCROC), and computation
time. Accuracy serves as the default metric for classification tasks, as established in Qi
et al. [2017a]. The AUCROC proves particularly valuable during the development phase,
ensuring that the model’s performance exceeds random guessing.

To evaluate our first objective, we directly measure the computation time of sampled
PointNet. For our second objective, we analyze the prediction metrics, which should
reflect the quality of the sampled gradients. This approach allows us to assess whether
the sampling technique maintains the model’s performance while potentially reducing
computational costs. To investigate permutation invariance, we examine the consistency
of the Sampled PointNet’s performance when presented with randomly permuted inputs.
This examination occurs at both the object and point levels. A truly permutation-invariant
model should maintain consistent performance regardless of the order in which points
are presented. To assess rotational invariance, we compare the model’s performance on
randomly rotated point clouds against its performance on standard inputs. A rotational
invariant model should demonstrate comparable performance regardless of the orientation
of the input point cloud.

These evaluations collectively provide a comprehensive assessment of the Sampled
PointNet’s performance, efficiency, and ability to preserve important geometric proper-
ties inherent in the original PointNet architecture. By systematically examining these
aspects, we can determine the effectiveness of our sampling approach in preserving the key
characteristics of PointNet while potentially offering computational advantages.

18

2.4 Problem Statement

In the final stages of our study, we will evaluate a more mature version of our sampled
PointNet on ModelNet40. This approach allows us to thoroughly test our hypotheses on
a smaller dataset before moving to the larger, more comprehensive ModelNet40 for final
evaluation.

2.4.3 Related Work

To the best of our knowledge, there exists no prior work on PointNet’s weight construction
without iteratie gradient methods. It is possible to adapt the data-agnostic methods [Giryes
et al. , 2016 , Rahimi and Recht , 2008] which have worse performance compared to SWIM as
reported by Bolager et al. [2023].

Note that in the area of 3D machine learning, Lang et al. [2020] proposed SampleNet,
which has a relevant name and based on PointNet. However, SampleNet emphasizes
on differentiable point clouds downsampling instead of sampling the weights and biases for
PointNet. There are more literature similar to this direction, that is, to improve the point
cloud inputs — for example, fewer points with equal representation [Lang et al. , 2020], or
even distribution for points [Lebrat et al. , 2021]) — for reduced computation costs with
improved performance. It is important to clarify that these methods focus on the inputs
instead of the models. In fact, given that SampleNet’s architecture consists of two PointNets,
it is indeed feasible to utilize our work to construct SampleNet.

19

3 Sampling Weights for PointNet

The journey started by analyzing the architecture of PointNet, and comparing to what
SWIM can offer at the moment — a sampled Fully-Connected layer coupled with a non-
linear ReLU/tanh activation layer named Dense, and a linear optimization layer, Linear,
which is a least square optimizer. Here are the components of PointNet along with their
compatibility with SWIM:

• Shared Fully-Connected: Not available;

• ReLU: Integrated in a Dense layer;

• BatchNorm: Not available;

• Fully-Connected: Integrated in a Dense layer or a Linear layer in case of last layer.

Although T-Net is one of the highlights proposed by Qi et al. [2017a], it can be constructed
using these components, hence, we do not discuss it here. Out of the 4 mentioned com-
ponents, Shared Fully-Connected layer and BatchNorm are not within the capabilities of
SWIM. Since BatchNorm is mainly designed for iterative gradient method — to stabilize
the gradient during training, we do not need this for a sampled PointNet. Therefore, the
only challenge is to develop a Dense layer that shares weights. In the context of PointNet,
weight-sharing refers to having the weight matrices in Rdin×dout — which projects m-point
point clouds with input dimensions din to the desired output dimensions dout — to provide
individual and identical treatments, instead of customizing for each point with weights
matrices in Rm×din×dout .

To develop a sampled shared Fully-Connected layer, we first look at how we can build
a Dense layer for point clouds. Recall that SWIM constructs weights and biases using
directions between inputs and the norm (distances). However, the directions between two
points clouds are not well defined, unlike the distances — for example, Chamfer distance
(Equation 2.4) and Hausdorff distance (Equation 2.5). Nonetheless, we can temporarily see
the direction computation as an abstraction in our discussion using a materialized function
dir(·, ·), and portray the SWIM sampling algorithm for point cloud inputs. The weights
for a Dense layer for point clouds with dimensions (m× din × dout) can be constructed as
followed:

1. Given the materialized point cloud direction function dir(·, ·) ∈ Rm×din , n point clouds
X ∈ Rm×din where m is the number of points, din is the number of features, layer
width dout, n outputs y ∈ Rdgt where dgt is the ground truth dimensions, randomly

20

3.1 Steep Gradients & Permutation Invariance

sample max(n, dout) pairs (X1, X2) from the inputs with a uniform distribution to
construct a sampling frame S . Two point clouds in a pair must be different, X1 ̸= X2.

2. Derive the gradient ||y(i)1 −y
(i)
2 ||∞

max(||dir(X(i)
1 ,X

(i)
2)||F ,ϵ)

— where ϵ is the lower bound constant for

distances between pairs — for all pairs (X(i)
1 , X

(i)
2) ∈ S, i ∈ {1, . . . ,max(n, dout)} and

normalize into a probability distribution P.

3. Sample m pairs with replacement from S following the sampling distribution P as a
collection denoted as S̃.

4. Construct dout weights w(i) = s1
dir(X(i)

1 ,X
(i)
2)

||dir(X(i)
1 ,X

(i)
2)||2F

— where w(i) ∈ Rm×din , s1 ∈ R,

(X
(i)
1 , X

(i)
2) ∈ S̃, i ∈ {1, 2, . . . , dout} — and dout biases b(i) = −⟨w(i), X

(i)
1 ⟩ − s2, where

b(i) ∈ Rm, s2 ∈ R.

Here we slightly abuse the notation for s1 and s2 to assume that they are two constants
which can be broadcasted to match the dimension of operands. For shared Dense layer, one
direct approach is to treat the weights with dimension (din × dout) as an aggregation of m
point-wise weights of a Dense layer:

5. Aggregate the weights W on point level to obtain shared weights Wshared — Wshared =
aggpoint(W), Wshared ∈ Rdin×dout , W ∈ Rm×din×dout — and shared biases Bshared —
Bshared = aggpoint(B), Bshared ∈ Rdout , B ∈ Rm×dout — using an aggregation function
aggpoint(·).

Chamfer distance and Hausdorff distance have demonstrated that, simple aggregation
strategy such as mean or max, can represent the differences between two sets of points well
enough. However, fitting the Dense layer followed by an aggregation operation might not
work straightaway, because it does not guarantee the sampled point cloud directions are
associated with steep gradients.

3.1 Steep Gradients & Permutation Invariance

Computationally, we represent a point cloud using a matrix in Rm×din . This representation
commits to a certain permutation of the order of points, which in reality should not have an
impact on the prediction outcome. Qi et al. [2017a] and Zaheer et al. [2017] resolve this by
adding a sum operator or a max operator, which both are symmetry functions. The addition
of symmetry operator can resolve the same issue for SWIM, however, the permutations
of inputs on point level affect SWIM from another perspective. SWIM heavily depends
directions with steep gradients, as shown in Figure 2.3 . The steep gradient areas of point
cloud pairs are approximated by the intersections of the pair, which we can consider as latent
representations, as shown in Figure 3.1 . The point cloud directions are computed using row-
wise subtractions between two m-point point clouds X1 and X2: dir(X1, X2) = [x

(i)
1 − x

(i)
2],

21

3 Sampling Weights for PointNet

Figure 3.1: This figure shows the steep gradient areas (yellow) in 3D space for four pairs of
1024-point point clouds. The steep gradient areas are loosely approximated by
the mesh faces of intersection of both objects. Top Left: Bed (blue) and Bathtub
(red). Top Right: Chair (blue) and Sofa (red). Bottom Left: Night Stand (blue)
and Table (red). Bottom Right: Monitor (blue) and Toilet (red).

where x
(i)
1 ∈ X1, x

(i)
2 ∈ X2, and i ∈ [1, . . . ,m]. In this case, the permutations of the points

can determine the representation quality of point cloud directions. In other words, given
two point clouds, the committed point permutations might contain many ”good” point-wise
directions, leading to a better representation after aggregation. Conversely, the unhelpful
point-wise directions will result in under-representations of the point cloud directions.
When the majority of the sampled point cloud directions are under-represented, SWIM
cannot perform well. Thus, a solution to sample good point-wise directions is needed.

22

3.1 Steep Gradients & Permutation Invariance

3.1.1 Sampling using KDTrees

The quality of a direction is determined by the associated gradient: ||y(i)1 −y
(i)
2 ||∞

max(||x(i)
1 −x

(i)
2 ||2,ϵ)

. Al-

though we have no control over the numerator (which is already fixed as part of data), we
can design a machinery to pick denominators with small values. Naturally, the shortest
possible distance between two m-point point clouds (X1 and X2) will be derived from the
shortest pairwise point distances:

dir(X1, X2) = [x
(i)
1 − NN(x

(i)
1 , X2)], x1 ∈ X1, i ∈ [1, 2, . . . ,m], (3.1)

where NN(x1, X2) = argminx2∈X2
||x1 − x2|| is a nearest neighbour function, which selects

the nearest point of a given point from another point clouds in terms of distance. Finding
nearest neighbours is a non-trivial task and KDTree is an efficient tool built for this purpose.
Comparing to a brute force search with O(n2) run-time, KDTree on average has O(kn log n)
run-time for construction and O(log n) for nearest neighbour search in a k dimensional
space. The steps of using KDTrees to compute shortest point-wise directions for each pair
of point clouds (X1, X2) from the sampling frame S in a Dense layer are specified below:

1. Given (X1, X2), construct a KDTree using X1: KDTree(X1).

2. Query KDTree(X1) for each point in X2 to obtain the shortest point-wise directions.

To compute shared weight, we choose the mean of the weights as the aggregation function.
We name this enhanced Dense layer as DenseKD. The inference of a shared DenseKD layer
is equivalent to the following equation:

H(l) = σ(W
(l)
sharedH

(l−1) +B
(l)
shared) (3.2)

where l indicates l-th layer, H is the layer output, Wshared is the layer weights, Bshared is
the layer biases and σ(·) is a non-linear activation function.

With DenseKD, we can now construct Sampled PointNet. We consider only the architec-
ture of a reduced vanilla PointNet at the moment without T-Net and BatchNorm. Sampled
PointNet uses DenseKDs as drop-in replacements for shared Fully-Connected layers, a
max operation as MaxPool layer, Dense layers for regular Fully-Connected layers, and
lastly a Linear layer wrapping the least square approximation as the linear classifier head.
Note that least square approximation is usually deployed for regression task. However, to
preserve originality, we follow SWIM to use it for classification. The architecture details are
illustrated in form of a list of texts: [shared DenseKD (64), shared DenseKD (128), shared
DenseKD (1024), MaxPool, Dense (512), Dense (256), Linear]. Next, we study whether the
role of KDTree overlaps with the existing components of SWIM.

3.1.2 KDTree & Sampling Distribution

For Dense layer, the good input pairs are chosen with encouragements using the sampling
distribution derived by normalizing the gradients. However, for DenseKD, KDTree can be

23

3 Sampling Weights for PointNet

seen as a strong enforcer to achieve the same purpose. In particular, under a classification
setting with one-hot encoded output, the difference in output is either 1 for difference class,
or 0 for same class, therefore, the numerator of the gradient does not contribute much. This
setting reveals a surprising advantage of computing direction with nearest neighbours: it
automatically chooses all points with close proximity, thus under a setting with limited
and small output differences, such as classification, sampling points with any probability
distribution can give comparative performance. If output labels are no longer needed under
this particular setting, it is possible to deploy SWIM for unsupervised or indirect supervised
task. However, it is important to notice that this discussion is only within the scope of
implementation and there are much more to consider from the theoretical perspectives
before applying SWIM on more diverse problem settings.

3.1.3 KDTree & Dimension Reduction

KDTree is not perfect as it can be cursed by the dimensionality of inputs. In the context
of a Sampled PointNet, KDTree works well for input layer because the number of input
dimensions is typically low, such as 3 or 6. For the projected latent space in Neural
Network, the number of dimensions tend to be larger than 20, which is maximum number
of dimension to exploit the efficiency of KDTree, as mentioned by scipy (Virtanen et al.

[2020]) in the documentation for KDTree. A common approach to avoid high dimensional
space is by reducing the dimension using dimension reduction techniques. The naive
strategy is to first reduce the dimensions, then construct KDTree on the reduced dimension
to find nearest neighbours for all points, and finally obtain the distances between the nearest
neighbours in original dimension. The insertion of dimension reduction techniques would
not complicate the sampling algorithm.

3.1.4 Results

Sampling using KDTrees

To check the effectiveness of DenseKD against point clouds, we compare the performance
to a dummy sampled PointNet, which has the same architecture, except that the shared
DenseKDs are replaced with shared Dense layers with same layer widths. For simplicity,
we denote the former as DenseKD and the dummy as Dense.

Based on Table 3.1 , we can notice that the differences in terms of predictive performance
are stark. Despite the advantage in computation time, Dense offers little to no predictive
power for point clouds. The 50% of AUCROC suggests that Dense is random guessing.
Figure 3.2 shows the differences between the point cloud directions computed using ran-
dom permutation and KDTree. We can notice that the directions computed by KDTree
are ”disciplined” and pointed towards the steep gradient areas, compared to the messy
representation of the random permutation. The accuracy of DenseKD is behind the state-
of-the-art by nearly 17 units according to the leaderboard published by Wu et al. [2015],

24

3.1 Steep Gradients & Permutation Invariance

Methods Time Taken (s) ⇓ Accuracy (%) ⇑ AUCROC (%) ⇑
Dense 10.29± 2.44 22.23± 2.78e−15 50.00± 0.00

DenseKD 16.40± 3.54 81.25± 8.32e−1 97.17± 3.00e−1

Table 3.1: This table illustrates the impact of permutations in computing point cloud di-
rections in terms of time taken, accuracy, and AUC-ROC score. All method
were repeated for 30 different seeds. The reported values are mean±standard
deviation of 30 results. Bold faces represent the best results of corresponding
columns (differentiated by standard deviation in case of ties, the lower the better).
Dense computes directions by committing to the given permutations of points.
DenseKD ignores the given permutation by searching the nearest neighbour of
each point using KDTree to compute directions.

and only 2 units behind the proposed model, 3DShapeNet [Wu et al. , 2015], developed
by the composer of the dataset. Overall, this is an encouraging sign considering the huge
difference in runtime. Moreover, the leaderboard typically records the results which based
on 1024- or 2048-point point clouds, while we are currently using 64-point density.

KDTree & Sampling Distribution

We continue to investigate the necessity of using KDTree together with the original sampling
distribution. We experiment using three probability distributions: original, uniform, and
length-squared. Original is the sampling distribution is defined by Bolager et al. [2023]; the
uniform distribution acts as a non-informative baseline; and the length-squared distribution
q — which is frequently used in randomized linear algebra to approximate a matrix — is
defined by squared row vector norm over squared matrix norm:

q(l)(X1, X2|{Wj , Bj}(l−1)
j=1) =

||X1 −X2||2F
||D||2F

, (3.3)

where l denotes a layer of neural network, W and B represents the weights and biases,
and || · ||2 and || · ||F represent the Euclidean norm and the Frobenius norm respectively.
X1, X2 ∈ X are two point clouds in the input set X , X2 −X1 ∈ Rm×k is the k-dimensional
directions from P1 to P2 and materialized as a row in the direction matrix D. In contrast
to the original sampling distribution, a length-squared distribution emphasizes the inputs
with larger proximity. This is to study the lower bound of impact KDTree by prioritizing
the relatively ”bad” input pairs after the nearest neighbour search. The sampling algorithm
is the same except for the probability distribution to sample input pairs.

From the results in Table 3.2 , we can observe that the original sampling distribution might
seem superior in terms of performance metrics. However, the discrepancy small enough to
be entirely bounded by the standard deviations of the other distributions. Uniform distribu-
tion is slightly faster in terms of computation time due to the simplicity in materializing the

25

3 Sampling Weights for PointNet

Figure 3.2: This figure shows the differences between the point cloud directions (black lines)
between a bed (blue) and a bathtub (red), computed using random permutation
and KDTree. To enhance the visualization effect, we use 1024 point per point
cloud and 1024 sampled directions. Top: Random permutation. Bottom: KDTree.
Left: Isometric view with underlay meshes. Right: Side view with gradient area
(yellow) only.

probability distribution but also the advantage is also insignificant. The samples based on
length-squared distribution in this context constitute an approximation of the distance ma-
trix D. It is naturally for the sampling process with length-squared distribution to result in
worse performance on average, as intuitively it encourages input pairs with larger distance,
hence contradicts with the theoretical foundation of SWIM. Nevertheless, the results are
still comparable since the nearest neighbour function has already set a low upper bound
for the distance between input pairs, although the upper bounds of the performance of
length-square distribution in both prediction metrics fall short by a short margin to include
the upper bounds of that of the original sampling distribution. In general, this experiment
has demonstrated that the choice of sampling distribution does not have major impact on
sampled PointNet, as KDTree has already done the heavy lifting.

26

3.1 Steep Gradients & Permutation Invariance

Distribution Time Taken (s) ⇓ Accuracy (%) ⇑ AUCROC (%) ⇑
Original 16.40± 3.54 81.25± 8.32e−1 97.17± 3.00e−1
Uniform 15.03± 2.46 81.03± 1.14 97.14± 3.79e−1

LS 16.17± 3.26 80.16± 1.12 96.84± 3.84e−1

Table 3.2: This table illustrates that the choice of sampling distribution is insignificant with
nearest neighbours’ distance, under supervised classification setting. The exper-
iment for each distribution were repeated for 30 different seeds. The reported
values are mean±standard deviation of 30 results. Bold faces represent the best
results of corresponding columns (differentiated by standard deviation in case
of ties, the lower the better). Original defines a probability distribution over the
ratio of output finite differences and corresponding input distances. Uniform is a
uniform distribution, with all points having same sampling probability. LS de-
fines length-squared distribution with the sampling probability being the squared
row vector norm over the squared matrix norm.

KDTree & Dimension Reduction

Concerning the efficacy of the typical remedies for the curse of dimensionality of KDTree
with the use case of Sampled PointNet, we attempt to incorporate several techniques, includ-
ing Principal Component Analysis (PCA), Kernel PCA, Locally Linear Embedding (LLE),
ISOMAP, and diffusion map. The first four are the implementation of scikit-learn
developed by Pedregosa et al. [2011], and diffusion map is from datafold implemented
by Lehmberg et al. [2020]. Unfortunately, diffusion map does not work because of Zero-
DivisionError, which cannot be resolved even by passing a numerical value for the
parameter value zero division of symmetric kernel division function through
the kernel keyword argument under datafold.pcfold. This is because the kernel key-
word argument is being fed to the class DmapKernelFixed during inference, while the
function symmetric kernel division is being called during initialization as normal-
ized kernel. Nonetheless, other non-linear dimension reduction methods provided by
scikit-learn work normally.

Despite the seemingly feasible intuition, the empirical computation time in Table 3.3

proves otherwise due to the runtime complexity as listed in Table 3.4 , gathered from
 Pedregosa et al. [2011]. We can notice that the simplest technique, PCA, is already likely
to take more time than KDTree except very few circumstances, for example, the number
of points are much larger than the number of dimensions, which will be a rare occasion in
our context. The remaining non-linear methods all have worse computational complexity
than PCA. We assume the KernelPCA has an additional dominant term n2 in its complexity
for computing the pairwise entries of the kernel. The first and third term of the runtime
complexity for Isomap and LLE are the same, which are the nearest neighbour search and
partial eigenvalue decomposition. The second term differs as Isomap performs shortest-

27

3 Sampling Weights for PointNet

Techniques Time Taken (s) ⇓ Accuracy (%) ⇑ AUCROC (%) ⇑
Vanilla 16.40± 3.54 81.25± 8.32e−1 97.17± 3.00e−1
PCA 21.73± 2.92 81.19± 7.38e−1 97.21± 3.13e−1

PCAVAR 21.30± 5.36 81.29± 8.10e−1 97.21± 3.11e−1
KernelPCA 29.80± 4.73 81.12± 7.45e−1 97.23± 2.95e−1

Isomap 51.46± 3.21 81.12± 8.83e−1 97.24± 3.28e−1
LLE 65.07± 4.25 79.81± 1.23 96.66± 4.83e−1

Table 3.3: This table illustrates the impact of different dimension reduction techniques
in terms of time taken, accuracy, and AUC-ROC score. All techniques were
repeated for 30 different seeds. The reported values are mean±standard deviation
of 30 results. Bold faces represent the best results of corresponding columns
(differentiated by standard deviation in case of ties, the lower the better). For
Vanilla, no dimension reduction technique was used. For PCAVAR, it retained the
number of components which preserves 99.9% variance. All remaining techniques
explicitly reduced the original dimension to 10 components. For KernelPCA, a
rbf kernel was used with default parameters. For Isomap and Locally Linear
Embedding (LLE), all parameters are default except for n components.

path graph search while LLE constructs weight matrices which is computationally heavy.
On top of that, regardless of the chosen dimension reduction techniques, the model has to
construct and query KDTree again in the reduced dimension, therefore this approach with
the combination of dimension reduction and KDTree cannot optimize the overall runtime
complexity. In terms of prediction, the differences are negligible. This is a sensible outcome
because these techniques aim to preserve the important information in low dimensional
space instead of creating new information.

3.1.5 Discussion

The experiment results in Section 3.1.4 have proved that our conceptual architecture for sam-
pled PointNet works well empirically. In particular, the enhanced Dense layer, DenseKD,
enables SWIM to sample directions with steep gradients through using, an efficient imple-
mentation of a nearest neighbour function. Since nearest neighbour is absolute regardless
of the permutations, in this sense, nearest neighbour function enables the permutation
invariance in relation to the representation quality of point cloud directions (which are the
aggregations of the corresponding subsampled point-wise directions). The deployment of
KDTree also reveals the fact that under certain scenarios such as classification, ground truths
and the sampling distribution have only minor contribution for the performance, although
the ground truths are still important to optimize the weights of a Linear layer. Lastly, we
demonstrate that in the context of a Sampled PointNet, dimension reduction techniques
mostly cannot improve the time complexity of KDTree due to their inherent expensive

28

3.2 Rotational Invariance

Techniques Time Complexity
KDTree O(kn log n)

PCA O(k2n+ k3)
KernelPCA O(n2 + k2n+ k3)

Isomap O(klog(m)n log(n) + n2(m+ log(n) + dn2)
LLE O(k log(m)n log(n) + knm3 + dn2)

Table 3.4: The time complexity for each dimension reduction technique compared to KDTree.
k is the number of dimensions, n is the number of training points, m is the number
of neighbours and d is the number of reduced dimensions.

runtime and the one-time usage of KDTree for each input pair. Overall, we achieve two out
of four objectives: permutation invariance (in relation to both the prediction consistency
and gradients of input pairs) and sampling the directions with steep gradient. Despite the
runtime of DenseKD is remarkably short, our training setting is still not comparable to the
standard setting, which uses ModelNet40 with more training samples and 16- or 32-times
more points per point cloud.

3.2 Rotational Invariance

The third objective of this thesis, rotational invariance, concerns the robustness of sampled
PointNet against rigid body transformations. Although rotations are only a subset of
rigid body transformations, it is one of the most common transformations of point clouds.
Rotations in 3D Euclidean space about the origin is known as SO(3) (Special Orthogonal
group), elaborated by Bronstein et al. [2021]. Most of the classification and regression tasks
on point clouds are orientation-agnostic. Intuitively, if we were to classify a bus and an
aeroplane, no matter how to rotate the corresponding point cloud, the model should be
able to differentiate accurately. Formally, a function defined on inner product space with
rotational invariance produces same output regardless of the inputs’ orientations. However,
finding nearest neighbours — an important operation in computing point cloud directions —
is highly subjective to orientation, therefore vulnerable against rigid body transformations.
As shown in Figure 3.3 , the intersection areas in the standard orientation could be entirely
different to that in the rotated orientations, therefore, this could lead to highly inconsistent
representations in terms of point cloud directions.

It is important to clarify that, despite Bolager et al. [2023] pointed out SWIM is robust
against rigid body transformations, it is only invariant with the entire dataset undergoes
same set of transformations, instead of individual heterogeneous transformations for the
data points. In this section, we focus on three approaches: T-Net, Data Augmentations,
and Spherical Coordinates. T-Net is an unique solution proposed by Qi et al. [2017a]; data
augmentations is a common technique in deep learning to improve the robustness of neural
network; and spherical coordinates is our attempt to highlight the rotational information

29

3 Sampling Weights for PointNet

through inductive biases. Since Qi et al. [2017a] consider only the rotations along z-axis,
which can be considered as a subgroup of SO(3) named SO(2), we follow suit.

Figure 3.3: This figure illustrates the differences between the sampled directions (black
lines) and the steep gradient area (yellow) between a bed (blue) and a bathtub
(red). To enhance the visualization effect, we use 1024 points per point cloud
and 1024 sampled directions. Left: Standard Orientation. Right: Randomly
Rotated Orientations. The rotated objects are facing from each other in opposite
directions.

3.2.1 T-Net: Joint Alignment Network

As one of the highlights for PointNet, Qi et al. [2017a] proposed a joint alignment network,
namely T-Net, to enhance the robustness against rigid body transformation. T-Net is
essentially a vanilla PointNet with shared Fully-Connected layers, MaxPool layer, and
regular Fully-Connected layers. The ultimate PointNet architecture contains two T-Nets
to align the input space and feature space, as shown in Figure 2.2 . The first T-Net accepts
inputs and predicts the respective 3×3 transformation matrices. Then, the product of inputs
and their transformation matrices will be fed into the first hidden layer. The transformation
matrices aim to align all inputs in the 3D space. The second T-Net accepts the embeddings
after first hidden layer as inputs, and produces 64× 64 transformation matrices. It aims to
align the embeddings in the latent space. The second T-Net would destabilize optimization
due to its high dimensionality, therefore, the author added a regularization term on the
orthogonality of the feature transformation matrices as a soft constraint.

This elegant idea of leveraging indirect supervised learning to discover unknown transfor-
mation matrix stands on the shoulder of backpropagation. Theoretically, backpropagation
can recover the transformation matrix using the loss of downstream task, despite not having
the ground truth. This unique learning technique exposes the limitation of SWIM, which
has superior training speed at the expense of discarding the feedback and guidance from

30

3.2 Rotational Invariance

the objective function. Nevertheless, we attempt to construct sampled T-Net that resembles
the original. To learn the rotations of point clouds and produce the inverses, we formulate
this problem under supervised-learning with synthetic data. Based on the fact that all data
of ModelNet10 are precisely aligned, on each point cloud, we multiply a random rotation
matrix generated using provider.rotate point cloud provided by Qi et al. [2017a] in
the code repository, and save the transpose of the random rotation matrix as rotation labels.
Note that since the rotation matrix is orthogonal, its transpose is equivalent to its inverse. It
is much difficult to produce a high-dimensional rotation matrix for high dimensional latent
space, therefore we do not consider resembling the second T-Net.

With the synthetic rotated point clouds and rotation labels, we can sample the ultimate
PointNet architecture bar the second T-Net. The first T-Net is sampled using the rotated
point clouds and the rotation labels, including the original orientation which the rotation
label would be an identity matrix. The output of this T-Net is a 3× 3 rotation matrix thus
this problem is treated as a regression task. Following a similar inference procedure as
PointNet, the inputs are multiplied with the predicted transformation matrix by the first
T-Net, before entering the first hidden layer for sampling.

The training procedures of a sampled PointNet with embedded sampled T-Net are below:

1. For each point cloud X ∈ X from the train set X , apply a rotation matrix g ∈ SO(2) to
obtain a rotated point cloud gX as shown in the top right of Figure 3.3 .

2. The training inputs for T-Net is randomly rotated point clouds X̃ = [g(i)X(i)], X ∈
X with corresponding inverse rotations as ground truths G̃ = [g−1(i)], where i ∈
[1, . . . , n].

3. Construct sampled T-Net using X̃ and G̃ under regression settings.

4. For each rotated point cloud X̃ ∈ X̃ , apply the rotation matrix predicted by the
sampled T-Net, g̃ = T-Net(X̃), to obtain an aligned point cloud g̃X̃ .

5. Then, sample the weights and biases for a sampled PointNet using the set of aligned
point clouds and the ground truths of downstream task.

Clearly, from the training procedures that this implementation of sampled T-Net has plenty
of rooms for improvement. However, this should serve as as starting point to inspire more
sampling counterparts which are hopefully equivalent to the advance tricks stemmed from
iterative gradient methods.

3.2.2 Data Augmentation

Data augmentation is a widely used trick in deep learning. By augmenting the inputs
with different transformations, for example, rotations, reflections, translations, the neural
network is exposed to more samples, and hence has better prediction robustness. However,
the author of PointNet Qi et al. [2017a] did not conduct a thorough ablation study to

31

3 Sampling Weights for PointNet

examine the individual contribution of data augmentation and T-Net towards rotational
robustness in spite of their claim.The authors showed only 2% accuracy improvement
—which is not significant— with the addition of two T-Nets on top of data augmentation.
There are also some doubts on their GitHub

1
 regarding the contributions of T-Net, which

the authors never provide an answer. Therefore, in this thesis we conduct an individual
experiment for data augmentation to identify its impact.

For iterative gradient descent, data augmentation only virtually increases the volume of
train data. This is achievable because of the iterative nature and the gradient feedback. For
each iteration, the inputs are randomly rotated in-place without expanding the data size,
thus the memory demand remains the same. It is believed that the gradient feedback could
automatically optimize the weights to recognize these augmentations. However, SWIM has
neither the iterative mechanism nor the gradient feedback. Therefore, the implementation
of data augmentation for a sampled net at this stage is crude. We expand the train set by
including more rotated examples while preserving the same ground truths, at the expense
of computational memory. Here we define the number of augmentations as the number
of inputs copies rotated using different rotation matrices. For instance, 3-augmentations is
equivalent to each point cloud turning into three rotated copies, and therefore 3 times the
size of the standard train set (and the computational memory).

3.2.3 Spherical Coordinates

The methods of T-Net and data augmentation, derived from PointNet’s original design,
typically depend on iterative gradient methods. By intuition, the model should recognize
the geometry regardless of the rigid body transformations. Supposed we have infinite data
and infinite learning iterations, it is very likely for end-to-end supervised learning to ”learn”
such patterns. Although current dataset is small to medium in size, we could scale up later
by using ModelNet40 or more data augmentations. Regarding learning iteration, it is now
a double-edged blade for SWIM. The advantage of SWIM builds the expense of cutting
off backpropagation and learning iterations. It is essentially one-shot learning. Therefore,
instead of hoping the model to discover this hidden piece of information naturally, we
should instead instill the information explicitly.

The original input features are the spatial coordinates (x, y, z) in Euclidean space. Here
we have two approaches to inform the model: firstly, we consider computing the directions
with angular information, however, we do not see any suitable point of reference to compute
the angular directions between the points in one point cloud and the respective nearest
neighbours from another point cloud; secondly, we consider adding the angular information
as input features. This is possible via spherical coordinates (r, θ, ϕ), where r is the radial
distance between a point and the origin, θ is the polar angle between z-axis and r, and ϕ is
the azimuthal angle between the orthogonal projection of r onto the xy-plane and either x-
or y-axis.

1https://github.com/charlesq34/pointnet

32

3.2 Rotational Invariance

Recall that we only consider SO(2). With SO(2) tranformations, among the input features
(x, y, z, r, θ, ϕ), we expect two rotated points which are close to each other in original
orientation, will have same values for (z, r, θ), and likely to have only moderate changes in
ϕ, thus acting as the counterweight to balance the drastic changes brought by rotations in x
and y. However, this approach is not suitable for high dimensions due to computational
intractability, thus, is only applicable to input layer similar to sampled T-Net. Nevertheless,
we have also conceptually extended this idea and shallowly explored the representation in
the hyperbolic space, which is a popular approach in point cloud learning [Lin et al. , 2023 ,

 Montanaro et al. , 2022].
The hyperbolic space comes with different representations and is deemed to be more

efficient in terms of capturing hierarchical information compared to Euclidean space, as
reported by Sala et al. [2018]. Onghena et al. [2023] proposes a rotation-invariant deep
learning method for point cloud segmentation —which is another popular task for point
cloud learning — with hyperbolic embeddings. Despite the promising outlook, we de-
cide to leave this direction as future work. This is because most existing work leverage
backpropagation to discover hyperbolic embeddings through indirect supervision of loss
function, instead of manually converting the euclidean coordinates into other coordinate
systems in the hyperbolic space.

3.2.4 Results

To evaluate the rotational robustness of the above approaches: T-Net, data augmentation,
Spherical coordinates, we use a sampled PointNet with randomly rotated inputs as baseline.
For the rotated inputs without augmentation, it means that the point clouds in train set are
randomly rotated, and the size of train set remains the same (n = 1). The data augmentation
approach is implemented as a sampled PointNet with 3-augmented inputs (hence named
Vanilla with n = 3 in Table 3.5) by replacing each train point cloud in standard orientation
to three randomly rotated copies. Instead of evaluating on a single random orientation, Qi
et al. [2017a] recommended to adopt the majority vote of 12 fixed input orientations, evenly
spaced from 0 to 2π. Nevertheless, we experiment both with the baseline and investigate
the impact.

Table 3.5 shows the influence of two evaluation methods and the effectiveness of three
approaches —T-Net, Data Augmentation, and Spherical coordinates — against rotated
inputs. We start by comparing the evaluation methods.

Vanilla* evaluates the test set with random individual rotations while Vanilla with n = 1
evaluates the augmented test set with 12 fixed rotation angles, as proposed by Qi et al.

[2017a]. The proposed evaluation method slightly improves all three metrics because 12-
augmented test set with fixed angles is in spirit similar to Monte Carlo or ensemble methods,
that is, giving the model more opportunities to predict correct outcomes in the context
of classification. However, both prediction results represent significant drops compared
to those using standard inputs. This indicates that sampled PointNet is not rotational
invariance. In terms of processing time, the difference between Vanilla* and the remaining

33

3 Sampling Weights for PointNet

Approaches n Time Taken (s) ⇓ Accuracy (%) ⇑ AUCROC (%) ⇑
Vanilla*

1

15.19± 1.10 62.69± 1.65 87.26± 1.07

Vanilla 38.08± 3.59 66.48± 1.72 91.45± 4.82e−1
T-Net 84.62± 11.39 57.98± 1.84 85.08± 8.36e−1

Spherical 30.60± 5.16 53.35± 7.58e−1 88.93± 4.63e−1

Vanilla 3 36.33± 4.53 68.36± 3.65e−1 93.13± 9.34e−2

Table 3.5: This table illustrates the impact of different approaches in terms of time taken,
accuracy, and AUCROC score. All techniques were repeated for 5 different seeds.
The reported values are mean±standard deviation of 5 results. Bold faces represent
the best results of corresponding columns (differentiated by standard deviation
in case of ties, the lower the better). n is the number of rotated augmentations
per point cloud. Vanilla* is the vanilla PointNet with a single evaluation for
the randomly rotated test set. For the remaining, the test set is rotated 12 times
with fixed angles to obtain the majority predicted labels and mean predicted
class probabilities. Vanilla is the sample PointNet. T-Net is sampled PointNet
with an embedded sampled T-Net. Spherical is the vanilla sampled PointNet
with spherical coordinates as additional input features on top of the Euclidean
coordinates.

methods are due to the externally affected processing power at the time of execution. For
the other approach, the computation time belongs to the same magnitude expect for T-Net,
which is approximately doubled of the other approaches because it is a sampled PointNet
with regression task embedded in another sampled PointNet.

The remaining approaches — T-Net, Spherical Coordinates and Vanilla (n = 3) — are
also evaluated with 12 fixed rotation angles. Based on Table 3.5 , while the vanilla approach
with 3 augmentation is superior with similar computation time, it is obvious that the
contributions of T-Net and Spherical coordinates worsen the accuracy and AUCROC when
compared to Vanilla (not Vanilla* because of the differences in evaluation methods). For
T-Net, this suggests that the predicted rotation matrix fails to align all point cloud in the
same orientation, and the inaccuracies turn noises to strengthen the training difficulty.
However, it is worth to note that this is a learnable approach thus can be improved with
data. Also, sampled T-Net is not an exact replica of the original T-Net as sampled T-Net does
not consider the joint optimization of rotation matrices and the downstream tasks unlike
the original. Therefore, a future work on sampled neural network for joint optimization or
indirect supervision is much needed to replicate the original PointNet architecture perfectly.

Recall that Spherical coordinates incorporate inductive biases by converting spatial coor-
dinates to angular notation, which is a little more invariant against rotations compared to
spatial coordinates. Comparing both accuracy and AUCROC between T-Net and Spherical
coordinates might cause some confusions because the addition of Spherical coordinates
result in worse accuracy at the same time better AUCROC compared to that of T-Net. To

34

3.2 Rotational Invariance

understand the reasons behind, we refer to the classification report in Table 3.6 for both
approaches. From the table, we can observe that the class distribution in test set is not
balanced. Kubat et al. [1997] indicates that accuracy as a metric could be deceitful with
imbalanced dataset, namely the accuracy paradox. This phenomena occurs when a simple
model ”predicts” only the major classes without any classifying power, yet on paper its
accuracy would be decent. Despite a sampled PointNet with an embedded sampled T-Net
is by no means a simple model, it suffers from the same problem.

Classes
Precision⇑ Recall⇑ F1-Score⇑

Support
T-Net Spherical T-Net Spherical T-Net Spherical

0 0.55 0.43 0.62 0.55 0.58 0.48 138
1 0.00 1.00 0.00 0.08 0.00 0.15 38
2 0.21 0.35 0.06 0.40 0.10 0.38 62
3 0.83 0.63 0.90 0.99 0.86 0.77 299
4 0.28 0.71 0.19 0.22 0.22 0.33 69
5 0.53 0.46 0.43 0.12 0.47 0.19 110
6 0.48 0.47 0.77 0.79 0.59 0.59 219
7 0.54 0.67 0.10 0.03 0.17 0.05 70
8 0.44 0.60 0.41 0.15 0.43 0.24 121
9 0.56 0.68 0.59 0.46 0.57 0.55 154

Macro Avg 0.44 0.60 0.41 0.38 0.40 0.37 1381
Weight Avg 0.54 0.57 0.58 0.54 0.54 0.48 1381

Table 3.6: This table shows the classification reports for T-Net and Spherical coordinates in
terms of Precision, Recall, and F1-score. Classes are the corresponding enumer-
ated classes in ModelNet10. Macro Avg stands for macro average, which takes
a metric average over all classes with uniform weight. Weight Avg measures
a metric average over all classes by taking class sizes into account. Support is
the number of data points provided. The bold face supports are the classes with
relatively low counts.

In general, T-Net has better performance with more support, and worse performance
with low support (the bolded entries in Table 3.6). In particular, both vanilla PointNet
(not shown here) and T-Net are likely to omit class 1 in their predictions. This indicates
that T-Net has less power to distinguish different classes compared to that of Spherical
coordinates. However, we notice that Spherical coordinates tend to have worse recall,
known as sensitivity, with moderate class size in spite of its relatively good precision. This
might reflect that although Spherical coordinates induces additional geometrical features
that raises the floor of its classifying power, that is, the ability to recognize classes with small
number of data points, at the same time the inductive biases also hinder its ability to derive
high level features for better multi-class classification. This problem could be rectified in
the future with features that provides more geometrical information. Nevertheless, it is

35

3 Sampling Weights for PointNet

worth remembering that this explains only the slight discrepancy in terms of accuracy and
AUCROC for T-Net and Spherical coordinates. The overall performance still has plenty
room for improvement.

3.2.5 Discussion

The detour of rotational invariance unfortunately ends with negative results —- the perfor-
mance on classifying the rotated inputs is not on par with the performance using inputs
with the standard orientation. We implemented two approaches — data augmentation and
T-Net — suggested by Qi et al. [2017a], and an additional effort with Spherical coordinates
as inductive biases. After all attempts, we find out that there are many doubts [Li et al. ,
 2021 , Zhao et al. , 2022] whether PointNet is a rotational invariant model as Qi et al. [2017a]
claimed to be, which a lot of empirical evidences suggest otherwise. Additionally, in the
sequel of PointNet, namely PointNet++ [Qi et al. , 2017b], the author excludes T-Net from
the architecture, which affirms our observation that T-Net has limited contributions at
the expense of training cost with doubled parameters. It is also encouraging to see data
augmentation in isolation has an positive impact on rotational invariance.

Nevertheless, our effort exposes a fundamental limitations of SWIM compared to iter-
ative gradient descent for further improvements. Firstly, joint optimization with indirect
supervised learning is a popular technique based on gradient descent and backpropagation.
However, SWIM gains its massive training time advantage by getting rid of backpropa-
gation. In other words, the only feedback from target variables — which guides weight
optimizations — comes from the last least square layer, which requires ground truth. There-
fore, it is very tricky to optimize a sub-model such as T-Net without corresponding output
or to recover a complex representation such as hyperbolic embedding.

This limitation by no means signifies the end of sampled neural network; in contrast, it
encourages more out-of-the-box ideas rather than blindly mimic the mechanisms which
based on gradient descent and backpropagation. Since it is difficult for sampled network to
learn the implicit rotational information, the way forward is to incorporate the information
explicitly, similar the failed attempt with Spherical coordinate. Other than incorporating the
information as input features which still have plenty room of improvements, an interesting
direction would be developing rotation-invariant weight construction machinery. Li et al.

[2021] proposes a PCA-based training scheme using gradient descent, which utilizes the
rotational equivariant properties of PCA and leverage the geometrical symmetry to reduce
possible numbers of rotations down to a feasible counts for learning. This idea develops on
the fact that PCA is a special form of rotation guided by the variance of principal axes. In
previous section, we also discussed the inclusion of PCA in SWIM which may have partially
paved the way to develop a sampled version of this idea.

Despite the extensive experiments thus far, there is an untested hypothesis that 64 points
per point cloud could be too sparse to encapsulate sufficient information. Also, the data
augmentation approach shines a glimmer of hope that the performance could be further
improved by stacking more rotated samples. Therefore, in next section, we explore the

36

3.3 Scale-up Density and Augmentations

scalability of sampled PointNet in terms of point cloud density (number of points per point
cloud) and data augmentations with rotations.

3.3 Scale-up Density and Augmentations

Scaling up datasets has proven to be a powerful approach for improving performance
across various domains. This is especially evident with the emergence of foundation
models. In the context of 3D point cloud processing, increasing the density of point clouds
and applying more extensive data augmentations can potentially lead to enhanced model
capabilities. By exposing the network to richer, more detailed representations of 3D objects
and a wider variety of viewpoints, we aim to improve the model’s ability to capture fine-
grained geometric features and achieve better generalization. This scaling strategy may
result in more robust and accurate predictions. Furthermore, investigating the scalability
of sampled PointNet allows us to better understand the trade-offs between computational
resources, model complexity, and performance gains, which is crucial for deploying these
models in real-world applications with varying computational constraints. To preserve
originality of the architecture proposed by Qi et al. [2017a], we do not consider scaling the
model parameters here.

3.3.1 Point Cloud Density

As shown in top left of Figure 3.4 , 64-point point clouds are hardly recognizable with human
vision if the underlaying meshes are not visualized. The density of 512 points improves the
overall representation, but 1024-point on the bottom left can establish a more comprehensive
presence. Despite point clouds with 2048 points could be more favourable by human, Qi
et al. [2017a] shows in their Appendix F that, the model performance is proportional to
point cloud density, but quickly saturates when the density approaches 1024. This result
suggests an intriguing possibility: a neural network might value sparseness more highly
than humans do. We are interested to see whether this phenomenon can be replicated with
sample PointNet.

3.3.2 Number of Data Augmentations

In Section 3.2.2 , we discussed the benefits of using data augmentation to improve rotational
robustness. The empirical results in Table 3.5 not only support our hypothesis that data
augmentation has more contributions than T-Net for rotation invariance, they also motivate
further investigate to explore the impact of data augmentation at a larger scale. Moreover,
data augmentation is not orthogonal to T-Net and Spherical coordinates (introduced in
Section 3.2.1 and Section 3.2.3 respectively). It would be interesting to see if there is any
positive effect by compounding data augmentation on T-Net and Spherical coordinates to
edge towards rotational invariance.

37

3 Sampling Weights for PointNet

Figure 3.4: An illustration of point cloud pairs in varying densities. The mesh surfaces are
underlayed for better visualization. The blue object is a bed, while the red object
is a bathtub. Top Left: 64 points. Top Right: 512 points. Bottom Left: 1024
points. Bottom Right: 2048 points.

3.3.3 Coupling Effects

There is another dimension we could scale-up for rotational robustness: point cloud density.
From human perspective, diverse and well-represented samples will naturally improve the
prediction performance. However, this might not be the case for a machine learning model.
We are looking for a coupling effect by increasing both the number of points per point cloud
and the number of augmentations simultaneously. In the best-case scenario, this could be
the key to achieving rotational invariance by simply providing many good examples.

3.3.4 Results

Point Cloud Density

The experiment setup is straightforward with 4 commonly chosen densities: 64, 512, 1024,
2048. Our experiments show that increasing point cloud density from 64 points to 2048

38

3.3 Scale-up Density and Augmentations

Nr. Points. Time Taken (s) ⇓ Accuracy (%) ⇑ AUCROC (%) ⇑
64 39.14± 2.60 81.00± 4.28e−1 96.56± 2.15e−1
512 402.81± 70.38 84.55± 6.61e−1 97.12± 2.57e−1
1024 937.64± 149.77 85.19± 2.00e−1 97.47± 2.17e−1
2048 1155.06± 216.46 85.13± 8.28e−1 97.56± 4.36e−1

Table 3.7: This table illustrates that scaling up the density of point cloud can improve
performance. The experiment for each distribution were repeated for 5 different
seeds. The reported values are mean±standard deviation of 5 results. Bold faces
represent the best results of corresponding columns (differentiated by standard
deviation in case of ties, the lower the better). Nr. Points represents the number
of points in a point cloud.

points per point cloud can improve performance. However, the improvement becomes
insignificant or even slightly decreases from 1024 points to 2048 points. Although Qi
et al. [2017a] has presented similar insights, we can offer a different explanation from
SWIM’s perspective. As we can notice in Figure 3.4 , point cloud with 1024 points is
representative enough to contain most of the information, such as the peripheral contours
and interior details compared to 64 points. 2048 points enhances the details, at the same
time, these enhancements can also be regarded as redundant information under the setting
of classification, since the task emphasizes global shape recognition rather than intricate
structure. Therefore, in our context, it is likely that the increased proportion of redundant
information could overshadow the important information or even out during weight
aggregation, resulting in non-increasing functional information.

Number of Data Augmentations

The experiment setup is trivial. Similar to Section 3.2.4 , we measure the robustness using
the aggregated predictions from rotated inputs with 12 fixed angles (12 angles per point
cloud) as proposed by Qi et al. [2017a]. We randomly rotate the inputs to obtain {3, 5, 10,
20}-augmentations using SO(2) rotations along the z-axis as the rotated, augmented train
sets. In Table 3.8 , we first observe that the time taken for training the sample PointNets is
proportional to the input sizes: the more the number of augmentations, the more the data
points, hence the longer the computation time. To discover the empirical trends of accuracy
and AUCROC, we turn our attention to Figure 3.5 . In general, increasing the number
of augmentation has positive impact for all approaches on all metrics compared to no
augmentation at all, that is, the number of augmentation is 1. In spite of the improvements,
the additions of T-Net and Spherical coordinates continue to deteriorate the rotational
robustness.

For pure data augmentation without additional techniques, we could observe the accu-
racy peaked at 3-augmentations while its AUCROC continue to rise with more augmenta-

39

3 Sampling Weights for PointNet

Approaches n Time Taken (s) ⇓ Accuracy (%) ⇑ AUCROC (%) ⇑
Vanilla

3
36.33± 4.53 68.36± 3.65e−1 93.13± 9.34e−2

T-Net 73.13± 6.34 60.50± 1.78 88.11± 1.11
Spherical 39.02± 6.21 55.74± 4.09e−1 90.32± 2.82e−1

Vanilla
5

51.78± 3.16 66.90± 6.81e−1 93.35± 1.68e−1
T-Net 110.50± 5.86 61.81± 4.57−1 89.38± 3.74e−1

Spherical 49.53± 3.73 55.01± 6.56e−1 90.61± 1.41e−1

Vanilla
10

112.56± 17.71 67.06± 5.33e−1 93.42± 2.03e−1
T-Net 208.37± 14.55 62.26± 1.56 90.17± 4.11e−1

Spherical 94.84± 4.26 55.43± 9.21e−1 90.44± 3.63e−1

Vanilla
20

194.31± 6.10 66.89± 7.22e−1 93.39± 2.10e−1
T-Net 396.913± 23.81 61.99± 9.06e−1 90.14± 5.28e−1

Spherical 224.63± 37.65 57.22± 7.61e−1 91.29± 1.52e−1

Table 3.8: This table illustrates the impact of different approaches with {3, 5, 10, 20}-
augmentations in terms of time taken, accuracy, and AUCROC score. All tech-
niques were repeated for 5 different seeds. The reported values are mean±standard
deviation of 5 results. Bold faces represent the best results of corresponding
columns (differentiated by standard deviation in case of ties, the lower the better).
n is the number of rotated augmentations per point cloud. Vanilla is sampled
PointNet. T-Net is sampled PointNet with an embedded sampled T-Net. Spheri-
cal is the vanilla PointNet with spherical coordinates as additional input features
on top of the Euclidean coordinates.

tions until 10-augmentations. It could be that the model is trying to overcome the accuracy
paradox — as discussed previously in Section 3.2.4 — with increased augmentation. The
increasing AUCROC indicates that the model can distinguish the classes better rather than
blindly optimizes accuracy. Between 3- and 10-augmentations, we can notice that Spherical
coordinates experiences similar struggle by prioritizing accuracy or AUCROC alternatively,
as demonstrated by the simultaneous improved accuracy and reduced AUCROC or vice
versa.

Among the approaches, T-Net has the largest growth — 4.28 units for accuracy and 5.09
unit for AUCROC — as the number of augmentations increases tenfold. If we isolate T-Net
from the PointNet, it is intuitive that more rotated samples improve the performance of
T-Net, therefore the orientations of point clouds are more aligned. Looking at both the
T-Net and the PointNet together, we can suggest that an explanation from the scaling
law [Hestness et al. , 2017] that the number of parameters of T-Net is the double of that of the
original PointNet, therefore it has simply more capabilities to learn. Although it is theoreti-
cally possible that given sufficient number of augmentation, the T-Net approach could have
better performance than the vanilla, however, the experiment with 20 augmentations shows

40

3.3 Scale-up Density and Augmentations

Figure 3.5: The reported results are the average over 5 different seeds. Left: The accuracy
of three approaches as the number of augmentations increases. Right: The
AUCROC of three approaches as the number of augmentations increases.

worse performance in all metrics on top of long computation time. This indicates that
scaling up in terms of number of augmentation might not result in an emergent properties.

Emergent properties is one of the reasons behind the popularity of large language models,
which were trained using gradient descent approach. Judging from our experiment results,
we argue that it is difficult for a sampled net to achieve such effect. The underlying reason
could be attributed to the fundamental difference between sampled network and gradient
descent, where the formal can only assign weights on a discrete landscape while the latter
updates weight in continuous domain. In future, the optimization landscape might con-
verge, as weight quantization for LLM is under active development at the time of writing.
Nonetheless, it is not feasible to experiment with large number of augmentation — for
example, 100 or 1000 times augmentations — without a mini-batch approach, since it is
computationally intractable with the humongous computational memory demand. On a
side note, we can also observe that small number of augmentations does not improve the
precision of predictions as reflected by the fluctuations in standard deviations as shown
in Table 3.8 . Overall, we can conclude that scaling up with more number of augmenta-
tions might not worth the computation resources given the marginal improvements and
fundamental deficiency in fine-tuning.

Coupling Effects

By scaling up both aspects separately, performance improves but only up to a certain point,
akin to a bottleneck, meaning that growth is not infinite. In view of this, running experi-
ments for all of the cross products of the number of data augmentations and the number
of points per point cloud is not necessary. We therefore selected 4 new configurations to
investigate our hypotheses: (3, 512), (3,1024), (5,512), (10,512). The first elements in the
tuples are the number of data augmentation, and the second elements are the point cloud
density. We specifically choose these configurations to observe two scaling trends without

41

3 Sampling Weights for PointNet

spending too much computation power.
Using (3,64) as a control group, we first study whether the improvement contributed

by point cloud density can persist with SO(2) domain with small influence from data
augmentation by fixing the number of augmentations to 3 while scaling the point cloud
density from 512 to 1024. For the second trend, we hold the number of points at 512 and
increasing the number of rotated copies from 3 to 10. The chosen configurations should be
indicative for both cases. If there are coupling effects, the growth rate will be different from
what we observed in Table 3.7 and Table 3.8 .

Approaches Aug. Pts. Time Taken (s) ⇓ Accuracy (%) ⇑ AUCROC (%) ⇑
Vanilla

3 64
36.33± 4.53 68.36± 3.65e−1 93.13± 9.34e−2

T-Net 112.13± 6.34 60.50± 1.78 88.11± 1.11
Spherical 39.02± 6.21 55.74± 4.09e−1 90.32± 2.82e−1

Vanilla
3 512

540.27± 32.83 70.61± 1.88 94.39± 4.44ze−1
T-Net 1025.44± 71.39 67.85± 1.58 91.38± 6.49e−1

Spherical 457.37± 18.44 64.72± 8.85e−1 92.53± 3.54e−1

Vanilla
3 1024

1484.00± 74.75 70.23± 2.35 94.45± 5.37e−1
T-Net 3001.79± 154.36 67.88± 1.37 90.78± 4.69e−1

Spherical 1345.08± 76.82 64.86± 1.04 91.78± 1.78e−1

Vanilla
5 512

886.88± 31.17 71.43± 1.33 94.50± 3.15e−1
T-Net 1640.05± 93.13 67.42± 1.10 91.22± 8.88e−1

Spherical 838.80± 33.98 64.83± 7.09e−1 92.11± 2.01e−1

Vanilla
10 512

2167.77± 102.78 70.79± 1.48 94.54± 3.58e−1
T-Net 4026.26± 185.30 69.04± 8.53e−1 92.58± 5.41e−1

Spherical 1979.17± 162.49 64.69± 8.78e−1 92.71± 4.36e−1

Table 3.9: This table illustrates the classification results of scaling up the number of points
per point cloud and the number of augmentations on ModelNet10. The exper-
iment for each distribution were repeated for 5 different seeds. The reported
values are mean±standard deviation of 5 results. Bold faces represent the best
results of corresponding columns (differentiated by standard deviation in case of
ties, the lower the better). Aug. and Pts. stand for the number of augmentations
and the number of points respectively. Vanilla, T-Net, and Spherical represent
vanilla sampled PointNet, sampled PointNet with sampled T-Net, and sampled
PointNet with spherical coordinates as additional input features on top of the
Euclidean coordinates.

From Table 3.9 , the records of time taken suggest that point cloud density is the dominant
factor. This is because KDTree needs to consider more points for both the construction and
query process. Using 512-point density from Table 3.7 as a reference point, the approaches
with 3-augmentations with same density share similar computation time except for the

42

3.3 Scale-up Density and Augmentations

Number of Augmentations

R
el

at
iv

e
C

om
pu

ta
ti

on
Ti

m
e

0 3 5 7 10
0

1

2

3

4

Figure 3.6: The relative computation time versus number of augmentations based on Ta-
ble 3.9 .

T-Net approach, which is technically two sampled PointNets (a sampled PointNet with an
embedded sampled T-Net); 5-augmentations costs around 1.5 times of computation time;
and 10-augmentations requires approximately fourfold. As visualized in Figure 3.6 , when
the number of augmentation is large, the computation time is approaching a quadratic
growth. To further investigate the trends in terms of prediction metrics, we look at Fig-
ure 3.7 .

In the figure, we annotate the results of new configurations on top of the charts in
Figure 3.5 . The results with 512 points are plotted with dotted line, while the results with
1024 are annotated as data points with the corresponding labels on their left. By increasing
the density from 64 points to 512 points (compare the data points vertically), the results with
3-, 5-, and 10-augmentations show clear improvements, especially Spherical coordinates
which increase the accuracy by nearly 10 units. The gaps between the approaches are
smaller in terms of accuracy compared to that in terms of AUCROC, in particular, T-Net
with 512 points and 10-augmentations achieves 1.75 units difference in accuracy compared
to the pure data augmentation approach of same configuration (10, 512). The results with
1024 points have negligible difference compared to that of 512 points. We can accept the
hypothesis that the impact of point cloud density with standard inputs is transferable to
SO(2) domain.

We measure the coupling effect of the number of augmentations and the number of points
per point cloud by assessing the horizontal trend of new configurations in Figure 3.7 . Ideally,
we would see a more positive growth rate of the dotted lines as the number of augmentations
increases, compared to their counterparts with 64 points, indicating that scaling up data

43

3 Sampling Weights for PointNet

Figure 3.7: The reported results are the average over 5 different seeds. Top: The accuracy
of three approaches as the number of augmentations increases. Bottom: The
AUCROC of three approaches as the number of augmentations increases. In
both diagrams, the dotted lines are the corresponding (same colors) results of
512 points density. The results of 1024 points are annotated as triangle markers
with respective labels on their left.

augmentations and point cloud density together can produce interaction effects. However,
the empirical results suggest that this is not the case. T-Net from 5 augmentations to 10

44

3.3 Scale-up Density and Augmentations

augmentations is the only configuration with relatively noticeable gains in growth rate in
terms of accuracy and AUCROC. The other configurations show small fluctuations with
similar magnitudes, which is the same phenomena in previous results when we only scaled
up the number of augmentations.

Since the new configurations have shown a similar trend, in addition to previous analysis
— that the nature of discrete optimization of sampled neural network hampers emergent
properties — we decide against conducting further experiments with more number of
augmentations and more points. Nonetheless, not only that the computation efficiency
will be further diminished as projected in Figure 3.6 , the memory demand will also be
prohibited with the available computing infrastructure.

3.3.5 Discussion

In this section, we observe that scaling point cloud density and data augmentations can
improve the performance of sampled PointNet. By comparing both strategies, scaling up
point cloud density results in a steeper growth at the expense of longer computation time.
Unfortunately, both strategies have their corresponding bottlenecks and no coupling effects
are discovered. For point cloud density, the bottleneck could be different subject to the
representation quality of 3D objects. Objects with more intricate structures might require
more points to preserve the geometric information. For data augmentations, it is important
to clarify that we measure the scaling effect solely in terms data volume. The performance
might improve further if we also consider the scaling effect of model parameters, that is,
adding more neurons or layers. This is because SWIM can sample more directions if given
more weights as placeholders.

The lack of online learning capabilities forces sampled network to process all training data
in one-go, which is not scalable. Despite we can always keep the memory demand within
the given computational resources using random sampling, with this approach, sampled
network can never achieve the emergent properties which is shown by recent advances with
big data and foundation models. This poses interesting philosophical questions on the role
of sampled network in pragmatic use cases and the direction of development: whether to go
large or stay small; lastly, even with data augmentation, sampled network can only pick the
best possible input pairs to construct weights. This mechanism offers no solution to edge
towards the optimal continuously beyond what the input pairs can offer. Consequently,
the heavy lifting falls on the last least square layer, which is a linear optimization with
limited predictive power. The growth rate of performance with increasing number of data
augmentation suggests the current mechanism might not be a good universal learning
method.

Despite computational memory has been the bottleneck to study the effects of larger
scale, computation time has approximately increased from 40 seconds to more than 30
minutes. Although it is just a fraction of the required runtime for gradient descent (which
requires 3 to 6 hours according to Qi et al. [2017a]), at this rate, sampled PointNet will
soon lose its advantage if the inputs continue to scale up (for example, with the standard

45

3 Sampling Weights for PointNet

dataset ModelNet40). A sampled PointNet with DenseKD layers has three components
with heavy machinery: nearest neighbour function with KDTree, matrix multiplication,
and least square optimization. All three components are implemented and optimized by
experienced developer in C programming language. Among these components, matrix
multiplication is the irreplaceable backbone of neural network. The only possible runtime
optimization for this operation is by running on GPU, therefore we consider this option out
of scope; for least square optimization, there is no replacement with significantly lighter
computational load, and the convergence rate of most optimization methods varies against
different datasets. Therefore, in the following section, we attempt to replace KDTree to ease
the computations.

3.4 Recursive Sampling

Table 3.4 lists the dominant runtime complexity of a KDTree as O(kn log n). The irreducible
runtime is O(n), that is, computing the distance for n points and their corresponding neigh-
bours. The remaining O(k log n) complexity is the consequence of KDTree, which we can op-
timize by resorting to an approximation algorithm. Inspired by the Johnson-Lindenstrauss
Lemma [Johnson and Lindenstrauss , 2001], which was also the early inspiration of this
input pairs weight construction idea [Galaris et al. , 2022], we inject probability to break
the curse of dimensionality albeit we aim to reduce computation time by ignoring input
dimension instead of reducing the input dimension. Note that here we assume that sampled
neural network does not require the exact nearest neighbours — which KDTree is already
the one of the fastest algorithms — for the points. We also do not need the data structure
of KDTree and the accompanying advantages such as fast insertion or fast deletion, since
we construct and query the KDTree only once to obtain the nearest neighbours before
discarding it.

3.4.1 Naive Approach

Given the assumption that the input dimension can be ignored, we can adopt a randomized
approach. However, we need a guiding heuristic to encourage the model to sample points
with close proximity.

Intuitively, the SWIM sampling mechanism, which operates at the object level, already
functions as a soft nearest neighbour approach in a classification setting. As long as two
point clouds belong to different classes, the numerator will be 1, and the likelihood of
sampling this pair is solely determined by their proximity. From this perspective, SWIM
constructs weights with a high probability of using the nearest neighbours of the inputs.

It is important to note that SWIM without permutation invariance does not actually select
the nearest neighbours during direction computation. Instead, it randomly samples a pool
of n input pairs for direction computation with O(n) complexity, and then establishes a
sampling distribution that encourages pairs with closer proximity to be selected with higher

46

3.4 Recursive Sampling

probability, using the computed directions and corresponding ground truth differences. In
contrast, KDTree includes selecting nearest neighbours as an integral part of its functionality.
Therefore, Table 3.2 demonstrates that a DenseKD layer is nearly agnostic to sampling
distributions, as the KDTree overlaps with the functionality of the sampling distribution.

In this case, instead of using KDTree, we can deploy the sampling strategy of SWIM
at the point level as the direction function dir(·, ·). Given two point clouds (X1, X2), the
procedures for direction computation using this sampling approach (Naive Recursive
Sampling) are as follows:

1. Given m points x1 ∈ X1, m points x2 ∈ X2, din point features, layer width dout,
ground truths Y1, Y2, randomly sample max(m, dout) pairs (x1, x2) from X1 and X2

respectively with a uniform distribution to construct a candidate pool S.

2. Derive the gradient ||Y1−Y2||∞
max(||x(i)

1 −x
(i)
2 ||2,ϵ)

— where ϵ is the lower bound constant for

distances between pairs — for all pairs (x(i)1 , x
(i)
2) ∈ S, i ∈ {1, . . . ,max(m, dout)} and

normalize into a probability distribution P.

3. Sample m directions x1 − x2 with replacement, (x1, x2) ∈ S following the sampling
distribution P as a collection denoted as D̃.

4. Return D̃ as the point cloud directions between X1 and X2.

After computing the point cloud directions between all selected input pairs, the model can
then proceed to Step 2 of the weight construction procedure for a Dense layer to derive the
gradients for all pairs, as outlined at the beginning of Section 3 . This direction computation
algorithm is largely similar to the sampling procedure described in Section 2.2.1 . Moreover,
this approach can be easily extended to other data modalities with deeper nested structures,
by recursively applying the direction computation algorithm across multiple levels. This
algorithm also preserves the flexibility to use different sampling distributions, depending
on the specific use case. To distinguish this layer from SWIM’s Dense layer and DenseKD,
we refer to the one with this recursive sampling method as DenseR.

However, DenseR samples point pairs that lie close to the gradient with a relatively low
probability compared to DenseKD (see Figure 3.8). Most pairs sampled using DenseR tend
to overshoot, with few lying close to the gradient. This raises two questions:

1. Why are these long pairs being selected despite the discouragement from the proba-
bility distribution?

2. How can we select more short pairs?

By inspecting the probability distribution, as illustrated in the bottom left of Figure 3.9 , it
indicates that the difference in proximity will be increasingly reduced during normalization
as the number of pairs increases. The y-axis of the plots are set to range [0,1] on purpose,
to emphasize the insignificance of differences of probabilities when the sample size grows.

47

3 Sampling Weights for PointNet

Figure 3.8: This figure shows the differences between the point cloud directions (black lines)
between a bed (blue) and a bathtub (red), computed using KDTree and Naive
Recursive Sampling. To enhance the visualization effect, we use 1024 point per
point cloud and 1024 sampled directions. Left: KDTree. Right: Naive Recursive
Sampling.

The nearly uniform probability distribution cannot serve as a strong guidance to select
point pairs because the number of point pairs with long proximity is always more than that
of short proximity. In general, there is no good way to sample more close proximity pairs
without additional complexity. Since previous results already show that sampled neural
network does not need optimal short distance pairs, we turn our attention the next possible
optimization to answer the second question, namely pair selection.

3.4.2 Sampling Good Pairs

Given the sampled pool of point pairs, we can further refine the selection by choosing
more pairs with shorter distances. We have already computed the directions and distances
between pairs to derive the gradient, so it is straightforward to exclude the undesired pairs
based on distance or gradient by selecting an arbitrary quantile. In the bottom right of
Figure 3.9 , we can see the probabilities of the 13 point pairs that are in the top 20% in terms
of gradient. This sampling distribution with fewer pairs is more ”opinionated” than the
distribution shown in the bottom left. Compared to the naive approach, this method with a
specified quantile α has an extra step as follows:

1. Given m points x1 ∈ X1, m points x2 ∈ X2, din point features, layer width dout,
ground truths Y1, Y2, randomly sample max(m, dout) pairs (x1, x2) from X1 and X2

respectively with a uniform distribution to construct a candidate pool S.

2. Derive the gradient g(i) = ||Y1−Y2||∞
max(||x(i)

1 −x
(i)
2 ||2,ϵ)

— where ϵ is the lower bound constant for

distances between pairs — for all pairs (x(i)1 , x
(i)
2) ∈ S, i ∈ {1, . . . ,max(m, dout)}.

3. Select Gα = {g|g ∈ {g(i)}, g > quantile({g(i), α)}}, where i ∈ {1, . . . ,max(m, dout) and
α is the given quantile threshold. Normalize Gα into a probability distribution Pα.

48

3.4 Recursive Sampling

Figure 3.9: All figures show the probability to be selected for the point pairs. The top row
are the point pairs chosen by KDTree. The bottom row are chosen by recursive
sampling. The left column contains 64 point pairs while the right contain the
point pairs above 80% quantile in terms of inverse distance (gradient).

4. Denote Sα as a shrunk candidate pool which contains the pairs correspond to the
elements in Gα. Sample m directions x1 − x2 with replacement, (x1, x2) ∈ Sα following
the sampling distribution Pα as a collection denoted as D̃. Return D̃ as the point
cloud directions between X1 and X2 to compute gradients on object level (Step 2 of
the procedure in Section 3).

In Figure 3.10 , we visualize the differences of the sampled directions between KDTree
and Sampling Good Pairs (using quantile). Since the quantile filter shrinks the sample pool,
it is expected that the number of directions at the bottoom is fewer that that of the top.
Despite the directions of KDTree point towards the steep gradient areas in yellow, however,
that of Sample Good Pairs are closer to the steep gradient areas, despite the orientations are
not as neat as the former.

49

3 Sampling Weights for PointNet

Figure 3.10: This figure shows the differences of the sampled directions (blacklines) between
KDTree and Sampling Good Pairs. For better visibility, the figure displays only
the sampled directions. The yellow region is the approximated steep gradient
areas. Top: KDTree. Bottom: Sample Good Pairs.

This approach raises a concern about the variance of the selected pairs, as applying a
quantile filter effectively shrinks the sampled pool. Furthermore, the quantile filter has
no mechanism to control which gradient areas (if there are more than one) are sampled.
Consider a scenario where there are two gradient areas between two point clouds. If the
corresponding magnitudes for all filtered gradients are similar, regardless of the gradient
area, then the gradient area with a higher proportion of gradients in the filtered pool will
naturally have more pairs selected. Conversely, if the magnitudes for gradients from one
area are always higher than the other, this will also lead to an imbalance in the repre-
sentation of the sampled pairs. These abstract conjecture are visualized in on the left of
Figure 3.11 . The sampled pairs mostly concentrated to at the top of the object, which has a
relatively larger contact/intersection area, while the distant pairs have relatively thin lines,
representing low counts in occurrence. Consequently, this approach cannot always improve

50

3.4 Recursive Sampling

the overall representation, as it only passively increases the selection chances of good pairs
from different gradient areas, without any active control over the sampling process.

Figure 3.11: The figure shows the differences between Sampling Good Pairs and Sampling
Diverse Good Pairs. Top: Top view of a bed and a bathtub with yellow in-
tersection areas. For better visibility, only the selected pairs are displayed.
The thickness of the black lines is the standardized number of pair occurrence
amplified using a constant multiplier of 100. Bottom: The histograms of pair
occurrence. Left: Sampling Good Pairs. Right: Sampling Diverse Good Pairs.

51

3 Sampling Weights for PointNet

3.4.3 Sampling Diverse Good Pairs

The challenge is that we do not know the gradient areas in advance, so we must rely on
an unsupervised approach. Logically, a minor gradient area will have fewer point pairs
compared to a major gradient area, as the point clouds are sampled proportionally to the
face areas of the mesh. Consequently, a minor gradient area will be sparser, meaning a
point from one point cloud will have fewer close neighbours from the same point cloud in
that area.

Following the intuition that points in minor gradient areas have fewer close neighbours
compared to major gradient areas, we can approximate the gradient area of a point by
aggregating the distances to all its neighbours. Specifically, a point from a minor gradient
area would have a larger aggregated distance to all neighbours. Conversely, points in
major gradient areas would have smaller aggregated distances to their neighbours. These
aggregated distances can then serve as indicators of the gradient areas to differentiate if a
gradient area is minor or major.

While the time complexity to compute the pairwise distances of an m-point point cloud is
O(m2), which is expensive compared to the O(m) sampling approach, we can optimize this
step. Our objective is to sample diverse, good pairs, so we only need to know if the selected
good pairs are relatively far apart from each other. After filtering the point pairs using a
quantile, the number of remaining pairs, mα, is often much smaller than m, otherwise the
filter cannot effectively exclude the bad pairs. Therefore, we can afford to compute the
mα ×mα distance matrix of the points from one point cloud and sum up the columns to
obtain the gradient area indicators.

With the indicators, we want to prioritize the pairs from under-represented areas. To do
this, we can select the points with larger aggregated distances, as these are more likely to be
from minor gradient areas. The original SWIM sampling distribution prioritizes pairs with
close proximity, which have already been selected by the quantile filter. Since we now know
all the selected pairs are good, we need a different sampling distribution that prioritizes
large distances between the source points of the pairs.

This is where the length squared distribution, slightly different the definition in Equa-
tion 3.3 , comes into play. Here, we compute the distribution by normalizing the pairwise
squared distance matrix of the source points of the good pairs, rather than the distances of
the pairs themselves. This approach ensures that the minor gradient areas, which naturally
have fewer good pairs, are more likely to be prioritized in the sampling process. However,
since the major gradient areas have a higher proportion of good pairs, they will still be
well-represented, even though the minor areas are given higher priority. The inherent low
number of pairs in the minor areas means the major areas will also get selected, preventing
them from being under-represented or overshadowed. A visual aid of this approach can be
found on the right of Figure 3.11 , which contains more balanced distribution of the sampled
pairs compared to that of the left of the figure. The detail procedures are as follows:

1. Given m points x1 ∈ X1, n points x2 ∈ X2, din point features, layer width dout,

52

3.4 Recursive Sampling

ground truths Y1, Y2 randomly sample max(m, dout) pairs (x1, x2) from X1 and X2

respectively with a uniform distribution to construct a candidate pool S.

2. Derive the gradient g(i) = ||Y1−Y2||∞
max(||x(i)

1 −x
(i)
2 ||2,ϵ)

— where ϵ is the lower bound constant for

distances between pairs — for all pairs (x(i)1 , x
(i)
2) ∈ S, i ∈ {1, . . . ,max(m, dout)}.

3. Select Gα = {g|g ∈ {g(i)}, g > quantile({g(i), α}), i ∈ {1, . . . ,max(m, dout)} and α is
the given quantile threshold.

4. Denote Sα as a shrunk candidate pool which contains the pairs correspond to the
elements in Gα. Compute length squared distribution PLS, which is defined as:

PLS(x
(i)
1) =

∑
x
(i)
1 ̸=x

(j)
1

||x(i)1 − x
(j)
1 ||22∑

x
(̃i)
1

∑
x
(̃i)
1 ̸=x

(j)
1

||x(̃i)1 − x
(j)
1 ||22

, x
(i)
1 ,∀x(̃i)1 ,∀x(j)1 ∈ Sα.

5. Sample m directions x1 − x2 with replacement, (x1, x2) ∈ Sα following the sampling
distribution PLS as a collection denoted as D̃. Return D̃ as the point cloud directions
between X1 and X2 for gradient computation.

3.4.4 Results

To recapitulate, the sampling algorithm for a DenseKD or DenseR is as follows:

1. Given the materialized point cloud direction function dir(·, ·) ∈ Rm×din , n point clouds
X ∈ Rm×din where m is the number of points, din is the number of features, layer
width dout, n outputs y ∈ Rdgt where dgt is the ground truth dimensions, randomly
sample max(n, dout) pairs (X1, X2) from the inputs with a uniform distribution to
construct a sampling frame S . Two point clouds in a pair must be different, X1 ̸= X2.

2. Derive the gradient ||y(i)1 −y
(i)
2 ||∞

max(||dir(X(i)
1 ,X

(i)
2)||F ,ϵ)

— where dir(·, ·) could be one of KDTree,

Naive Recursive Sampling, Sampling Good Pairs, or Sampling Diverse Good Pairs;
and ϵ is the lower bound constant for distances between pairs — for all pairs (X(i)

1 , X
(i)
2) ∈

S, i ∈ {1, . . . ,max(n, dout)} and normalize into a probability distribution P.

3. Sample m pairs with replacement from S following the sampling distribution P as a
collection denoted as S̃.

4. Construct dout weights w(i) = s1
dir(X(i)

1 ,X
(i)
2)

||dir(X(i)
1 ,X

(i)
2)||2F

— where w(i) ∈ Rm×din , s1 ∈ R,

(X
(i)
1 , X

(i)
2) ∈ S̃, i ∈ {1, 2, . . . , dout} — and dout biases b(i) = −⟨w(i), X

(i)
1 ⟩ − s2, where

b(i) ∈ Rm, s2 ∈ R.

53

3 Sampling Weights for PointNet

Nr. Points. Time Taken (s) ⇓ Accuracy (%) ⇑ AUCROC (%) ⇑
64 11.34± 0.36 69.98± 3.03 92.12± 1.61
512 73.09± 6.50 76.31± 1.79 94.83± 8.83e−1

1024 109.26± 12.78 73.81± 1.32 93.59± 7.15e−1
2048 180.31± 6.48 75.92± 3.14 94.85± 9.44e−1

Table 3.10: This table illustrates the performance of DenseR on ModelNet10 using Naive
Recursive Sampling, with {64, 512, 1024, 2048} points per point cloud. The ex-
periment for each distribution were repeated for 5 different seeds. The reported
values are mean±standard deviation of 5 results. Bold faces represent the best
results of corresponding columns (differentiated by standard deviation in case
of ties, the lower the better). Nr. Points represents the number of points in a
point cloud.

Naive Recursive Sampling

Table 3.10 presents a comprehensive comparison of DenseR and DenseKD in terms of
training time and performance metrics on ModelNet10. The corresponding visualizations
for time taken and accuracy are shown in Figure 3.12 , which includes the same metrics from
Table 3.7 for comparison.

The results affirm our intuition that replacing KDTree with the recursive sampling ap-
proach can significantly shorten the training time. The time complexity of KDTree is
O(n log n), which is referred to as quasilinear or linearithmic time. As n becomes large, the
additional log n term tends to become a constant, making linearithmic time equivalent to
linear time with a multiplier. The dotted lines in Figure 3.12 represent the linear trendlines
with annotated equations. The trendline for DenseR fits perfectly, while that for DenseKD
has some residuals. The gradient of DenseKD’s trendline is approximately 7 times that of
DenseR, indicating that the runtime of DenseKD will grow 7 times faster than DenseR as the
point cloud density increases. This finding is consistent with our complexity approximation,
where the multiplier is 7.

The promising gain in runtime comes at the expense of prediction performance, with
an average decrease of 11 units across all 4 densities. This significant drop indicates that
sampling as an approximate nearest neighbour function cannot be a direct replacement for
KDTree, which performs exact nearest neighbour search. The accuracy trend of DenseR,
which peaked at 512 points, differs from that of DenseKD. To further explain the trend in
Table 3.7 , we discuss the impact of the soft nearest neighbour function.

Given two point clouds with m points each, there are m2 possible point pairs, of which
m pairs have the closest proximity (top-1 nearest neighbour). The remaining m2 −m pairs
are likely not close, based on the SWIM geometric intuition. Using random sampling, the
probability of selecting a closest pair is 1

m , which approaches 0 as m increases. This explains
the drop in performance, as shown in Figure 3.8 , where the Naive Recursive Sampling can
hardly select the closest pairs. However, the high AUCROCs in Table 3.10 suggest that

54

3.4 Recursive Sampling

Figure 3.12: The reported results are the average over 5 different seeds. Left: The time
taken for DenseKD and DenseR to finish training when the number of points
per point cloud increases. The dotted lines are the linearly projected trendline
with annotated equations in same color. Right: The accuracy of DenseKD and
DenseR when the number of points per point cloud increases.

the model is not random guessing. Therefore, on the bright side, the assumption that the
sampled neural network does not require exact nearest neighbours holds true. Next, we
evaluate the effectiveness of quantile filter in sampling good pairs from the inputs.

Sampling Good Pairs

Figure 3.13 presents the time taken and the accuracy of ModelNet10 classification of sam-
pling from top 40%, 20%, and 5% quantile range. The results from Figure 3.12 are plotted
with faded effect for visual comparison.

In the figure, it is evident that the additional operations of selecting quantile values and
filtering undesired point pairs do not significantly impact the overall runtime. DenseR with
three different quantiles exhibits a linear growth rate. The empirical results confirm our
intuition with significant accuracy gains of approximately 5 to 10 units, as shown on the
right of Figure 3.13 .

The trends observed across all quantiles allow for several plausible interpretations. It’s
important to recall that the sample size for point pairs is determined by the maximum
between point cloud density and layer width. Moreover, as quantile is a rank-based statistic,
it ensures consistency in the shrunk sampled pool size. Consider the first layer of sampledz
PointNet, which has a width of 64 and a density of 64 points. In this case, the sampled
pool sizes for top quantile ranges of 40%, 20%, and 5% are 26, 13, and 4, respectively. The
indistinguishable results across all quantiles for 64-point point clouds suggest that the
differences between two point clouds can be effectively represented in a 64-row direction
matrix constructed using as few as four fundamental directions, each repeating a random
number of times.

Remember that the sampling space for the subsequent layer is determined by the weights,

55

3 Sampling Weights for PointNet

Figure 3.13: DenseR samples from top quantile ranges. The reported results are the av-
erage over 5 different seeds. Left Dotted: The time taken for DenseR with
{0.6,0.8,0.95}-quantile range selection to finish training when the number of
points per point cloud increases. Right Dotted: The accuracy of DenseR with
{0.6,0.8,0.95}-quantile range selection when the number of points per point
cloud increases.

which are derived from the point cloud differences. An accuracy of 80.73% with the top
5% quantile and 64 points density indicates that the first layer can construct a decent
sample space for subsequent layers using only four ’basis’ directions for each point cloud
pairs. We adopt a probabilistic perspective to quantify out the ”quality” of these four
directions. The probability of sampling 4 good pairs out of all possible combinations
follows a hypergeometric distribution:

p(Ngood,M,Mgood, N) =

(
Mgood
Ngood

)(
M −Mgood
N −Ngood

)
(

M
N

) , (3.4)

where Ngood is the number of sampled good pairs, M is the total number of all possible pairs,
Mgood is the total number of good pairs, and N is the number of sampled pairs. In our case,
we do not know the exact number of good pairs Mgood. However, it is reasonable to assume
that, on average, a point can form j good pairs, which gives us an approximate total number
of good pairs Mgood = 64j. The probability of having at least 4 good pairs p(Ngood ≥ 4)
with j = {3, 5, 10}, M = 642, and N = 64 is {0.3526, 0.7485, 0.9937} respectively.

Under the classification setting, we can simplify the definition of a good direction (equiv-
alent to steep gradient) to close proximity. It is intuitive that the larger the true extent of
close proximity, the more good pairs can be formed. Our analysis shows that the standard
deviation of the top 5% quantile range of 64 points is 1.21 units of accuracy across 5 different
seeds, suggesting a high likelihood of having at least 4 good pairs. Given the sparseness
of point clouds with only 64 points, we can conclude that the threshold for a distance to
qualify as a good pair should be relatively low.

56

3.4 Recursive Sampling

When we feed the model with 512-point point clouds, we observe negligible accuracy
differences across the three given quantile ranges. This observation leads to two impor-
tant insights: firstly, it suggests that sampling more good pairs is beneficial for model
performance. Secondly, it indicates that SWIM exhibits a degree of robustness against
noise, as 512-point clouds are more likely to include additional bad pairs compared to
sparser representations. The improved performance with 512 points can be attributed to
the increased availability of good pairs at higher densities. However, we see a performance
drop when further increasing to 1024 points, suggesting an optimal density sweet spot for
best performance.

We also observe the impact of quantiles on performance varies across different densities.
For instance, the top 40% quantile range of 512 points (204 pairs) outperforms the top 5%
quantile range of 1024 points (51 pairs) in terms of accuracy. This is counterintuitive. Given
that the 512-point scenario, with four times as many pairs, inevitably includes more bad
pairs than the top 5% quantile range of 1024 points, thus, we cannot attribute the entire
performance drop to noise alone.

When we consider the rich representation offered by 1024 points, it gives rise to another
reason for the decrease in performance. It is possible that uneven ratios of gradient areas in
the point cloud lead to disproportional pair selections. In this scenario, good pairs from
minor gradient areas might be overshadowed by those from major gradient areas, resulting
in an overall under-representation of certain features. The top 20% quantile range of 1024-
point density contains 204 pairs, matching the number in the top 40% quantile range of 512
points. Its slightly worse performance supports our hypothesis of under-representation,
where dominant but redundant information from major gradient areas overshadows minor
features.

Given that the top 5% quantile range has consistently yielded the best performance for
both 512 and 1024 points, it is logical to focus on this range when examining 2048-point
clouds, rather than experimenting with the remaining two quantile ranges. The top 5%
quantile range of 2048 points (comprising 105 pairs) leads to better accuracy than that of
1024 points. This suggests that under-representation can be mitigated once the number
of points in minor gradient areas exceeds a certain threshold. The increased point density
allows for better sampling across all gradient areas, including those previously under-
represented. It is worth noting that the slight accuracy difference between 512 points and
2048 points is statistically insignificant, as both values fall within the standard deviation
of each other. This observation implies that beyond a certain point density, the benefits
of increasing the number of points may plateau, which is consistent with our findings in
Section 3.3.1 .

Sampling Diverse Good Pairs

The results of this approach are plotted in Figure 3.14 , showing both training time and accu-
racy. Notably, there are significant differences in training time among the three quantiles,
confirming that computing the distance matrix is indeed computationally intensive for

57

3 Sampling Weights for PointNet

Figure 3.14: DenseR samples from top quantile range with Length Squared distribution of
the pairwise distance of source points. The reported results are the average over
5 different seeds. Left Dotted: The time taken for DenseR with {0.6,0.8,0.95}-
quantile range selection to finish training when the number of points per point
cloud increases. Right Dotted: The accuracy of DenseR with {0.6,0.8,0.95}-
quantile range selection when the number of points per point cloud increases.

larger sampled pools of good pairs. Fortunately, we need not consider large quantile ranges
due to their negative impact on performance. The run time for the top 5% quantile range
appears to scale linearly, except for the 2048-point density, which is already considered too
dense to contribute meaningfully.

The accuracy results are encouraging and support our intuition. This new approach
outperforms its predecessor (DenseR + Quantile) across all configurations. Moreover, only
two configurations with the top 40% quantile range show worse performance compared
to DenseKD. These two configurations, using 512 and 1024 point densities (with similar
or worse performance expected for 2048 points with the same quantile), likely include a
substantial number of bad pairs. This hypothesis is supported by the relatively significant
differences (at least one standard deviation) among the quantiles of 512-point density,
compared to its predecessor.

Without the length-squared distribution of source point distances, the selected pairs are
likely dominated by good pairs from major gradient areas, leading to the indistinguishable
results shown on the right of Figure 3.13 . In contrast, our current approach uses the quantile
filter to retain good pairs while blindly selecting those with far distances from others. This
method, however, is not without risk. If bad pairs manage to pass through the quantile filter
— for example, those with source points located on outer edges rather than in intersections
(gradient areas) — they are likely to be selected due to their large proximity to the source
points of good pairs in the gradient areas.

The accuracy discrepancies across three selected distance quantiles for 64-point density in
Figure 3.14 offer valuable insights into the relative importance of good pairs versus gradient
diversity. Based on our previous assumption that each point from a 64-point cloud can
form 10 good pairs, the probability of sampling four good pairs out of 640 possible pairs in

58

3.4 Recursive Sampling

64 draws approaches certainty. Selecting these four pairs with the top 5% quantile range
provides a solid foundation, achieving around 80% accuracy with the original sampling
distribution.

Switching to the length-squared distribution of pairwise source points’ distances yields
a two unit accuracy improvement with a 0.6-unit standard deviation. This suggests that
the proportions of these four pairs in the 64-row direction matrix are significant. The top
40% quantile of 64-point density further improves accuracy by two units with a two units
standard deviation. The 26 selected pairs from top 40% quantile in this case are certainly
more representative than 4 pairs from top 5%, raising the performance ceiling. However,
this ceiling is challenging to reach. Using Equation 3.4 , the probability of sampling all 26
good pairs out of 192, 320, 640 pairs — corresponding to the assumption of 3, 5, 10 expected
pairs per point — is nearly impossible, with probabilities of {7.77e−16, 2.41e−13, 1.10e−6}
respectively.

As density increases, we observe the negative impact of long-proximity pairs as gradient
diversity saturates. The 0.6 and 0.8 quantiles, which contain more bad pairs, show worse
performance. This is possibly due to the influence of bad pairs outweighing that of good
pairs in shaping the representation. The performance with the 0.95 quantile reaches a
plateau — surpassing the exact nearest neighbours from DenseKD — after increasing the
density from 64 to 512 points. This indicates that the diversity of directions saturates with
good proportions of good and bad pairs. These results successfully verify the importance
of gradient diversification in improving model performance.

3.4.5 Discussion

The journey of searching a more efficient replacement for KDTree is fruitful. Using basic
probability and statistics, we found a linear run time approach with comparable perfor-
mance with KDTree. We would like to highlight that the integration of sampling top
quantile range and length squared distribution of pairwise source points’ distances is also
applicable to DenseKD and will likely outperform DenseR, since it is clear from Figure 3.10

that the pair selection of DenseKD can still be optimized by choosing the optimal distances
among exact nearest neighbours with the probability distributions shown in the top row
of Figure 3.11 . However, taking scalability into consideration, it might be a good idea to
stick with DenseR for dense point cloud. It is also intriguing to study the impact of adding
quantile filter and gradient diversification on the object level, which can be generalized
to all SWIM applications. We leave that for future work. For the latter sections, we use
DenseR with Sampling Diverse Good Pairs to construct sampled PointNet, since it has the
best trade-off between computation time and performance.

59

3 Sampling Weights for PointNet

3.5 Discrete Online Learning

Online learning is a powerful paradigm in machine learning where models are trained
sequentially on incoming data, enabling for training with large datasets which could not be
fitted entirely into computational memory. At the heart of many online learning algorithms
lies the concept of batching, a technique that processes data in small, manageable chunks
rather than all at once. Batching strikes a crucial balance between computational efficiency
and statistical accuracy, making it particularly effective when combined with gradient
descent optimization. Unlike some optimizers — such as least square — that require a
global view of the data, gradient descent can make meaningful progress with just a subset
of examples. By using batches, we can approximate the true gradient of the entire dataset,
enabling more frequent model updates and often leading to faster convergence. This
synergy between online learning, batching, and gradient descent is especially powerful in
scenarios with large datasets or streaming environments where data arrives sequentially,
allowing models to continuously learn and adapt to changing patterns.

In previous sections, we mentioned in several occasions that computation memory
hinders SWIM to process large datasets. After reducing the time complexity using DenseR,
space complexity is the only obstacle left to improve SWIM’s scalability. Given the rise
of stochastic gradient descent, online learning should also be the way forward for SWIM.
However, due to the weight construction mechanism and lack of gradient feedback, SWIM
cannot update the weights and biases continuously using the feedback. In light of this, we
attempt to redefine online learning from SWIM’s perspective by accommodating its unique
features.

3.5.1 Weight Evolution

The fundamental idea of online learning is the ability to update weights and biases after
every inference (the forward pass). The current state of SWIM resets all weights and biases
for each inference, and fully adapts to the new inputs. In other words, SWIM has no
memory. To enable SWIM with memory, we need to design a mechanism to retain and
update the weights and biases. In other words, we want to replace some constructed weights
and biases if the model can find better weights and biases from the new inputs.

A natural follow-up would be determining better weights and biases, with the only
reference point for comparison being the existing weights and biases. Fortunately, compar-
ing the old weights and biases with potential new ones is akin to comparing input pairs
from a batch of inputs. Weights and biases are constructed using directions and distances,
which serve as operands for comparisons. Intuitively, for every inference, we mix selected
directions with the newly sampled directions from the new inputs to form a new sampling
frame. By normalizing the respective sampling logits — for the original SWIM sampling
distribution, the gradient; for length-squared sampling distribution, the features of selected
source points — we obtain a sampling distribution that contextualizes the competitiveness
of old weights and biases with new inputs.

60

3.5 Discrete Online Learning

Using the sampling distribution, a Dense or DenseKD or DenseR layer can follow the
same procedure to construct updated weights and biases. This updating process is akin to
an evolution to keep the good weights and discard the bad weights following a pre-defined
heuristic (the chosen sampling distribution). Note that this mechanism does not concern the
point cloud direction function dir(·, ·), which was the focus in Section 3.1 and Section 3.4 . It
consists of only a few extra steps between directions computation and forming the sampling
distribution (assuming the original SWIM distribution) as detailed below:

1. Compute point cloud directions and ground truth differences of new inputs.

2. Concatenate the directions and corresponding ground truth differences of old weights
with that of new inputs.

3. Establish the new sampling distribution using the concatenated directions and ground
truths.

4. Sample directions to compute new weights and biases.

To use a different sampling distribution, simply substitute the directions and ground
truths with corresponding sampling logits for concatenations. However, we could not
perform the same mechanism for Linear layer, in particular a least square optimizer, due
to its inherent incapability to retain and update weights. Nonetheless, we might not need
to update the chosen optimizer multiple times. This is because the responsibility of the
linear optimizer is only to project the embeddings from a latent space constructed by
sampled directions, to the output space. Conceptually, the process of weight updates is
also the process to perfect the constructed latent space; with every weight replacement,
the sampled directions establish a latent space with better representation. Thus, it makes
sense to optimize the last layer only when the latent spaces are perfected, since the previous
weights and biases of last layer will be reset anyway.

To this end, the training scheme will be a little different with the addition of online
learning, since we want to update the Dense layers and its variants for multiple times and
only need to optimize the least square optimizer for once:

1. For the first batch, constructs initial weights and biases for all Dense layers and its
variants.

2. For the subsequent batches, updates the weights and biases for all Dense layers and
its variants.

3. Lastly, sample a representative batch from train data, make a forward pass through
all Dense layers and its variants, and optimize the least square layer.

With this training scheme in place, the computational memory should no longer be an
issue for training on large dataset. To see if this mechanism can raise the ceiling of the
performance, we consider these two follow-up questions :

61

3 Sampling Weights for PointNet

• How can we ensure that the updated weights can produce a latent space with better
representation?

• How can we sample a representative batch for the Linear layer?

We attempt to answer these questions by investigating the batching configurations.

3.5.2 Batching Matters

The batching configurations in our context contain three key factors: method, batch size,
and the number of iterations. We consider two methods of batching, namely sequential
and random. Given a batch size, sequential batching divides the train data into chunks
following the given permutations; random batching is essentially subsampling the train
data. We hypothesize that sequential batching might lead to worse performance, because
it reduces the number of combinations of input pairs — inputs from different batches can
never pair up. With random batching, while inputs may be resampled repeatedly, each
batch is likely to have different input combinations, thereby broadening the ”horizon” of
a sampled network. With more choices for point cloud directions, we speculate that the
sampled network can produce a latent space with a better representation.

The second component, batch size, also has an impact for iterative gradient methods. Typ-
ically, the rule of thumb is to choose a batch size as large as the memory can accommodate.
The larger the batch size, the stabler the training. In the context of SWIM, a smaller batch
size determines the number of input pairs, resulting in fewer possible combinations. More-
over, it influences the nature of the linear system — under-determined, well-determined, or
over-determined — for the least square optimizer to solve. With fewer samples, a smaller
batch size also provides fewer optimization opportunities for the least square method to
refine its weights. Therefore, we should use larger batch size so that a representative batch
can be sampled for the optimization.

Finally, we discuss third key component: the number of iterations. This factor represents
the number of opportunities for a sampled neural network to update its weights during
the training process. A common initial choice for the number of iterations is the floor of
the quotient obtained by dividing the total number of data points in the training set by
the batch size. However, this approach is akin to one-shot learning, as the model will only
encounter the dataset once. Instead, one can either fix an arbitrary number of iterations
or implement an early stop mechanism to identify the optimal number of iterations for
training the neural network effectively. This way, the model can make the best use of its
learning opportunities and improve its weights accordingly.

3.5.3 Results

We design three experiments to investigate the impact of these three key factors: batching
method, batch size, and the number of iterations. We use DenseR with quantiles and length-

62

3.5 Discrete Online Learning

squared distributions of the sampled source points to construct the shared Fully-Connected
layers. The inputs have 512-point density.

Batching Methods

Methods Time Taken (s) ⇓ Accuracy (%) ⇑ AUCROC (%) ⇑
Sequential 106.47± 19.71 72.84± 2.93 89.26± 1.34

Random 90.07± 6.50e−1 72.15± 8.74e−1 88.22± 1.44

Table 3.11: This table illustrates the performance of sequential batching and random batch-
ing on ModelNet10 with 256 batch size, 512 point cloud density, and 10 iterations.
The experiment for each distribution were repeated for 5 different seeds. The
reported values are mean±standard deviation of 5 results. Bold faces represent the
best results of corresponding columns (differentiated by standard deviation in
case of ties, the lower the better).

From Table 3.11 , both methods have similar performance with the sequential batching
being slightly superior. Despite the advantage being insignificant, our empirical results
reject the hypothesis that sequential batching would deteriorate the sampled representations
due to fewer possible combinations between input pairs. Using a small batch size of 256,
we observe that random batching yields smaller standard deviations for both computation
time and accuracy compared to sequential batching. This may be due to random batching
resulting in more consistent batch distributions, which allows the least square optimizer to
converge at a similar rate.

Batch Size

The results from Figure 3.15 suggest that the number of parameters of the least square
optimizer has a big impact on the performance. A 256 batch size reduces the accuracy by
around 13 units compared to training without batching, which has an accuracy of 86.68%
(shown in Figure 3.14). As the batch size is approximately one-tenth of the size of the train
set, it is likely that the batch is not representative. Additionally, recall that in the current
architecture of sampled PointNet, the last layer prior to the least square layer has a width
of 256. Therefore, a 256 batch size is possible to result in any of the under-determined,
well-determined, or over-determined system.

For 1024 and 2048 batch sizes, the inputs are more likely to form an over-determined
system with only 256 features. Furthermore, both batch sizes are large enough to enable
good representation of the train set. Thus, their performances are only slightly reduced
compared to that of training without batching (86.68%), and the discrepancy in accuracy
between the two sizes is insignificant. Having addressed the computational memory
demand for SWIM to train on large datasets, we proceed to investigate whether increasing
the number of iterations would lead to improved predictive power.

63

3 Sampling Weights for PointNet

Figure 3.15: The accuracy for the batch sizes of {256, 1024, 2048} with 512-point point clouds
and {10, 2, 1} iteration(s). The reported results are the average over 5 different
seeds.

Number of Iterations

N. Iter. Time Taken (s) ⇓ Accuracy (%) ⇑ AUCROC (%) ⇑
2 98.27± 13.61 85.77± 1.39 97.05± 3.89e−1

5 133.33± 2.53 85.69± 7.66e−1 96.89± 5.47e−1

10 242.26± 16.18 86.39± 1.35 97.12± 5.97e−1

50 1446.99± 16.54 85.75± 1.41 97.18± 5.76e−1

Table 3.12: This table illustrates the performance in relation to the number of iterations {2, 5,
10, 50} on randomly batched ModelNet10 with 1024 batch size, 512 point cloud
density. The experiment for each distribution were repeated for 5 different seeds.
The reported values are mean±standard deviation of 5 results. Bold faces represent
the best results of corresponding columns (differentiated by standard deviation
in case of ties, the lower the better).

In the absence of feedback, having more chances for the sampled PointNet’s weight
choices does not necessarily lead to significantly more good decisions, even with the
assistance of sampling distributions. Our results from Table 3.12 confirm this conjecture, as
we observe four indistinguishable performances across the chosen number of iterations:
2, 5, 10, and 20. Note that the table shows the results of random batching, therefore we
cannot ensure that the model processes through the entire dataset. Based on our previous
findings in last experiment with batch sizes and Section 3.3.1 , a batch size of 1024 with a
point density of 512 should enable good representations on both point cloud and point

64

3.5 Discrete Online Learning

level, therefore we can rule out the possibility of information deficits as the primary cause.
To further investigate this phenomenon, we analyze it under two scenarios: flat and

sharp sampling distributions on point cloud level. As previously noted, on point cloud
level, the sampled PointNet uses the original SWIM distribution, which prioritizes close
proximity between input pairs under classification settings. In the case of a flat sampling
distribution, the differences among the distances of input pairs are overshadowed by the
number of input data, leading to small sampling probabilities for each input pair. This
is equivalent to randomly sampling new weights for the updates, which can no longer
guarantee improvements. This hypothetical scenario highlights the need of implementing a
function similar in spirit to the quantile filter on point level, as proposed in Section 3.4.2 , to
sample the good pairs.

In the latter scenario, the sharp peaks can serve as heuristics to guide the weight updates.
However, regardless of the batching method, no mechanism prevents the sampled PointNet
from repeatedly choosing the same input pairs (or the pairs from the same two classes).
As a result, the weights become increasingly monotonous, leading to a similar problem, as
discussed in Section 3.4.3 , where the weights under-represent the data distribution due to
the lack of diversity. This observation suggests that a gradient diversification approach,
similar to the one introduced in Section 3.4.3 at the point level, could be a promising
direction for future work.

3.5.4 Discussion

With discrete online learning, SWIM can now process large datasets. Given a large enough
batch size, discrete online learning yields comparable performance with a much smaller
memory footprint. For a sampled PointNet, the empirical results suggest that the batch size
has relatively more influence on the least square optimizer than the Dense layers and their
variants. The input size should allow the least square optimizer to solve an over-determined
linear system. Additionally, the input should be representative.

At the current stage, having more iterations does not enable better performance, despite
multiple encounters with the datasets. We acknowledge that due to the fundamental
limitations of SWIM, it is difficult to for discrete online learning to strike the optimum,
unlike the conventional online learning for iterative gradient method. We speculate that
this situation can be improved by using similar strategies as in Section 3.4 : selecting more
diverse good pairs. However, defining good pairs and their diversity on the object level
becomes more challenging.

One feasible direction is to re-implement the strategies on a point level on the object level.
Instead of computing the distance matrix of the selected source points, we can compute
the point cloud distances among the selected source point clouds. However, this approach
would require additional point cloud direction computations, potentially slowing down the
runtime. Another potential future work is to design a scalar signature that encodes context,
including point cloud direction and corresponding class pairs between two point clouds.
With the scalar signatures, we can perform lightweight sampling to ensure that all class

65

3 Sampling Weights for PointNet

pairs are well represented in the weight constructions. Nevertheless, after determining
how to design our inputs with batching, we turn our attention to studying the optimal
architecture of sampled PointNet for ModelNet.

3.6 Architecture Optimality

Neural network architecture optimization is a crucial aspect of developing effective machine
learning models. The process involves determining the ideal structure and configuration of
a neural network to achieve optimal performance on a given task. This includes decisions
about the number of layers (depth), the number of neurons in each layer (width), the types
of layers to use, and the choice of activation functions. Finding the optimal architecture is
often a complex and iterative process that requires a combination of domain knowledge,
experimentation, and sometimes automated techniques. The goal is to strike a balance
between model complexity and performance. In previous discussions, we have mentioned
on several occasions that some parts of the original PointNet architecture are designed to
leverage iterative gradient methods, and thus should not be included in sampled PointNet.
However, the architecture of sampled PointNet should not be too distinct from PointNet
for the sake of fair comparisons.

3.6.1 Results

To preserve the originality of PointNet, we only consider changing the depth and width of
the shared DenseR layers, which constitute the encoder, and the Dense layers, which are
the decoder. A MaxPool layer will be inserted after the encoder, while a Linear layer with
least square optimizer will follow either the MaxPool layer, or the decoder if available. We
start by finding the depth configurations which give rise to the best performance. Then,
using the best configurations, we investigate whether the model capacity in terms of layer
width or the amount of information embedded in the inputs are the limitations. Finally,
we question the use of mean function as the weight aggregation strategy for shared Dense
layers.

Depth

From the perspective of depth, we investigate three key factors: the number of layers in
the encoder, the impact of the decoder, and the number of layers in the decoder. For the
encoder, we follow the architecture proposed by Qi et al. [2017a], which consists of at most
five layers of shared DenseR: [64, 64, 64, 128, 1024]. For simplicity, we respect the sequential
order of the architecture. In particular, we do not randomly omit a middle layer such as
[64, 64, 1024]. The layer combinations of encoder are chosen to assess the functionality of
first three layers with 64 neurons, and the effects of having differnet widths as last layer of
the encoder. As Qi et al. [2017a] mention, the decoder can be any classifier. The original

66

3.6 Architecture Optimality

design uses three Fully-Connected layers (including the output layer) as the classifier. We
investigate the influence of this designated depth using two Dense layers and one least
square layer. Furthermore, we also attempt to justify the necessity of including two Dense
layers prior to the least square optimizer.

Figure 3.16: The figure shows the computation time and accuracy for different architecture
with 512-point density. The reported results are the average over 5 different
seeds.

From Table 3.16 , we are surprised to see that only one shared DenseR layer with 64
neurons can already achieve a decent accuracy of 80%, despite adding more similar layers
resulting in a big boost to 88% accuracy at the expense of slightly longer computation
time. However, for the remaining combinations, we can notice that having more than one
64-width layers — for example, [64,128], [64,64,128], [64,64,64,128] — does not significantly
help the predictions and may slightly worsen the accuracy. This reflects that one layer with
64 neurons is likely underfitted due to too few parameters.

It is interesting to observe that, although [64,128] and [64,64,64] share the same number
of parameters for the encoder, the former has more parameters in its least square optimizer,
resulting in 4 units more accurate than the latter. This suggests that the capacity of the
least square optimizer plays an important role in getting good predictions. The remaining
configurations, grouped by the width of the last layer, affirm that the number of least
square’s parameters are the dominant factor in relation to predictive power. The [1024]
configuration of shared DenseR layer is specifically tested to assess whether large number
of least square’s parameters with a non-linear transformation brought by the shared DenseR
layer is sufficient to achieve best performance. Since the accuracy is only marginally better
than that with 64 neurons, this indicates that a certain level of depth is still required to
achieve best performance.

Out of all configurations, the groups with a 1024 width as the last layer of the encoders

67

3 Sampling Weights for PointNet

have the best performances at around 94% to 95%, which is only three to four units of
accuracy behind the state-of-the-art, with a training time of slightly beyond one minute.
This can be attributed to the enhanced modelling capacity of the least square optimizer with
two to four times the parameters. Compared to the original sampled PointNet architecture
[64, 128, 1024, 512, 256], the improvement of [64, 128, 1024] is more than 10 units of accuracy.
It is also interesting to find that the former with 799,370 parameters has shorter computation
time than the latter (150,922 parameters), despite the additional parameters of the decoder.
This indicates that the least square optimizer has more expensive run time complexity
compared to the sampling process and the matrix multiplications. However, the stark
difference in the number of parameters suggests that the encoder-only architecture is more
efficient in terms of space complexity.

In general, the addition of Dense layers — with width designs of [512] and [512, 256]
— as a decoder does not show a positive contribution. The performances are similar to
those encoders with small last layer widths, despite two to ten times the computation
time. We can conclude that sampled PointNet cannot excel with deep architectures, which
is one of the limitations of SWIM as reported by Bolager et al. [2023]. One plausible
reason is that the current sampling mechanism cannot harvest information fully during
the forward pass of inference. This problem is akin to the gradient vanishing or exploding
challenges of iterative gradient methods, but in the reverse direction. Therefore, it is worth
investigating the feasibility of adapting specific remedies, such as skip connections, from
iterative gradient methods.

Width and Density

To evaluate the impact of width, we use the depth configurations — grouped by the width
of the last layer — which have the best performance, that is, [64,128,1024], [64, 64, 128, 1024],
and [64, 64, 64, 128, 1024]. Then, we double the parameters for each layer. We also conduct
separate runs to inspect whether the size of the model parameters has been a limitation to
capture more information. For these runs, we increase the density of point clouds from 512
points to 1024 points.

In Figure 3.17 (note that it is on a different scale compared to Figure 3.16), the results
reflect that having denser point cloud from 512-point to 1024-point can marginally improve
the performance. Deeper architectures have relatively larger improvements, which are
however under one unit of accuracy. Using point clouds with 1024 density, doubling the
width of [64, 128, 1024] configuration lead to a slight improvement of roughly 0.15 unit
of accuracy. However, the same treatment on the deeper architectures deteriorate the
prediction power. It could be that deeper architecture with doubled parameters overfitted
to the train set.

68

3.6 Architecture Optimality

Figure 3.17: The figure shows the computation time and accuracy for different architecture
with scaled up density and parameters. The reported results are the average
over 5 different seeds.

Weight Aggregation

For the experiments thus far, we have been using the average of weights and biases at
point level as the strategy to implement the concept of parameter-sharing. However, this
setup might not be optimal. To assess the optimality of weight aggregation strategy, we
train sampled PointNets using another two aggregation strategies, namely maximum and
median. Maximum is a popular symmetric function, which is employed in Hausdorff
distance (Equation 2.5) and in PointNet as a pooling layer. Median is a rank-based statistic
which is more robust against outliers and often used as an alternative of mean.

Strategy Time Taken (s) ⇓ Accuracy (%) ⇑ AUCROC (%) ⇑
Mean 70.92± 2.93 95.10± 7.74e−2 99.37± 0.11e−1

Max 52.61± 2.28 55.74± 1.56e−1 84.73± 2.57e−2

Median 55.48± 1.27 93.88± 6.68e−1 99.11± 1.24e−1

Table 3.13: This table illustrates the performance in relation to different weight aggregation
strategies on ModelNet10 with 512 point cloud density and [64, 128, 1024]
architecture. The experiment for each distribution were repeated for 5 different
seeds. The reported values are mean±standard deviation of 5 results. Bold faces
represent the best results of corresponding columns (differentiated by standard
deviation in case of ties, the lower the better).

Table 3.13 shows that using mean function as the aggregation strategy for shared DenseR
layers can lead to superior performance compared to maximum and median. Maximum

69

3 Sampling Weights for PointNet

has the worst performance out of all strategies. In the context of SWIM, a maximum
function extracts the largest difference in every dimension between two point clouds, which
could undermine the latent representation, since SWIM relies on the directions with close
proximity. For using median as the aggregation strategy, the sampled PointNet has a
slightly worse performance which lies out of the standard deviations of the accuracy of
using mean. This reveals that the underlying distributions are not normal distribution
(otherwise the median is also the mean). On top of that, it shows that using the rank-based
statistic would result in under-representation compared to that of mean, which considers
all points. However, we argue that the discrepancy of performance between using mean or
median will vary depends on point cloud density.

3.6.2 Discussion

It is important to remember that the optimal architecture shown in this section is only
optimized against ModelNet. Our empirical findings suggest that sampled PointNet should
not blindly follow the original architecture of PointNet. SWIM requires a good depth to
perform well. For every layer, SWIM constructs weights which establish a new sampling
space for next layer. However, a deep architecture might result in corrupted sampling
spaces — akin to gradient vanising or exploding for iterative gradient methods — which
lead to bad performance. It is certainly an interesting future work to counter these effects.

The width of a layer determines the number of placeholders, which set the upper bound
of the capacity of layer to encode information. With more placeholders, a Dense layer
has more capacity to contain diverse directions, but could also lead to overfitting. Lastly,
weight sharing mechanism plays an important role in enhancing the efficiency of a neural
network. Unlike iterative gradient methods, SWIM cannot fine tune the shared weights
through aggregated gradient feedback. Therefore, using basic weight aggregation strategy
is a provisional approach to move forward. In future, a more sophisticated strategy should
be developed to better encode the rich information between two point clouds using one
vector. With the optimal architecture, we can finally evaluate our work thus far on the
standard dataset, ModelNet40.

3.7 ModelNet40

ModelNet40, curated by Wu et al. [2015], is a widely used benchmark for 3D objects
classification. It includes 12311 CAD models from 40 categories that are split into 9843
for training and 2468 for testing. Since ModelNet40 is the superset of ModelNet10, for all
experiments thus far, we evaluated only on the validation set, which is split from the train
set of ModelNet10 to prevent data leakage. Since we now have our optimized architecture
and input configurations, we no longer need to extract a validation set from the train set
of ModelNet40. We train on all 9843 samples, and measure the performance on 2468 test
samples in terms of computation time and accuracy.

70

3.7 ModelNet40

We create the point cloud dataset from ModelNet40 with density of 512 points. The points
are sampled from the surface of the meshes proportionally to the surface area. Additionally,
the train set is augmented by 3 times with random rotations to evaluate rotational robustness
of sampled PointNet on ModelNet40. The chosen configuration of point cloud density and
data augmentation has the best accuracy-efficiency tradeoff on ModelNet10, as investigated
in Section 3.3.1 and Section 3.3.2 . These points are then centralized and normalized into an
unit sphere. For sampled PointNet, we use DenseR with Sampling Diverse Good Pairs and
the other common components to implement the architecture of [64, 128, 1024].

Given that the entire train set can be accommodated within the computational memory,
and batching does not bring further advantages at this stage, we opt to train two sampled
PointNets without batching. The first model uses standard inputs, and its performance is
evaluated directly on the test set. For the second model, we train with 3-augmentations
rotated inputs and obtain the majority predictions of the test set across 12 fixed rotation
angles, as proposed by Qi et al. [2017a] and implemented in Section 3.2.4 . To differentiate
between these models, we refer to the first as the Sampled PointNet, and the second as the
Sampled PointNet (Rotation) in Table 3.14 .

To assess the efficacy of our work, we include a comparison of the computation time and
accuracy of several models: PointNet, PointNet (Rotation), and the current state-of-the-art,
RotationNet [Kanezaki et al. , 2019]. Note that the original authors of PointNet [Qi et al. ,

 2017a] only report the accuracy of PointNet — which was trained with rotated inputs — on
the 12-rotation evaluation, therefore we temporarily name it as PointNet (Rotation). We
obtain the accuracy of PointNet on standard inputs and direct evaluation from Yan [2019],
and refer this result as PointNet. For RotationNet, it was trained and tested on multi-view
images of ModelNet40.

3.7.1 Results

Models Nr. Pts Time Taken ⇓ Accuracy (%) ⇑
RotationNet N/A 3− 5 days 97.37

PointNet (Rotation) 1024 3− 6 hours 89.20
Sampled PointNet (Rotation) 512 719.71± 11.84 seconds 65.89± 9.44e−1

PointNet 1024 3− 6 hours 90.60
Sampled PointNet 512 185.65± 1.63 seconds 84.35± 3.67e−1

Table 3.14: This table illustrates the performance of sampled PointNet on ModelNet40 with
512 points per point cloud. Nr. Pts stands for number of points, which is not
applicable to RotationNet, as it adopts an imaged-based approach. The reported
values for sample PointNet and sampled PointNet (Rotation) are mean±standard
deviation of 5 results using 5 different seed. Bold faces represent the best results
of corresponding columns (differentiated by standard deviation in case of ties,
the lower the better).

71

3 Sampling Weights for PointNet

Table 3.14 shows the evaluation results on ModelNet40. Sampled PointNet achieves
comparable accuracy compared to PointNet using inputs with standard orientation — at
most 6.25 units drop in accruracy, within the boundaries of 10% performance loss. The
performance of sampled PointNet (Rotation) against rotated inputs is lackluster, with a
23.31 units accuracy gap behind PointNet (Rotation). Compared to the state-of-the-art
RotationNet, sampled PointNet (Rotation) and PointNet (Rotation) have plenty of rooms for
improvement. It is worth remembering that RotationNet uses multi-view images instead
of point clouds, therefore the column that indicates number of points (Nr. Pts) is not
applicable.

In terms of computation time, we consider the longer training time of sampled PointNet
(Rotation) on a CPU, which is at most 13 minutes. This time spent is 7.72% and 0.3% of what
it takes to train PointNet (as well as PointNet(Rotation)) and RotationNet respectively on a
single GPU. This means that we have achieved our objective of using only 10% computation
time of PointNet, which ranges from 18 minutes to 36 minutes.

3.7.2 Discussion

The evaluation suggests that the Sampled PointNet is not perfect, and it’s only comparable
to PointNet under the standard orientation setting. It’s worth noting that, as reported
by Kanezaki et al. [2019], RotationNet was not trained from scratch, but fine-tuned based
on selected pre-trained models, which have access to extra datasets. The difference in
the number of parameters across all models is significant: RotationNet has 11.6M, 24.2M,
60.2M, and 102.2M parameters, depending on the pre-trained models. In contrast, PointNet
with two T-Nets has 3.5M parameters, and the sampled PointNets has approximately
0.15M parameters. Therefore, Sampled PointNet is the most efficient approach in terms
of predictive power, without considering rotational invariance. The weaker performance
against rotated inputs could be attributed to the fundamental limitations of SWIM. Given
the success of RotationNet, it would be interesting to develop a Sampled PointNet based on
pre-trained models.

72

4 Conclusion

In this thesis, we train PointNet using a state-of-the-art weight construction technique,
namely Sampling Where It Matters (SWIM), instead of iterative gradient methods. We
design and implement the product, sample PointNet, with the following objectives in mind:

1. 18 minutes to 36 minutes training time using ModelNet40,

2. Sample point cloud pairs with steep gradient,

3. Permutation invariance,

4. Rotational invariance.

In particular, we aim to improve the computation time, accepting a potential 10% drop
in accuracy compared to PointNet. In summary, we have successfully achieved three
out of four objectives. Our success with the second and third objectives has rectified the
performance drop to 6.90% (achieving 84.35% accuracy) using standard inputs. However,
our inability to conquer rotational invariance has resulted in a 26.13% reduction in accuracy
using rotated inputs.

We achieve the second and third objectives in Section 3.1 using KDTree to compute the
point cloud directions. Then, we attempt to preserve rotational invariance using various
approaches — T-Net, data augmentation, Spherical coordinates, scaling up density and
augmentations — in Section 3.2 , Section 3.3.2 , and Section 3.3.3 , but unfortunately, to no
avail. During the process, we are aware that the time complexity brought by KDTree
needs to be further optimized in order to achieve the first objective. We propose a scalable
approach, namely recursive sampling in Section 3.4 . Optimizing this approach reveals
the importance of sampling diverse good input pairs on point level. Despite not being
part of the objectives, we also equip SWIM with discrete online learning in Section 3.5 to
process large datasets with controllable computational memory, unlocking the feasibility
of training sampled neural networks using portable devices. Lastly, before we evaluate
sampled PointNet in Section 3.7 , we optimize the architecture of sampled PointNet against
ModelNet10 in Section 3.6 . The final evaluation shows that we over-achieve the first
objective with four minutes training time using regular inputs, and 13 minutes on the
augmented dataset, which is three times larger in size.

With these encouraging results, the journey should not stop here. Compared to the
state-of-the-art in deep learning, there are many opportunities for sampled PointNet to
improve. While it is impossible to exhaust the list of potential improvements here, we
highlight two which are the most relevant to our work: a mechanism should be designed to

73

4 Conclusion

sample diverse good pairs on the object level (we did it on the point level only); the weights
and biases should become a more comprehensive representation — which can encode the
more than one direction meaningfully — to fully utilize the advantage of data augmentation
and online learning. This may allow SWIM to fundamentally advance beyond the discrete
optimization landscape, which is constrained by the input combinations.

74

Bibliography

Erik Lien Bolager, Iryna Burak, Chinmay Datar, Qing Sun, and Felix Dietrich. Sampling
weights of deep neural networks. 2023.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric Deep
Learning: Grids, Groups, Graphs, Geodesics, and Gauges, May 2021. URL http:
//arxiv.org/abs/2104.13478 . arXiv:2104.13478 [cs, stat].

Rickard Brüel Gabrielsson. Universal function approximation on graphs. Advances in neural
information processing systems, 33:19762–19772, 2020.

Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic
analysis, 21(1):5–30, 2006.

Dawson-Haggerty et al. trimesh. URL https://trimesh.org/ .

Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for finding
best matches in logarithmic expected time. ACM Transactions on Mathematical Software
(TOMS), 3(3):209–226, 1977.

Evangelos Galaris, Gianluca Fabiani, Ioannis Gallos, Ioannis Kevrekidis, and Constanti-
nos Siettos. Numerical Bifurcation Analysis of PDEs From Lattice Boltzmann Model
Simulations: a Parsimonious Machine Learning Approach. Journal of Scientific Com-
puting, 92(2):34, June 2022. ISSN 1573-7691. doi: 10.1007/s10915-022-01883-y. URL

 https://doi.org/10.1007/s10915-022-01883-y .

Raja Giryes, Guillermo Sapiro, and Alex M Bronstein. Deep neural networks with ran-
dom gaussian weights: A universal classification strategy? IEEE Transactions on Signal
Processing, 64(13):3444–3457, 2016.

Ian Goodfellow. Deep learning, 2016.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan
Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling
is predictable, empirically. arXiv preprint arXiv:1712.00409, 2017.

Long Hoang, Suk-Hwan Lee, Oh-Heum Kwon, and Ki-Ryong Kwon. A deep learning
method for 3d object classification using the wave kernel signature and a center point of
the 3d-triangle mesh. Electronics, 8(10):1196, 2019.

75

http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
https://trimesh.org/
https://doi.org/10.1007/s10915-022-01883-y

Bibliography

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366, 1989.

Hristo Hristov. Introduction to k-d trees. https://www.baeldung.com/cs/
k-d-trees , 2023. Accessed: 2024-09-12.

Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: theory
and applications. Neurocomputing, 70(1-3):489–501, 2006.

William B Johnson and Joram Lindenstrauss. Basic concepts in the geometry of banach
spaces. In Handbook of the geometry of Banach spaces, volume 1, pages 1–84. Elsevier, 2001.

Asako Kanezaki, Yasuyuki Matsushita, and Yoshifumi Nishida. Rotationnet for joint
object categorization and unsupervised pose estimation from multi-view images. IEEE
transactions on pattern analysis and machine intelligence, 43(1):269–283, 2019.

Miroslav Kubat, Stan Matwin, et al. Addressing the curse of imbalanced training sets:
one-sided selection. In Icml, volume 97, page 179. Citeseer, 1997.

Itai Lang, Asaf Manor, and Shai Avidan. Samplenet: Differentiable point cloud sampling.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7578–7588, 2020.

Léo Lebrat, Rodrigo Santa Cruz, Clinton Fookes, and Olivier Salvado. MongeNet: Efficient
Sampler for Geometric Deep Learning, April 2021. URL http://arxiv.org/abs/
2104.14554 . arXiv:2104.14554 [cs].

Daniel Lehmberg, Felix Dietrich, Gerta Köster, and Hans-Joachim Bungartz. datafold:
data-driven models for point clouds and time series on manifolds. Journal of Open
Source Software, 5(51):2283, 2020. doi: 10.21105/joss.02283. URL https://doi.org/
10.21105/joss.02283 .

Feiran Li, Kent Fujiwara, Fumio Okura, and Yasuyuki Matsushita. A closer look at rotation-
invariant deep point cloud analysis. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 16218–16227, 2021.

Fangzhou Lin, Yun Yue, Songlin Hou, Xuechu Yu, Yajun Xu, Kazunori D Yamada, and
Ziming Zhang. Hyperbolic chamfer distance for point cloud completion. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 14595–14606,
October 2023.

Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for
real-time object recognition. In 2015 IEEE/RSJ international conference on intelligent robots
and systems (IROS), pages 922–928. IEEE, 2015.

76

https://www.baeldung.com/cs/k-d-trees
https://www.baeldung.com/cs/k-d-trees
http://arxiv.org/abs/2104.14554
http://arxiv.org/abs/2104.14554
https://doi.org/10.21105/joss.02283
https://doi.org/10.21105/joss.02283

Bibliography

Antonio Montanaro, Diego Valsesia, and Enrico Magli. Rethinking the compositionality
of point clouds through regularization in the hyperbolic space. Advances in Neural
Information Processing Systems, 35:33741–33753, 2022.

Kevin P Murphy. Probabilistic machine learning: an introduction. MIT press, 2022.

Pierre Onghena, Leonardo Gigli, and Santiago Velasco-Forero. Rotation-invariant hierar-
chical segmentation on poincare ball for 3d point cloud. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) Workshops, pages 1765–1774, October
2023.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559–572, 1901.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. PointNet: Deep Learning on
Point Sets for 3D Classification and Segmentation, April 2017a. URL http://arxiv.
org/abs/1612.00593 . arXiv:1612.00593 [cs].

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. Advances in neural information processing
systems, 30, 2017b.

Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random bases.
In 2008 46th annual allerton conference on communication, control, and computing, pages
555–561. IEEE, 2008.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear
embedding. science, 290(5500):2323–2326, 2000.

Frederic Sala, Chris De Sa, Albert Gu, and Christopher Ré. Representation tradeoffs for
hyperbolic embeddings. In International conference on machine learning, pages 4460–4469.
PMLR, 2018.

Anton Maximilian Schäfer and Hans Georg Zimmermann. Recurrent neural networks are
universal approximators. In Artificial Neural Networks–ICANN 2006: 16th International
Conference, Athens, Greece, September 10-14, 2006. Proceedings, Part I 16, pages 632–640.
Springer, 2006.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal com-
ponent analysis. In International conference on artificial neural networks, pages 583–588.
Springer, 1997.

77

http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593

Bibliography

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view
convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE
international conference on computer vision, pages 945–953, 2015.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework
for nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay May-
orov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimr-
man, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272,
2020. doi: 10.1038/s41592-019-0686-2.

Wikipedia. Neural network (machine learning). https://en.wikipedia.org/wiki/
Neural_network_(machine_learning) , 2024. Accessed: 2024-09-11.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1912–1920, 2015.

Xu Yan. Pointnet/pointnet++ pytorch. https://github.com/yanx27/Pointnet_
Pointnet2_pytorch , 2019.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. Deep Sets. In Advances in Neural In-
formation Processing Systems, volume 30. Curran Associates, Inc., 2017. URL
 https://proceedings.neurips.cc/paper_files/paper/2017/hash/
f22e4747da1aa27e363d86d40ff442fe-Abstract.html .

Chen Zhao, Jiaqi Yang, Xin Xiong, Angfan Zhu, Zhiguo Cao, and Xin Li. Rotation invariant
point cloud analysis: Where local geometry meets global topology. Pattern Recognition,
127:108626, 2022.

Ding-Xuan Zhou. Universality of deep convolutional neural networks. Applied and computa-
tional harmonic analysis, 48(2):787–794, 2020.

78

https://en.wikipedia.org/wiki/Neural_network_(machine_learning)
https://en.wikipedia.org/wiki/Neural_network_(machine_learning)
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://proceedings.neurips.cc/paper_files/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html

	Acknowledgements
	Abstract
	Introduction
	Preliminaries
	PointNet
	Geometric Deep Learning on 3D data
	Architecture
	Optimization

	Sampling Where It Matters
	Sampling Algorithm
	Optimization

	High Dimensional Nearest Neighbour Search
	KDTree
	Dimension Reduction

	Problem Statement
	Problem Definition
	Validation data
	Related Work

	Sampling Weights for PointNet
	Steep Gradients & Permutation Invariance
	Sampling using KDTrees
	KDTree & Sampling Distribution
	KDTree & Dimension Reduction
	Results
	Discussion

	Rotational Invariance
	T-Net: Joint Alignment Network
	Data Augmentation
	Spherical Coordinates
	Results
	Discussion

	Scale-up Density and Augmentations
	Point Cloud Density
	Number of Data Augmentations
	Coupling Effects
	Results
	Discussion

	Recursive Sampling
	Naive Approach
	Sampling Good Pairs
	Sampling Diverse Good Pairs
	Results
	Discussion

	Discrete Online Learning
	Weight Evolution
	Batching Matters
	Results
	Discussion

	Architecture Optimality
	Results
	Discussion

	ModelNet40
	Results
	Discussion

	Conclusion
	Bibliography

