
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Wave Reversal in Anisotropic Elastic Material
using the Instantaneous Time Mirror

Milena Rode-Kotzé



DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Wave Reversal in Anisotropic Elastic Material
using the Instantaneous Time Mirror

Zeitumkehr von Wellen in anisotropem
elastischem Material mithilfe des Instantanen

Zeitspiegels

Author: Milena Rode-Kotzé
Supervisor: Prof. Dr. Michael Bader
Advisor: Vikas Kurapati, M.Sc.
Submission Date: 30.09.2024



I confirm that this bachelor’s thesis in informatics is my own work and I have documented
all sources and material used.

Garching , 30.09.2024 Milena Rode-Kotzé



Acknowledgments

First and foremost, I would like to thank Vikas Kurapati, my thesis supervisor, for his
invaluable guidance, constructive feedback, and continuous encouragement throughout the
entirety of this thesis. His expertise and advice have been instrumental in shaping both the
direction and content of this thesis.

I owe a special debt of gratitude to my family and friends for their endless patience,
unwavering support and encouragement throughout my studies. Their continuous curiosity,
even when details were difficult to follow, kept me motivated.

And lastly to my bestie! Your presence has been a constant source of joy and I couldn’t
have done it without all the laughs and support <3



Abstract

In the pursuit of increasingly accurate seismic event modeling, incorporating anisotropy is
critical for accurately describing the Earth’s subsurface structure. This thesis explores the
Instantaneous Time Mirror (ITM) method for numerical wave reversal in anisotropic media,
implemented within the open-source simulation software SeisSol. The study analyzes seismic
waves in both forward and backward directions, achieving wave refocusing under varying
velocity conditions to recreate the initial source event. The ITM approach is validated against
benchmarks and applied in a real-world context around Mount Zugspitze.
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1 Introduction

The continuous study and analysis of seismic events aims to identify and reduce potential
damages and casualties. Accurate seismic event modeling is critical for understanding the
phenomena and enhancing mitigation strategies.

SeisSol is a powerful simulation tool that models seismic phenomena, generating seismo-
logical data using tetrahedral meshes to resemble realistic 3D model events and supports
all major rheologies, including isotropic and anisotropic elastic, poroelastic and viscoplastic
properties. To work around this computationally intensive task, SeisSol uses the ADER-DG
approach, combining the Discontinuous Galerkin (DG) method with the Arbitrary high-order
schemes using DERivatives (ADER) time-integration approach. This method uses a piecewise
polynomial approximation at each element achieving arbitrary high-order accuracy in both
time and space.

Seismic time-reversal can be used to find the source of the waves and has two basic
approaches, the time-reversal mirror and the Instantaneous Time Mirror (ITM). The time-
reversal mirror involves recording and then reversing the velocity of each particle, thus
reversing the entire wave field. The ITM on the other hand mimics the role of Loschmidt’s
demons by abruptly modifying wave properties, thus creating a time-reversed wave that
refocuses at the origin and then diverges again. The ITM has been shown to be effective on
water surface waves and does not require antennas or receivers.

SeisSol has already been extended to support wave reversal using the ITM method for
isotropic elastic waves. A reflection of either both, only the P- or only the S-wave is achieved
by modifying the material properties for a small time step, thus changing the wave impedance.

For more accurate seismic simulations, it is essential to consider anisotropy in modeling
the Earth’s subsurface. Anisotropy arises due to layers, cracks, internal crystal structures, and
ice crystal alignment, and it plays a significant role in affecting wave speed and scattering.

As SeisSol has recently been extended to also simulate anisotropy [WGB20], the goal of
this thesis is to extend the ITM feature in SeisSol to account for anisotropic elastic materials.
To achieve ITM in a simulation environment, the seismic wave impedances are modified for a
short period from tITM to tITM + τ by altering the material properties that govern anisotropic
behavior. In anisotropic media, these properties are no longer limited to just λ, µ, and ρ as in
isotropic materials, but instead involve more complex stiffness tensor components that dictate
how waves propagate differently in various directions.

The thesis is structured as follows: Chapter 2 lays the foundation of elastic wave propa-
gation and the ADER-DG method. Chapter 3 discusses the ITM method from a theoretical
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1 Introduction

perspective. The implementation in SeisSol is laid out in Chapter 4. Chapter 5 presents the
results of different modeling scenarios. Chapter 6 concludes the thesis and suggests potential
areas for future research.

2



2 Seismic Waves and ADER-DG formulation

In this chapter, the required theoretical foundations for the thesis are derived. The basic
equations of elastic wave propagation are laid out and the basic equations of motion are
formulated in the velocity-stress formulation.

Consequently, the fundamental framework of the simulation software used for the imple-
mentation is established. SeisSol simulates seismic wave phenomena using the ADER-DG
method, which combines the Arbitrary high-order DERivatives (ADER) approach with the
Discontinuous Galerkin (DG) method. This approach integrates the DG finite element method
with a time-integration scheme based on the solution of arbitrary high-order derivatives of
Riemann problems, ensuring high accuracy in both time and space [DK06a], [Käs+10].

2.1 Elastic Wave Equation

The key characteristic of an elastic material is a natural state where strains and stresses are
zero, which it returns to when all applied forces are removed. For infinitesimal strains and
stresses, the theory of linear elasticity can be applied. The displacement vector U is defined
to describe the shortest distance between initial and current position of a point. The particle
velocities u, v and w in directions x, y and z can then be defined as the temporal derivative of
U

∂Ux

∂t
= U̇x = u,

∂Uy

∂t
= U̇y = v,

∂Uz

∂t
= U̇z = w.

(2.1)

Here the subscript stands for the coordinate direction and the dot represents it’s partial
time derivative. Thus, the velocity vector V = [V1, V2, V3] = [u, v, w] can be introduced for
simplification.

A body is linearly elastic, if each stress tensor component σij is a linear combination of all
strain tensor components ϵij, i.e. if the following extension of Hooke’s law holds

σij = cijklϵkl (2.2)

3



2 Seismic Waves and ADER-DG formulation

where cijkl are the medium specific constants of a fourth-order and have the symmetries

cjikl = cijkl ,

cijlk = cijkl ,

cijkl = cklij.

(2.3)

This reduces the number of independent components in cijkl from 81 to 21. As the constants
cijkl remain constant over time, the time derivative of the stress tensor trivially becomes

∂tσij = cijkl∂tϵkl (2.4)

Note that the Einstein summation convention is followed here, i.e. an index appearing
twice is summed over all possible values.

Continuing with infinitesimally small perturbations, the strain tensor is defined to have the
components

ϵkl =
1
2
(∂kUl + ∂lUk), (2.5)

where ∂k denotes the spatial derivative in k-direction and Ui represents the displacement
in i-direction. To return to the consistently used velocity-stress formulation, we move away
from the displacement-stress formulation and thus substitute the displacements Ui with the
previously introduced velocities Vi, which yields the time derivative of the strain tensor,
which is dependant on the spatial derivative of said velocities Vi

∂tϵkl =
1
2
(∂kVl + ∂lVk). (2.6)

The resulting relation can be written in a matrix-vector matter using the Voigt notation:

σ11

σ22

σ33

σ23

σ13

σ12


=



c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26

c33 c34 c35 c36

sym c44 c45 c46

c55 c56

c66





ε11

ε22

ε33

2ε23

2ε13

2ε12


. (2.7)

Next the equation of motion for a volume V bound by a surface S shall be obtained. The
rate of change of momentum of particles in V equals the forces acting upon said particles.
Said forces are composed of a body as well as a surface force, resulting from the presence of
normal and sheer stresses. This is expressed in

∂

∂t

∫
V

ρ
∂U
∂t

dV =
∫

V
fdV +

∮
S

T (n)dS. (2.8)

Here ∂
∂t

∫
V ρ ∂U

∂t dV denotes the momentum of the control volume with density ρ. T is the
traction vector which is related to the stress tensor by Cauchy’s stress theorem

Ti = σijni (2.9)
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2 Seismic Waves and ADER-DG formulation

with normal vector ni.
We now replace T in 2.8, thus obtaining∮

S
T (n)dS =

∮
S

σijnidS. (2.10)

and apply Gauss’s divergence theorem so that this becomes∮
S

σijnidS =
∫

V
∂jσijdV. (2.11)

By inserting this resulting equality into 2.8, utilizing the symmetry of the stress tensor
σij = σji and rearranging the terms, the following equation is obtained

∫
V

(
ρ

∂2Ui

∂t2 − fi − ∂jσij

)
dV = 0. (2.12)

This integrand must be zero at every point where it is continuous, thus

ρ
∂2Ui

∂t2 = fi + ∂jσij, (2.13)

where we can expand the equation in j and replace ∂Ui
∂t by Vi to obtain

ρ
∂Vi

∂t
= fi + ∂xσxi + ∂yσyi + ∂zσzi. (2.14)

To analyze the eigenstructure of the system this needs to be conformed to a more compact
form of hyperbolic equations. Combining 2.7 with the equation of motion [Pue+07] results
in a complete partial differential equation system

∂Qp

∂t
+ Apq

∂Qq

∂x
+ Bpq

∂Qq

∂y
+ Cpq

∂Qq

∂z
= 0 (2.15)

where Q defines the p quantities of interest, that is the vector of unknown stresses and
velocities Q = (σxx, σyy, σzz, σxy, σyz, σxz, u, v, w)T and Apq, Bpq and Cpq are space-dependent
Jacobian matrices given by

Apq =



0 0 0 0 0 0 −c11 −c16 −c15

0 0 0 0 0 0 −c12 −c26 −c25

0 0 0 0 0 0 −c13 −c36 −c35

0 0 0 0 0 0 −c16 −c66 −c56

0 0 0 0 0 0 −c14 −c46 −c45

0 0 0 0 0 0 −c15 −c56 −c55

− 1
ρ 0 0 0 0 0 0 0 0

0 0 0 − 1
ρ 0 0 0 0 0

0 0 0 0 0 − 1
ρ 0 0 0


, (2.16)
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2 Seismic Waves and ADER-DG formulation

Bpq =



0 0 0 0 0 0 −c16 −c12 −c14

0 0 0 0 0 0 −c26 −c22 −c24

0 0 0 0 0 0 −c36 −c32 −c34

0 0 0 0 0 0 −c66 −c26 −c46

0 0 0 0 0 0 −c46 −c24 −c44

0 0 0 0 0 0 −c56 −c25 −c45

0 0 0 − 1
ρ 0 0 0 0 0

0 − 1
ρ 0 0 0 0 0 0 0

0 0 0 0 − 1
ρ 0 0 0 0


, (2.17)

Cpq =



0 0 0 0 0 0 −c15 −c14 −c13

0 0 0 0 0 0 −c25 −c24 −c23

0 0 0 0 0 0 −c35 −c34 −c33

0 0 0 0 0 0 −c56 −c46 −c36

0 0 0 0 0 0 −c45 −c44 −c34

0 0 0 0 0 0 −c55 −c45 −c35

0 0 0 0 0 − 1
ρ 0 0 0

0 0 0 0 − 1
ρ 0 0 0 0

0 0 − 1
ρ 0 0 0 0 0 0


. (2.18)

The propagation velocities of elatstic waves are determined by the eigenvalues of said
flux matrices. It should be noted that analytically ydetermining the eigenstructure of these
Jacobian matices is more complex than in the isotropic case [Pue+07].

2.2 ADER-DG

This section provides an overview over the ADER-DG method used in SeisSol.

2.2.1 Discontinuous Galerkin Method

Unlike traditional finite-element methods, the Discontinuous Galerkin (DG) method solves
hyperbolic systems while allowing piecewise polynomials within each element, which en-
hances flexibility in handling complex geometries and provides high-order accuracy. By
coupling this method with generalized Riemann solvers (as in the ADER approach [TMN01]),
the ADER-DG method advances the solution using an explicit, one-step scheme. This process
requires interelement flux computations, ensuring accuracy in both time and space without
needing multiple time steps.

We divide the computational domain Σ ∈ R3 into conforming tetrahedral elements T (m)

with unique indices m ∈ N and assume A, B, C to be piecewise constant in said T (m). The
tetrahedrons are transformed from a global, Cartesian system into reference elements TE

using a new coordinate system of (ξ, η, ζ). This process is visualized in 2.1.
As a result we require a new matrix Ã(m) with identical structure as 2.16 but with rotated

6



2 Seismic Waves and ADER-DG formulation

Figure 2.1: Transformation of tetrahedron into reference frame. (Figure taken from Figure 1
in [DK06a])

entries cij, thus transforming it from the global reference coordinate system to the local
transformed coordinate system of the jth face of tetrahedron (m). To define said local
coordinate system we use a normal vector n = (nx, ny, nz)T and two tangential vectors
s = (sx, sy, sz)T and t = (tx, ty, tz)T. They lie in the plane determined by the face of the
tetrahedron and are all orthogonal to each other. This rotation is obtained by applying the
Bond’s matrix ( [Bon76], [OM03])

N =



n2
x n2

y n2
z 2nzny 2nznx 2nynx

s2
x s2

y s2
z 2szsy 2szsx 2sysx

t2
x t2

y t2
z 2tzty 2tztx 2tytx

sxtx syty sztz sytz + szty sxtz + sztx sytx + sxty

txnx tyny tznz nytz + nzty nxtz + nztx nytx + nxty

nxsx nysy nzsz nysz + nzsy nxsz + nzsx nysx + nxsy


(2.19)

to the Hook’s matrix C of the global reference system

C =



c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66


, (2.20)

which leads to
C̃ = N · C · N T, (2.21)

the rotated Hooke’s matrix which lies in the local reference system of the tetrahedron’s
boundary face.

The numerical solution Qh of 2.15 is approximated in each T(m) using a linear combination
of space-dependent but time-independent polynomial basis functions with time-dependent
coefficients

Q(m)
p (x, y, z, t) = Q̂(m)

pl (t)Ψl (x, y, z) . (2.22)

7



2 Seismic Waves and ADER-DG formulation

Here Q̂(m)
pl introduces the time-dependent degrees of freedom and Ψl (x, y, z) denotes the

lth basis function transformed to the mth element. We can now employ an an affine linear
coordinate transformation M from (x, y, z) to the reference element (ξ, η, ζ), obtaining

Q(m)
p (x, y, z, t) = Q̂(m)

pl (t)Ψl (M(x, y, z)) . (2.23)

We can now define polynomial ansatz functions Φl on the reference element to discretize,
thus getting

Q(m)
p (x, y, z, t) = Q̂(m)

pl (t)Φm
l (M (x, y, z)) (2.24)

where M is the affine linear coordinate transformation from (x, y, z) to (ξ, η, ζ). The coordinate
transformation increases the computational efficiency of the implementation as integrals in
the reference system can be computed in advance. Thus Qh is expressed in terms of the
coordinate transformation as[

Q(m)
H

]
p
(ξ, η, ζ, t) = Q̂m

pl (t)Φl (ξ, η, ζ) . (2.25)

Following the DG-approach, we multiply 2.15 with the test function Φk and integrate over
a tetrahedral element Tm, resulting in∫

T (m)
Φk

∂Qp

∂t
dV +

∫
T (m)

Φk

(
Apq

∂Qq

∂x
+ Bpq

∂Qq

∂y
+ Cpq

∂Qq

∂z

)
dV = 0. (2.26)

To account for the discontinuities in Qh fluxes Fh
p are added at the tetrahedron boundaries.

After applying integration by parts the following equation is obtained∫
T (m)

Φk
∂Qp

∂t
dV +

∫
∂T (m)

Fh
p dS −

∫
T (m)

(
∂Φk

∂x
ApqQq +

∂Φk

∂y
BpqQq +

∂Φk

∂z
CpqQq

)
dV = 0.

(2.27)
The calculation for the flux for the tetrahedrom T(m) and one of its neighboring tetrahedra
Tj with j = 1, 2, 3, 4 is as follows

Fh
p =

1
2

Tpq

(
Ã(m)

qr +
∣∣∣Ã(m)

qr

∣∣∣) (Trs)
−1 Q̂(m)

sl Φ(m)
l

+
1
2

Tpq

(
Ã(m)

qr −
∣∣∣Ã(m)

qr

∣∣∣) (Trs)
−1 Q̂(mj)

sl Φ(mj)
l .

(2.28)

There Q̂(m)
sl Φ(m)

l and Q̂
(mj)

sl Φ
(mj)

l represent the boundary extrapoladed values of the numerical
solution from Tm and it’s j-th side neighbour Tmj , with∣∣∣Ã(m)

qr

∣∣∣ = RA
qp
∣∣Λps

∣∣ (Rsr)
−1 . (2.29)

Here |Λ| is a diagonal matrix that contains the absolute value of the eigenvalues of the
Jabobinan matrix Ãqr, which must be aligned with the normal direction of the interface. The
matrix Rqp holds the right eigenvectors of Ãqr as its colums. For a detailed calculation scheme
the reader can refer to [Pue+07] Appendix A1.

8



2 Seismic Waves and ADER-DG formulation

To insert the numerical solution Qh in 2.25 as well as the flux calculation 2.28, the subsequent
equation as well as the spacial linear combination of the Jacobians

A∗
pq = Apq

∂ξ

∂x
+ Bpq

∂ξ

∂y
+ Cpq

∂ξ

∂z
,

B∗
pq = Apq

∂η

∂x
+ Bpq

∂η

∂y
+ Cpq

∂η

∂z
,

C∗
pq = Apq

∂ζ

∂x
+ Bpq

∂ζ

∂y
+ Cpq

∂ζ

∂z
.

(2.30)

must be transformed as the basis functions are defined on (ξ, η, ζ) using the following
transformation

dxdydz = |J|dξdηdζ, (2.31)

with |J| being the determinant of the Jacobian matrix J of the transformation. This results in
the semi-discrete DG formulation of the ODE system inside the reference tetrahedron TE

∂Q̂(m)
pl

∂t
|J|

∫
TE

ΦkΦl dξ dη dζ

+
4

∑
j=1

T j
pq

1
2

(
Ã(m)

qr +
∣∣∣Ã(m)

qr

∣∣∣) (
T j

rs

)−1
Q̂(m)

sl

∣∣Sj
∣∣ F−,j

kl

+
4

∑
j=1

T j
pq

1
2

(
Ã(m)

qr −
∣∣∣Ã(m)

qr

∣∣∣) (
T j

rs

)−1
Q̂(mj)

sl

∣∣Sj
∣∣ F+,j,i,h

kl

− A∗
pqQ̂(m)

ql |J|
∫
TE

∂Φk

∂ξ
Φl dξ dη dζ

− B∗
pqQ̂(m)

ql |J|
∫
TE

∂Φk

∂η
Φl dξ dη dζ

− C∗
pqQ̂(m)

ql |J|
∫
TE

∂Φk

∂ζ
Φl dξ dη dζ = 0,

(2.32)

where |Sj| is the area of the tetrahedron face j and

F−,j
kl =

∫
∂(TE)j

Φk

(
ξ(j) (χ, τ)

)
Φl

(
ξ(j) (χ, τ)

)
dχdτ, ∀1 ≤ j ≤ 4,

F+,j,i,h
kl =

∫
∂(TE)j

Φk

(
ξ(j) (χ, τ)

)
Φl

(
ξ(i)

(
χ̃(h) (χ, τ) , τ̃(h) (χ, τ)

))
dχdτ, ∀1 ≤ i ≤ 4, 1 ≤ h ≤ 3.

(2.33)

The flux matrix F−,j
kl refers to the flux contribution from the element m across its face j,

whereas F+,j,i,h
kl corresponds to the contribution from the neighboring element k j through the

same face. The index i represents the local numbring of shared faces as viewed from the
neighboring element. Similarly h specifies which of the neighboring element’s local nodes
correspoinds to the vertex at position 1 of the face j on m [DK06b].
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2 Seismic Waves and ADER-DG formulation

2.2.2 ADER Time Discretization

Due to Bucher’s barriers [But87], the efficiency of Runge-Kutta time-discretization schemes
sinks radically as soon as the order of accuracy supersedes 4. To avoid this, the ADER
approach is used on the semi-discrete formulation 2.32, thus achieving the same order of
accuracy in both space- and time-discretization.

Time-derivatives are replaced using the Cauchy-Kovalewski procedure, which results in
the kth time-derivative given by pure space derivatives in the reference system as

∂kQp

∂tk = (−1)k
(

A∗
pq

∂

∂ξ
+ B∗

pq
∂

∂η
+ C∗

pq
∂

∂ζ

)k

Qq. (2.34)

This equation is then used to substitute the time derivatives in a Taylor expanded Qp with
space derivatives. Combining the DG-approximation of 2.25 this results in

Qp(ξ, η, ζ, t) =
N

∑
k=0

tk

k!
(−1)k

(
A∗

pq
∂

∂ξ
+ B∗

pq
∂

∂η
+ C∗

pq
∂

∂ζ

)k

Φl(ξ, η, ζ)Q̂ql(0). (2.35)

The approximation is now projected onto each basis function and integrated analytically in
time, which finally leads to the fully discrete ADER-DG scheme[(

Q̂(m)
pl

)n+1
−

(
Q̂(m)

pl

)n
]
|J|Mkl+

1
2

4

∑
j=1

(
T j

pq Ã(m)
qr (T j

rs)
−1 + Θj

ps

)
|Sj|F

−,j
kl · Iqlmn(∆t)

(
Q̂(m)

mn

)n
+

1
2

4

∑
j=1

(
T j

pq Ã(m)
qr (T j

rs)
−1 − Θj

ps

)
|Sj|F

+,j,i,h
kl · Iqlmn(∆t)

(
Q̂(m)

mn

)n
−

A∗
pq|J|K

ξ
kl · Iqlmn(∆t)

(
Q̂(m)

mn

)n
− B∗

pq|J|K
η
kl · Iqlmn(∆t)

(
Q̂(m)

mn

)n
−

C∗
pq|J|K

ζ
kl · Iqlmn(∆t)

(
Q̂(m)

mn

)n
= 0.

(2.36)

Here Mkl , Fkl and Kkl represent mass, flux and stiffness matrices, and Iplgm(∆t) denotes the

high-order ADER time integration operator applied to the degrees of freedom (Q̃(m)
mn )

m at
time level n.

The resulting formula makes updating variables from time level n to n + 1 possible without
storing intermediate states. Additionally an element T(m) only depends on its associated
variables as well as its four direct neighbours T(mj), j = 1, ..., 4. This makes it fitting for
parallelization and more efficient that RK-DG schemes [DM05].

2.2.3 Boundary Conditions

Boundary conditions are crucial for ensuring that the physical behavior of waves at the
domain’s edges is correctly captured. Two primary types of boundary conditions are generally
applied: absorbing boundaries and free-surface boundaries.

10



2 Seismic Waves and ADER-DG formulation

Absorbing boundaries

Absorbing boundary conditions are employed to prevent reflections from the boundaries of
the computational domain. Waves exiting the domain should pass through the boundary
without bouncing back, simulating an open boundary. This is achieved by setting the flux at
the boundary to only consider outgoing waves. This is expressed as

FAbsorbBC
p =

1
2

Tpq

(
Ã(m)

qr +
∣∣∣Ã(m)

qr

∣∣∣) (Trs)
−1 Q̂(m)

sl Φ(m)
l . (2.37)

Free-Surface Boundaries

A free-surface boundary is where the elastic medium interfaces with a region free from
external forces, such as air or a vacuum, therefore the normal and shear stresses must vanish.
This is achieved using ghost cells where stresses are mirrored with the same magnitued but
opposed signs. The resulting flux is

FFreeBC
p =

1
2

Tpq

(
Ã(m)

qr +
∣∣∣Ã(m)

qr

∣∣∣) (Trs)
−1 Q̂(m)

sl Φ(m)
l

+
1
2

Tpq

(
Ã(m)

qr −
∣∣∣Ã(m)

qr

∣∣∣) Γrs (Tst)
−1 Q̂(m)

tl Φ(m)
l ,

(2.38)

where the matrix Γrs = diag (−1, 1, 1,−1, 1,−1, 1, 1, 1) is responsible for the aforementioned
mirroring.

2.3 Summary

In this chapter, we have presented an overview of the governing equations for wave propa-
gation in elastic media treated as a system of hyperbolic partial differential equations and
numerical methods for solving said equations have been examined. Additionally boundary
conditions that will be used have been introduced.
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3 ITM

This chapter explores the concept of time-reversal methods, which are designed to reverse
the propagation of waves, focusing them back to their source. Two main approaches exist to
achieve this.

The first, known as the Time Reversal Mirror (TRM), relies on Cauchy boundary conditions.
The wavefield in an entire volume V surrounded by surface S can be computed if said
wavefield as well as its normal derivative are known in the entire S at all times t. Then the
time reversal is achieved by recording the ougoing wave and radiating a time-reversed version
from S.

The second approach involves altering the initial conditions withing the volume. This
method mimics the hypothetical concept of Loschmidt’s demon, where state of a system is
reversed by instantaneously reversing the momentum of each particle inside said system,
thus creating a time-reversed wave. In this approach the wavefield and its normal derivative
are only known for a specific time and is called the Instantaneous Time Mirror (ITM).

This thesis solely deals with the ITM approach, where time-reversed seismic waves are
created by a sudden wave propagation property modification in the medium. In this chapter
the theoretical framework behind ITM will concisely be introduced avoiding excessive detail,
particularly in the context on anisotropic elastic material.

3.1 Theory of Instantaneous Time Mirrors

Time-reversal methods for waves are based on the time-reversal invariance of wave equations.
It exploits the principle that a wavefield can be fully reconstructed within a volume if both the
field and its normal derivative are known on an enclosing surface. In anisotropic media the
wave propagation becomes more complex due to the direction-dependent material properties
governed by the stiffness tensor Cijkl . The elastic wave equation for anisotropic media in its
second-order vector form is written as [AR02]

ρÜ (x, t) = Cijkl
∂2Uk

∂xj∂xl
+ S (x, t) , (3.1)

where U(x, t) is the displacement field and S(, t) is the source function. If said S is symmetric
in time, meaning that S(, t) = S(,−t), and Û (x, t) is a solution, then Û (x,−t) is an equally
valid solution.

In anisotropic media, the stiffness of the material is directionally dependent, meaning that
waves will propagate at different speeds depending on the direction and are determined

12



3 ITM

using the Christoffel matrix equation. The Christoffel matrix Γ is demined as

Γik(n) = Cijklnjnl (3.2)

where n is the unit vector in the direction of wave propagaion. The Christoffel equation then
represents an eigenvalue problem

Γik(n)Uk = ρv2Ui (3.3)

whose eigenvalues correspond to the wave velocities for the quasi P- wave and the two quasi
S-wave polarizations. Now the wave impedance in anisotropic media can be derived. The
formula valid in isotropy still holds Z = ρv [LeV02], but considering the direction dependent
velocities now used in anisotropy, the impedance is also direction dependent

Z(n) = ρv(n). (3.4)

The ITM closely relates to Cauchy Initial Conditions. According to the Cauchy theorem,
the evolution of a wave field can be completely determined from its values and derivatives at
a single point in time. To create the time-reversed wave without the use of antennas or the
full memory of the wave field [FF17], a sudden change in wave propagation properties, ie.
impedance is introduced, which leads the initial conditions at two different points in time
being modified.

3.2 Energy in the System Before and After ITM

The total energy E in a wave system constists of kinetic energy (related to particle velocity)
and potential energy (related to the deformation of the material). The total energy of a
propagation wave can be expressed as

E =
∫ (

1
2

ρv2 +
1
2

Cσ2
)

dx, (3.5)

where v is the particle velocity, σ is the stress and C is the elastic modulus. When an
impedance change is introduced in ITM, these parameters are altered and cause a change in
total energy. If we assume that the wave impedance has been scaled by introducing ρ̂, which
automatically results in a new velocity vhat, the updated energy of the system is described by
the following equation

E =
∫ (

1
2

n2ρ(nv)2 +
1
2

Cσ2
)

dx. (3.6)

When comparing the initial energy of the system with 3.6, it becomes clear that ITM leads
to an energy change in the system. This can be visualized though calculating E2/E1, which
results in

E2

E1
=

Cσ2 + n3ρu2

Cσ2 + ρu2 (3.7)

and gives 3.1 The miminum is clearly at n = 1, but since this suggests no velocity scaling and
no reflections, so that it holds no relevance considering our objective.
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3 ITM

Figure 3.1: Energy of System
(

E2
E1

)
during t−ITM ≤ t ≤ t+ITM, plotted for n ∈ [1, 10]

3.3 Summary

This chapter has given a short introduction on the different methods for achieving wave
reflexions and explained the fundamental concepts behind the Instantaneous Time Mirror
method. Aditionally the energy changes due to the ITM where analyzed.
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4 Implementation

This chapter outlines the extensions made to SeisSol. The implementation is intentionally kept
general as to ensure easy usability for future experiments. As outlined in previous chapters, to
achieve the impedance change necessary for creating reflection waves, the material properties
of the waves, specificaly their density ρ, is modified inside the time reversal period t−ITM to
t+ITM. This impedance adjustment is essential to guarantee the formation of the reflected wave,
as described in [LeV02]. In the following sections, we will explore different methods for
achieving this impedance change to facilitate the desired wave reflection.

4.1 Wave Reflection in Anisotropic Media

The following section introduces various ways to modify the material parameters to achieve
the necessary impedance impedance and reflect the waves.

4.1.1 Reflecting all waves by changing their velocities

This method involves adjusting the wave velocities by modifying the density ρ of the material
while keeping the stiffness matrix components cij constant

ĉij = cij,

ρ̂ = n2ρ.
(4.1)

This results in a change of wave speeds and their respective impedances during the ITM as

v̂ = nv,

Ẑ = nZ
(4.2)

where v̂ and Ẑ represent the velocities and impedances of the waves during the ITM process,
and v and Z are their corresponding values before ITM.

4.1.2 Reflecting all waves by keeping their velocities constant

In this case the wave velocities are kept constant while still obtaining a modified impedance
by adjusting the density ρ while also modifying the stiffness tensor compontnts cij. The
material properties are modified as follows:

ĉij = ncij,

ρ̂ = nρ.
(4.3)
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4 Implementation

which results in in the following impedance change during the ITM

v̂ = v,

Ẑ = nZ.
(4.4)

4.1.3 Attempt to reflect only the quasi P-wave

An approach was explored to selectively reflect only the quasi P-wave by scaling the diagonal
stiffness components while leaving the remaining ones unchanged. The goal was to modify
the impedance of the quasi P-Wave without affecting the propagation of the quasi S-waves.
The modification was carried out as follows:

ĉ11 = n2c11,

ĉ22 = n2c22,

ĉ33 = n2c33,

ĉ44 = n2c44,

ĉ55 = n2c55,

ĉ66 = n2c66,

ρ̂ = ρ.

(4.5)

However, this attempt did not successfully isolate the reflection of the quasi P-wave, all waves
continued to exhibit reflections. This will be further discussed and analyzed in 5.

4.2 Eigenvalue Calculation and Time-Stepping

In this section, the role of eigenvalue calculation in determining the appropriate time-stepping
scheme for wave propagation in anisotropic media will be discussed. These two aspects are
tightly connected, as the maximum eigenvalues of the system matrices dictate the maximum
permissible time stepbased on the CFL condition, which ensures stability in explicit time
integration schemes.

Eigenvalue Calculation in Anisotropic Media

As laid out in 2.15, wave propagaion in anisotrpic media is governed by the following
hyperbolic system of equations:

∂Qp

∂t
+ Apq

∂Qq

∂x
+ Bpq

∂Qq

∂y
+ Cpq

∂Qq

∂z
= 0 (4.6)

where Q is the state vecor representing the wave field, and A, B, and C are the flux Jacobian
matrices corresponding to the wave propagation in the x-, y-, and z- directions respectively.
These matrices are derived from the material properties of the medium and are directionally
dependent. The eigenvalues of these matrices correspond to the characteristic wave speeds in
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4 Implementation

the respective directions. The eigenvalues of the matrix A were computed to determine said
characteristic wave speeds and the largest eigenvalue was taken, which corresponds to the
fastest wave speed in said direction. This process was repeated for matrices B and C in the y-
and z- directions. These values are important for setting the time step size in the simulation,
as the fastest wave determines the stability limit though the CFL condition.

Time-Stepping based on Eigenvalues

SeisSol utilizes Local Time Stepping (LTS), which assigns different time steps to various
parts of the computational mesh. This approach tailors the time step to the local conditions,
meaning regions with smaller elements or faster wave propagation speeds are updated more
frequently, while areas with slower wave speeds or larger elements can afford larger time
steps. This strategy enhances efficiency by focusing computational resources where they are
most needed.

The time step for explicit time integration schemes must satisfy the CFL condition, which
ensures that the numerical solution remains stable. In SeisSol, the stability chriterion

∆tm <
1

2N + 1
lm

vm (4.7)

must be satisfied by each element for the time step size ∆tm. lm and vm denote the in-sphere
diameter and maximum wave speed of element τm, N is the order of the method [WGB20].
As the maximum eigenvalue varies across directions in anisotropic media, the CFL condition
must account for the largest wave speed in the domain.

When changes in material parameters occur, suchs as in the ITM process, the time step
within each cluster must be updated accordingly. If the time step for cluster i is denoted as δi,
this value is adjusted during TIM according to the changes in propagation speeds caused by
modifications in the material properties in the follwoing way for different cases:

Reflecting all waves by changing their velocities or reflecting just the quasi P-wave

In this scenario, the time step is reduced in proportion to the scaling factor applied to the
wave veocities. Therefore, for each cluster i, the time step is adjusted as follows:

δti =
δti

n
, (4.8)

where δt represents the time step for cluster i during the ITM process.

Reflecting all waves by keeping their velocities constant

This this situation, there is no need to reduce the time step by factor n, since the wave
velocities remain unchanged and only the impedance is altered As a result, the time step for
each cluster remains the same,

δti = δti. (4.9)
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4 Implementation

4.3 Summary

This chapter has discussed the implementation of the ITM method for wave reflection in
anisotropic media. Various approaches were explored. Additionally, eigenvalue calculations
and their role in determining time-stepping were addressed, along with the use of LTS in
SeisSol.
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5 Results and Discussion

In this chapter we analize and discuss the obtained results where the ITM is employed upon
seismic waves. At first, we take a look at the time reversal of all seismic waves produced
by a point source in an elastic medium. Then, we discuss the results of reflecting the waves
under the same conditions but with their velocities held constant. Additionally the attempted
reflection of only the quasi P-wave is discussed. Finally, we apply the method to a real-world
scenario: an earthquake at Mount Zugspitze in the Alps.

5.1 Time-reversal of waves by point source in elastic media

Material Properties

The SISMOWINE test suite [Moc+06] offers a test case for seismic wave propagation in
anisotropic materials using a geometry of a homogeneous full space. The material has a
density ρ of 2700kg/m3 and the elastic coefficients cij are as following

c =



97.2 10.0 30.0 0 0 0
10.0 97.2 30.0 0 0 0
30.0 30.0 70.0 0 0 0

0 0 0 32.4 0 0
0 0 0 0 32.4 0
0 0 0 0 0 43.6


GPa. (5.1)

Mesh

Our mesh defines a cubic domain with dimensions [-20.000, 26.000] in each direction (x, y, z)
with a higher resoltion around the seismic source, while getting coarser when moving away
from it as seen in 5.1 An open space is simulated by applying absorbing boundaries to the
surfaces of the cube, thus preventing reflections at the boundries.

Source

The source is a double point source and placed roughly in the middle of the domain
at (0, 0, 0). Is has a onset time of t = 0.0s, meaning the seismic activity begins at the
very start of the simulation and it has only one non-zero Moment Mxy. The function
Mxy(t) = M0 · t

T2 · exp
(
− t

T

)
describes the moment rate time history with T = 0.1s being the

characteristic time and maximal moment M0 = 8.9663 ∗ 1017Nm.
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5 Results and Discussion

ITM

The simulation is run for t ∈ [0; 5] with a step size of 0.5 and the ITM is started at t = 2.0. We
thus expect to see the waves refocused at t = 4.0. To visualize the output we slice at (0, 0, 0),
the source of the seismic event, in z-normal direction and plot the u-velocity.

Results

There are clearly three propagating waves present, which represent the quasi P-wave and
quasi shear waves that where expected due to the nature of the material being anisotropic
elastic 5.2. As the ITM is applied at t = 2.0, we would expect any reflected waves to show up
in the subsequent time steps. Looking at said time-step plots in 5.3, it is clear that the ITM
creates reflections of all waves present, successfully refocusing back to their origin, reaching
it at t = 4.0 as was anticipated. After refocusing, the waves begin propagating outward again
5.4, but this is of no further relevance here as ITM was already successfully achieved.

This shows it is possible to simultaneously reflect all waves produced in an anisotropic
medium in changing the impedance of all waves through modifying the material density to
obtain a signal that is reflected back to its origin.

5.2 Time-reversal of waves under constant velocity

We now attempt to replicate the previous results obtained in 5.1 while applying an ITM with
the velocities of the waves kept constant in the reflection phase. The same mesh and source
and slice as in 5.1 is used.

The results in this case are nearly identical to those observed in 5.1, although a slight
increase in wave strength was witnessed. Since SeisSol currently only supports energy output
for isotropic elastic media, this will have to be inspected once is SeisSol is extended. All

Figure 5.1: Mesh used in SISMOWINE simulations
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5 Results and Discussion

three waves are reflected and refocused back to their origin at t = 4.0. Despite keeping the
velocities constant during the reflexion phase, the wave behaviour follows the same pattern
as in the previous case. This demonstrates that the ITM still successfully replicates the results
when using the same initial conditions, regardless of whether the wave velocities are changed
along with their impedances or not.

5.3 Time-reversal of P-wave

This section focuses on the time-reversal of exclusively the quasi P-wave in seismic wave
propagation while allowing the other waves to continue propagating forward. Again the same
mesh and source as in 5.1 is used and the visualization is done after applying the same slice.
As evident in 5.5, the results revealed that full isolation of the quasi P-wave for reversal was
unsuccessful. The complexities introduced by anisotropy alsongside the interaction between
wave types in the media prevented decoupling the quasi P-wave from the quasi S-waves.
Further refinement of the ITM approach is necessary to potentially achieve a precise P-wave
reversal.

5.4 Test Case: Mount Zugspitze

5.4.1 Source positioned 10km under the surface

To further strengthen our concept, we now attempt to provide an application example of
reflecting seismic waves around the Zugspitze in the Bavarian Alps, thus validating the
potential of this implementation to solve real geophysics problems.

Material Properties

The material properties represent an anisotropic elastic medium roughly typical for the
Earth’s crust in the Alps region. The material density is set to 2670kg/m3 and the stiffness
coefficients are defined as

cij =



231.65 84.55 73.99 −2.27 −3.31 −24.03
84.55 268.07 71.25 −1.60 −1.94 −34.73
73.99 71.25 221.22 −6.06 −8.22 4.42
−2.27 −1.60 −6.06 77.75 −4.59 −1.47
−3.31 −1.94 −8.22 −4.59 74.91 −1.93
−24.03 −34.73 4.42 −1.47 −1.93 98.27


GPa. (5.2)

Mesh

The region around Mount Zugspitze is discretized into a tetrahedral computational mesh
spanning 90 km × 90 km horizontally and extending to a depth of 70 km. It has a resolution
of 600m at the surface and contains 1.47 million cells.
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5 Results and Discussion

Source

A kinematic source point located at the center of the domain and placed at a depth of 10km.
The source parameters are identical to the LOH1 test case also used in 5.1.

ITM

The seismic waves are simulated for t ∈ [0; 5]. The mesh is sliced at its source point in
z-direction and the u-velocity is plotted to visualize the propagation. The waves take on
an elliptical shape, demonstrating the directional dependency of wave speed in anisotropic
media 5.7. At t = 2.5 the ITM is initiated, which begins to reflect the waves back toward the
origin. As the simulation progresses, each time step shows the waves being reflected and
gradually collapsing back toward the source 5.8. By t = 4.5 additional waves begin to appear.
These unexpected waves are not explained but could be attributed to artificial reflections
caused by numerical instabilities or internal wave interactions. However, the intended wave
reflections, triggered by ITM, remain unaffected by these additional waves and successfully
collapse at their origin at t = 5.0 as expected.

Results

These results demonstrate that the ITM method can be successfully applied to reflect and
refocus seismic waves in complex anisotropic media. Despite the appearance of additional,
unexplained waves, the primary wave reflection remained unaffected.

5.4.2 Source positioned 500m under the surface

The same experiment as in 5.4.1 was conducted, reusing the material properties, mesh and
simulation parameters, but using a slightly stronger source positioned only 500m beneath the
surface to ensure that the wave propagation could be clearly visualized at the surface level.
5.9 Due to reflections the ITM is slightly unclear due to other reflections, yet still present. An
example is included in 5.9.

This result strengthens the potential application of the ITM for scenarios where wave
reflections occur close to the Earth’s surface.

5.5 Summary

In this chapter, the results of applying the ITM to various seismic wave scenarios were
analyzed. Initially the results of the time-reversal of waves generated by a point source in
an elastic medium were presented. This was replicated while keeping the wave velocities
constant during ITM. Then it was unsuccessfully attempted to isolate the quasi P-wave for
reversal while allowing the quasi S-waves to propagate forward. Finally the ITM was applied
to a real-world test case at Mount Zugspitze.
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5 Results and Discussion

(a) t = 0.5 (b) t = 1.0

(c) t = 1.5 (d) t = 2.0

Figure 5.2: Wave propagation in anisotropic elastic medium after point source initiation at
t = 0.0.
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5 Results and Discussion

(a) t = 2.5 (b) t = 3.0

(c) t = 3.5 (d) t = 4.0

Figure 5.3: Waves reflecting back to origin after ITM was applied at t = 2.0 and collapsing
back at the origin at t = 4.0.
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5 Results and Discussion

(a) t = 4.0

(b) t = 4.5 (c) t = 5.0

Figure 5.4: After recollapsing at the source point at t = 4.0, refocused waves diverge again.
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5 Results and Discussion

(a) t = 2.5 (b) t = 3.0

(c) t = 3.5 (d) t = 4.0

Figure 5.5: After ITM was applied at t = 2.0, while the waves still reflect back to the origin,
clearly not only the quasi P-wave is being reflected as intended.
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5 Results and Discussion

Figure 5.6: Used topology around Mount Zugspitze.
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5 Results and Discussion

(a) t = 0.5 (b) t = 1.0

(c) t = 1.5 (d) t = 2.0

(e) t = 2.5

Figure 5.7: Wave propagation around Mount Zugspitze after point source initiation at t = 0.0,
sliced 10km beneath the surface.
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5 Results and Discussion

(a) t = 3.0 (b) t = 3.5

(c) t = 4.0 (d) t = 4.5

(e) t = 5.0

Figure 5.8: Mount Zugspitze, sliced at -10km: Waves reflecting back to origin after ITM was
applied at t = 2.5 and collapsing back at the origin at t = 5.0.
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5 Results and Discussion

(a) t = 0.5 (b) t = 1.0

(c) t = 1.5 (d) t = 2.0

(e) t = 2.5

Figure 5.9: Wave propagation at the surface of Mount Zugspitze after point source initiation
at t = 0.0.
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(a) t = 4.0 (b) t = 4.5

Figure 5.10: Surface of Mount Zugspitze: Waves reflecting back to origin after ITM was
applied at t = 2.5 at time t = 4.0 and t = 4.5. The reflected waves will reach their
origin at t = 5.0, 500m beneath the surface.
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6 Conclusions and Outlook

In this thesis, we explored the application of the Instantaneous Time Mirror (ITM) to seismic
wave propagation, specifically focusing on anisotropic media, and its implementation in the
numerical simulation software SeisSol. Initially, the theoretical background of wave propaga-
tion was introduced in Chapter 2, covering the basic principles of anisotropic elastic wave
theory. Additionally, the numerical scheme ADER-DG used in SeisSol was presented. Chapter
3 centered on the theory behind the ITM method, explaining how impedance discontinuity
leads to wave reflections. It also covered the transition from isotropic to anisotropic elastic
media and the challenges this introduced. Additionally, the energy behavior was analyzed for
various ITM stages. Chapter 4 focused on the implementation details. The numerical method
to simulate the ITM process was described. The implementation of various wave reversal
scenarios where differentiated. In Section 4.2 the challenges of handling time-stepping were
touched upon.

Chapter 5 presented the results of applying the ITM method to various seismic scenarios,
showcasing its effectiveness in different settings. In Section 5.1, we explored the time-reversal
of waves generated by a point source in an elastic medium. This demonstrated the ITM’s
ability to successfully reverse both quasi P-wave and quasi S-waves, retracing them back
to the point source as expected. This result was successfully replicated using ITM with
constant velocities. Section 5.3 focused on an attempt to reverse only the quasi P-wave while
allowing the quasi S-waves to continue forward. This was not successful, indicating that
additional adjustments in the method are needed to isolate the quasi P-wave. Finally, Section
5.4 presented a real-world test case based on Mount Zugspitze. This case provided a more
complex and realistic environment to assess the ITM method. The result demonstrated that
the ITM could handle realistic geological features and confirmed that wave reversal is feasible
in more intricate environments.

While this thesis has successfully provided an implementation of ITM for anisotropic
seismic waves, several areas still require further exploration. The ITM parameters are currently
being chosen heuristically and an analytical solution could be determined. Additionally, while
this thesis has demonstrated the method’s effectiveness through experimental applications, an
analytical analysis of the ITM could further enhance understanding. The ITM could also be
studied in different scenarios like visco- and poroelastic media. Further work will be needed
to inspect the possibility of achieving successful reflection of an isolated P- or S-wave.
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Abbreviations

DG Discontinuous Galerkin
FE Finite Element
TRM Time Reversal Mirror
ITM Instantaneous Time Mirror
DG Discontinuous Galerkin
ADER Arbitrary high-order schemes using DERivates
DG-FE Discontinuous Galerkin Finite Element
RK-DG Runge Kutta Discontinuous Galerkin
CFL Courant-Friedrichs-Lewy
LTS Local Time Stepping
PDE Partial Differential Equation
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