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Abstract

This thesis investigates various aspects of spin wave propagation in 200 nm thick yttrium iron
garnet (YIG) films, focusing on both the fundamental characteristics of spin waves and their
manipulation.

A key topic is the phenomenon of spin wave caustics, which arise due to anisotropies in the
dispersion relation of in-plane magnetized YIG films. These caustics manifest as caustic spin
wave beams (CSWBs) within the material. A theoretical model to characterize and classify
their properties is established and probed experimentally by Time-Resolved Magneto-Optical
Kerr Effect (TR-MOKE) microscopy. The excitation of CSWBs is demonstrated using dif-
ferent excitation approaches, and reasonable agreement between theory and experiment is
observed. Additionally, the reflection of CSWBs is investigated, revealing deviations from
Snell’s law.

The second set of experiments focuses on the hybridization of zeroth-order Damon-Eshbach
(DE) modes with first-order perpendicular standing spin waves (PSSWs) in a trapezoidal-
shaped magnonic waveguide, also utilizing TR-MOKE microscopy. The findings reveal that
the mode hybridization increases spin wave attenuation and, when combined with geometry-
induced demagnetizing effects, allows for active control of spin wave propagation distance
within the waveguide. Micromagnetic simulations support these experimental observations.
Furthermore, all-electrical spin wave spectroscopy, performed with a Vector Network Analyzer
(VNA), demonstrates the feasibility of active transmission control between microstrips along
the waveguide geometry.

In the final set of experiments, spin wave propagation across a ring-shaped magnonic wave-
guide is studied using super-Nyquist sampling MOKE (SNS-MOKE) microscopy, a modifica-
tion of TR-MOKE microscopy. Scattering and complex interference within the ring structure
lead to frequency-dependent transmission across the ring in both Backward-Volume and
Damon-Eshbach geometries, offering insights into potential bandpass filtering applications.
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Kurzfassung

Diese Dissertation untersucht verschiedene Aspekte der Spinwellenausbreitung in 200 nm
dicken Yttrium-Eisen-Granat (YIG)-Filmen, wobei der Fokus sowohl auf den grundlegen-
den Eigenschaften von Spinwellen als auch auf deren Manipulation liegt.

Ein zentrales Thema ist das Phänomen der Spinwellen-Kaustiken, die durch Anisotropien
in der Dispersionsrelation von in der Ebene magnetisierten YIG-Filmen entstehen. Diese
Kaustiken manifestieren sich als kaustische Spinwellenstrahlen (CSWBs) im Material. Zur
Charakterisierung und Klassifizierung ihrer Eigenschaften wird ein theoretisches Modell en-
twickelt und experimentell mittels zeitaufgelöster magneto-optischer Kerr-Effekt (TR-MOKE)
Mikroskopie untersucht. Die Anregung von CSWBs wird durch verschiedene Anregungsmeth-
oden demonstriert, und es zeigt sich eine gute Übereinstimmung zwischen Theorie und Ex-
periment. Zudem wird die Reflexion von CSWBs untersucht, wobei Abweichungen vom
Snelliusschen Gesetz festgestellt werden.

Im zweiten Teil der Experimente wird die Hybridisierung von nullter Ordnung Damon-
Eshbach (DE)-Moden mit erster Ordnung senkrecht stehenden Spinwellen-Moden (PSSWs)
in einem trapezförmigen magnonischen Wellenleiter untersucht, ebenfalls unter Verwendung
der TR-MOKE Mikroskopie. Die Ergebnisse zeigen, dass die Moden-Hybridisierung die
Dämpfung von Spinwellen erhöht. In Kombination mit geometrieabhängigen Demag-
netisierungseffekten wird eine aktive Steuerung der Ausbreitungsdistanz der Spinwellen im
Wellenleiter gezeigt. Diese experimentellen Beobachtungen werden durch mikromagnetische
Simulationen unterstützt. Darüber hinaus zeigen elektrische Spinwellen-Spektroskopie-
Experimente, die mit einem Vektornetzwerkanalysator (VNA) durchgeführt wurden, dass
die elektrische Transmission zwischen Mikrostreifen-Antennen entlang des trapezförmigen
magnonischen Wellenleiters aktiv kontrolliert werden kann.

Im letzten Experiment wird die Spinwellenausbreitung in einem ringförmigen magnon-
ischen Wellenleiter untersucht, wobei die Super-Nyquist-Sampling MOKE (SNS-MOKE)
Mikroskopie, eine Modifikation der TR-MOKE Mikroskopie, angewendet wird. Streuung
und komplexe Interferenzen in der Ringstruktur führen zu einer frequenzabhängigen
Transmission hinter dem Ring, sowohl in der Backward-Volume- als auch in der Damon-
Eshbach-Geometrie. Diese Ergebnisse bieten Einblicke in mögliche Implementierungen
magnonischer Elemente als Bandpassfilter.
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Introduction

In recent years, the rapid expansion of machine learning and artificial intelligence tech-
nologies has significantly increased the demand for advanced computing and data processing
capabilities [1]. As this surge continues, energy consumption is expected to rise substantially,
particularly with conventional charge-based processing methods [1]. As a result, there is
a growing need to explore alternative low-energy processing solutions. One promising ap-
proach is magnonics, a field that has garnered considerable interest and has been the subject
of numerous reviews in recent years [1–6].

Magnonics focuses on the study and manipulation of spin waves, which are collective excita-
tions in magnetically ordered materials. The quantum counterpart of these excitations, known
as a magnon, obeys Bose-Einstein statistics. The concept of magnons was first introduced
by Felix Bloch in 1930, explaining the temperature-dependent magnetization in ferromag-
nets [7]. Since then, the study of spin waves has steadily evolved with notable contributions
by Holstein and Primakoff [8], Dyson [9], Herring and Kittel [10, 11], and Brockhouse [12],
leading to the establishment of magnonics as a distinct research field. In magnonics, spin
waves serve as the fundamental information carriers with the goal of transmitting, processing,
and storing information [4]. With their potential to operate at small wavelengths down to
50 nm [13], and across frequency ranges from GHz to hundreds of THz [6], magnonics offers a
powerful and versatile platform to perform various computing and logic operations. Among
others, several notable concepts have already been realized, including magnonic crystals [2,
3, 14–18], which exploit periodic structures to create bandgaps in the spin wave spectrum,
as well as interference-based logic gates [19–21], non-boolean processing [22], and wave-based
neuromorphic computing [23–25].

This thesis investigates various aspects of spin wave propagation in 200 nm thick Yttrium
Iron Garnet (YIG) films. YIG is a ferrimagnetic insulator and has emerged as the material of
choice within the magnonics community due to its low magnetic damping [6]. The primary
experimental tool employed is Time-Resolved Magneto-Optical Kerr Effect (TR-MOKE) mi-
croscopy, which allows for detailed observation of spin wave dynamics. Additionally, prop-
agating spin wave spectroscopy is utilized, and micromagnetic simulations often accompany
the experiments.

A significant focus of this thesis lies in the fundamental exploration of spin wave caustics,
which refer to the focussing of spin waves due to their inherent anisotropic propagation char-
acteristics, leading to the formation of beam-like features [26–46]. These caustic spin wave
beams are of particular interest, since they concentrate energy along specific trajectories,
resulting in high amplitudes, strong directionality, and steering capabilities. A deeper un-
derstanding of the fundamentals of these beams is valuable, as they arise in various contexts
and hold promise for future applications [47–49].

Beyond spin wave caustics, this thesis also explores more application-oriented aspects of
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Introduction

magnonics. In 200 nm thick YIG films, hybridization effects with higher order perpendicular
standing spin wave (PSSW) modes occur. This hybridization, along with geometric con-
siderations and magnetic dipole-induced edge effects, can be leveraged to control spin wave
propagation in trapezoidal-shaped magnonic waveguides. Furthermore, the thesis investi-
gates propagation in a ring-shaped magnonic waveguide, which, due to interference effects,
is suggested to serve as bandpass filters [50–52].

This thesis is structured into four main parts:
Part I establishes the theoretical and experimental framework for the research. Chapter

1 introduces the fundamental concepts of micromagnetism and the theory of dipole-exchange
spin waves. Chapter 2 details the methods employed throughout this thesis, including mi-
cromagnetic simulations and the experimental techniques of TR-MOKE and all-electrical
broadband spin wave spectroscopy. Chapter 3 theoretically explores the effects of PSSWs on
spin wave propagation in full films and magnonic waveguides.
Part II delves into spin wave caustics and caustic spin wave beams in in-plane magnetized

magnetic films. To this end, Chapter 4 introduces the concept of spin wave caustics, develops
a model, and conducts a systematic theoretical investigation of caustic points and their
properties. Chapter 5 outlines the experimental design to investigate caustic spin wave beams,
while Chapter 6 discusses the experimental results, which include the general characteristics of
caustic spin wave beams, a comparison with the theoretical model, and a detailed examination
of their reflection properties.

Part III is dedicated to the experimental evaluation of thickness mode hybridization effects
in trapezoidal-shaped magnonic waveguides. Chapter 7 outlines the motivation and experi-
mental design, while Chapter 8 presents the experimental results. This includes demonstrat-
ing active control of the spin wave propagation distance and subsequent electrical transmission
control between microstrip antennas.
Part IV explores spin wave propagation in a ring-shaped magnonic waveguide, which is

proposed as a potential bandpass filter. Chapter 9 motivates this investigation and details
the experimental design. Chapter 10 presents the experimental results, focussing on the
propagation and filtering characteristics in two magnetic geometries: the Backward-Volume
and the Damon-Eshbach configuration.
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1. Theory of Dipole-Exchange Spin Waves

Spin waves are collective excitations of magnetic moments within a magnetic material. The
quasiparticles corresponding to these excitations are known as magnons. Conceptually, spin
waves can be understood as fluctuations of spin propagating through a material, wherein
neighboring magnetic moments precess coherently while maintaining a defined phase rela-
tion and a defined wave vector k. A schematic representation of this situation is sketched
in Fig. 1.1. Spin waves are closely related to the phenomenon of ferromagnetic resonance
(FMR), which describes the resonant absorption of electromagnetic energy by a ferromag-
netic material [53–55]. FMR constitutes itself as uniform precession of magnetic moments;
i.e., the special case of a wave with a wave vector magnitude of k = 0.

λ

Figure 1.1. Schematic of a spin wave. Neighboring magnetic moments (blue arrows) pre-
cess around their equilibrium with a fixed phase lag. The precession amplitude component
(depicted in green) changes harmonically with a wavelength λ. Adapted from [56].

The dominant interactions governing spin waves depend on their length scale. In the
long-wavelength regime (k ≲ 10µm−1), magnetic dipolar interactions are the primary con-
tribution, whereas, in the short-wavelength regime (k ≳ 100µm−1), the exchange interaction
becomes dominant. In the intermediate regime, both interactions need to be considered. This
regime is referred to as the dipole-exchange regime [56].

Historically, spin waves were first described in 1930 by Bloch in a microscopic model [7].
Landau and Lifshitz developed a macroscopic theory where they formulated an equation of
motion for the magnetization, which is represented by a smooth continuous vector field. This
approach is referred to as micromagnetism [56, 57]. The Landau Lifshitz equation of motion
has been employed for a variety of applications in the field of micromagnetism. Notably, in
the long-wavelength limit, it was used to solve for dipolar, or magnetostatic, spin wave modes
in confined ferromagnets [58–60].

The primary focus of this thesis is the investigation of spin waves up to the dipole-exchange
regime. The subsequent sections aim to provide a comprehensive overview of the fundamental
basics of spin waves. The discussions include the concept of micromagnetism, magnetization
dynamics, the spin wave dispersion relation ω(k), which defines the relation between the
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1. Theory of Dipole-Exchange Spin Waves

angular frequency ω and the wave vector k, and the excitation of spin waves in a magnetic
material.

1.1. Micromagnetism

In the field of micromagnetism, the magnetization is described by a smooth continuous vector
field M(r, t). This field is characterized by length scales much larger than those observed
at the atomic scale and exists up to a material-specific critical temperature TC. It may be
defined as the sum of individual magnetic moments µ per unit volume V :

M(r, t) =

∑
V µ

V
. (1.1)

While quantum mechanics fundamentally governs the existence of magnetic moments and
their long-range ordering arising from exchange interaction, the introduction of M(r, t) allows
for a macroscopic description of the magnetization within a classical framework.

The equilibrium position of the magnetization is then determined by Brown’s equation [57]:

M ×Heff = 0. (1.2)

Essentially, the magnetization aligns along an effective field Heff , which incorporates all the
relevant magnetic field contributions. This effective field can be derived by letting the free
energy density F vary with respect to M [61]:

Heff = − 1

µ0

δF

δM
, (1.3)

where µ0 = 4π × 10−7 VsA−1 m−1 denotes the permeability of vacuum.
In this work, three contributions to the free energy density [62] are relevant to the experi-

ments. First, the Zeeman energy density

FZee = −µ0M ·Hext (1.4)

describes the effect of an external magnetic field Hext on the magnetization, as a collinear
orientation is energetically favourable.

The exchange energy density [56, 63]

Fex =
A

M2
S

((
∂Mx

∂x

)2

+

(
∂My

∂y

)2

+

(
∂Mz

∂z

)2
)

(1.5)

describes the tendency of the magnetization to align uniformly. Here, A and MS correspond
to material-specific parameters known as the exchange stiffness constant and the saturation
magnetization, respectively.

The final contributor to the free energy density considered is the demagnetizing energy
density. For the spin waves studied in this work, this is the dominant contribution, and it is
given by:

Fdem = −1

2
µ0M ·Hdem. (1.6)
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1.2. Magnetization Dynamics

Eq. (1.6) arises from long-range magnetic dipole interactions, which depend on the sample
geometry and reduce the effective field inside the magnetic material. This will be an impor-
tant effect in some of the presented experiments. While for ellipsoidal-shaped samples, the
demagnetizing field can be expressed as [64, 65]

Hdem = − 1

µ0
NM , (1.7)

with the demagnetizing tensor N, calculating Hdem for arbitrary shapes is typically nontriv-
ial. An often-used approximation is based on determining microscopic dipolar fields from
individual magnetic moments over a discretized sample geometry. This computation can be
performed using software packages such as mumax3 [66].

Note that the competition between exchange and demagnetizing energy introduces a char-
acteristic exchange length [64, 67]

lex =

√
2A

µ0M2
S

. (1.8)

This length scale determines the range over which the exchange interaction becomes domi-
nant, and the magnetization can be assumed to be uniform.

Taking all free energy density contributions into account, Eq. (1.3) defines an effective
magnetic field

Heff = Hext + Hex + Hdem, (1.9)

where
Hex = l2ex∇2M (1.10)

describes the exchange field. While further contributions, such as magneto-crystalline
anisotropies or strains, may add to the effective field, these can be disregarded in this
context, as they play only a minor role in the experiments.

1.2. Magnetization Dynamics

If the magnetization is not aligned parallel with the effective magnetic field, a torque is
exerted on the magnetization causing it to undergo a precessional motion around the effective
magnetic field until it reaches equilibrium.

A description of these dynamics is provided by the Landau-Lifshitz-Gilbert (LLG) equation
which tracks the temporal and spatial evolution of the magnetization. It is given by [68]

∂

∂t
M = −γµ0(M ×Heff)︸ ︷︷ ︸

precession

+
α

MS

(
M × ∂M

∂t

)
︸ ︷︷ ︸

damping

. (1.11)

where, γ =
∣∣∣ ge
2me

∣∣∣ denotes the gyromagnetic ratio with e, the electron charge, me the mass

of the electron, and g the Landé factor. The dimensionless damping parameter α determines
the strength of the dissipation term, which drives the magnetization towards the effective

7



1. Theory of Dipole-Exchange Spin Waves

field unless an external stimulus preserves the precession. As equation 1.11 assumes the
magnetization to preserve its length, the spiral trajectory of M occurs on a spherical surface.
An illustration of the precessional and damping torques is shown in Fig. 1.2.

(a)

M

Heff (b)

Figure 1.2. Trajectory of the magnetization. (a) The first term of the Landau-Lifshitz-
Gilbert (LLG) equation exerts a torque (green arrow) on M (dark blue arrow) which causes
a precessional motion of the magnetization around Heff (light blue arrow). (b) The additional
damping torque (orange) drives the magnetization into a spiral motion towards Heff .

The LLG can be solved assuming harmonic time-dependence with angular frequency,
ω = 2πf . To facilitate this, the magnetization is decomposed into a dynamic part m(r, t) =
m0(r)ei(ωt) which varies with time and space and a static, uniform part M0. Furthermore,
only small deviations around the equilibrium position are assumed, i.e., small precession
angles, such that m ≪ M0 and M0 = MS. In a coordinate system aligned with the magneti-
zation (see Fig 1.3), this can be expressed as [56]

M(r, t) = M0 + m(r, t) =

 MS

my

mz

 . (1.12)

Analogously, the magnetic field is divided into a static and a dynamic part and can be written
as Heff = Hex + hyey + hzez [56].

x

y
z

M0

my

mz
Figure 1.3. Decomposition of magneti-
zation into static part M0 and the dy-
namic components my and mz. The co-
ordinate system xyz is aligned with the
magnetization. Adapted from [56].

Solving the LLG equation 1.11 with the discussed assumptions and only keeping terms

8



1.3. Spin Wave Dispersion Relation

linear in m and h, yields the so-called linearized LLG equation [56, 69]:

iω

(
my

mz

)
=

(
−γµ0(−Hmz + MShz) + iαmzω
−γµ0(Hmy + MShy) + iαmyω

)
. (1.13)

1.3. Spin Wave Dispersion Relation

Spin waves arise as collective low-energy spin excitations that emerge in magnetically ordered
materials. As neighboring magnetic moments precess with a finite phase lag, this introduces
a spatial component to the magnetization dynamics. The behavior of spin waves is fully
characterized by their dispersion relation ω(k), which governs essential properties, including
the angular precession frequency ω and the wavelength for a given direction of propagation.

In the following, the dispersion relation in an isotropic ferromagnetic film based on the
model established by Kalinikos and Slavin [70] is discussed. In this framework, the coordi-
nate system uvw is introduced where a soft ferromagnetic film is considered which is infinitely
extended in the uv-plane and has a finite thickness L along the w-direction. The film is as-
sumed to be magnetized to saturation by a static external magnetic field Hext in an arbitrary
direction. The v-direction is chosen to coincide with the propagation direction of a spin wave
of the form

m(v, w, t) = m(w)ei(ωt−kvv). (1.14)

A sketch of the geometry is shown in Fig. 1.4(a).

L

u

w

v

y

x

z

ϕ

θ

w

v

Hext

x

θ

θH

(a) (b)

Figure 1.4. Definition of coordinate systems. (a) The angles φ and θ establish a link
between the coordinate systems uvw and xyz. The direction of spin wave propagation is
chosen to align with the v-axis. The effective field and the equilibrium magnetization are
always directed along the x-direction. (b) The external magnetic field forms an angle θH with
the w-axis.

For convenience, we introduce another coordinate system xyz, which is linked to the lab-
oratory frame uvw via the azimuthal angle φ between v and x, as well as rotation around

9



1. Theory of Dipole-Exchange Spin Waves

the u-axis by an angle θ. The xyz-frame is selected such that the internal effective field,
Heff = Hx̂, and, according to Eq. (1.2), the static equilibrium magnetization are always
aligned along the x-axis. For a given external magnetic field strength Hext and direction θH
(see Fig. 1.4(b)), the value for H and the direction θ can be determined by solving Eq. (1.3)
for a thin film. This procedure yields the system of equations

H = Hext cos(θ − θH) −MS cos2(θ) (1.15a)

0 = Hext sin(θ − θH) −MS cos(θ) sin(θ). (1.15b)

To solve for the spin wave modes and determine the dispersion relation, Kalinikos and
Slavin employed mixed surface pinning conditions. Pinning conditions describe how a spin
wave behaves at a boundary, establishing the necessary boundary conditions for the spin
wave modes [71, 72]. Specifically, totally unpinned surface states refer to the condition where
magnetic moments at the surface are free to precess without restriction, while pinned surface
states imply that the moments are constrained [73]. In practice, partially pinned states or
a mixture of pinning conditions at the top and bottom surface may occur [56, 74]. For thin
YIG films, the surface states are often considered to be unpinned [75, 76]. This assumption
will be adopted in the following discussions.

Applying zeroth-order perturbation theory, the dispersion relation for dipole-exchange spin
waves with totally unpinned surface states is then given by [70]:

ω2
n =

(
ωH + l2exk

2
nωM

) (
ωH + l2exk

2
nωM + ωMFnn

)
, (1.16)

where
ωH = γµ0H, (1.17)

ωM = γµ0MS, (1.18)

Fnn = Pnn + sin2 θ

(
1 − Pnn

(
1 + cos2 φ

)
+ ωM

Pnn (1 − Pnn) sin2 φ

ωH + l2exk
2
nωM

)
, (1.19)

and

Pnn =
k2v
k2n

− k4v
k4n

Fn
1

1 + δ0n
,

Fn =
2

kvL

(
1 − (−1)ne−kvL

)
.

(1.20)

Here, the eigenmode orders n = 0, 1, 2, ... refer to the various standing wave patterns that
emerge due to confinement across the thickness of the ferromagnetic film. These modes are
referred to as perpendicular standing spin waves (PSSW) and arise in addition to the in-plane
propagating wave vector. The wavelength of each PSSW mode is quantized according to

λPSSW =
2L

n
, (1.21)

such that kn =
√

k2v +
(
nπ
L

)2
. The influence of higher-order modes on the dispersion relation

and spin wave propagation characteristics is examined in more detail in Chapter 3 as they
play a crucial role in some of the conducted experiments.
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1.3. Spin Wave Dispersion Relation

In the subsequent discussion, the dispersion relation will be investigated in the thin film
approximation [77], where no amplitude nodes across the film thickness are considered. This
simplification disregards higher-order PSSW modes but still provides a sufficiently accurate
model for film thicknesses comparable to the exchange length of the magnetic material.

Furthermore, the group velocity vg, i.e., the speed and direction of energy propagation,
can be determined from the dispersion relation [78]:

vg =
∂ω

∂k
. (1.22)

This equation implies that, in general, the group velocity and the wave vector may not
be collinear. It is also important to note that ω is a complex number when considering
damping. The imaginary part Im(ω) then introduces a characteristic damping time τ = 1

Im(ω) .
Consequently, an attenuation length for propagating spin waves can be defined as the product
of the group velocity and the damping time:

Latt = vgτ. (1.23)

1.3.1. In-Plane Dispersion Relation in the Thin Film Approximation

In the experiments presented in this thesis, the external magnetic field is exclusively chosen
such that it lies in the film plane, i.e. θH = 90◦. In this case θ = θH = 90◦, and the internal
field simplifies to H = Hext (cf. Eq. (1.15)).

Considering the thin film approximation, the in-plane dispersion relation can then be ex-
pressed in the form [26]

ω2 = ω2
M

(
ωH

ωM
+ l2exk

2

)(
ωH

ωM
+ l2exk

2 + 1

)
− ω2

MP (kL)

(
ωH

ωM
+ l2exk

2 + 1 − P (kL)

)
cos2(φ)

+ ω2
MP (kL)(1 − P (kL)),

(1.24)

where

P (x) = 1 − 1 − e−x

x
. (1.25)

The in-plane dispersion relation exhibits an anisotropic behaviour that depends on the
direction of the wave vector. Fig 1.5(a) showcases a contour plot of the dispersion relation
for typical YIG material parameters with 200 nm thickness under an applied magnetic field
of µ0H = 20 mT. From hereon forward, typical YIG parameters refer to MS = 1.4 · 105 A

m ,
A = 3.7 · 10−12 J

m , γ = 176 GHz
T . The iso-frequency curves (black contour levels) exhibit pro-

nounced anisotropy at lower frequencies. As the frequency increases, however, they become
progressively more isotropic as the exchange regime becomes dominant. The anisotropic
behavior will play a critical role in the experiments involving caustic spin wave beams in
Part II.

Two primary geometries with a smooth transition between them can be distinguished by
varying the angle of the external magnetic field, φ. In the Damon-Eshbach (DE) geometry,
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1. Theory of Dipole-Exchange Spin Waves

−40 −20 0 20 40

kx (µm−1)

−40

−20

0

20

40

k y
(µ

m
−

1
)

H

BV

DE

2 3 4 5 6 7 8 9
f (GHz)

0 10 20 30 40 50

k (µm−1)

0

1

2

3

4

5

6

7

f
(G

H
z)

M

k

M

k

DE

BV

(a) (b)

Figure 1.5. Full film dispersion relation with a external magnetic field of µ0Hext = 20 mT
applied in the plane of the film. (a) Contour plot of spin wave manifold. The iso-frequency
curves (black lines) display anisotropic behavior. (b) Dispersion relations for Damon-Eshbach
(DE) and Backward-Volume (BV) spin wave modes. The following parameter values were
used in Eq. (1.24): MS = 1.4 · 105 A

m , Aex = 3.7 · 10−12 J
m , γ = 176 GHz

T , L = 200 nm.

k ⊥ M (φ = 90◦) holds [59], while the Backward-Volume (BV) geometry is characterized by
k ∥ M (φ = 0◦). The dispersion relations for these two modes are shown in Figure 1.5(b).
For DE modes, the group velocity and the wave vector are collinear [78]. On the other hand,
BV modes can exhibit a negative group velocity in the dipolar regime.

DE spin waves notably exhibit a localization of amplitude at the top or the bottom of the
film, depending on the propagation direction, a feature not observed in BV modes. Due to
this characteristic, DE modes are also referred to as magnetostatic surface spin waves. The
amplitude nonreciprocity stems from the spatial distribution of the dynamic dipolar field
induced by the spin wave, and its symmetry can be inverted by reversing the direction of the
external magnetic field. For a more in-depth explanation, Refs. [79, 80] are recommended.

In the simplest case, neglecting exchange interactions, the amplitude decays exponentially
from the surface of the film, defining a characteristic thickness scale Lchar = 1/k, over which
the amplitude decreases to 1/e if its initial value [73, 79]. It should be noted that when
exchange interactions are considered, the modal profile may deviate from this exponential
decay [79, 81]. For wavenumbers between 0.5µm−1 and 10µm−1, corresponding to a char-
acteristic thickness ranging from 0.1-2µm, amplitude non-reciprocity is observed in YIG
films of 200 nm thickness. Fig. 1.6 illustrates an example of the modal profile |mz| of the
dynamic out-of-plane component mz, obtained using the micromagnetic modeling software
TetraX [82] (see Methods Section 2.1.1), for both the DE and BV mode in a 200 nm thick
YIG film. The DE mode exhibits a significantly stronger localization near the bottom surface
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1.4. Excitation of Propagating Spin Waves

of the film than at the top.
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Figure 1.6. Numerically obtained mode
profile of the dynamic magnetization com-
ponent mz across the film thickness L
of DE (blue) and BV (orange) mode in
a 200 nm thick YIG film. A magnetic
field of µ0H = 5 mT field is applied, with
k = 0.9375µm−1 for each mode. The
amplitude of the DE mode is more pro-
nounced at the bottom surface of the film.

1.3.2. Out-of-Plane Dispersion Relation in the Thin Film Approximation

In the case where the external magnetic field is applied perpendicular to the film plane, i.e.
θH = 0◦, the direction of the magnetization is given by θ = θH = 0◦ and the internal magnetic
field by H = Hext−MS (cf. Eq. (1.15)). In this configuration, spin wave propagation can only
occur if the external magnetic field overcomes the saturation magnetization of the material.

The dispersion relation for an out-of-plane magnetic field then reads:

ω2 = ω2
M

(
ωH

ωM
+ l2exk

2

)(
ωH

ωM
+ l2exk

2 + P (kL)

)
. (1.26)

In contrast to the in-plane dispersion relation, Eq. (1.26) solely depends on the magnitude of
the wave vector, not on its direction. As a result, the iso-frequency lines in the contour plot of
Fig. 1.7(a) are circular, and spin wave propagation is fully isotropic. The dispersion relation
along any of these directions is depicted in Fig. 1.7(b). Spin waves in this configuration are
known as Forward-Volume (FV) modes. Notably, the group velocity is always aligned with
the wave vector in the FV geometry [78].

1.4. Excitation of Propagating Spin Waves

Up to this point, the discussion has centered on the propagation characteristics of spin waves,
without addressing how they are initially generated within magnetic materials. While ther-
mal excitation is always present to some extent, several additional mechanisms are recognized
for inducing spin wave emission. These mechanisms include optical pump techniques [83–85],
parametric pumping [86–89], emission from spin-transfer-torque and spin-torque nanooscilla-
tors [90–95], as well as vortex cores [96] and domain walls [97] serving as spin wave emitters.

The most widely employed approach involves utilizing high-frequency magnetic fields gen-
erated by microwave transducers connected to a microwave generator [2, 98–101]. These
transducers serve as antennas, typically designed as microstrip lines or shorted coplanar
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Figure 1.7. Full film dispersion relation with a magnetic field of µ0Hext = 200 mT applied
out of the plane of the film. (a) Contour plot of spin wave manifold. Here, the iso-frequency
curves (black lines) display isotropic behavior. (b) Dispersion relation of Forward-Volume
(FV) mode.

waveguides (CPWs). The current lines generate a spatially inhomogeneous Oersted field
that couples inductively to the magnetization [56] and results in spin wavefronts that align
approximately parallel to the conductor [102]. Both CPW and microstrip line excitation
are employed in the experiments, as illustrated in Fig. 1.8. Similarly, spin waves can be
electrically detected using the same process in reverse.

For efficient excitation, two factors have to be considered. On the one hand, the disper-
sion relation dictates the propagation characteristics in the film at a given frequency and a
given effective magnetic field. On the other hand, the excitation efficiency of a wavenumber
strongly depends on the dimensions of the transducer lines, as they only efficiently excite
spin wavelengths in the order of their size. Only if those two conditions match sufficiently,
spin wave propagation can be induced efficiently.

For simplicity, we consider the current lines to be of infinite length and the current distri-
bution to be uniform within the signal and ground lines. Note that, in reality, the current
distribution is not uniform and must be determined numerically [103]. Given these assump-
tions, the induced Oersted field of one current line can be calculated using the two-dimensional
Biot-Savart law [56, 64]:

µ0hext =
1

2π

I × r

r2
. (1.27)

Here, hext denotes the excitation field, I the current flowing through one current line, and r
the vector from the current element to the observation point.

Figs. 1.9(a) and (c) show the resulting spatial profiles along the propagation direction
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Figure 1.8. Schematic of current line designs and spin wave excitation. (a) Sketch of spin
wave excitation by a shorted coplanar waveguide. The waveguide consists of one signal line
(S) and two ground lines (G). The microwave current (black arrows) running through the
current lines induces an Oersted field (red circles), resulting in the generation of spin waves
(orange arrows). (b) Sketch of spin wave excitation by a microstrip. Here, the antenna
consists only of one signal line exciting spin wave propagation.

of the in-plane component hv and the out-of-plane component hw of the induced Oersted
field for a CPW and a microstrip line design. The calculated data shown in Figs. 1.9(a)
and (b), related to a CPW, is obtained by superposition of the individual current lines.
The wave vectors that the antenna structures can excite in the v-direction are determined
through the fast Fourier transform of the in-plane excitation field. Figs 1.9(b) and (d) exhibit
the corresponding excitation spectra for different dimensions of CPWs and microstrip. The
dimensions of the CPW are given by its signal line width wsig, its ground line width wgr and
its gap wgap between the signal and the ground line. The microstrip dimensions are defined
solely by their signal line width. It can be seen that a CPW structure allows for a certain
wavenumber selectivity, while a microstrip line excites a broader range of wave vectors with
strong efficiency at the FMR mode.

Similar principles apply to the excitation of PSSWs. These modes become observable with
a nonuniform excitation field along the film thickness [104]. Even though the excitation field
decays over much longer lengths in the w-direction compared to the v-direction [56, 105], the
inhomogeneity is substantial enough to couple with PSSW modes in a 200 nm thick film.

One final subtlety we want to address is the non-reciprocity in excitation amplitude. It
is important to note that this non-reciprocity is distinct from the non-reciprocal surface
localization of DE modes; instead, it originates from the geometry of the excitation field with
respect to the magnetization. For a more detailed and comprehensive understanding, the
article by Devolder [106] is highly recommended.

Due to the antisymmetric out-of-plane component, the helicity of the excitation field de-
pends on the wave vector direction and may enhance or suppress spin wave generation de-
pending on the helicity mismatch with the magnetization precession. The following steps are
typically undertaken to derive the helicity mismatch.

First, hext is introduced into the LLG equation 1.13 in a suitable coordinate system, which
is then recast to the form m = χhext, yielding the susceptibility tensor χ. The excitation
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Figure 1.9. Induced Oersted fields and excitation efficiency of current line designs. (a)
Spatial profile of in-plane (hv) and out-of-plane (hw) components of the Oersted field for a
coplanar waveguide (CPW) with wsig = 10µm, wgr = 5µm and wgap = 5µm. (b) Excitation
spectra for different CPW dimensions in the format wsig-wgr-wgap. (c) Spatial profile of in-
plane and out-of-plane components of Oersted field for microstrip with wsig = 5µm. (d)
Excitation spectra for different microstrip widths.

response of the magnetization is given in Fourier space by:

m̃ = χ̃h̃ext, (1.28)

where the tilde overscript denotes Fourier space, and χ̃ represents the complex-valued sus-
ceptibility tensor in Fourier space. The tensor χ̃ can be expressed in the form:

χ̃ = χmax

(
1 −iϵ
iϵ 1

)
, (1.29)

where χmax is a constant value and ϵ the precession ellipticity.
Eq. 1.28 can now be solved depending on the static external magnetic field angle to give

the magnetization response and is found to depend on the external magnetic field angle as
sin (φ). For the condition

sin (φMM) = −ϵ sgn(k), (1.30)

where sgn denotes the signum function, the response vanishes completely, indicating maximal
helicity mismatch.
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2. Methods

In the realm of spin waves, various experimental techniques are employed to study their
properties and dynamics. Brillouin light scattering (BLS) [107–110] and TR-MOKE mi-
croscopy [111–115] have established themselves as standard techniques for magneto-optically
probing spin waves, offering both temporal and spatial resolution. In this thesis, TR-MOKE
microscopy serves as the primary experimental tool.

BLS, which operates in the frequency domain, relies on the inelastic scattering of pho-
tons from spin waves, resulting in the creation or annihilation of magnons. TR-MOKE, on
the other hand, operates in the time domain and exploits the Magneto-Optical Kerr Effect
(MOKE) to observe magnetization dynamics [116]. Additionally, BLS has the advantage of
being able to detect incoherent excitations; however, recording spatial maps is usually very
time-consuming. Both techniques are tabletop systems that provide resolution in the dipolar
regime.

Higher spatial resolution is offered by time-resolved Scanning Transmission X-ray Mi-
croscopy [117–120], which provides magnetic contrast through x-ray magnetic circular dichro-
ism. However, it requires X-rays from a synchrotron source.

In the context of electrical detection, propagating spin wave spectroscopy has emerged as a
prominent method [4, 106, 121–125]. This technique is based on inductive coupling between
the spin wave stray field and current lines.

Furthermore, experiments are frequently complemented by micromagnetic simulations [66,
82, 126, 127] to validate and better understand the experimental results. Micromagnetic
solvers like mumax3 [66] are heavily adopted for this purpose. Recently, TetraX has
emerged as another powerful tool for micromagnetic modeling.

This chapter provides an overview of the main simulation and experimental methods used
in this thesis. It begins with an overview of the simulation software used, followed by a
detailed discussion of the experimental techniques, specifically TR-MOKE microscopy, and
all-electrical spin wave spectroscopy.

2.1. Micromagnetic Simulation Software

2.1.1. TetraX

TetraX is an open-source software package for finite-element method (FEM) micromag-
netic modeling of magnetization statics and dynamics [82, 127]. In the FEM approach, the
magnetic medium is divided into finite-sized elements, typically of triangular shapes. For
each element, the linearized LLG equation 1.13 is formulated, and the system can be solved
within a dynamic matrix approach. TetraX incorporates several FEM dynamic-matrix ap-
proaches [69, 128] to numerically calculate normal modes and their associated frequencies for
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2. Methods

various geometries, including full films, magnonic waveguides with arbitrary cross-section,
and nanotubes. A detailed description and verification of the implementation can be found
in [82]. TetraX provides detailed analysis tools within a Python environment, particularly
through interaction with Jupyter notebooks. Comprehensive documentation and examples
are available at https://tetrax.readthedocs.io. Within the scope of this thesis, TetraX
was mainly used to derive spin wave dispersion relations and mode profiles numerically.

2.1.2. mumax3

mumax3 is an open-source GPU-accelerated software package designed to model space- and
time-dependent magnetization dynamics [66]. It employs finite difference discretization of
space within a regular grid of orthorhombic cells. The LLG equation is solved on this grid
using the Runga-Kutte method for time evolution, assuming that the magnetization is in
the center of each cell and considering interactions between cells [56]. The initial static
magnetization and effective field can be evaluated by ignoring the precessional term in the
LLG equation. A detailed report about the design and verification of mumax3 can be found
in [66]. A detailed documentation is provided at https://mumax.github.io. This work
mainly utilized mumax3 for effective magnetic field calculations and simulated maps of spin
wave propagation.

2.2. Time-Resolved Magneto-Optical Kerr Effect Microscopy

In basic MOKE experiments, linearly polarized light is incident on the surface of a magnetic
material. Upon reflection, the polarization state is changed. The reflected light then passes
through an analyzer, typically a polarizer or Wollaston prism, and is captured by a detector,
which then provides a representation of the material’s magnetization. Such techniques are
widely used for imaging static magnetization and domain walls, as well as measuring hysteresis
loops in different magnetization configurations [129–133].

For the study of magnetization dynamics, such as spin waves, TR-MOKE microscopy is
widely used [111–115]. TR-MOKE is an optical pump-probe technique. In the presented
experiments, spin waves are coherently excited (pumped) by a microwave source with fre-
quency f (cf. Sec. 1.4) and stroboscopically probed by a femtosecond laser pulse train at a
repetition rate frep = 80 MHz. Since the laser pulses (∼150 ps) are much shorter than one
excitation period, one distinct phase of the dynamic magnetization is probed. The relative
phase between the laser pulses and the microwave excitation is kept fixed. Utilizing polar
MOKE enables direct access to the dynamic out-of-plane component. In the standard TR-
MOKE measurement, this implies that the driving frequency is always an integer multiple of
the laser repetition rate. Recent advances, however, have shown to overcome this restriction
with a technique framed super-Nyquist sampling MOKE (SNS-MOKE) [134].

In the following, the fundamental aspects of TR-MOKE microscopy are explained. Similar
descriptions can be found in [56, 79, 116, 135]. First, the basics of MOKE are introduced,
followed by an overview of the experimental setup and the standard measurement principle.
Lastly, the concept of SNS-MOKE and its advantages are explored and discussed.
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2.2. Time-Resolved Magneto-Optical Kerr Effect Microscopy

2.2.1. Magneto-Optical Kerr Effect

MOKE describes the change in polarization of light upon reflection from a magnetic material.
It is closely related to the Faraday effect, which describes polarization changes during trans-
mission through a magnetic material [56, 64, 65]. When linearly polarized light is incident
on a magnetic film, the reflected light exhibits intensity and polarization changes depending
on the geometry [79]. Three main geometries are distinguished [64]:

• Polar MOKE: the magnetization is oriented perpendicular to the film surface. It is
characterized by a change of rotation of polarization and an ellipticity of the reflected
beam. Polar MOKE is suitable to examine samples with an out-of-plane magnetization
component.

• Longitudinal MOKE: the magnetization lies in the film plane parallel to the plane of
incidence. Here, a rotation of polarization and a slight ellipticity of the reflected beam
are observed.

• Transverse MOKE: the magnetization also lies in the film plane but is oriented perpen-
dicular to the plane of incidence. A change of intensity upon reflection is observed.

In the experiments, only polar MOKE is exploited. Here, the change of polarization is
directly proportional to the change in the dynamic out-of-plane magnetization component.
To be more specific, when the beam is incident perpendicular to the magnetic film plane,
only the polar MOKE configuration is accessed, providing sensitivity exclusively to the out-
of-plane component of the magnetization dynamics. In other configurations, a mixture of
MOKE effects is measured.

At the microscopic level, MOKE arises from spin-orbit interaction [64]. Macroscopically,
the MOKE is described by the permittivity tensor ϵ, which represents a material’s response
to an electric field [56]. In the presence of spin-orbit coupling, for a film with out-of-plane
magnetization, the permittivity tensor reads [64]

ϵ = ϵ0ϵr

 1 iQ 0
−iQ 1 0

0 0 1

 , (2.1)

where ϵ0 and ϵr are vacuum and relative permittivity, and Q is the magneto-optic parameter,
which is a complex material parameter. The off-diagonal tensor entries contribute to the
magneto-optic effect, inducing different complex refractive indices for left- and right-handed
circularly polarized light [64, 65, 79], i.e.

n± ≃ ϵ1/2r

(
1 ± 1

2
Q

)
. (2.2)

Consequently, left- and right-handed circularly polarized light propagates with different ve-
locities and attenuates differently [65]. As a result, linearly polarized light - a superposition of
left- and right-handed circularly polarized light - exhibits polarization rotation and ellipticity
upon reflection.
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2. Methods

2.2.2. Fundamental Components and Concept of Scanning Time-Resolved Kerr
Microscopy

Two slightly different configurations of the TR-MOKE setup were employed in the exper-
iments. In one configuration, the sample is exposed to a frequency-doubled femtosecond
laser with a center wavelength of 400 nm laser, while in the other configuration, it is exposed
to a femtosecond laser with a center wavelength of 800 nm. These configurations differ in
spatial resolution, the penetration depth into the magnetic material, and the magneto-optic
constants, i.e., the magnitude of polarization rotation by reflection at a magnetic surface.
However, since we are primarily interested in an absolute signal, these differences can be
somewhat disregarded - although better spatial resolution can be beneficial in certain cases.
For simplicity, only the 400 nm case will be discussed further.
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Figure 2.1. Schematic of optical and mechanical components of scanning time-resolved
magneto-optical Kerr effect (TR-MOKE) microscopy. The dynamic out-of-plane magnetiza-
tion component is detected by exploiting the polar MOKE. The sample (grey rectangle) is
situated on a piezostage inbetween the two pole shoes of an electromagnet. Further details
are provided in the text.

A schematic of the optical and mechanical components of the scanning TR-MOKE is de-
picted in Fig. 2.1. A mode-locked Coherent Mira 900 laser system is used as a light source.
It provides femtosecond (fs) laser pulses with a repetition rate frep = 80 MHz at a central
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wavelength λc ∼ 800 nm. The laser wavelength is frequency doubled to λc ∼ 400 nm after
passing a nonlinear barium borate crystal. Subsequently, the polarization of the laser light is
fixed by a polarizer and reflected towards the sample by an 8:92 (transmission:reflection) pel-
licle beamsplitter. An objective lens with a numerical aperture of NA = 0.7 focuses the laser
on the sample, giving a theoretical maximum spatial resolution of dres = λc

2·NA ≈ 286 nm.
Upon reflection at the magnetic surface, a change of polarization is induced by the polar
MOKE, where the magnitude of the polarization rotation is directly proportional to the
changes in the dynamic out-of-plane component of the magnetization, i.e., the spin wave
amplitude. A Wollaston prism splits the reflected signal into two beams with orthogonal
polarization components, which are detected by a balanced photodetector consisting of two
photodiodes with photocurrents A and B, respectively. The difference A-B between the pho-
tocurrents, generated by the two independent photodiodes, yields a representation of the
change in magnetization, the Kerr signal. The sum A+B of the diode signals is proportional
to the sample’s reflectivity and is usually used to normalize the Kerr signal. Furthermore,
the sample is mounted onto a xyz-piezostage. This allows for spatial scans of the relative
laser position in the sample plane, giving a 2D map of the Kerr signal and the topography.
During the measurement, an external magnetic bias field in the plane of the sample can be
applied by means of a rotatable electromagnet.

An additional green LED light source illuminates the sample. It is decoupled from the
laser beam path via a dichroic mirror and directed towards a CCD camera, where a real-time
wide field microscopic sample image is captured. It is used as a reference to actively stabilize
the laser focus and position. This is important to compensate for thermal drifts in a lengthy
series of measurements. Between measurements, the piezostage is actively adjusted to align
the current CCD image with a reference image [56].

At the core of the TR-MOKE lies the synchronization of the laser pulses with the rf
excitation. For this purpose, a Synchrolock module is used, which actively stabilizes the laser
repetition rate to 80 MHz via a feedback loop consisting of a fast photodiode and an adjustable
piezo-controlled mirror inside the laser cavity. Moreover, the internal quartz oscillator of
the Synchrolock serves as a master clock and provides a 10 MHz reference signal to a R&S
SMA100B signal generator. This ensures a constant phase relation between laser pulses and
rf source but also requires the excitation frequency to be an integer multiple of the repetition
rate, i.e., f = νfrep, ν ∈ Z.

Lock-in detection is employed to increase the sensitivity of the measurement. For this pur-
pose, the driving rf frequency is frequency-mixed with an additional rectangular kHz signal
provided by a low-frequency signal generator. This effectively causes a phase modulation of
the rf signal by 180◦at the given kHz frequency. After amplification (accounting for mixer
conversion losses), the modulated signal is applied to an rf antenna placed atop the sample
surface. The Kerr signal from the detector is fed to the lock-in detector and demodulated
at the reference frequency given by the low-frequency signal generator. The X-channel of
the lock-in [136] gives a signal proportional to the dynamic out-of-plane magnetization com-
ponent.1 For a comprehensive overview of the principles of lock-in detection, Ref. [136] is

1The phase between reference and input signal is chosen such that the entire signal is captured in the
X-channel.
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Figure 2.2. Principle of synchronization and modulation. In (a), essential components for
synchronization and modulation are depicted. (b) demonstrates the probing of the synchro-
nized rf signal (blue lines) with the laser pulses (red vertical lines). (c) illustrates the kHz
modulation signal (orange dashed lines) and the rf signal after the phase modulation, while
(d) displays the magnetization values sampled by the laser spot (blue dots) and detected by
the lock-in. Adapted from [56].

recommended. An illustration of the synchronization and modulation procedure is given in
Fig. 2.2.

It is worth noting that the measured Kerr amplitude doesn’t represent the absolute ampli-
tude of spin wave precession. It only reflects the amplitude at the given fixed relative phase
between the laser pulses and excitation. To reconstruct the absolute amplitude, an additional
out-of-phase measurement 90◦shifted to the initial phase needs to be conducted. Taking the
square root of the sum of the squares of in-phase and out-of-phase signals yields the absolute
signal.

2.2.3. Super-Nyquist Sampling MOKE

A more recent modified version of TR-MOKE microscopy, termed super-Nyquist sampling
MOKE (SNS-MOKE) or undersampling, exploits the effect of aliasing in undersampled sig-
nals [21, 134, 137].
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2.2. Time-Resolved Magneto-Optical Kerr Effect Microscopy

When detuning the excitation frequency such that

f = νfrep + ϵ, (2.3)

where ν is an integer and ϵ non-zero, lower frequency aliases at integer multiples of ϵ occur
in the sampled signal. These aliases preserve signal amplitude and relative phase relation
between the laser pulses and the synchronized rf-excitation. Effectively, the dynamic response
of the magnetization is down-converted coherently to an alias frequency and can be detected
by lock-in demodulation at the frequency ϵ. As a result, SNS-MOKE does not require active
modulation of the excitation frequency and permits detection of the dynamic out-of-plane
magnetization component at almost arbitrary excitation frequencies. Furthermore, the in-
phase and out-of-phase components of the dynamic magnetization are detected in the X-
and Y -channel [136] of the lock-in in only one measurement, reducing measurement time by
a factor of two. An illustration of the components and the measurement principle is depicted
in Fig. 2.3.
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Figure 2.3. Schematic of super-Nyquist sampling MOKE (SNS-MOKE). (a) depicts the
necessary components for the SNS technique. Mixer, low-frequency signal generator, and
additional amplifier are not required. (b) and (c) illustrate the formation of an alias at
lower frequency for an undersampled signal. This alias is detected by the lock-in. Adapted
from [56].

During the measurement, the laser pulses, the excitation source for the magnetization dy-
namics, and the lock-in demodulator must maintain a constant phase relation. However, in
our specific case, the sine output level of the 10 MHz reference signal from the Synchrolock
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2. Methods

module is not compatible with the 10 MHz reference input of the Zurich Instruments HF2LI
lock-in detector.2 To overcome this issue, the reference output of the synchronized R&S
SMA100B was utilized instead, as it provides the necessary output level3 (cf. Fig 2.3(a)).
Furthermore, the aliasing band for undersampled signals extends from 0 Hz to half the sam-
pling rate, meaning that signals expressed as in (2.3) can be down-converted to the interval
−frep/2 < ϵ < frep/2[56]. Given a laser repetition rate of 80 MHz, the lock-in and photodi-
odes should ideally be able to work up to at least 40 MHz. In our experimental configuration,
this requirement is satisfied, as the lock-in can demodulate from DC to 50 MHz and the
photodetector has a bandwidth of 40 MHz.

2.3. All-Electrical Spin Wave Spectroscopy

In the all-electrical spin wave spectroscopy experiments, two antennas, deposited on top of
the magnetic film and connected to separate ports of a Vector Network Analyzer (VNA) with
a common ground, are operated in parallel. One antenna acts as the excitation source, while
the other serves to detect the electrical signal induced by the spin waves (cf. Chapter 1.4) [106,
121–125]. The VNA injects an rf signal into the outgoing port j and detects the magnitude
and phase of the response in port k. The output of the VNA is quantified in terms of a
scattering matrix Sjk with

Sjk =
V in
j

V out
k

=
|V in

j |
|V out

k | · e
i∆ϕ, j, k ∈ {1, 2}. (2.4)

The diagonal scattering parameters S11 and S22 represent the reflection of the signal at the
corresponding port, while S21 and S12 describe the transmission from port 1 to port 2 and
vice versa. Fig 2.4 shows an illustration of the measurement technique.

Two different modes of operation are employed for the spin wave spectroscopy experiments
presented in this work. In the broadband spin wave spectroscopy measurements, the external
magnetic field is set to a fixed value, and the VNA sweeps the frequency of the outgoing port
across a specified range. However, a frequency-dependent background occurs in the detected
scattering parameters due to direct antenna-to-antenna coupling. To improve contrast, a
high-field subtraction method is applied. Additional reference data Sjk,ref is recorded at high
external magnetic field, and the obtained absolute values of the reference data are subtracted
from the absolute values of the scattering parameters at the field of interest. The spectra are
then presented in terms of the processed data, i.e., |∆Sjk| = |Sjk|−|Sjk,ref |. The second mode
of operation is the continuous wave (CW) mode. Here, the VNA frequency remains fixed for
a chosen measurement time while the external magnetic field is swept. It provides less noisy
data by increasing the number of statistical samples, and no reference data is recorded.

2The Zurich Instruments HF2LI Clock-In requires a signal of at least 2Vpp.
314 dBm (3.17Vpp) sinusoidal output.
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Figure 2.4. Schematic of all-electrical spin wave spectroscopy. One antenna operates as the
excitation source, while the other detects electrical response induced by the propagating spin
waves. The vector network analyzer (VNA) can detect the reflection parameters S11 and S22

and the transmission parameters S21 and S12.
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3. Effect of Hybridization of PSSW Modes on
Spin Wave Propagation

When the magnetic film thickness increases, the first-order perturbation theory by Kalinikos
and Slavin (KS) given in Eq. (1.16) becomes less reliable. In such cases, it becomes necessary
to account for PSSWs to accurately capture spin wave propagation. This chapter discusses
the effect of PSSWs on spin wave propagation in more detail on the basis of micromagnetic
simulations. Note that while higher perturbation orders in the KS model address these
effects as well, they require significantly more computation time [34]. Understanding the
resulting phenomena is essential for the experiments presented within the scope of this thesis,
particularly in Part III. The chapter begins by exploring the fundamental principles in a full
film and then extends the discussion to magnonic waveguides of finite width.

3.1. Full Film Considerations

Using Eq. (1.16) by Kalinikos and Slavin (KS) [70], the full film dispersion relations of the first
three eigenmodes in the totally unpinned case are derived in zeroth-order perturbation theory.
Fig. 3.1(a) shows the results in the DE (φ = 90◦, cf. Fig. 1.5) and BV (φ = 0◦, cf. Fig. 1.5)
geometry for a 200 nm thick YIG film with an external magnetic field of µ0H = 32 mT, along
with the corresponding thickness profiles. It can be observed that the n = 0 DE mode and
the n = 1 PSSW mode intersect in the dipolar regime in the DE geometry, while no mode
crossing occurs in the BV geometry.

In this context, it should be pointed out that higher-order PSSWs (n ≥ 1) in the DE
geometry lack surface character and are technically not DE modes but exhibit volume char-
acter [60]. For simplicity, however, these modes will be referred to as higher-order PSSW
modes in the DE geometry.

Fig 3.1(b) compares the analytic solutions to micromagnetic simulations of the n = 0 and
the n = 1 modes in the DE geometry utilizing TetraX [82]. Going above the dipolar regime,
the analytical solution tends to overestimate the frequency compared to the micromagnetic
solution. A key feature in the micromagnetic simulations is the lifting of the wavenumber
degeneracy at the points of mode intersection, resulting in the formation of an anticrossing
for the n = 0 DE mode and the n = 1 PSSW mode. This is particularly visible in the zoomed
inset of Fig. 3.1(b).

This avoided crossing is a result of the interaction between the two modes, leading to a
dipole-dipole hybridization of the dispersion branches [70]. In this region, the dispersion
relation is flattened, and thus, the group velocity for propagating spin waves approaches
zero (cf. Eq. (1.22)) [34]. As a result, the attenuation length of spin wave propagation is
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Figure 3.1. Dispersion relation considering PSSWs in 200 nm YIG with an external mag-
netic field of µ0H = 32 mT. (a) shows the solutions from the zeroth-order perturbation model
by Kalinikos and Slavin (KS) along with the corresponding thickness profiles. The spin wave
modes in the DE geometry cross each other. In (b), the KS model for n = 0 and n = 1 is
compared to micromagnetic solutions by TetraX. An avoided crossing occurs, particularly
visible in the zoomed inset. ∆f (purple arrow) gives a measure for the strength of the hy-
bridization. khyb denotes the degenerate wavenumber.

considerably reduced (cf. Eq. (1.23)), giving rise to a spin wave stop band where spin wave
propagation is effectively suppressed [34]. Note that the avoided crossing with higher-order
PSSWs occurs only in the dipolar regime.

In the following, some characteristics of the anticrossing in full YIG films in the DE geom-
etry are discussed in more detail. To this end, the quantity ∆f is introduced as the minimal
gap between the upper and lower band determined by TetraX simulations. ∆f serves as a
qualitative measure of the coupling strength between the modes. Additionally, the wave vec-
tor of hybridization khyb is introduced as the intercept of the n = 0 and n = 1 modes derived
from the KS zeroth-order perturbation model. The quantities ∆f and khyb are illustrated in
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3.1. Full Film Considerations

the inset of Fig. 3.1(a).

Fig. 3.2 displays the position and extent of ∆f (marked with orange) for a 200 nm thick
YIG film under several external magnetic field values in the DE geometry. Essentially, this
figure serves as a phase map, showcasing the conditions under which propagation is sup-
pressed due to the hybridization. As the external magnetic field increases, the hybridization
condition shifts towards higher frequencies, and the stop band slightly broadens. The slight
discontinuities in the stop band (e.g., at 2.1 GHz, 13 mT) are attributed to the limited k
resolution of the numerically determined dispersion relation.
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FMR Figure 3.2. Frequency and
field map showing the evo-
lution of the spin wave stop
band condition in the DE
configuration for a 200 nm
thick YIG film, computed
by TetraX. The orange
band highlights the condi-
tions where the anticrossing
occurs. The cyan-colored
line depicts the FMR con-
dition for comparison.

Given the significant influence of film thickness on the hybridization of PSSW modes, a
brief discussion on this is provided in the following. Fig 3.3 shows the relationship between
film thickness and both ∆f and khyb at an external magnetic field of µ0H =32 mT. As film
thickness decreases, both parameters exhibit an increasing trend. Notably, below a thickness
of approximately 170 nm the dispersion branches no longer intersect. As the film thickness
decreases, the mode spacing of the n > 0 modes increases, and the slope of the n = 0 mode
decreases, leading to a critical thickness beyond which hybridization ceases to occur [70].

Fig 3.3(b) explores the dependence of khyb on the external magnetic field for various film
thicknesses at a frequency of 2.8 GHz. Higher external magnetic field values correspond to
increased khyb. Moreover, the external magnetic field also influences the existence of hy-
bridization. A high external magnetic field flattens the n = 0 mode in the dipolar regime,
and hence, the dispersion branches no longer cross each other. For example, with a 170 nm
thick film, this occurs above magnetic fields of approximately 50 mT. In summary, this discus-
sion demonstrates that the properties of the spin wave stop band can be tuned to some extent
by adjusting the external magnetic field strength, the frequency, and the film thickness.
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Figure 3.3. Some properties of hybridization characteristics. (a) Dependence of khyb and
∆f on film thickness at an external magnetic field of 32 mT. Both parameters tend to decrease
with increasing thickness. (b) Dependence of khyb on external magnetic field strength at a
frequency of 2.8 GHz. khyb can be tuned within a specific range by changing the external
magnetic field strength.

3.2. Effect of Waveguide Width on Hybridization

In a spin wave waveguide with finite width w0, as sketched in Fig. 3.4(a), an additional
quantization across the waveguide width occurs. The corresponding dispersion relation can be

represented using Eq. (1.16) by letting kv 7→
√

k2v +
(
mπ
w0

)2
and φ 7→ φ−arctan

(
mπ
kvw0

)
[138–

140]. Here, m = 0, 1, 2, ... represent the eigenmode orders across the width of the waveguide,
and kv denotes the wavenumber along the waveguide.

In a transversely magnetized waveguide in the DE-geometry (k ⊥ M), demagnetization
effects become significant. Because of this, the non-uniform effective field µ0Heff needs to
be considered in the dispersion relation in place of the externally applied magnetic field.
Fig. 3.4(b) illustrates the effective magnetic field in x-direction, µ0Hx,eff, across a waveguide
with a width of w0 = 6µm under an applied magnetic field of µ0H = 32 mT. While spin
wave propagation in the center of the waveguide may assume a uniform field, at the edges, a
strong reduction in the effective magnetic field occurs. To account for this strong reduction,
an effective waveguide width weff is introduced in place of w0. Various definitions exist for
weff [89, 140]; here, we adopt the definition by Chumak [140]. According to this definition,
weff is given by the distance of points across the width where the effective field is reduced by
10%. i.e., to the value 0.9 · µ0H

max
eff .

To further quantify the effective field in the waveguide center and its effective width,
micromagnetic simulations [66] were conducted on transversely magnetized waveguides under
an external magnetic field of µ0H = 32 mT. Figs. 3.5(a)-(b) illustrate the x-component of
the effective field in the center and the ratio weff/w0 as a function of waveguide width. The
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Figure 3.4. (a) Sketch of a magnonic waveguide with finite width w0. (b) Effective magnetic
field along the x-direction in a transversely magnetized magnonic waveguide with w0 = 6µm
and µ0H = 32 mT. The difference between the actual waveguide width w0 and the effective
width weff is illustrated.

effective field exhibits a gradual decrease, showing reductions of up to 3 mT compared to the
external magnetic field. The effective width is maximally reduced to about 65% of the actual
waveguide width, permitting a rather broad region across the width of mostly uniform field
and mode propagation.

In Fig. 3.5(c), the resulting analytical dispersion relations for several thickness (n = 0,
n = 1) and width modes (m = 0, m = 1, m = 2) with w0 = 6µm are plotted along with
the corresponding full film dispersion. In general, the reduced effective field causes a shift of
the dispersion relation towards lower frequencies compared to the full film. Moreover, with
increasing order of the width mode (m = 1, m = 2), the reduction in frequency in the dipolar
regime becomes more pronounced. More notably, however, the n = 0 and n = 1 PSSW
modes still intersect in the dipolar regime in the waveguide dispersion relations, facilitating
a mode hybridization and corresponding stop band. Furthermore, as shown in Fig. 3.5(d),
the finite waveguide width doesn’t notably affect the higher-order PSSW (n = 1) aside from
the reduction in the effective magnetic field.

Thus, it is concluded that the dominant effect of the width modulation on the hybridization
is the reduced effective field and the resulting shift in the hybridization condition. This is
especially the case for the m = 0 width mode, which should be the dominant mode in the
experiments in Part III. In this Part, plane waves transitioning from the full film into a
tapered waveguide geometry are investigated.
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Figure 3.5. Effect of waveguide width on the dispersion relation. (a) x-component of the
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Part II.

Caustic Spin Wave Beams

Many of the discussions and findings in this part are published in [26].
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4. Model of Caustic Spin Wave Beams

In wave propagation, caustics refer to localized curves or patterns characterized by a signifi-
cant increase in wave amplitude compared to their surroundings [26, 141]. The observation
of caustic phenomena spans multiple fields, including optics and acoustics [141], dark matter
physics [142, 143], and condensed matter physics [144–150]. Geometrically, caustics arise
when rays intersect on a set of points, which can take the form of a single point, a line, or a
surface.

In various wave fields, like optics and acoustics, caustic patterns emerge due to the presence
of inhomogeneities in the media, affecting the processes of refraction and reflection [141, 151].
For instance, a cusp-like caustic pattern may form when rays are reflected on a curved surface,
as illustrated in Fig 4.1.

Figure 4.1. Formation of a caustic pat-
tern. After reflection from the curved sur-
face (similar to a coffee cup), rays inter-
sect on a defined set of points in space,
forming a local cusp-like pattern of higher
intensity.

In thin ferromagnetic films1, the formation of spin wave caustics is inherently differ-
ent. Instead of arising from inhomogeneities within the film, spin wave caustics stem from
anisotropies in the dispersion relation [26, 37]. These anisotropies can give rise to a station-
ary group velocity and, consequently, a fixed direction of energy flux around certain wave
vectors [37]. As a result, well-defined propagation directions with enhanced amplitudes can
manifest within the film [26]. Such beams will be referred to as caustic spin wave beams
(CSWB) from this point forward.

In the context of phonons, the phenomenon of caustics arising from anisotropic propagation
- referred to as ”focussing” - has been observed since 1969 [144, 145, 152–154]. In contrast,

1Where the film thickness is comparable to the exchange length of the magnetic material.
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the discovery of caustics in thin ferromagnetic films was first reported approximately 20
years later [37]. Since then, multiple investigations have explored the facets of caustics in
ferromagnetic films [27–36, 38–46].

Among others, these studies include caustic beams at the transitions from a magnetic
waveguide to the full film [36, 43, 44], caustic beam emission from an antidot [27], caustic
beams resulting from the collapse of spin wave bullets [45], the radiation of caustic waves from
edge modes [46], all optical-excitation of caustic beams [32] and caustic-like emission at a 1D
diffraction grating [34–36]. Recent advances have also demonstrated the shaping of caustic
beams embedded within a near-field diffraction model [39, 155]. Other noteworthy contribu-
tions suggest unidirectional caustic beams induced by the distortion of the iso-frequency curve
due to Dzyaloshinskii–Moriya interaction (DMI) [28, 38], and caustics due to dipole-dipole
interactions in synthetic antiferromagnets [33]. Moreover, magnonic logic networks have been
proposed [47, 48] and demonstrated [49], showing promise in leveraging the enhanced local
amplitude and steering properties of CSWBs for computation.

Despite these advances, a systematic investigation of caustics and their properties in the
context of thin magnetic films has been lacking, which could prove important for compre-
hending their potential applications. In the following sections, a comprehensive overview
of the fundamental aspects of CSWBs is provided, followed by a systematic theoretical and
experimental investigation of their properties.

4.1. General Considerations

Since the formation of caustics stems from anisotropy in the propagation characteristics, the
subsequent discussion is focused solely on a thin film magnetized in the plane. In this con-
figuration, the iso-frequency curves exhibit significant anisotropy. In contrast, the dispersion
relation in the FV-geometry is fully isotropic (cf. Fig. 1.7), lacking the presence of spin wave
caustics.

We examine the thin film dispersion relation given by Eq. (1.24), where an external mag-
netic field is applied in the film plane. At a given frequency, a fixed external magnetic field,
and a given film thickness, the solution to Eq. (1.24) is the possibly empty set of accessi-
ble wave vectors k [26]. Under the constraint of fields below the FMR field, the dispersion
relation always provides a non-empty solution. The corresponding iso-frequency curve then
governs the properties of the spin waves, which are allowed to propagate under the given
conditions. It is worth noting that in the literature, the iso-frequency curve is sometimes also
referred to as the slowness curve [28, 45]. This is owed to the fact that k is proportional to the
so-called slowness 1

vp
, where vp denotes the phase velocity of propagating spin waves. Due

to the symmetry of the cosine in the dispersion relation, it suffices to restrict the analysis to
the quadrant φ ∈ [0, π/2] as the remaining quadrants can be derived using mirror symmetry
operations.

Fig. 4.2 depicts an exemplary iso-frequency curve for a typical YIG sample. Each point
on this curve is characterized by a wave vector k with corresponding wavefront angle φ.
Furthermore, since the group velocity is defined as the frequency gradient ∂ω

∂k (cf. Eq. (1.22)),
it follows that vg is always perpendicular to the iso-frequency curve for any given k. In this
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Figure 4.2. Iso-frequency curve for 200 nm YIG at f = 2 GHz, µ0H = 10 mT. Any allowed
propagating spin wave on the iso-frequency curve can be characterized by its wave vector
k (orange arrow), its wavefront angle φ (orange), its group velocity vg (cyan arrow), and
its group velocity direction θV (red). H (green arrow) denotes the direction of the external
magnetic field. Clearly, the wavefront angle and the group velocity direction are non-collinear.

context, we introduce θv as the angle between the group velocity and the external magnetic
field. These geometric quantities will be of significance for our analysis. We further emphasize
that phase and group velocity are not necessarily collinear; in fact, φ and θv may diverge
significantly. Moreover, a small change in wave vector can result in a considerable change in
group velocity direction.

4.2. Features of Spin Wave Caustics

The presence of anisotropy in the iso-frequency curve allows specific wave vectors to have a
stationary group velocity, meaning that the group velocities around these wave vectors point
in the same direction. Such a scenario on the iso-frequency curve is illustrated in Fig. 4.3
where several group velocities across the iso-frequency curve are depicted. This stationary
group velocity results in a localized and enhanced energy density along a specific direction,
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) Figure 4.3. Group velocity directions

(cyan-colored arrows) along an exemplary
iso-frequency curve (blue curve). Within
the red section of the iso-frequency curve,
the group velocities point in the same di-
rection.
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which manifests in the formation of a caustic beam. The caustic beam consists of a range of
wave vectors clustered around a carrier and exhibits a well-defined propagation direction [26,
37].

To identify caustic beams, the focus essentially lies in locating the local extrema of the
group velocity direction, or in other words, undulation points on the iso-frequency curve.
Consequently, the following condition must be satisfied for a caustic point kc to exist:

dθv
dk

∣∣∣∣
kc

= 0. (4.1)

The CSWB is then characterized by its carrier wavenumber kc, its corresponding wavefront
angle φc, and its beam direction θv,c. An exemplary schematic of a caustic beam profile
emerging from a caustic point is illustrated in Fig. 4.4. Note that in reality, the beam also
diverges depending on the position of the caustic point on the iso-frequency curve and the
contributing group velocity directions.
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Figure 4.4. Schematic radiation pattern from a caustic point with kc = 2µm−1, φc =
40◦, θv,c = 112◦. (a) Plane wave corresponding to the carrier wave. The red lines highlight
the group velocity direction. The grey scale denotes the out-of-plane component of the mag-
netization. In Fig. 4.5, the profile along the purple line illustrates the apparent wavelength.
(b) Exemplary caustic radiation pattern emitted from a point source. Two caustic beams
corresponding to caustic points on the first and second quadrant of the iso-frequency curve
are excited. As can be seen, group and phase velocity directions diverge significantly.

While the profile of a CSWB is beyond the scope of this work, it is important to note one
subtle aspect. In the context of inhomogeneous media, the illumination profile is determined
by considering phase variations and integrating across the entire k-space [26, 141, 151]. This
approach is effective in isotropic media where the group and phase velocities align on the same
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Figure 4.5. Depiction of
apparent wavelength. The
purple curve shows the pro-
file extracted along the di-
rection of the purple line in
Fig. 4.4(a). The apparent
wavelength may deviate sig-
nificantly from the carrier
wavelength (orange curve).

axis. However, in anisotropic media, the group velocity’s non-collinear direction geometrically
prevents a broad range of k-values from traveling from a point source to a distant point on the
caustic. Hence, for spin wave caustics, only small, nearly straight parts of the iso-frequency
curve contribute to the CSWB, naturally limiting the relevant wave vectors [26].

Another property useful to introduce is the apparent wavelength. The apparent wavelength
can be defined as the projection of the carrier wavelength, λc, along the direction of the beam.
Mathematically, it can be expressed as:

λapp =
λc

cos (θv,c − φc)
, or kapp = kc cos (θv,c − φc) . (4.2)

Since the iso-frequency curve allows for considerable discrepancies between φc and θv,c, the
apparent wavelength can take values much larger than λc. Combined with the beam’s limited
sharpness, this can result in limited wavefront information. In the extreme case, where
(θv,c − φc) → π

2 + n · π (n ∈ Z), the beam may no longer carry any wavefront information at
all. Moreover, notions such as propagation-induced phase and spectral breadth of the beam
should be considered carefully [26]. Fig. 4.5 illustrates the discrepancy between the apparent
wavelength and the carrier wavelength within the discussed radiation example.

4.3. Systematic Investigation of Caustic Points

In order to identify caustic points and their properties, a systematic investigation of the dis-
persion relation Eq. (1.24) is conducted. The objective is to parse the iso-frequency curve
under varying magnetic fields and frequencies and locate caustic points that satisfy the condi-
tion specified in Eq. (4.1). The identified caustic points can then be represented and classified
based on their properties kc, φc and θv,c.

To accomplish this task, a Python toolkit was developed to reconstruct the iso-frequency
curve for different sets of experimental parameters, namely material parameters, magnetic
field, and frequency. The toolkit further provides various functions and modules that facilitate
the parsing and analysis of the iso-frequency curve data. We refer to the Supplementary
Materials of [26] for a more comprehensive workflow description. However, it is important to
note that even though the algorithms may be applied to magnetic fields above the respective
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Figure 4.6. Frequency and field maps of caustic properties for a 200 nm thick YIG film.
A low-frequency pocket emerges where kc is relatively small. This region holds practical
significance as it is readily accessible in experiments. A detailed description can be found in
the text.

FMR magnetic field, the following analysis is restricted to magnetic fields only below the
FMR condition.

Fig. 4.6 displays a set of frequency and field maps of caustic properties kc, φc and θv,c for a
200 nm thick YIG film, generated using the Python toolkit. A band representing the existence
of caustic points is depicted in all three maps. White space above this band indicates that no
caustic points were found; white space below the band indicates that the condition was not
investigated since those fields lie above the FMR field. The FMR condition is represented by
a cyan-colored line.

Overall, a wide range of beam parameters is predicted, suggesting that CSWB properties
can be tailored simply by adjusting the external magnetic field or the excitation frequency.
Going down in frequency across the caustic band, θv,c exhibits a smooth increase, while kc and
φc decrease gradually. At lower frequencies, a sharp boundary occurs, marking a transition
of the caustic wavenumber from the dipolar-exchange to the dipolar regime characterized by
kc < 2µm−1. The wavefront angle also undergoes a jump towards higher angles, whereas the
beam direction shows a more gradual transition towards lower values. Below this boundary
line, the caustic properties appear to remain close to constant. This region will be referred to
as the low-frequency pocket and holds significance in the later experiments, as wavelengths
within this range can still be adequately excited and optically detected employing TR-MOKE
microscopy.

The caustic properties strongly depend on the material parameters of the investigated film.
For example, Fig. 4.7 presents the frequency and field maps of the caustic wavenumber for
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Figure 4.7. Frequency and field maps of caustic wavenumbers for different YIG thicknesses
L. The caustic properties and the domain where caustic beams are generated vary with
thickness. As thickness decreases, the transition to the low-frequency pocket becomes less
distinct. Please note the distinct color scale for each graph.

different YIG film thicknesses. It can be observed that the caustic band, in general, varies in
shape and wave vector values. In particular, for L = 30 nm, the band is considerably narrower,
while for L = 144 nm it appears broader compared to the 200 nm thick film. Moreover, the
transition to the low-frequency pocket becomes less abrupt with decreasing thickness. In
the case of 144 nm film, the boundary remains sharp down to a frequency of approximately
2.2 GHz; however, below this frequency, it smears out and becomes more continuous. For
30 nm no sharp boundary is visible at all.

Note that, thus far, the analysis has focused solely on one undulation point along the
iso-frequency curve, the one corresponding to the lowest wavenumber. However, there may
actually be more than one caustic point for a given magnetic field and frequency. In the case
of a 200 nm thick YIG film, up to three caustic points can emerge from one given iso-frequency
curve as illustrated in Fig. 4.8.

Notably, within the domain where caustic points exists, the iso-frequency curve hosts either
only one or three caustic points at the given frequency and field condition. This behavior can
be quantitatively understood by examining the local behavior of dθv/dk. As dθv/dk crosses
zero, it does so similar to a polynomial of the form P (k) = −(k− kc)

3 + a(k− kc) + b [26]. If
a < 0, a single root exists, while if a > 0 and b is sufficiently small, three roots will emerge.
To illustrate, Fig 4.9 depicts the behavior of dθv/dk for different iso-frequency curve scenarios
featuring only one root and three roots. The somewhat cubic behavior also provides a quan-
titative explanation for the sharp transition into the low-frequency pocket. From Fig. 4.8, it
can be seen that the upper boundary of the low-frequency pocket coincides with the emer-
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Figure 4.8. Frequency and field maps of first, second, and third caustic point for a 200 nm
thick YIG film.

gence of the second and third caustic points. Transitioning from the domain of a single
caustic point toward lower frequencies at a fixed field, the parameter a increases. This causes
a shift of the lower wavenumber region closer to zero. Crossing the low-frequency boundary,
a becomes positive, and two additional caustic points emerge at lower wavenumbers. The
previous caustic point, observed in the single caustic point domain, now corresponds to the
highest wavenumber caustic point in the three caustic points domain. A new lowest wavenum-
ber caustic point emerges with different properties than the previous one, as illustrated in
Fig 4.9.
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Figure 4.9. dθv/dk as a function
of wave vector at a magnetic field of
µ0H = 5 mT. When crossing zero,
dθv/dk behaves similarly to a cubic
polynomial. At 2 GHz and 1.7 GHz,
one root exists, while at 1.44 GHz,
three roots are found. A jump in
lowest wavenumber caustic point oc-
curs when crossing the low-frequency
pocket boundary.

To conclude this section, it is important to highlight that while a purely mathematical
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4.4. Limit of Model Applicability

analysis identifies distinct caustic points, quantifying this distinction experimentally is chal-
lenging due to the lack of a straight-forward signature of dθv/dk crossing zero [26]. Addition-
ally, close-to-straight portions of the iso-frequency curve can also exhibit focussing effects [27,
33, 34, 42, 47, 49]. The radiation pattern of these caustic-like features is essentially indistin-
guishable from that of a true caustic point where the derivative goes to zero. Often, there
is a transition from a caustic-like regime to a true caustic point, which is not discrete but
continuous, rendering any clear distinction between the two scenarios difficult in the first
place.

4.4. Limit of Model Applicability

The previous discussions were based on the thin film approximation, where the thickness of
the film is comparable to the exchange length of the material. However, deviations may arise
for thick films as PSSWs have to be considered (cf. Section 3.1).

In the experiments, 200 nm thick YIG films are investigated, which can already be consid-
ered relatively thick compared to the exchange length in YIG, lex ≈ 17 nm. Fig 4.10 displays
micromagnetic simulations of the dispersion using TetraX for a 200 nm thick YIG under a
magnetic field of µ0H = 5 mT at various angles between the external magnetic field and the
spin wave propagation direction. The differences between the two models are negligible at rel-
atively low frequencies but become more pronounced going toward high k-values and, hence,
higher frequencies. Moreover, the frequencies at which these deviations become prominent
shift towards lower values for smaller angles φ, leading to distortions of the iso-frequency
curve in those regimes.
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Figure 4.10. Dispersion relation of lowest two thickness modes for a 200 nm thick YIG
film with an magnetic field of µ0H = 5 mT, calculated by TetraX (red). Deviations from
the analytic model (blue) are observed for different angles φ between the wave vector and
in-plane field.

Furthermore, it can be observed that the mode hybridization is not solely limited to the DE
geometry (φ = 90◦) but can also be encountered for intermediate values of φ (e.g., φ = 60◦).
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4. Model of Caustic Spin Wave Beams

Given that the thin film approximation neglects mode hybridization, deviations of the iso-
frequency curve from the discussed caustic model are also expected near these anticrossing
points.

4.5. Micromagnetic Simulations

Fig. 4.11 shows micromagnetic simulations of a 200 nm thick YIG film, performed using
mumax3. In these simulations, spin waves are excited from a cylindrical region of different
diameters using an out-of-plane excitation field at f = 1.44 GHz, under an in-plane bias
magnetic field of µ0H=5 mT. The radial geometry of the excitation source ensures that the
iso-frequency curve is excited over the full angular range φ ∈ [0, 2π]. The cell dimensions
were chosen to be 10 nm × 10 nm in the xy-plane, and 200 nm in the z-direction. Since no
discretization in the z-direction is present in this simulation, PSSWs are neglected.
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Figure 4.11. mu-
max3 simulations of mz

with excitation diameters
of (a) 2µm, (b) 1µm,
and (c) 0.5µm. The
excitation sources are il-
lustrated by golden cir-
cles. The external mag-
netic field is applied along
the x-direction. Note that
each map’s color scale was
adjusted individually to
increase contrast.

Indeed, four spin wave beams propagating from the excitation area are visible for each
size of excitation source. The sharpness of these beams varies, which can be attributed to
the different sizes of the excitation sources. A smaller excitation source results in a higher
density of stationary group velocity directions per arc length of the cylindrical excitation
source, leading to sharper beams. Moreover, the corresponding beam parameters have been
extracted and are summarized in Table 4.1. The relevant parameters were determined us-
ing image processing and bootstrapping least-squares regression procedures. Appendix A
provides a detailed walkthrough and example of this extraction process using experimental
data. Nevertheless, the extracted beam parameters differ significantly depending on the size
of the excitation source. Note that under the given magnetic field and frequency condition, 3
caustic points are predicted, whose properties are also displayed in Table 4.1 for comparison.

To further understand the discrepancies in beam parameters, Fig. 4.12 exhibits the mag-
nitude Fourier-transformed (FT) data from the micromagnetic simulations. The FT data
essentially allows for direct observation of the excited parts of the iso-frequency curve in k-
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4.5. Micromagnetic Simulations

sim. 2µm sim. 1µm sim. 0.5µm pred. CP1 pred. CP2 pred. CP3

θv (deg) 114.1 113.6 113.7 115.1 113.8 114.1

k (µm−1) 1.32 3.12 7.59 1.13 3.30 6.16

φ (deg) 49.1 34.2 27.9 51.3 33.2 28.9

Table 4.1. Extracted beam parameters from micromagnetic simulations with different ex-
citation sources (cf. Fig. 4.11) and predicted parameters for caustic points (CPs) 1, 2, and 3
for f = 1.44 GHz and µ0H = 5 mT.

space. Due to the symmetry of the iso-frequency curve, only the range φ ∈ [0, π] is displayed.
Note that Hanning windowing was applied during transformation to reduce spectral leak-
age, which provides a good trade-off between wave vector and amplitude accuracy. Unless
stated otherwise, Hanning windowing was also used for FT maps later on in the experimental
section.

First, the contour of the FT data agrees well with the reconstructed iso-frequency curve (red
dashed line in Fig. 4.12(b)), validating the model in the thin film approach. The FT data also
shows that different excitation sources selectively excite portions of the iso-frequency curve
with varying efficiency. As the size of the excitation source decreases, it can excite higher
wave vectors, reducing gaps in the excitation spectrum and making the excitation of caustic
points more uniform. Ideally, a true point source would uniformly excite all wave vectors,
eliminating these gaps.

Figure 4.12. Magnitude of Fourier-
transformed (FT) data of simulations in
Fig. 4.11 with excitation diameters of (a)
2µm, (b) 1µm, and (c) 0.5µm. The pre-
dicted caustic points (CPs) are marked
with orange dots, and a reconstructed iso-
frequency curve (red dashed curve in (b))
is shown for comparison.
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For the 2µm simulation (Fig 4.12(a)), the caustic point at the lowest k-value is excited
efficiently, while the caustic points at higher k-value are not excited at all (orange dots).
Consequently, the extracted beam parameters closely match the predicted parameters for
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4. Model of Caustic Spin Wave Beams

CP 1 (cf. Table 4.1). For the 1µm source, caustic points 1 and 2 seem to be excited efficiently,
and the beam parameters match acceptably with the predicted parameters of CP 2. For the
0.5µm case, all 3 caustic points are excited, but portions slightly above the k-value of the
third caustic point are excited most efficiently. The extracted beam parameters align with
the predicted ones for CP 3; however, the extracted k-value is much higher.

These observations can be better interpreted by considering the behavior of dθv/dk for
the given frequency and magnetic field condition (cf. green curve in Fig 4.9). At the first
caustic point, dθv/dk crosses zero very abruptly, whereas the crossing occurs very gradually
close to CP 2 and CP 3. This gradual crossing allows for more almost stationary group
velocity directions to contribute to the caustic beam. As a result, if, e.g., CP 1 and CP 2 are
both excited sufficiently, the portion of the iso-frequency curve close to CP 2 may dominate
the radiation pattern. Furthermore, dθv/dk predicts that over a large portion of k-values
(3µm−1 ≲ k ≲ 8µm−1) the iso-frequency curve remains close-to-straight, even beyond the
expected third caustic point. The 0.5µm source excites this portion very efficiently (see
Fig 4.12(c)). Thus, the corresponding radiation pattern likely arises from a caustic-like
feature rather than a true caustic point. This further illustrates the difficulty in distinguishing
radiation patterns originating from true caustic points and caustic-like features, especially
since they are often in close proximity along the iso-frequency curve.

In summary, spin wave beams can be launched from caustic points, but the excitation
source is crucial for making these points accessible and significantly influences the properties
of the observed spin wave beams by determining which parts of the iso-frequency curve
are excited. Moreover, distinguishing between true caustic points and caustic-like features is
challenging, if not impossible, as no clear signatures indicate a truly stationary group velocity.
Consequently, the beam may not exhibit the properties of the predicted true caustic point,
as the radiation pattern may not solely originate from this point but instead be dominated
by nearly straight portions of the iso-frequency curve.
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5. Experimental Design

In order to experimentally study caustic points and CSWBs, it is essential for the spectrum
of spin wave excitation to cover a wide range of wavenumbers and possible wave vector direc-
tions. This ensures sufficient excitation of the portion of the iso-frequency curve containing
the caustic point. As previously discussed, achieving the ideal case where all wave vectors
are uniformly accessible would correspond to a spin wave point source. However, this sce-
nario is not attainable for any high-frequency antenna. Consequently, a compromise must be
made between ease of fabrication and broadband excitation. Two separate approaches were
employed in the experiments: a half-ring-shaped microstrip antenna and an antidot in the
magnetic film from which plane waves are scattered [27].
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Figure 5.1. Schematic
of the measurement config-
urations. (a) Spin waves
are excited within a broad
angular range from a half-
ring-shaped microstrip an-
tenna. To suppress plane
wave background from the
legs of the antenna aligned
with the x-axis, either (i)
l = 1 mm was chosen, or
(ii) the light grey area was
etched away and l = 50µm
was chosen. (b) Plane
waves excited by a copla-
nar waveguide (CPW) scat-
ter from an antidot (white
area) over a broad angular
range.

In the case of the half-ring-shaped microstrip, the design allows for excitation of the iso-
frequency curve within φ ∈ [0, π]. However, the excitation spectrum in k-space is not uniform
due to the microstrip width on the order of a micrometer. In the antidot configuration, on
the other hand, the antidot essentially acts like a point source, enabling, in principle, access
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to a broad k-spectrum within φ ∈ [0, 2π]. Its excitation efficiency, however, depends on the
strength of the incoming plane wave, which itself is non-uniformly excited by a CPW.

The experiments were conducted on a 200 nm thick YIG film grown on gadolinium gallium
garnet (GGG) substrate. For the half-ring configuration, a microstrip antenna with a width
of 2µm to 3µm was patterned on top of the YIG film by optical lithography with subsequent
Argon pre-etching and electron-beam-induced evaporation of Cr(5 nm)/Au(100 nm-220 nm).
The same procedure was used for the antidot sample to fabricate a CPW with wsig = 10µm,
wgr = 5µm and wgap = 5µm. Here, additional optical lithography and subsequent Argon
etching of the film were executed to create a square-shaped antidot within the film. During
the measurement, if not stated otherwise, the external magnetic field was kept fixed along
the x-direction. Figs. 5.1 illustrates a schematic of the two measurement configurations.

It is worth mentioning that in the antidot configuration, the CSWBs are always super-
imposed on the initial DE-like plane wave. The half-ring structure, on the other hand, can
provide a more isolated investigation of CSWBs, as no additional plane wave is required for
their excitation. However, the legs of the microstrip, which are aligned along the x-direction,
excite spin waves in the DE-geometry. Due to the low damping [2], and hence, relatively long
attenuation length in YIG, these modes may propagate to the antenna’s tip and interfere
with the CSWBs excited by the half-ring. In order to minimize this artifact, two different
design approaches were applied. Either (i) the microstrip was designed such that the distance
l between the legs and tip (see Fig. 5.1(a)) was set to l = 1 mm, or (ii) l = 50µm was chosen
and the YIG between legs and tip was etched away (light grey area in Fig. 5.1(a)).
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6. Experimental Results

6.1. Evaluation of Caustic Spin Wave Beams at Low-Frequency
Pocket Conditions

Fig. 6.1(a) shows a Kerr image recorded with a constant excitation frequency f = 1.44 GHz
under an external magnetic field µ0H = 5 mT in the half-ring-shaped microstrip geometry.
This experimental condition lies within the low-frequency pocket, and 3 caustic points are
predicted (cf. Table 4.1). The width of the microstrip was 2µm, and the distance l between
legs and tip was 1 mm (design (i) in Fig. 5.1(a)).

Two spin wave beams with distinct, well-defined propagation directions are visible. In
between the beams, a curved wavefront is observed. Moreover, the phase and group ve-
locity for each beam are clearly non-collinear to each other. Note that the observed spin
wave pattern matches well with the micromagnetic simulation for a 2µm excitation source
(Fig. 4.11(a)). However, a small non-reciprocity of beam amplitude seems to be present,
which will be discussed at the end of this section.

The two beams are further highlighted and labeled I and II in Fig 6.1(b). Beam I originates
from the iso-frequency curve quadrant φ ∈ [0, π/2] and has a beam angle of 119.0◦ with
respect to the positive x-axis. Beam II, originating from the iso-frequency curve quadrant
φ ∈ [π/2, π], has a beam angle of 64.3◦ with respect to the positive x-axis. Projected onto
the first quadrant of the iso-frequency curve, the beam directions are θI ≈ 119.0◦ (beam I)
and θII ≈ 115.7◦ (beam II). Unless stated otherwise, any experimental angle (beam direction
or wavefront angle) from now on is always projected onto the first iso-frequency quadrant
within this thesis.

The slight asymmetry in beam direction can be assigned to a misalignment of the external
magnetic field direction with respect to the x-direction. This deviation leads to a rotation
of the iso-frequency curve by αH = (θI − θII)/2 ≈ 1.65◦ with respect to the experimental
frame of reference. Taking this into account, the average beam direction is θv,e ≈ 117.4◦.
Furthermore, the wavenumbers and wavefront angles are determined as kI = 1.04µm−1 and
φI = 52.4◦ for beam I, and kII = 1.07µm−1 and φII = 48.9◦ for beam II (cf. Fig. 4.4(b)
for illustration of beam parameters). Consequently, the average wavenumber and average
wavefront angle are ke = 1.06µm and φe = 50.7◦. The apparent wavenumber along the
beam direction was also extracted from a separate fitting procedure, yielding kapp = 0.42µm,
which is significantly lower than the actual wavenumber ke.

1 Overall, the experimentally
determined values for θv,e, ke and φe show good agreement with the parameters predicted

1It shall be reminded that a walkthrough on how the beam parameters are extracted is provided in Ap-
pendix A.
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Figure 6.1. Measurement data obtained with a spin wave excitation frequency of f =
1.44 GHz and an external magnetic field of µ0H = 5 mT. (a) Kerr image acquired from TR-
MOKE experiment. Two spin wave beams, highlighted in cyan and orange in (b), propagate
from the tip of the microstrip. Gold indicates the position of the half-ring-shaped microstrip
extracted from the topographic image. (c) Modulus of Fourier transformed (FT) Kerr image
and expected iso-frequency curve (dashed blue line). The cyan and orange points and arrows
indicate the expected caustic points and their group velocity directions in the low-frequency
pocket. Caustic points I and II correspond to beams I and II in (b), respectively.

by the theoretical approach for a caustic point, which are θv,c = 115.1◦, ke = 1.13µm, and
φe = 51.3◦.

To gain insight into the experiment in reciprocal space, the FT data of the Kerr image is
depicted in Fig. 6.1(c). This transformation effectively yields a representation of the experi-
mental iso-frequency curve. The FT data shows that the antenna structure excites a broad
range of wave vector directions in the dipolar regime. As previously discussed, the gaps in the
FT spectrum arise from the excitation source’s finite size, i.e., the width of the microstrip.

A comparison between the FT spectrum and the reconstructed iso-frequency curve in the
thin film approximation (blue dashed line) shows good qualitative agreement. Additionally,
the FT data offers an alternative method to determine the external magnetic field angle, αH .
By fitting the FT data to the reconstructed iso-frequency curve (as detailed in Appendix B),
αH ≈ 0.5◦ is found. This value is comparable to the field offset inferred from the slight
deviation of beam directions. The reconstructed iso-frequency curve in Fig. 6.1 is presented
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with this rotation applied.

More importantly, the half-ring structure efficiently excites the expected caustic points
in the low-frequency pocket (cyan and orange dots). Combined with the good match in
experimental and predicted beam parameters, it may be concluded that beams I and II in
the Kerr image correspond to caustic points I and II on the iso-frequency curve.

The conclusion that the beams stem from a true caustic point is further supported by
the prediction of a very abrupt crossing of zero of dθv/dk for the lowest wavenumber caustic
point under the given experimental conditions (see green curve in Fig: 4.9). This point doesn’t
exhibit large close-to-straight portions of the iso-frequency curve in its close vicinity, whose
radiation pattern would be indistinguishable from a true caustic point. In other words, close
to the first caustic point, the group velocity directions capable of generating spin wave beams
are highly concentrated around this point. As for the other two predicted caustic points
and caustic-like portions, the antenna structure fails to excite these sufficiently, making them
inaccessible in the experiment.
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Figure 6.2. Measurement data with an excitation frequency of f = 1.44 GHz. (a) Kerr
images for several external magnetic fields. All Kerr maps are normalized to the same color
scale. (b) Corresponding Fourier-transformed data with reconstructed iso-frequency curve
(blue dashed line) and expected caustic points (orange and cyan dots).

In Fig. 6.2(a), multiple Kerr images at the same excitation frequency (1.44 GHz) but dif-
ferent external magnetic fields are displayed. The chosen conditions still lie within the low-
frequency pocket. Twin beams with different apparent wavelengths and beam directions,
launched from the half-ring structure, are observable in each Kerr image. Note that spin
wave beams not originating from the antenna structure are visible in some Kerr images (es-
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Figure 6.3. Extracted
beam parameters (a) θv,c,
(b) kc, and (c) φc from
half-ring (orange) and an-
tidot geometry (red) com-
pared to predicted caus-
tic point properties (blue).
The error bars correspond
to the standard deviation of
a bootstrapping fitting pro-
cedure weighted with the
deviations of beam param-
eters due to the external
magnetic field angle offset.

pecially at 9 mT). These may be attributed to defects in the YIG film. The corresponding
FT spectra (Fig. 6.2(b)) match, yet again, well with the predicted iso-frequency curves, and
the respective caustic points are accessed sufficiently.

An overview of the extracted beam parameters is presented in Fig. 6.3 (orange circles).
Clearly, the beam parameters change with the external magnetic field, and there is reasonable,
sometimes even good, agreement between predicted and experimental values of θv,c and k̃c.
This strongly suggests that the observed beams are true CSWBs. The deviations in beam
directions are mostly within the offset angle in the external magnetic field. The larger offset
in wavefront range φc, with opposing trends in the simulation (increasing) and experiment
(decreasing), may be attributed to the sharpness of the CSWB.

Additionally, Fig. 6.4 highlights the discrepancy between the actual wavenumber ke and
the apparent wavenumber ke,app extracted from the experimental data. The wavenumber
projected along the beam direction consistently underestimates the actual wavenumber due
to the strong non-collinearity of group and phase velocity. The experimentally acquired
apparent wavenumber values show excellent agreement with the theoretically predicted ones,
further suggesting that the discrepancy of theory and experiment at higher magnetic fields
in Fig. 6.3 may indeed be inherent to the limited beam sharpness.

Further measurements using square antidots of different sizes (4µm, 5µm, and 6µm) as
scattering sources for plane waves were conducted using the same experimental conditions.
Exemplary Kerr images are shown in Figs. 6.5(a) and (b). Distinct spin wave beams, super-
imposed with the initial plane wave excited from the CPW, are observed. The plane waves in
the DE geometry propagate toward the antidots and are subsequently scattered. The result-
ing beams seem to be emitted from the edges of the antidots, which act as point sources, with
each antidot edge generating twin beams. This can be seen clearest for the 6µm antidot in
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Fig. 6.5(b), where the edge spacing is the largest. The antidot-generated beams also appear
to be sharper in beam width than the beams excited by the half-ring antenna. Furthermore,
due to the antidot symmetry, the iso-frequency curve is excited over the full angular range
of φ ∈ [0, 2π], causing the formation of beams not only in forward direction but also back
toward the CPW.
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Figure 6.5. Kerr maps at
1.44 GHz for antidot geom-
etry of different sizes under
an external magnetic field of
(a) µ0H = 5 mT and (b)
µ0H = 9 mT. The golden
area highlights the position
of the excitation antenna,
while the white spaces in-
dicate the antidot positions
extracted from the topo-
graphic map.

The excitation efficiency and propagation profile of the beams appear to depend on the ratio
between the wavelength of the incoming plane wave and the antidot size. When the antidot
size becomes smaller compared to the spin wave wavelength, the beams seem to be excited
more efficiently. This is due to the arrangement of antidots functioning as a diffraction grat-
ing. As the spin wave wavelength becomes comparable to the spacing between the antidots or
the antidot size, diffraction phenomena become more pronounced [34, 36]. This effect is, for
instance, observed within the cyan-colored contour in Fig. 6.5(a), where diffraction-induced
patterns are observed beyond the antidot structure. As the wavelength increases, a transition
into a caustic-dominated regime occurs [34, 36], resulting in less pronounced diffraction, as
depicted in Fig. 6.5(b).

From the antidot structure, the beam parameters are extracted and shown as red circles in
Fig. 6.3. These parameters align closely with the half-ring data and the predicted values for
CSWBs. This indicates that the beam patterns stem from true caustic points, establishing
antidots as another viable method for exciting CSWBs.

53



6. Experimental Results

At this stage, the author addresses the non-reciprocity of amplitude between beam I and
beam II, noting that beam II appears more intense (cf. Fig. 6.1(a)). This observation is
supported by the respective amplitudes obtained from the fitting procedure. One possible
explanation for this disparity is that the beams still display surface character. The surface
character of the beams is suggested by the simulated modal profiles |mz| of the dynamic out-
of-plane magnetization component mz for the predicted caustic point properties at external
magnetic fields of µ0H = 5 mT and µ0H = 10 mT in Fig. 6.6.2 However, considering that the
laser penetration depth for laser wavelengths between 400 nm and 800 nm typically ranges
from a few hundred nanometers to a few micrometers [156]3 and that the focal lengths fall
within a similar range4, the laser should probe across most of the thickness of the YIG film.
Additionally, if the modal nonreciprocity were the underlying cause, similar non-reciprocity
would be expected in the antidot-induced measurements (cf. Fig. 6.5), yet no such clear
signature was observed.

Another potential explanation is that the helicity mismatch with the excitation field causes
a non-reciprocal emission (cf. Section 1.4), similar to the findings in Ref. [39]. However,
considering the geometry of the experiment, where sin(φII) = sin(π − φI) = sin(φI), this
explanation seems unlikely. It is still presumed that the non-reciprocity stems more from
the antenna excitation, as it is absent in the antidot experiments, although the exact cause
remains unclear.
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Figure 6.6. Numerically obtained mode
profile of mz across the film thickness L
of predicted caustic properties at 5 mT
(blue circles) and 10 mT (orange circles)
and f = 1.44 GHz. The caustic beams
are suggested to show an amplitude non-
reciprocity where the magnitude of mz is
bigger at the top surface of the film.

In summary, this section demonstrated that low-frequency pocket caustic points can be
accessed by designing suitable antenna structures and antidot geometries. The predicted and
experimental values of the beam parameters are in reasonable agreement, indicating true
CSWBs. Furthermore, their properties change as a function of the external magnetic field,
showing the potential for tailoring and steering spin wave beams by tuning of the external
magnetic field.

2Note that the beam localization is opposite to the DE case (cf. Fig. 1.6). This is consistent with the findings
in Refs. [81] when the fundamental mode (n=0) approaches the first PSSW.

3The penetration depth is given by Lp = λ
4πIm(ñ(ω))

, where λ is the laser wavelength and Im(ñ(ω)) denotes
the imaginary part of the material’s refractive index. For laser wavelengths between 400 nm and 800 nm,
typical values of Im(ñ(ω)) for YIG are below 0.2 [156].

4The focal length b of a Gaussian beam profile is given by b = 2 · zR, where zR = w2
bπ/λ is the Rayleigh

length, wb the radius of the beam waist and λ the laser wavelength [157].
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6.2. Experimental Observation of Model Limitation

The experiments also exhibited beam-like spin wave features far from any predicted caus-
tic point. Fig. 6.7(a) shows a Kerr map where spin waves were driven with an excitation
frequency of f = 1.84 GHz under an external magnetic field of µ0H = 5 mT. In this mea-
surement, the spin waves were excited using a half-ring antenna with a width of 3µm and a
tip-leg distance l = 50µm, along with the partially etched YIG film at the microstrip tip (cf.
design (ii) in Fig. 5.1(a)).
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Figure 6.7. Measurement data obtained with an excitation frequency of f = 1.84 GHz and
with an external field of µ0H = 5 mT. (a) Kerr map. (b) Calculated derivative of group
velocity direction at given experimental conditions. The green part highlights the close-to-
straight portion of the iso-frequency curve. (c) FT data of Kerr map showing experimentally
extracted beam parameters in red, reconstructed iso-frequency curve in blue, and the pre-
dicted caustic points in orange. Dashed green semicircle indicates the lower limit of the green
portion in (b).

A plane wave background, along with twin beams, is observed in this geometry. The
presence of plane waves, despite the antenna geometry in principle lacking to excite them
over such a broad spatial range, can be attributed to a spatial variation of the dynamic
demagnetizing field at the YIG edge at the microstrip tip. This variation can act as a
source of propagating spin waves, as pointed out in [158]. Regarding the beams, the analysis
procedure yields the following parameters: θv,e = 136.3◦, ke = 2.61µm, and φe = 69.0◦
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(cf. Fig. 4.4(b)). In contrast, the thin film approach predicts only one caustic point with
θv,c = 133.3◦, kc = 8.37µm, and φc = 48.0◦.

Examining the behavior of dθv/dk (Fig. 6.7(b)), an almost stationary group velocity direc-
tion is predicted between 2.8µm ≲ k ≲ 7µm which lies within error bars of ke. The proximity
is also illustrated in the FT data in Fig. 6.7(c), where the dashed green semicircle denotes the
lower limit 2.8µm and the red dots denote the beam parameters extracted from the fitting
procedure applied to the beams. This may explain the observed beams. However, for this
almost stationary portion, group velocity directions of maximal θv = 125 ◦ are predicted,
which is in stark contrast to the experimentally observed value.

Moreover, from Fig. 6.7(c), the FT data deviates significantly from the reconstructed iso-
frequency curve (blue dashed curve), especially when going towards higher wavenumbers. As
previously discussed, a 200 nm thick YIG film can already be considered relatively thick and
may not be fully treated within the thin film approach. Recalling Fig. 4.10, it can be seen
that the given experimental conditions (f = 1.84 GHz, µ0H = 5 mT) lie close to the mode
anticrossing, thus making the established caustic model less reliable. The experimental iso-
frequency curve may still feature portions of stationary or almost stationary group velocity
directions, which favors the formation of the observed beams; the caustic model, however,
fails to capture this.

Another potential cause of the beam-like features could be the limited excitation efficiency
of the microwave antenna, as indicated by the numerous gaps in the FT spectrum. The
beam properties appear to align closely with some of these gaps, implying that the beams
may correspond to the excitation of only a small portion of the iso-frequency curve within
this region.

6.3. Limit of Phase Information in Spin Wave Beams

As previously mentioned and observed, the anisotropic spin wave propagation characteristics
in in-plane magnetized films allow for a non-collinearity of beam direction and wavefronts.
At an excitation frequency of f = 1.2 GHz and an external magnetic field of µ0H = 10 mT,
comparable to the expected FMR field of µ0HFMR = 9.988 mT, two caustic points are pre-
dicted: θv,c1 = 103.7◦, kc1 = 0.60µm−1, φc1 = 11.8◦, and θv,c2 = 104.2◦, kc2 = 3.42µm−1,
φc2 = 13.6◦. For this condition, group velocity direction and wavefront angle are highly non-
collinear, almost perpendicular, making it an interesting feature to probe experimentally.
Given that the excitation frequency is quite low, our model may provide sufficient accuracy.

Fig. 6.8(a) shows a Kerr measurement where the magnetization dynamics are excited with
a 3µm wide half-ring antenna indicated by the yellow half-circle. Sharp twin beams emitted
from two separate antenna portions are visible within a uniform background. Interestingly,
almost no wavefronts or apparent wavelengths are visible within the beams. This suggests
that group and phase velocity are indeed almost orthogonal to each other. Due to its finite
width, the beams then carry almost no phase information anymore, causing the apparent
wavelength to diverge, even though the portions contributing to the beam may have finite
wavelengths. The FT data in Fig. 6.8(b) shows good agreement between theory and experi-
ment and illustrates the near perpendicularity of k-vector (orange-colored arrow) and group
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Figure 6.8. Measurement ob-
tained with an excitation fre-
quency of f = 1.2 GHz and
an external magnetic field of
µ0H = 10 mT. (a) Kerr map.
Beams with almost no phase in-
formation are visible. (b) FT
spectrum in logarithmic scale.
The blue dashed line represents
the reconstructed iso-frequency
curve, and the cyan dots are the
expected caustic points. The
beam direction (cyan arrow) and
k-vector (orange arrow) at a
caustic point are almost orthog-
onal to each other.

velocity direction (cyan arrow). In fact, almost the full portion of the excited iso-frequency
curve exhibits such a behavior.

In summary, this example demonstrates that beams with close to no phase information can
be tailored. As a result, concepts such as propagation-induced phase and spectral breadth
need to be treated carefully within spin wave beams.

6.4. Reflection of Caustic Spin Wave Beams in a Magnonic
Waveguide

Reflection phenomena of plane spin waves in in-plane magnetized films have been studied
extensively [37, 78, 159–166]. The reflection properties of pure spin wave beams have also
been investigated in several theoretical and simulation studies [167–170]. Unlike caustic
beams, pure spin wave beams can be understood as coherent low-diverging beams that do
not form from anisotropic focussing effects [169]. Generating such beams remains more
challenging; however, recent advancements have been made through the usage of non-uniform
antenna designs [171, 172], the implementation of beam shaping techniques using curved
antennas [173], and the production of high wave vector beams by coupling to a magnetic
nanowire array [174].

At its core, the reflection of plane spin waves and pure spin wave beams adheres to Snell’s
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law for spin waves, which requires continuity of the wave vector component tangential to the
reflection interface [37, 56, 78, 164–166]. Experimentally, this reflection interface is typically
implemented as a thickness step within the magnetic material, where the thickness step or
edge serves as the boundary for reflection [56]. Assuming that the edge is aligned along
the x-direction, Snell’s law corresponds to the conservation of the kx component. The ky
component, on the other hand, changes sign upon reflection, with its magnitude adjusting to
keep the overall reflected wave vector on the iso-frequency curve. The same principles apply
to the process of spin wave refraction, but the following experiments focus solely on spin wave
reflection.
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Figure 6.9. Snell’s law for reflection of spin waves under varying external magnetic field
angles. The top row (a) illustrates the reflection process via iso-frequency curves, with the
blue arrow indicating the incoming wave vector, the orange arrow showing the reflected wave
vector, and the green arrow representing the external magnetic field direction. The preserved
kx component is marked by the grey line. The bottom row (b) depicts the corresponding
real-space reflection of the wave vectors at the reflection edge (dark black line), with the
edge aligned along the x-direction. In experiments, the reflection interface is realized by a
thickness step, which does not necessarily imply a transition to a region without magnetic
material.

Fig. 6.9(a) illustrates the reflection process for spin waves on the example of a reconstructed
iso-frequency curve with f = 1.44 GHz and µ0H = 5 mT for several angles αH between the
external magnetic field and the reflection edge. The external magnetic field angle αH is de-
fined relative to the x-axis, or equivalently, the kx-axis in reciprocal space. The incoming
wave vector (blue) reflects, conserving the kx component, and results in the reflected wave
vector (orange). Depending on the external magnetic field direction, the wavenumber of the
outgoing wave changes with respect to the incoming wave. Fig. 6.9(b) shows the correspond-
ing real-space reflection of these wave vectors at the reflection interface. The angle of the
incoming wave vector relative to the reflection edge is equal to that of the outgoing wave
vector relative to the reflection edge.

In contrast, reflection phenomena associated with CSWBs, have only been briefly addressed
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in the literature [44, 175]. The beam direction of CSWBs is determined by the stationary
group velocity direction rather than by wave vector directions alone. To preserve the caustic
nature of these beams upon reflection, the reflected beam must also originate from a point
of stationary group velocity direction on the iso-frequency curve [44]. If this condition is not
met, the reflected spin waves don’t exhibit a focussing effect.
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Figure 6.10. Reflection of caustic spin wave beams under varying external magnetic field
angles. (a) Iso-frequency curve illustrating the reflection process of CSWBs, showing the
transition between caustic points. The incoming beam direction is indicated in cyan, the
incoming wave vector in blue, the outgoing beam direction in red, and the outgoing wave
vector in orange. (b) and (c) depict the wave vectors and group velocity directions for the
incoming and outgoing beams at the edge of the magnetic material. Notably, the angles of
the incoming and outgoing beams relative to the edge are generally unequal.

Fig. 6.10(a) illustrates the reflection of CSWBs under different external magnetic field
angles in the context of the iso-frequency curve (f = 1.44 GHz and µ0H = 5 mT). The low-
frequency pocket caustic points are considered. As the beam reflects, it transitions from the
caustic point in the quadrant φ ∈ [0, π/2] (cyan dot) to the caustic point in the quadrant
φ ∈ [3π/2, 2π] (red dot). The incoming beam follows the group velocity direction indicated
by the cyan arrow and the carrier wave vector indicated by the blue arrow. The outgoing
beam exhibits a group velocity direction shown by the red arrow and an outgoing carrier
wave vector shown by the orange arrow. The external magnetic field direction dictates the
orientation of the iso-frequency curve [78], thereby controlling the positions of these caustic
points and also enabling steering of CSWBs.

A representation of the wave vector and group velocity direction of incoming and outgoing
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beams at the edge of the magnetic material is provided in Figs 6.10(b) and (c), respectively.
The orientations of the wave vectors and group velocity directions within each set (incoming
and outgoing) differ significantly, often pointing in opposite directions. When the external
magnetic field is aligned with the edge (αH = 0), both the incoming wave vector and group
velocity directions reverse the y-component, resulting in the incident and reflected beam
angles being equal. However, as the external field angle increases, the beam directions deviate
from the conventional ”incident angle equals reflected angle” rule. In some instances, such
as at αH = 30◦, the beam may even exhibit negative reflection. Although the wave vector
maintains its magnitude, the wavefront angle with respect to the edge changes upon reflection.

In the following, the reflection properties of CSWBs are investigated in the low-frequency
pocket by TR-MOKE microscopy. To achieve this, one of the twin beams emitted from the
half-ring antenna was directed into a magnonic waveguide, where the beam can undergo
multiple reflections at the waveguide edges. The other beam served as a reference. For this
purpose, a YIG film was patterned into a waveguide structure with a nominal width of 40µm
by optical lithography and subsequent Ar etching. A topographic map of the geometry is
shown in Fig. 6.11 where the edges are always oriented along the x-direction. The antenna
width was 2µm. In the first set of experiments, the external magnetic field was applied along
the x-direction, while in the second set, the external magnetic field angle was varied.
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Figure 6.11. Topographic
map of the experimental de-
sign, showing the spin wave
waveguide fabricated on one
side of the excitation an-
tenna. Dark areas indi-
cate regions where YIG was
etched away. The wave-
guide edges are oriented
along the x-direction.

6.4.1. External Magnetic Field Dependence of Reflection

Figs. 6.12(a)-(j) show Kerr images recorded at an excitation frequency f = 1.44 GHz under
various external magnetic field values. On the basis of these Kerr images, the section first
qualitatively discusses the propagation and reflection profile. Subsequently, it delves into an
examination of the beam parameters θv,e, ke, and φe for the incoming and reflected beams,
followed by an analysis of the reflection amplitudes.
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Figure 6.12. Reflection of spin wave beams in a magnonic waveguide (a)-(j) Kerr maps
recorded at f = 1.44 GHz under different external magnetic fields. Caustic spin wave beams
are reflected back and forth with varying efficiencies. All Kerr maps are normalized to the
same color scale. A detailed description can be found in the text.
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Qualitative Discussion of the Radiation and Reflection Profile

Each Kerr image shows a pair of beams emitted from the antenna tip, with the radiation
profile changing as the applied field increases, resulting in larger apparent wavelengths. At
relatively low external magnetic fields (Figs. 6.12(a)-(c)), little to no reflection of the beam
coupled into the waveguide is observed. Specifically, at µ0H = 3 mT (Fig. 6.12(c)), no
reflected beam is observed, while at µ0H = 2.5 mT (Fig. 6.12(b)) a slight first reflection
within the waveguide is noted. At µ0H = 2 mT (Fig. 6.12(a)), the beam does not even enter
the waveguide but is instead damped out, forming a complex wavefront pattern.

These observations at low fields are closely related to the proximity of the experimental
conditions to the hybridization band, which, as shown in Fig. 3.2, occurs at very low mag-
netic fields (1 mT) for the given excitation frequency (1.44 GHz). Moreover, the edges of
the waveguide induce demagnetizing effects, altering the effective magnetic field distribution.
Micromagnetic simulations using mumax3 were conducted to visualize this effect. The re-
sults are shown in Fig. 6.13, which presents the spatial distribution of the x-component of the
effective magnetic field (µ0Hx,eff) under an applied static field of µ0H = 3 mT.5 Within the
waveguide, the effective magnetic field remains almost unchanged from the applied field, as it
is aligned longitudinally to the waveguide axis. At the corners where the full film transitions
into the waveguide, local reductions of the magnetic field are observed. Here, the reduction
reaches up to 2 mT. Consequently, at the entrance of the magnonic waveguide, the hybridiza-
tion condition is further approached due to the reduction in effective magnetic field, which
strongly attenuates spin-wave propagation. A more detailed evaluation of this phenomenon
is provided in Part III. In Fig. 6.12(a), this effectively creates a barrier, preventing the beam
from entering the waveguide [34, 176].
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Figure 6.13. Simulated distribu-
tion of x-component of the effective
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At higher external magnetic fields (Figs. 6.12(d)-(j)), when the beam emitted into the
waveguide reaches the first edge, a reflected beam with an opposite y-direction and a wave-
length similar to the incoming beam becomes clearly visible, with a mirrored wavefront angle.

5A grid of 1000× 4400× 4 was used in the simulation. To enhance simulation speed, and since the effective
magnetic field rather than spin wave properties were of interest, the cell dimensions were chosen to be
50 nm in all 3 dimensions, which is above the exchange length in YIG.
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This reflected beam then interacts with the opposite edge, leading to further reflections and
changes in direction as the beams bounce back and forth within the waveguide. The patterned
edge structures also excite caustic features, which are reflected multiple times, contributing
to the complex background observed in many images.

Each point of the edge region serves as a secondary point-like excitation source with a
finite size on the order of the beam’s width [44, 140]. The secondary source radiates a wave
packet with a wide angular spectrum accessing another caustic point on the iso-frequency
curve [44]. In analogy to Figs. 6.10(a)-(c), during the first reflection, the incoming beam
transitions from the caustic point in the quadrant φ ∈ [0, π/2] to the caustic point in the
quadrant φ ∈ [3π/2, 2π] for the outgoing beam. At the second edge, the reflected beam folds
back to the caustic point in the quadrant φ ∈ [0, π/2]. In the ideal case, where the external
magnetic field is perfectly aligned with the edge, the beam parameters6 of the incoming and
outgoing beams are expected to remain the same.
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Figure 6.14. Predicted
group velocities vg of caus-
tic points. With decreasing
external magnetic field, vg
decreases, corresponding to
a stronger spin wave atten-
uation.

Furthermore, the beam intensity appears to be influenced by the external magnetic field,
with reflected beams becoming progressively weaker as the external magnetic field decreases.
This weakening may be attributed to two factors. First, reflection losses, which will be
discussed in more detail later on. Second, the reduction in group velocity (vg) plays a role. As
shown in Fig. 6.14, the group velocities at the predicted caustic points decrease as the external
magnetic field decreases, leading to stronger attenuation of the CSWBs. This reduction in
group velocity may be even more pronounced as the anticrossing regime is approached at
lower external magnetic fields.

Analysis of Beam Parameters θv,e, ke, and φe

The beam properties are further analyzed by extracting the beam parameters θv,e, ke, and
φe for the beams labeled Ifree, II, RI, and RII in Fig. 6.12(h) (cf. Appendix A). The results
are illustrated in Figs. 6.15(a)-(c).7 If no parameters are displayed for a beam at a given

6Projected into the first quadrant.
7To better compare with the caustic model, potential deviations of the external magnetic field direction
are taken into account in the error bars. This is done by considering the deviations in beam parameters
between the Ifree and II. Fig. 6.12(a) was excluded from the analysis.
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external magnetic field, it indicates that the algorithm failed to detect the beam accurately
or that no beam was visible in the first place.
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Figure 6.15. Experimen-
tal beam parameters of the
beams Ifree (orange) and
II (cyan) emitted from the
antenna and the reflected
beams RI (red) and RII

(green) inside the wave-
guide. Shown are: (a) θv,e,
(b) ke, and (c) φe. The
dashed blue lines represent
the caustic point properties
as predicted by the theoret-
ical model for comparison.

Overall, the beam parameters of the different beams mostly lie within error bars and align
well with the caustic model, supporting the caustic nature of the reflected beams. The
stronger deviations to the predicted caustic points observed at high external magnetic fields
are attributed to the beam sharpness. The pronounced deviations at low external magnetic
fields (2 mT and 3 mT) are due to the system approaching the hybridization regime as the
external magnetic field decreases, rendering the thin film approximation less valid.

The beam Ifree tends to exhibit a slightly larger beam angle than II, and a similar angle
mismatch is observed between the reflected beams RI and RII, with RI having a slightly
larger angle. This suggests a small misalignment of the external magnetic field angle from
the x-direction. A fitting procedure applied to the FT data, as detailed in Appendix B,
determined an external magnetic field angle of αH = (−2.4 ± 0.1)◦.

Analyis of Reflection Amplitudes and Reflection Efficiency

To analyze the reflection efficiency the amplitudes Afit of beams Ifree, II, RI, and RII, sepa-
rately extracted from the fitting procedure, are displayed in Fig. 6.16(a).
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Figure 6.16. (a) Am-
plitudes of beams Ifree, II,
RI, and RII. (b) Reflection
rates for first and second re-
flection. The reflection rate
is defined as the ratio of am-
plitude between the incom-
ing and the reflected beam
at the YIG edge.

The amplitudes of the beams Ifree and II directly emitted from the antenna vary slightly
with the external magnetic field between µ0H = 4 mT and µ0H = 10 mT, without a clear
trend. Below µ0H = 4 mT, the amplitude tends to decrease due to increased damping associ-
ated with hybridization effects. The difference between the amplitudes of beams Ifree and II is
negligible between µ0H = 5 mT and µ0H = 10 mT, suggesting similar excitation efficiencies
from the antenna for both beams. However, at µ0H = 4 mT an amplitude mismatch is noted,
reminiscent of the observations in Section 6.1.

The amplitudes of the reflected beams RI and RII tend to be lower than those of the beams
directly emitted from the antenna, especially at lower external magnetic fields, and generally
tend to decrease as the external magnetic field decreases. Notably, RI exhibits a sharp max-
imum at µ0H = 9 mT, where its amplitude even exceeds that of the incoming beam II. This
observation may be due to background artifacts excited from the edge, particularly within the
waveguide, where interference between the beams and background signals is possible. This
caveat should always be kept in mind when analyzing the amplitudes within the waveguide.

Nevertheless, the reflection properties are further analyzed by means of the reflection ef-
ficiency or rate in Fig. 6.16(b). In this figure, the amplitudes of the reflected beams RI

and RII are normalized to their respective incident beams II and RI, i.e., the quantities
ARI

/AII and ARII
/ARI

are displayed. The efficiency of the first reflection (red curve) fluc-
tuates between 0.4 and 0.6 below µ0H = 8 mT, reaches near unity at µ0H = 8 mT, and
exceeds 1.0 at µ0H = 9 mT, likely due to background effects, as previously discussed. At
µ0H = 10 mT, the efficiency is approximately 0.6. Below µ0H = 4 mT, no reflected beam
was sufficiently detectable. For the second reflection (green curve), maximum efficiency is
observed at µ0H = 7 mT, exceeding 1. At µ0H = 6 mT and µ0H = 8 mT, the reflection
efficiency is close to unity, while at µ0H = 10 mT, it is around 0.7. Below µ0H = 6 mT, no
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reflected beam RII was sufficiently detectable.
As mentioned, the variation in background within the waveguide impacts the extracted

reflection efficiency. Another factor to consider is mode quantization due to the finite width
of the magnonic waveguide. The finite width introduces discretization of the wavenumber
along the waveguide’s width (in the y-direction), as discussed in Section 3.2. If the wave
vector components ky contributing to the beam do not sufficiently match the waveguide
mode, efficient propagation within the waveguide is suppressed. Mismatched wavenumber
modes experience stronger attenuation, filtering portions of wavefront angles that contribute
to the CSWB. Particularly, if there is a slight angular mismatch between the incoming beam
and the outgoing caustic beam, the beam-induced point-like source excitation at the edge
may not sufficiently excite all the wavefront angles contributing to the reflected caustic beam.

Fig. 6.17(a) presents the predicted wave vector components ky of the caustic points and
compares them to the waveguide modes ky,m = mπ

wwg
(grey dashed lines) for m = 0, 1, 2, . . .

and wwg = 40,µm. The predicted values have been adjusted for the external magnetic field
offset αH . The ”+” symbols correspond to the predicted values for beams Ifree and RI, while
the ”-” symbols correspond to the predicted values for beams II and RII.
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Figure 6.17. Compari-
son of the ky component of
the beams with the wave-
guide modes (grey dashed
lines). (a) Predicted ky of
the caustic points consider-
ing the external magnetic
field offset αH in the ex-
periments. The ”+” sym-
bols correspond to the pre-
dicted values for beams Ifree
and RI, the ”-” symbols to
beams II and RII. (b) Wave
vector component ky ex-
tracted for each beam from
the experimental data.

At µ0H = 9 mT, the overall discrepancy between the predicted ky values for the beams RI,
II, and RII is still relatively small. Specifically, the predicted ky for the reflected beam RI

closely matches the waveguide mode, whereas the incident beam II and the second reflected
beam RII exhibit slight deviations. This alignment for RI may explain the higher reflection
efficiency observed in Fig. 6.16(b) at µ0H = 9 mT. In contrast, the opposite behavior is
observed at µ0H = 7 mT, where the reflection efficiency decreases. At µ0H = 8 mT, the
predicted ky values align closely with the waveguide modes for all beams, leading to high
reflection efficiencies for both RI and RII. However, as the external magnetic field decreases
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further, larger discrepancies in ky emerge, which may result in increased filtering of wave
vector components that contribute to the reflected beams.

Fig. 6.17(b) shows the extracted ky components from the experimental data. Notably, the
beams within the waveguide consistently exhibit lower ky values compared to beam Ifree. This
observation may indicate a filtering effect due to mode mismatch. However, the error bars are
much larger than the spacing between the waveguide modes, suggesting that the presence of an
exact mismatch should be interpreted with caution. More clarity could be provided by bigger
mode spacing, hence a smaller waveguide width. However, for low-frequency pocket CSWBs,
the reduced beam length makes it difficult to analyze wavefronts effectively. Achieving this
with higher wavenumber caustic points and corresponding smaller excitation sources may be
possible.

At this point, the author would like to point out that the experiments presented in this
section closely resemble the phenomenon of total internal reflection. In such processes, the
Goos-Hänchen (GH) shift is a factor to consider [177]. The GH shift refers to a small lateral
displacement of the reflected beam along the interface, relative to the point where the incident
beam meets the reflection interface. This shift occurs in the plane parallel to the interface
and is related to the interaction with the evanescent wave generated at the interface during
total internal reflection [178, 179].

For pure spin wave beams, a GH shift has been theoretically predicted [167–169]. However,
these shifts are expected to be on the order of tens of nanometers, which is well below the
resolution limit of the current experimental setup. Moreover, detecting such a phenomenon
is further complicated by the physical characteristics of the magnetic material’s edge. As will
be discussed in Section 8.5, the edges produced through the described fabrication processes
exhibit a height gradient over a lateral distance of approximately one to two micrometers;
yet sharp edges are essential for observing such small spatial shifts.

Additionally, the GH shift manifests as a phase shift upon reflection at the edge, a phe-
nomenon that has been experimentally demonstrated for plane spin waves [180]. However,
analyzing the phase shift in the presented experiments is challenging. The imperfect YIG
edge complicates the accurate determination of the reflection region. The finite width of the
CSWBs introduces additional complexity, as the sharpness of the beam is not well-defined,
further affecting the identification of the reflection point at the waveguide edge. Even a slight
misalignment of the reflection edge by a few pixels can already cause a phase shift in the anal-
ysis. Furthermore, because the caustic beam is composed of multiple k-vectors, the phase
shift is not ambiguous. The outer regions of the CSWB may exhibit different wavelengths
compared to the inner regions, potentially resulting in a non-uniform phase shift across the
beam width.

An attempt to analyze the phase shift upon reflection of the CSWBs is presented in Ap-
pendix C. However, due to the factors mentioned above, a detailed exploration of the GH
shift seems to be impossible.

6.4.2. Angular Dependence of Reflection

The reflection of the beams was also examined under various external magnetic field angles.
Figures 6.18(a)-(f) present the Kerr maps for different angles at an excitation frequency of
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Figure 6.18. (a)-(f) Reflection as a function of external magnetic field angle αH with
f = 1.44 GHz and µ0H = 5 mT. All Kerr maps in the upper row are normalized to the same
color scale. The lower row depicts FT data in a logarithmic scale obtained from the orange
region in the Kerr map. The angle of αH, extracted from a fitting procedure, is displayed in
the FT plot. The green arrow represents the corresponding direction of the external magnetic
field. The blue dashed curve depicts the rotated iso-frequency curve, while cyan- and red-
colored arrows correspond to the group velocity directions at the predicted caustic points.

f = 1.44 GHz and an external magnetic field of µ0H = 5 mT. The corresponding FT data,
extracted from the area within the orange rectangle, is shown below each map. This data
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includes the reconstructed iso-frequency curves and the predicted group velocity directions
of the incoming and reflected caustic beams. The external magnetic field angles αH were
determined through a fitting procedure applied to the FT data (see Appendix B).

Firstly, as the external magnetic field angle increases, the beam angle of the beam emitted
from the antenna II clearly increases, demonstrating the feasibility of steering CSWBs with
the external magnetic field. Secondly, focussing on the reflection process, it is evident that the
beam angle of the first reflected beam RI decreases with increasing field angle, significantly
deviating from the conventional law of reflection in optics, where the incident angle equals
the reflected angle. This deviation is also observed in the reflection at the lower edge, which
is faintly visible in some of the Kerr maps. Furthermore, the reflection efficiency appears to
decrease as the external magnetic field angle increases.

The observed beam directions closely align with the predicted group velocity directions
originating from the caustic points, as visualized by the cyan-colored (II) and red-colored
arrows (RI) in the FT data. This alignment underscores that the reflection of CSWBs is
governed by the transition between caustic points located in different quadrants of the iso-
frequency curve as illustrated in Figs. 6.10(a)-(c).

This conclusion is further supported by the analysis of the beam parameters presented
in Figs. 6.19(a)-(c). In this analysis, only the beam emitted from the antenna and its first
reflection were considered. Fig 6.19(a) shows that the beam direction θc,e of the incident beam
II (cyan curve) increases with the external magnetic field angle, with the increment in beam
direction closely matching the increment in the external magnetic field angle. Conversely, the
beam direction of the reflected beam R (red line) decreases by the corresponding negative
increment. Notably, the average of the two beam directions (brown curve) aligns well with
the predicted caustic beam direction when αH = 0◦ (dashed blue line). A similar pattern is
observed in the wavefront angles in Fig 6.19(c). The wavenumbers of incident and reflected
beam (Fig 6.19(b)) exhibit no obvious trend but appear to remain relatively constant across
all beams, reasonably aligning with the predicted caustic wavenumbers. These observations
validate the caustic nature of the observed reflection phenomena.

The beam amplitudes were also analyzed and are depicted in Fig.6.20(a). The amplitude of
the incoming beam II exhibits slight variations with the external magnetic field angle, likely
due to interactions with parasitic backgrounds excited by the patterned edges. These interac-
tions are more pronounced in the low-angle maps shown in Figs.6.18(a)-(f). In contrast, the
amplitude of the reflected beam RI decreases as the external magnetic field angle increases.
This trend is further illustrated by the reflection efficiency presented in Fig. 6.20(b), which
declines with increasing external magnetic field angle.

While filtering effects due to the width modes of the waveguide, as discussed in Sec-
tion 6.4.1, may contribute to the reflection efficiency, the primary factor is the mismatch
between the external magnetic field direction and the reflection edge itself. This mismatch
leads to differing angular spectra between the incoming and outgoing wave packets [44], re-
sulting in less efficient excitation of the reflected caustic point at the edge as the external
magnetic field angle increases.

To conclude this section, the experimental data is compared with Snell’s law as applied
to the reflection of spin waves. For this analysis, the predicted wavenumbers and wavefront
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Figure 6.19. Beam parameters
(a) θv,e, (b) ke, and (c) φe of in-
coming (cyan dots) and first re-
flected beam (red dots) at differ-
ent external magnetic field an-
gles αH . The dashed blue line
represents the predicted CSWB
features when αH = 0◦, whereas
brown dots represent the mean
values of the incident and re-
flected beam. The error bars in
αH correspond to the standard
deviations of a fitting procedure.

angles of the incoming beams were used to calculate the properties of the reflected wave from
the geometrical considerations of Snell’s law on the iso-frequency curve (see Fig.6.9). The
comparison with the experimentally observed reflected beam RI is presented in Figs. 6.21(a)
and (b).

Notably, Snell’s law predicts a decrease in the wavenumber of the reflected wave. In
contrast, the experimental data from the caustic spin wave beam experiments suggest that the
wavenumber remains relatively constant. An even more pronounced discrepancy is observed
in the wavefront angles φ; Snell’s law predicts a monotonically increasing wavefront angle for
the reflected wave, while the experimental wavefront angle actually decreases.

This comparison underscores the differences between the reflection behavior of pure spin
waves and caustic spin wave beams. According to Snell’s law for spin waves, the reflected
wave vector generally does not correspond to a caustic point, except in the specific case
where αH = 0. The emission and reflection of caustic spin wave beams, however, rely on a
stationary group velocity direction, which occurs at a caustic point.
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the reflected beam (red) with
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7. Motivation and Experimental Design

In Ref. [34], it was experimentally demonstrated that within a 200 nm thick YIG film, spin
wave propagation is highly suppressed at an excitation frequency of f = 2.8 GHz around an
external magnetic field of µoH = 32 mT. This suppression was attributed to the mode hy-
bridization between the zeroth-order DE mode and the first-order PSSW mode. Furthermore,
it was observed that upon launching spin waves towards a 1D diffraction grating composed
of antidots in the YIG film, no spin wave signal was transmitted for certain external mag-
netic field values. This phenomenon was attributed to a geometry-dependent reduction of
the internal magnetic field in the sections between the antidots in order to avoid magnetic
surface charges [64, 167, 181]. This field reduction forced the DE modes to enter the hy-
bridization regime in-between neighboring antidots and, hence, into a regime of high spin
wave attenuation.

By exploiting these two effects—the hybridization-induced spin wave stop band and the
geometry-induced variation of the internal effective magnetic field—the stop position of prop-
agating spin waves should also be smoothly controllable rather than being limited to an abrupt
stop at the position of the antidot grating. This control can be achieved by tuning the ex-
ternal magnetic field within a properly designed magnetic structure. A suitable structure for
this purpose may be a waveguide that gradually decreases in effective magnetic field along
the spin wave propagation direction.

A sketch of the measurement geometry is shown in Fig. 7.1. A trapezoidal (or tapered)
waveguide was patterned from a 200 nm thick full YIG film by means of optical lithography
and subsequent Argon etching of the film. The trapezoid gradually decreases from a width
w1 to a width w2 along a length l. Default values, unless specified otherwise, are w1 = 30µm,
w2 = 5µm and l = 80µm. In order to minimize reflections, a gradual continuation from
the trapezoid shape back to the full film was implemented. For the excitation of spin waves,
a CPW with wsig = 10µm, wgr = 5µm and wgap = 5µm was fabricated on top of the
YIG film by optical lithography and electron beam evaporation of Ti(5 nm)/Au(210 nm). In
the experiments, spin waves in the DE geometry were launched from the full film into the
transversely magnetized trapezoidal waveguide.

To gain insight into the influence of the trapezoidal shape on the effective magnetic field,
micromagnetic simulations utilizing mumax3 [66] were performed1. In Fig 7.2(c), the spatial
distribution of the x-component µ0Hx,eff of the effective magnetic field is shown at an applied
static magnetic field of µ0H = 33.5 mT. Within the trapezoid, the effective magnetic field
exhibits local variations and is notably reduced at the edges of the patterned YIG. The
inhomogeneous spatial field distribution is further highlighted by the sketched iso-field lines

1A grid of 1000× 4400× 4 was used in the simulation. The cell dimensions were chosen to be 50 nm in all 3
dimensions.
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Figure 7.1. Sketch of sample and measurement geometry. In the experiments, spin waves
in the dipolar regime are excited by a coplanar waveguide (golden cuboids) and are directed
toward a trapezoidal structure in the Damon-Eshbach geometry. The coplanar waveguide
dimensions are wsig = 10µm, wgr = 5µm and wgap = 5µm. If not stated otherwise, w1 =
30µm, w2 = 5µm and l = 80µm. The grey layer represents the patterned YIG, and the
transparent layer represents the GGG substrate. A static external magnetic field along the
x-direction was applied throughout the experiment, as indicated by the green arrow.

(black lines), which display rounded triangular-like features within the trapezoid. Across the
trapezoid’s width (Fig. 7.2(b)), sharp dips of the effective magnetic field occur at the edges,
leading to a gradual decrease in the effective magnetic field along the direction of spin wave
propagation (Fig. 7.2(a)). This inhomogeneity of the effective magnetic field stems from the
geometry-induced demagnetizing field, which aims to avoid the formation of magnetic surface
charges [64, 167].
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Figure 7.2. Effective magnetic field distribution within the trapezoid. The external mag-
netic field was applied along the x-direction, as indicated by the green arrow. (a) The
x-component of the effective magnetic field (extracted along the horizontal green dashed line
in (c)) decreases gradually along the waveguide’s length. The green dot marks the hybridiza-
tion field for full film YIG at 2.8 GHz. (b) Across the width of the trapezoid (vertical green
dashed line in (c)), pronounced reductions in effective magnetic field are observed at the
edges. Grey-shaded regions indicate areas outside the magnetic medium. (c) Spatial map
showing the inhomogeneous distribution within the transversely magnetized trapezoid.
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8.1. Spin Wave Stop Band in 200 nm thick Full YIG Film

In the first set of experiments, spin wave propagation in the 200 nm thick YIG full film is
investigated in order to validate the presence of hybridization-induced attenuation effects.

In this context, spin waves in full film YIG are excited at a constant frequency of
f = 2.8 GHz in the DE geometry and detected far away from any patterned magnetic
structure by TR-MOKE microscopy. Fig. 8.1(a) shows the corresponding line profiles of the
dynamic out-of-plane magnetization as a function of the applied external magnetic field.
The grey-scale represents the detected Kerr signal. Following the dispersion relation, the
wavelength increases with increasing magnetic field. However, a clear suppression of spin
wave propagation occurs around µ0H = 32 mT within a narrow region of the external
magnetic field range.
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Figure 8.1. Hybridization-induced spin wave stop band in a 200 nm thick YIG film at an
excitation frequency of f = 2.8 GHz. (a) Spin wave propagation excited in the DE geometry
by a coplanar waveguide (ground line indicated by golden region) as a function of the exter-
nal magnetic field. A suppression of propagation is observable around 32 mT. (b) TetraX
simulation. The n = 0 (blue dash-dotted line) and n = 1 (blue dashed line) predicted by
Kalinikos and Slavin (KS) hybridize and form an anticrossing in the micromagnetic simula-
tions (red line and circles). A band of strongly attenuated propagation emerges.

In the zeroth-order KS model, the n = 0 and n = 1 modes intersect slightly below µ0H =
32 mT at the given experimental conditions, as illustrated in Fig. 8.1(b). This degeneracy is
lifted in the micromagnetic simulations performed with TetraX by forming an anticrossing.
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In this regime, the dispersion relation is flattened and the group velocity approaches zero (cf.
Eq. (1.22)), leading to a significant attenuation of spin wave propagation (cf. Eq. (1.23)).
Given the close match between theoretical prediction and experiment, it is concluded that
the observed suppression of propagation is indeed attributed to the hybridization of the DE
mode and the first-order PSSW mode. Thus, at a driving frequency of f = 2.8 GHz, the
hybridization field lies at µ0Hhyb ≈ 32 mT.

8.2. Propagation Profile in a Trapezoidal Waveguide

Fig 8.2(a) displays a Kerr map of the trapezoidal structure recorded with an excitation
frequency of f = 2.8 GHz and a static external magnetic field of µ0H = 33.5 mT. Plane spin
waves are launched from the CPW into the full film. Upon entering the trapezoid, however,
the propagation profile changes. In the center of the trapezoid, a prominent mode with
slightly bent wavefronts is observed. Close to the edges, a localized mode with strongly bent
wavefronts is apparent.
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Figure 8.2. TR-MOKE mea-
surement with f = 2.8 GHz and
µ0H = 33.5 mT. (a) Spatial Kerr
map. For better visibility, the
contrast was increased; light red
and blue indicate a saturation
of the grey-scale. (b) Compari-
son of line profiles along the mid-
dle of the wedge (orange curve)
and in non-patterned plane YIG
(blue curve). The orange curve
is extracted from the dashed or-
ange line in (a). Inside the trape-
zoid, the propagation stops at a
distinct position.

This bending of spin waves results from the inhomogeneous internal magnetic field dis-
tribution (cf. 7.2). This distribution causes local variations of the dispersion relation and,
hence, of the propagation characteristics [167]. As the effective magnetic field is reduced lo-
cally, the DE dispersion relation also shifts towards lower wavelengths at the given excitation
frequency. This effect is particularly pronounced in the low-field pockets in the effective mag-
netic field distribution at the edges of the trapezoid (cf. 7.2(b)), leading to the pronounced
mode localization in this region [115, 182, 183].
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8.3. Spatial Control of Spin Wave Propagation Distance

More significantly, however, the center mode undergoes a change in wavelength within the
trapezoid and comes to a stop at a distinct point in space. Beyond this point, spin wave
propagation is nearly entirely suppressed. This behavior is further highlighted in Fig. 8.2(b)
by the line profile extracted from the center of the trapezoid. An additional line scan on plane
YIG, far away from any patterned structure, is provided for comparison. Upon entering the
trapezoid, the wavelength gradually decreases, consistent with the corresponding simulated
reduction in effective magnetic field (cf. Fig. 7.2(a)). At y ≈ 74µm, the spin wave profile
abruptly ceases, whereas, in the plane film, propagation persists beyond this distance from
the antenna.

In the preceding Section 8.1, it was found that with f = 2.8 GHz, the investigated YIG
exhibits a hybridization-induced stop band at an external magnetic field of µ0Hhyb ≈ 32 mT in
the full film configuration. From Fig. 7.2(a), it can be observed that the stop position within
the wedge (y ≈ 74µm) corresponds to an estimated effective magnetic field of µ0Hx,eff ≈
32 mT, aligning well with the measured full film hybridization condition. Thus, it is inferred
that the reduction in effective magnetic field at different spatial positions leads to the local
dispersion entering the hybridization regime. As a result, spin wave propagation comes to a
halt at a specific position in space.

8.3. Spatial Control of Spin Wave Propagation Distance

These findings are now employed towards the active control over propagation distance within
the trapezoid. Fig. 8.3 depicts Kerr images at various external magnetic fields. At an external
magnetic field of µ0H = 31.5 mT (Fig. 8.3(a)), the center mode propagates along the full
length of the trapezoid without any sharp attenuation. In this scenario, the stop band is
not reached within the geometry, given that the applied external magnetic field is already
below the full film hybridization condition and only undergoes further reduction inside the
trapezoid. Furthermore, a complex beating profile with a prominent node at y ∼ 45µm
is observed. This periodic pattern results from the interference of width modes induced
by the trapezoidal waveguide [184, 185] and the generation of caustic-like beams from the
corners where the full film transitions into the trapezoid [26, 34]. As the caustic-like beams
are reflected back and forth at the edges of the trapezoid, non-equidistant nodes of higher
amplitude occur. This phenomenon was referred to as self-focussing in Ref. [184] and shall not
be confused with focussing effects that lead to caustic spin wave beam emission (cf. Part II).

In Figs. 8.3(b)-(d), spin wave propagation stops at different positions in space depending
on the external magnetic field strength. Also, note that the boundaries of the spin wave
patterns exhibit a shape comparable to the iso-field lines of the effective magnetic field inside
the trapezoid (cf. 7.2(c)). Here, the external magnetic fields lie slightly above the stop
band field, and the reduction in the effective magnetic field pushes the dispersion relation
into the hybridization regime along the trapezoid. Consequently, the positions where the
dispersion relation locally gains access to the stop band shift further outward along the
y-direction with increasing external magnetic field. In conclusion, the geometry-induced
hybridization determines the stop position and enables active control over the spin-wave
propagation distance by tuning the static external magnetic field close to the stop band.
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Figure 8.3. TR-MOKE images acquired at different external magnetic fields and a constant
excitation frequency of f = 2.8 GHz. (a) Below the full film hybridization field (µ0Hhyb ≈
32 mT), spin waves propagate along the full length of the trapezoid. (b)-(c) Coming from
external magnetic fields slightly above the stop band, the spin wave propagation vanishes at
different positions in space.

Furthermore, by modifying the geometry of the trapezoidal waveguide, one can adjust the
sensitivity of propagation distance control to the external magnetic field. Figs. 8.4(a)-(d)
show Kerr maps close to the full film hybridization where the trapezoid structure transitions
from a width of w1 = 30µm to w2 = 5µm over a distance l = 200µm.

At an external magnetic field of µoH = 32.5 mT (Fig. 8.4), the main mode stops within
a few microns of propagation within the trapezoidal waveguide. At µoH = 32.8 mT
(Figs. 8.4(b)), the propagation distance is much larger than in the previously discussed
geometry and gradually fades away. At µoH = 33 mT (Figs. 8.4(c)), the stop position
extends even beyond the scanning range. Overall, this behavior can be attributed to the
steadier reduction in the effective magnetic field along the spin wave propagation direction.
Fig. 8.4(d) shows a micromagnetic simulation [66] of the effective magnetic field along the
center of the waveguide (green dashed line in Fig. 8.4(b)). The overall reduction in the
effective magnetic field over the given y-range is much smaller than in Fig. 7.2(a). Thus, the
hybridization condition is reached at a more distant position in space along the waveguide in
comparison, and a fixed increase in the external magnetic field results in a correspondingly
larger increase in the spin wave propagation distance.

Furthermore, in the vicinity of the transition area from the full film to the trapezoidal
waveguide, the effective magnetic field exhibits a steeper decrease than in the rest of the
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Figure 8.4. (a)-(c) Kerr images at different fields with f = 2.8 GHz. The trapezoid has
the following dimensions (cf. Fig. 7.1): w1 = 30µm, w2 = 5µm, and l = 200µm. The
field window in which the propagation distance can be controlled is much smaller compared
to the steeper trapezoidal waveguide. (d) Effective magnetic field simulation at an external
magnetic field of µ0H = 32.8 mT along the green dashed line in (b).

depicted waveguide. This results in a more abrupt stop of propagation when the hybridiza-
tion is reached in the transition area (Fig.8.4(a)), whereas in the case of µ0H = 32.8 mT
(Fig.8.4(b)), spin wave propagation gradually disappears.

8.4. Transmission Control between Microstrip Antennas

In this section, the geometry-induced hybridization is utilized to gain control over the elec-
trical transmission between several microstrip. Fig. 8.5 shows a sketch of the experimental
configuration. Three 800 nm wide gold microstrips were deposited at different positions along
the patterned YIG film. Each of the microstrips was connected to a different port of a four-
port Agilent N5222A vector network analyzer (VNA) and all-electrical spin wave spectroscopy
measurements (cf. Section 2.3) were carried out. The microstrip connected to port 1 served
as a source of excitation for spin waves, while microstrips 2 and 3 were employed for detection.
Note that microstrips were chosen instead of CPWs since they provide a more continuous ex-
citation and detection range of wave vectors (cf. Section 1.4), making them more suitable for
broadband spectroscopy. All measurements were conducted at a microwave power of 3 dBm,
and the real and imaginary parts of the transmission parameters S21 and S31 were recorded.
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Figure 8.5. Sketch
of all-electrical broad-
band spin wave spec-
troscopy measurement.
Three microstrip an-
tennas distributed
along the sample ge-
ometry (d1 = 15µm,
d2 = 34µm) are con-
nected to separate
ports 1, 2 and 3 of a
VNA. Spin waves are
excited from antenna 1
and detected along the
trapezoid by antennas
2 and 3.

Figure 8.6. Trans-
mission spectra of
|∆S21| and |∆S31|.
Modes close around
FMR are prominent
(white contrast), yet
transmission over a
broad range of external
magnetic fields and
excitation frequencies
is observable.
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In Fig. 8.6, broadband spectra of the amplitude of the transmission parameters are dis-
played. Here, the external magnetic field was incrementally changed in 5 mT steps from high
to low fields, and the spin wave excitation frequency was swept at each external magnetic
field value. High external magnetic field reference data was recorded at µ0Href = 200 mT
and subtracted, and the resulting transmission parameters are presented in terms of |∆S21|
and |∆S31| (cf. Section 2.3). Both spectra exhibit pronounced contrast for modes around
the FMR, but transmission over a broad range of external magnetic fields and excitation
frequencies, and hence wave vectors occurs. The contrast and magnitude of the |∆S21| spec-
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trum is larger since spin waves are further damped when propagating towards microstrip 3.
Furthermore, the transmission efficiency appears to be higher for positive external magnetic
field values, which may result from non-reciprocity in antenna excitation and detection, non-
reciprocal surface localization of the DE modes, or, most likely, a combination of these two
factors.

Figs. 8.7(a) and (b) show further spectra with enhanced resolution in the vicinity of the
hybridization condition at positive external magnetic fields. Both, the |∆S21| and the |∆S31|
data, exhibit oscillations in magnitude, which can be attributed to changes in lateral spin
wave profile. The variation in magnetic field and applied frequency alters the width-induced
self-focussing conditions, shifting the positions of high amplitude and caustic-like nodes [184].
In the |∆S31| transmission, the spacing between these oscillations is shorter. This results from
the gradual decrease in trapezoid width, leading to a smaller node spacing in the external
magnetic field domain at the position of the third microstrip compared to the location of
microstrip 2.
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Figure 8.7. Transmission spectra of (a) |∆S21| and (b) |∆S31| in the vicinity of the stop
band. Regions with low to no transmission occur (indicated by red dotted lines as guides
for the eye). The band is broader in the transmission amplitude |∆S31|. At a given external
magnetic field, the band forms at lower frequencies in |∆S31| (highlighted by white dashed
lines). For better contrast, data in the white space region on the right is not displayed. (c)
Comparison between simulated full film stop band (orange band) and experimental band
from (b).

Moreover, distinct wide regions with low to no transmission where the oscillatory behavior
is suppressed are observed and highlighted by red dotted lines in both spectra. The bands
extracted show good qualitative agreement with the expected full film stop band conditions
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calculated by TetraX as illustrated in Fig. 8.7(c), where the band extracted from |∆S31| is
compared to the simulation (orange band). One notable difference, however, is the broader
width of the experimental data which will be explained later. Nevertheless, it is valid to
conclude that these regions of lower transmission indeed correspond to the spin wave stop
band induced by the hybridization of the DE-like mode with the first PSSW mode.

In the |∆S31| data, the stop band spans over a broader range compared to the |∆S21|
spectrum and is reached at lower excitation frequencies at a given external magnetic field
(illustrated by white dashed lines). This directly results from the spatially varying stop
position of the spin waves. As spin waves advance further along the trapezoid, the effective
magnetic field is further reduced, facilitating access to the anticrossing regime. This, in turn,
leads to a suppression of transmission between the VNA channels over a broader range of
external magnetic fields and excitation frequencies as the excitation and detection microstrips
move farther apart. An analogous reasoning applies to the difference in width between
experimental data and full film simulation (Fig. 8.7(c)).

To put the experimental findings differently, distinct external magnetic field and frequency
conditions exist where transmission is absent in both |∆S21| and |∆S31|, transmission is
observed only in |∆S21|, and transmission occurs in both |∆S21| and |∆S31|. Consequently,
selective control over the transmission between the microstrips can be achieved.
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Figure 8.8. Transmission signals in CW mode at different excitation frequencies. The
hybridization-induced stop band region (red-shaded areas serve as guides to the eye) spans
to higher external magnetic fields in the |S31| trace. Additional regions of suppressed trans-
mission occur in |S31| slightly below the stop band (grey-shaded region).

This is further illustrated in the CW sweeps at different excitation frequencies in Fig 8.8.
Here, the transmission is represented in terms of |S21| and |S31|, as no high external magnetic
field reference needs to be recorded in this mode of operation. The regions of suppressed
transmission due to the hybridization (highlighted by the red-shaded rectangles) shift with
applied frequency and extend to higher external magnetic fields in the |S31| parameter due to
the reduction in the effective magnetic field along the trapezoid. For instance, at f = 2.45 GHz
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and with an external magnetic field of µ0H = 23 mT, transmission in the |S21| channel is
observed, but minimal transmission in the |S31| trace is present. Similar behavior is observed
in the data with an excitation frequency of f = 2.7 GHz data at an external magnetic field
of µ0H = 29 mT.

Moreover, the transmission in the |S31| trace also appears to be suppressed for external
magnetic fields slightly below the hybridization band (highlighted by grey-shaded rectangles).
In this context, additional Kerr images approaching the hybridization from lower external
magnetic fields at an excitation frequency of f = 2.8 GHz are presented in Fig. 8.9. The
images reveal the presence of caustic-like beams that gradually fade away during propagation
along the patterned geometry, contributing to the early cessation of transmission in |S31|.

8.5. Edge Modes due to Imperfect Fabrication

Fig. 8.10 exhibits several TR-MOKE maps with different excitation frequencies and relative
phases between rf excitation and laser pulses under an external magnetic field of µ0H =
33.5 mT. Propagation inside the trapezoid is observed, and in the lower-frequency (2.4 GHz,
2.48 GHz, 2.56 GHz) Kerr images, intense caustic-like beams are reflected back and forth
within the trapezoidal waveguide. Close to those reflection points, a localized mode profile
emerges at the edge of the patterned YIG, extending further in x-direction than the modes
from the previous Kerr images. Upon adjusting the relative phase between rf excitation and
laser pulses, the magnetic contrast of these localized modes changes. At conditions where
the caustic-like beams fade, and DE-like modes become dominant in the propagation profile
(2.72 GHz), the edge contrast vanishes.

Fig. 8.11(a) illustrates the height profile of a segment of the trapezoidal waveguide recorded
by atomic force microscopy (AFM). Line profiles across the trapezoid edge in Fig. 8.11(b)
indicate that the height transition from YIG to the GGG substrate is not sharp but rather
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Figure 8.10. Kerr images
with an external magnetic
field of µ0H = 33.5 mT.
The left column shows Kerr
images at one fixed rela-
tive phase between rf ex-
citation and laser pulses
(in-phase) for different fre-
quencies. The right col-
umn shows the correspond-
ing Kerr images shifted
by 90◦in phase relative to
the left column (out-of-
phase). In the caustic
regime, modes in the edges
of the trapezoid occur.

gradual, spanning a distance of about 1-2µm along the x-direction. This can be attributed
to imperfections in the fabrication processes resulting in nonuniform Argon etching.

Due to their well-defined directionality, the caustic-like beams are able to access the wedge-
like boundary region. Each point of this edge region itself may then serve as a secondary
point-like excitation source with a finite size of the order of the beam’s width [44, 140]. Hence,
spin wave modes may be excited within this transitional region. Fig. 8.11(c) displays iso-
frequency curves for various film thicknesses at specific experimental parameters (2.48 GHz,
33.5 mT). These iso-frequency curves show that the potentially excited modes remain within
the optical resolution limit of the TR-MOKE set-up across a considerable range of film
thickness. As a result, mode profiles in the transitional region appear.
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Figure 8.11. (a) Atomic force microscopy profile of the trapezoidal waveguide. (b) Line
profiles taken across blue and orange dashed lines in (a). (c) Iso-frequency curves for various
film thicknesses at an excitation frequency of f = 2.48 GHz and a magnetic field of µ0H =
33.5 mT.
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Spin Wave Propagation in a
Ring-Shaped Waveguide
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9. Motivation and Experimental Design

Magnonic structures that permit the propagation of only specific spin wave modes, known as
spin wave filters, have been suggested through several approaches [21, 186–188]. Kim et
al. [188], assessed a broadband GHz-range spin wave filter based on engineering width-
modulated magnonic waveguides with micromagnetic simulations. Qin et al. experimen-
tally demonstrated a narrow-band magnonic Fabry-Pérot interferometer [21]. Recently, ring-
shaped magnonic resonators have emerged as a promising approach for spin wave filtering
and engineering [50–52, 189], drawing parallels to photonic ring resonators [190], where in-
terference effects occur along the ring.

Building on the principles of ring resonators, Iwaba et al. [189] explored a feedback-ring
structure that enhances spin waves through phase matching. In the work of Odintsov et
al. [50], micromagnetic simulations explored the coupling of two sub-millimeter-sized YIG
stripes via a ring-shaped magnonic microcavity positioned between them. Note that the
stripes and the cavity are spatially separated. The study suggested that this configuration
allows for control of spin wave transmission between the two stripes. The transmission
depends on the external magnetic field strength and angle due to the wavelength dependence
of the coupling of spin waves and the excitation of different spin wave modes within the ring
cavity. Recent experimental work validated these predictions, demonstrating filtering and
demultiplexing capabilities [51].

A similar approach using micromagnetic simulations was explored by in magnonic ring
resonators on the nanoscale by a [52], but on the nanoscale and with the ring in a zero-field
vortex state. Filtering effects were observed based on interference between the initial wave
and the wave from the ring resonator, accumulating a phase within the ring proportional
to its radius. This closely resembles its optical counterpart. The nanometer dimensions,
however, make this approach challenging to realize experimentally.

This chapter aims to experimentally investigate spin wave propagation in a ring-shaped
magnonic waveguide. To this end, a ring attached to a stripe was patterned using optical
lithography and Argon etching of a 200 nm thick YIG film. A sketch of the device is illustrated
in Fig. 9.1. The magnonic stripe and ring have a width of 7µm, with the ring having an inner
radius of 3.5µm. Spin waves in the dipolar regime were excited with a 2µm wide microstrip
antenna, and measurements were conducted in the DE- and BV-configuration. Incoming
waves (SWin) scatter into the ring resonator, potentially interfering with the ring modes and
resulting in an outgoing spin wave (SWout).

The fabricated structure has two limitations for direct phase accumulated interference along
the ring. First, the structure lacks local separation between the ring and the stripe. The ring
and waveguide are not directly decoupled. Second, due to the micrometer size of the patterned
device and the wavelengths in the dipolar regime, the experimental approach more closely
reflects the work of Odintsov et al. [50, 51] and Iwaba et al. [189], where several propagating
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Figure 9.1. Experimental design of the spin wave filter. The waveguide and the ring are
7µm wide, the inner radius of the ring is 3.5µm, and the microstrip (golden cuboid) width
is 2µm. Both DE (H ∥ ex) and BV geometry (H ⊥ ey) were excited in the stripe section of
the waveguide.

spin wave modes are present in the ring. Nevertheless, spin wave mode interaction between
the ring and stripe is still expected in the experimental design.

An external magnetic field of µ0H = 70 mT was applied for all measurements. Fig. 9.2
shows the corresponding full film dispersion relation in the dipolar regime. The dispersion
relation includes various possible spin wave modes ranging from the limiting cases of BV to DE
modes. The k = 0 mode is expected to appear at fFMR ≈ 3.68 GHz. Measurements spanned
a frequency range within the spin wave spectrum, where either DE or BV modes excited in
the stripe propagate towards the ring, potentially exciting the full spin wave spectrum at the
given frequency and interfering with the initial wave.
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Figure 9.2. Dispersion relation for
200 nm thick YIG film under an external
magnetic field of µ0H = 70 mT. The spin
wave (SW) spectrum includes spin wave
modes between the DE and BV cases,
with the FMR mode (k = 0) at fFMR ≈
3.68 GHz.
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Reasonable frequency resolution is necessary to investigate a frequency-dependent transmis-
sion of incoming and outgoing spin waves. Thus, the SNS-MOKE is better suited for this kind
of measurement as it mostly overcomes the frequency restriction of the standard TR-MOKE
(cf. Section 2.2.3). Additionally, the absolute precession amplitude, useful for determining
transmission efficiencies, can be extracted in a single measurement. All the presented mea-
surement data were obtained using the SNS technique. Note that the excitation frequency
was always detuned by the same few kHz from the presented values for the actual measure-
ment. However, values are rounded to the second digit after the comma in this section for
better readability.

10.1. Backward-Volume Geometry

Figs. 10.1(a)-(d) show Kerr maps recorded at different frequencies with the external magnetic
field applied along the YIG stripe. For each excitation frequency, two maps are presented.
The left column displays R =

√
X2 + Y 2 [136] from the lock-in detector, representing the

absolute precession amplitude. X and Y denote the two channels of the lock-in. For better
contrast, the R maps are normalized to their respective maximum value within the device
boundaries. The right column of Figs. 10.1(a)-(d) shows sin(θLI) of the lock-in phase θLI =
arctan(Y/X) [136] illustrating the wavefronts of the spin wave. To enhance visibility, the
phase data is displayed only within the spatial boundaries of the device, as determined from
the topographic image. This restriction is applied because outside these regions, where spin
waves are absent, the phase exhibits random fluctuations, which distract from the relevant
features.

First, the propagation profiles of the detected amplitude and phase maps are discussed. In
Fig. 10.1(a), the spin wave amplitude decreases along the YIG stripe region, barely reaching
the ring section, with no observable spin wave amplitude beyond the ring. The phase map
shows a small wavelength for the spin wave mode in the stripe. Inside the ring, several
wavefronts are visible in the phase map, while a faint wavefront signal is observed beyond
the ring. At an excitation frequency of f = 3.76 GHz (Fig. 10.1(b)), plane wavefronts with
higher wavelength propagate within the YIG stripe towards the ring section. At the ring
section, scattering events occur, and spin wave amplitude is observed along almost the entire
ring, with caustic-like features reflected back and forth. The phase map displays complex
wavefront patterns within the ring. Beyond the ring section, almost no amplitude signal is
visible, although the phase image may hint at a small amplitude plane wave.

At an excitation frequency of f = 3.92 GHz (Fig. 10.1(c)), a spin wave amplitude is visible
along the section up to the ring. The phase image indicates the presence of a spin wave mode
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Figure 10.1. (a)-(d) Maps recorded by SNS-MOKE at different frequencies with an external
magnetic field of µ0H = 70 mT. Images in the left column represent the absolute amplitude
R of the lock-in, while the right column represents the wavefronts of the spin waves in terms
of sin(θLI). A clear amplitude signal beyond the ring is observed in (c). Golden areas mark
the excitation antenna, and the green arrow indicates the direction of the external magnetic
field. FT data is extracted from areas within the cyan- and red-colored contours.

with a relatively large wavelength. An amplitude signal and a complex phase pattern are
observed inside the ring part of the waveguide. Caustic-like features are present again, this
time with a different beam direction and reflection angle, and are also visible in the stripe
regions. Diminished amplitude areas are observed in the intermediate section of the ring and
stripe. In contrast to the previous maps, a clear amplitude signal is visible beyond the ring,
indicating that the transmission along the device may depend on the excitation frequency.
In Fig. 10.1(d), a nodal structure across the width of the YIG stripe is observed, implying
excitation of higher-order width modes. No clear transmission beyond the ring is noted.

In the following, a detailed analysis of spin wave propagation in the BV-geometry based
on Figs. 10.1(a)-(d) is presented. The analysis starts with an FT examination of the wave-
fronts and the effective magnetic field distribution, followed by an exploration of the ring’s
influence on propagation. Finally, the transmission properties across the ring, focusing on
the frequency-dependent suppression and transmission observed in the spatial maps, are dis-
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10.1. Backward-Volume Geometry

cussed.

10.1.1. External Magnetic Field Offset and Effective Magnetic Field Distribution

Interestingly, above an excitation frequency of f = 3.68 GHz, no BV modes are predicted
(cf. Fig. 9.2), yet clear wavefronts along the stripe are observed in the f = 3.76 GHz maps
(cf. Fig. 10.1(b)). Additionally, the transverse wavefronts in the stripe in Fig. 10.1(d) are
unusual since the antenna should typically excite plane waves with directionality.

To better understand the propagation characteristics, FT data of the wavefront maps for
the incoming wave and the ring section are separately extracted for each frequency from the
red- and cyan-colored contours displayed in Fig. 10.1(b). Figs. 10.2(a)-(d) show the respective
results. Note that no windowing function was applied here. The red color represents the FT
data from the stripe, while the grey-scale represents the FT data from the ring section.
The FT data is compared to the analytical solution of the respective iso-frequency curves
for the nominal external magnetic field of µ0H = 70 mT (dashed blue curve) and for an
external magnetic field of µ0H = 74 mT (dashed orange curve), following Kalinikos and
Slavin (KS) [70].
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Figure 10.2. (a)-(d)
FT data extracted
from stripe and ring
sections highlighted in
Fig. 10.1. Many spin
wave modes across
the corresponding
iso-frequency curve are
excited. Mostly one
single spin wave mode
is excited in the stripe,
while many spin wave
modes following the
iso-frequency curve
from Kalinikos and
Slavin (KS) (dashed
orange and blue
curves) are present
within the ring.

Deviations between FT data and predicted iso-frequency curve for an external magnetic
field of µ0H = 70 mT occur, particularly in Figs. 10.2(a) and (b) where plane waves are
observed within the stripe in the real space maps. However, a reasonable match is found for
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an external magnetic field value of µ0H = 74 mT, which is well within the margin of error of
the experimental setup.

The higher external magnetic field shifts the FMR mode to fFMR ≈ 3.81 GHz, consequently
increasing the upper limit for the BV branch in the dipolar range. This can also be observed in
Fig. 10.2(b), where, in contrast to µ0H = 70 mT, BV character is predicted for µ0H = 74 mT
within the stripe. Therefore, it is concluded that a small external magnetic field offset of
about 4 mT is present, and the stripe spin wave modes in Figs. 10.2(a) and (b) are of BV
type. In Fig. 10.2(c), the stripe spin wave mode appears to be close to the FMR mode, and
the stripe spin wave mode in Fig. 10.2(d) appears near DE-type modes, which cannot be
directly excited by the antenna. However, similar to Section 6.2, the edges transverse to the
antenna can also drive spin waves, leading to the standing wave pattern across the width of
the stripe.
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Figure 10.3. Micromagnetic
simulations of the y-component
of the effective magnetic field,
µ0Hy,eff, for a longitudinally
magnetized geometry under an
external field of µ0H = 74 mT.
The green arrow indicates the di-
rection of the applied external
magnetic field.

Within the ring section, there is also a reasonable agreement between the µ0H = 74 mT iso-
frequency curve and the FT data. However, it shall be noted that the situation within the ring
is more nuanced. Fig. 10.3 shows micromagnetic simulations [66] of the y-component of the
effective magnetic field, µ0Hy,eff for the longitudinally magnetized geometry with an applied
external magnetic field of µ0H = 74 mT.1 In the stripe section, the effective magnetic field
distribution is homogeneous and matches the applied magnetic field. In contrast, within the
ring section, demagnetizing effects occur, which lead to local reductions and inhomogeneities
of the effective magnetic field. As a result, the dispersion relation within the ring varies
locally, adding complexity to the behavior of spin waves in this region.

10.1.2. Effect of the Ring Structure on Spin Wave Propagation

After addressing some basics of spin wave propagation within the device, a more detailed
examination of the differences between the propagation within the stripe and the ring section
is provided.

From the FT data (Figs. 10.2(a)-(d)), it can be observed that within the stripe section,
mostly one spin wave mode is present. In contrast, multiple spin wave modes, governed by

1The simulation used a grid of 600× 1920× 4 and a cell dimension of 50 nm in all 3 dimensions.
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10.1. Backward-Volume Geometry

the anisotropic in-plane iso-frequency curve, appear within the ring section. This behavior is
particularly prominent in Figs. 10.2(b) and (c), where a strong amplitude signal R is detected
inside the ring.

Additionally, the allowed wavenumbers within the ring seem to be discrete. This is illus-
trated in Fig. 10.4, which displays zoomed portions of Figs. 10.2(b) and (c). To verify that
this discretization arises from the magnetic contrast and not merely from the ring geometry,
an additional Fourier transform was performed on a binary image of the ring section. Here,
areas with wavefront contrast were assigned a value of 1, and areas without contrast were
set to 0, essentially representing the topography. Fig.10.5(a) shows the binary image, and
Fig.10.5(b) shows the corresponding FT data, where a pronounced FT amplitude is predom-
inantly localized around k = 0µm−1. This strongly suggests that the discrete patterns in
Fig. 10.4 indeed correspond to spin wave modes.
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Figure 10.4. FT data
extracted from ring
section compared to
ring eigenmodes. Red
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the ring eigenmodes
across the ring’s width.
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raphy. (b) Correspond-
ing FT data of the bi-
nary image.

Furthermore, the red dashed circles in Fig. 10.4 indicate the eigenmodes kring,m = mπ
wring

across the width wring of the ring with m = 0, 1, 2, .... Note that due to inaccuracies in
fabrication, the actual ring width may vary from the nominal value. Therefore, the ring
width was estimated from the topographic map of the stripe section (cf. Appendix D),
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resulting in an estimated width wring = (7.55 ± 0.50)µm. The mean value was then used to
calculate kring,m.

The spacing of the discrete FT data closely aligns with the spacing of the ring’s width
modes, as indicated by the dashed red circles. These circles largely intersect with the dis-
crete FT data points, suggesting that the finite dimensions of the ring impose additional
confinement on the propagating spin waves. Consequently, the spin waves permitted within
the ring are determined by the convolution of the dispersion relation with the ring’s width
eigenmodes.

10.1.3. Transmission Properties

In the spatial SNS-MOKE maps in Figs. 10.1(a)-(d), a frequency-dependent transmission
beyond the ring section was observed. To assess whether the suppression of propagation
beyond the ring is solely due to the intrinsic attenuation length of the spin waves, line profiles
of the precession amplitude R were extracted and averaged over three lines from the middle
of the stripe section. The profile portions before the ring were fitted with an exponential
decay of the form

f(y) = Aexp · e−y/Latt (10.1)

and compared to the extracted profile beyond the ring. Aexp denotes the amplitude of the
exponential decay and Latt the attenuation length of the spin waves.

Fig. 10.6(a) serves as a visual guide, where the dashed red line indicates the profile extracted
from the stripe region before the ring, and the dashed blue line marks the profile extracted
across the remaining length of the structure. The dashed red and blue lines in Figs. 10.6(b)-
(e) show the corresponding profiles of the amplitude R from Figs. 10.1(a)-(d). The solid red
curves represent the exponential fit of the dashed red profile. Background offset, averaged
over the orange dashed rectangle in Fig. 10.6(a), was subtracted from all profiles.

In Figs 10.6(b) and (e), the absence of amplitude signal beyond the ring aligns with the
expected exponential decay of the initially excited spin wave. However, at an excitation
frequency of f = 3.76 GHz (Fig. 10.6(c)), the behavior deviates. Within the junction region,
where the stripe and ring merge, the amplitude largely follows the exponential decay, although
varying amplitudes are observed, suggesting interference patterns. Beyond the ring, the
amplitude signal drops off abruptly, noticeably deviating from the exponential decay. This
suggests that the lack of transmission at this frequency cannot be attributed solely to intrinsic
damping along the propagation distance in the stripe. At an excitation frequency of f =
3.92 GHz (Fig. 10.6(d)), on the other hand, the clear transmission signal beyond the ring
is consistent with the exponential decay within the stripe, whereas the signal within the
junction region is diminished.

These findings imply that the transmission properties are influenced not only by the in-
trinsic attenuation but also by the interaction and scattering of various excited spin wave
modes within the ring section and near the junction between the stripe and the ring. Rather
than resulting from a purely accumulated phase from a wave of constant wavelength across
the ring, the process of frequency filtering, however, is more intricate. As indicated by the
FT data (cf. Figs. 10.2(a)-(d)), multiple spin wave modes are present within the ring section,
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Figure 10.6. Line profiles of ampli-
tude R along the center of the stripe.
(a) Exemplary spatial map of the am-
plitude R acquired by SNS-MOKE at
an excitation frequency f = 3.76 GHz
(cf. Fig. 10.1(b)). Dashed red and
dashed blue lines indicate the po-
sitions where line profiles were ex-
tracted. The dashed orange rect-
angle marks the region where the
background offset was averaged and
subtracted from all profiles. (b)-
(e) Corresponding line profiles of R
for different excitation frequencies.
The dashed red and the dashed blue
lines represent the profiles along the
dashed red and blue lines in (a). The
solid red curve corresponds to an ex-
ponential fit of the dashed red profile
before the ring section.

allowing waves of different wavelengths to interfere constructively or destructively within the
ring section. These complex interactions can facilitate or suppress propagation after the ring
section depending on the frequency, as the allowed spin wave modes themselves are governed
by the frequency- and field-dependent dispersion relation. In addition, the geometry of the
ring provides further mode selection due to its confinement and discretization of the propa-
gation spectrum (cf. Fig. 10.4), and its inhomogeneous effective magnetic field distribution
(cf. Fig. 10.3).

Further SNS-MOKE measurements at different excitation frequencies were performed to
better understand the transmission properties of the ring. In this context, the regions A, J,
and B were defined and are illustrated in the topography image in Fig. 10.7(a). Averaging the
amplitude R over the rectangular regions then provides a measure for the experimental spin
wave amplitude before, at, and after the ring junction. The results for different frequencies
are presented in Figs. 10.7(b)-(d). The small red dots represent the extrapolated values at
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the center of regions A, J, and B obtained from the exponential fit in the stripe section before
the ring (cf. Figs. 10.6(b)-(e)).
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Figure 10.7. Spin wave amplitude signal across the device as a function of frequency. (a)
Topographic image introducing square areas A, J, and B before, at, and after the junction.
(b)-(d) Amplitudes averaged across squares A, J, and B as a function of frequency. Error
bars indicate the standard deviation of the averaged mean. Small red dots and dashed red
lines indicate values at the center position of A, J, and B if an exponential decay is assumed
in the stripe region before the ring (cf. red lines in Fig. 10.6).

The spin wave amplitude varies with excitation frequency across different regions of the
device. In region A (Fig. 10.7(b)), the amplitude is low for excitation frequencies below
f ≈ 3.5 GHz. As the frequency increases, the amplitude gradually rises. At f = 3.88 GHz, a
sharp dip occurs, followed by a strong increase in amplitude to its maximum at f = 3.92 GHz.
Beyond this frequency, the amplitude rapidly decreases. The experimental amplitude closely
matches the extrapolated values from the exponential fit.

In region J (Fig. 10.7(c)), the amplitude tends to increase with increasing frequency, ex-
hibiting a sharp dip near f = 3.88 GHz and reaching its maximum at f = 3.92 GHz. The
relatively large error bars in this region suggest complicated interference patterns at the
junction. The extrapolated exponential fit shows generally good agreement with the exper-
imental data, though it tends to slightly overestimate the experimental values, particularly
at f = 3.92 GHz.

Region B (Fig. 10.7(d)) exhibits a different behavior compared to regions A and J. After
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10.1. Backward-Volume Geometry

the ring, there is little to no amplitude detected for frequencies below f = 3.92 GHz. At
f = 3.92 GHz, a sharp transmission peak is observed, rapidly falling off afterward, exhibiting
some amplitude at f = 3.94 GHz, but no amplitude beyond. Additionally, the extrapolated
amplitudes from the exponential fit predict a sizable amplitude between f = 3.6 GHz and
f = 3.84 GHz. However, this prediction contrasts with the experimental data, which show
no amplitude in this frequency range.
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Figure 10.8. Transmission parameter
RB/RA from region A to region B as a
function of frequency. In the band from
f = 3.6 GHz to f = 3.84 GHz transmis-
sion is suppressed. Strong frequency se-
lective transmission is observed for f =
3.92 GHz. Experimental values with error
bars exceeding 0.35 were set to zero, and
no error bar is shown for better visualiza-
tion.

The frequency-dependent transmission across the ring guide is further illustrated in
Fig. 10.8, where a transmission parameter is defined as the ratio RB/RA. Note that when
RB/RA is very small, essentially indicating no transmission, the associated error bars tend
to become disproportionately large. Therefore, for better visualization, data points with
error bars exceeding 0.35 were set to zero, and no error bars are displayed for those points
in Fig. 10.8. In the frequency band from f = 3.6 GHz to f = 3.84 GHz, transmission is
suppressed despite the exponential decay predicting transmission. A sharp transmission
peak is observed at f = 3.92 GHz.

In conclusion, these observations indicate that the transmission efficiency of spin waves
through the ring depends on the excitation frequency. A sharp transmission peak occurs
around f = 3.92 GHz, while other frequency bands show significant attenuation beyond the
ring, demonstrating the system’s frequency selectivity. This transmission suppression likely
results from interference and scattering involving multiple spin wave modes, similar to the
simulations of Odintsov et al. [50], rather than a purely accumulated phase along the ring.
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10.2. Damon-Eshbach Geometry

Analogous measurements were conducted in the DE-geometry, i.e., with the YIG stripe trans-
versely magnetized. Compared to the BV case, the spin wave modes within the ring may
interact differently with the DE-like initial mode in the stripe, potentially resulting in differ-
ent frequency selectivity of the transmission. Exemplary maps acquired using SNS-MOKE
are depicted in Figs. 10.9(a)-(d).
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Figure 10.9. Maps in the DE-geometry at different frequencies. (a)-(d) propagation within
the stripe is observed where the wavelength decreases with increasing external magnetic field.
Caustic-like features are visible in the stripe section after the ring in (a) and (b).

In each map, a detectable amplitude signal is present within the stripe section. The phase
maps show that plane spin waves are launched into the stripe from the microstrip antenna
at each excitation frequency. Following the DE dispersion relation, the wavelength decreases
with increasing frequency. In Figs. 10.9(a) and (b), a notable amplitude is observed within
the initial stripe section and the ring section. Beyond the ring section, a sharp decrease in
amplitude is detected in the stripe region, though caustic-like beam features, reflecting back
and forth, are still visible. In the phase maps, as the plane waves advance closer to the ring
section, their wavelength appears to increase. Within the ring section, complex wavefront
patterns emerge, similar to those observed in the BV case. In Fig. 10.9(c), the amplitude sig-
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10.2. Damon-Eshbach Geometry

nal abruptly ceases early along the stripe, while in Fig.10.9(d), the signal abruptly decreases
after reaching the ring section. Beam-like features beyond the ring section are also observed
in Fig. 10.9(d).

10.2.1. Effective Magnetic Field Distribution and PSSW Hybridization

Fig 10.10 shows micromagnetic simulations of the effective magnetic field [66] for the trans-
versely magnetized geometry2 under an external magnetic field of µ0H = 74 mT. In contrast
to the longitudinally magnetized case (Fig. 10.3), the stripe section exhibits a pronounced re-
duction of the effective magnetic field. As the stripe transitions into the ring section, the effec-
tive magnetic field gradually increases, as indicated by the iso-field line for µ0Hx,eff = 70.6 mT.
This increase leads to a shift in the dispersion relation, resulting in the observed change in
propagation wavelength along the stripe, with the spin waves adopting larger wavelengths.
Within the ring, the effective magnetic field, and consequently the dispersion relation, also
varies significantly.
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µ0Hx ,eff (mT) Figure 10.10. Micromagnetic sim-

ulations of the x-component of the
effective magnetic field, µ0Hx,eff, for
a transversely magnetized waveguide
under an external magnetic field of
µ0H = 74 mT. The black contour
lines correspond to effective magnetic
fields of µ0Hx,eff = 70.6 mT and
µ0Hx,eff = 73.1 mT. The green arrow
indicates the direction of the applied
external magnetic field

Additionally, the DE modes can exhibit mode hybridization with the first PSSW, unlike
the BV modes. Fig 10.11 shows the simulated full film stop band conditions for DE modes
within the relevant experimental range. The stop band spans a broad excitation frequency
range of f ≈ 4.0 GHz to f ≈ 4.25 GHz for external magnetic fields between µ0H = 68 mT
and µ0H = 74 mT. In the BV measurements, these frequencies are mostly not even reached.

Local hybridization-induced attenuation effects like those discussed in Section 8.3 can oc-
cur. In Fig. 10.9(c), the amplitude signal ceases soon after the antenna. At an excitation
frequency of f = 4.08 GHz (lower dotted line in Fig 10.11), the stop band spans from approx-
imately µ0H = 68 mT to µ0H = 70.6 mT, which is consistent with the simulated effective
magnetic field in the stripe, which is expected to be approximately µ0Hx,eff = 71 mT or
lower. Consequently, the strong hybridization-induced damping prevents the spin wave from
reaching the ring.

In Fig. 10.9(d), the DE mode propagates along the stripe and comes to a halt at the left
side of the ring. The lower magnetic field limit of the stop band at an excitation frequency

2The simulation used a grid of 600× 1920× 4 and a cell dimension of 50 nm in all 3 dimensions.
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Figure 10.11. Hybridization-
induced stop band for DE
modes. The dotted lines illus-
trate the respective field lim-
its of the stop band at f =
4.08 GHz (cf. Fig. 10.9(c)) and
f = 4.24 GHz (cf. Fig. 10.9(d)).

of f = 4.24 GHz (upper dotted line in Fig 10.11) is simulated to be approximately µ0H =
73.1 mT. The corresponding iso-field line of the effective magnetic field in Fig 10.10 (black
line) aligns very well with the spin wave’s stop position. Note, however, since other spin
wave modes have already been scattered within the transition area and since the stop field is
not fully reached in the stripe section, some spin waves are not completely damped and may
reach the junction section and the region beyond the ring (cf. Fig. 10.9(d)).

Thus, in the DE geometry, transmission across the ring is already hampered by
hybridization-induced damping effects rather than mode interaction and scattering within
the ring. As shown in Fig 10.11, this happens over a broad range of frequencies, making
the DE geometry less suitable for broadband transmission in the first place, particularly for
200 nm thick YIG films.

10.2.2. Transmission Properties

As previously noted, in Figs. 10.9(a) and (b), a strong amplitude signal is detected in the
initial stripe section and within the ring. However, beyond the ring, the spin wave signal drops
off abruptly, with beam-like features dominating the profile. This suggests that transmission
in this regime is primarily governed by the frequency-dependent directionality of caustic-like
beams. Transmission may occur if these beams couple into the resonator at the proper angle,
enabling them to escape into the stripe region after multiple reflections. However, because
these caustic-like beams are spatially more confined, their transmission effects are relatively
weak compared to those in the BV geometry (see Fig. 10.1(c)).

Further SNS-MOKE data were acquired at different excitation frequencies to evaluate the
transmission properties, analogous to Section 10.1.3. Figs.10.12(a)-(c) present the resulting
amplitude signals averaged across sections A, J, and B in the DE geometry (cf. Fig. 10.7).

The amplitudes vary with the excitation frequency. In region A, there is a small peak at
f = 3.44 GHz. The maximum is reached at f = 3.68 GHz. This excitation frequency lies close
to the expected FMR frequency when considering the reduction in the effective magnetic field
within the center of the stripe section. The spin wave modes at higher frequencies than the

106



10.2. Damon-Eshbach Geometry

3.4 3.7 4.0 4.3

f (GHz)

0.00

0.02

0.04

0.06

0.08

R
(a

rb
.

u
.)

(a)

A

3.4 3.7 4.0 4.3

f (GHz)

(b)

J

3.4 3.7 4.0 4.3

f (GHz)

(c)

B exp. decay

Figure 10.12. Spin wave amplitude averaged across regions (a) A, (b) J, and (c) B as a
function of excitation frequency in the DE geometry. The dip in amplitude at 4.08 GHz is
attributed to hybridization-induced attenuation.

FMR frequency correspond to DE modes in the stripe region. As the excitation frequency
increases, the amplitude in region A decreases, with a pronounced dip at f = 4.08 GHz.
The amplitude then rises, with a local peak at f = 4.24 GHz, followed by a decrease. The
interpolated amplitudes from an exponential fit in the stripe region (cf. Fig. 10.6) show good
agreement overall. However, it should be noted that this approach is less straightforward in
DE geometry. The pronounced variations in the internal effective magnetic field, particularly
as one approaches the ring, lead to local fluctuations in group velocity and, consequently,
attenuation length (cf. Eq. (1.23)).

The amplitude dip at f ≈ 4.08 GHz in Fig. 10.12(a) can be directly attributed to the stop
band where the increased damping prevents the DE mode from efficiently reaching region A
(cf. Fig. 10.9(c)). Similar arguments can be made for the excitation frequency range from
f = 4 GHz to f = 4.24 GHz for regions J and B, where hybridization with the first PSSW
significantly influences the spin wave propagation, as discussed earlier.

In region J, the amplitude increases and reaches a maximum at f = 3.92 GHz. There is a
dip at f = 4.08 GHz, followed by a small local peak at f = 4.24 GHz. Notably, the expected
amplitude based on an exponential decay model deviates significantly at f = 4.24,GHz.

In region B, a small peak is observed at f = 3.44 GHz, with a maximum at f = 3.68 GHz,
both aligning with the exponential decay model. Beyond this, the amplitude signal is almost
non-existent, with a stark discrepancy between the measured amplitude and the expected
exponential decay. DE modes typically have longer attenuation lengths than BV modes
due to their higher group velocities (cf. Eq. (1.23)). Therefore, the strong decay observed
is contrary to expectation. Between f = 4 GHz and f = 4.24 GHz, hybridization-induced
damping is evident, but the range from f = 3.72 GHz to f = 4 GHz cannot be explained by
hybridization or exponential decay.
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Fig. 10.13 shows FT data calculated from the cyan-colored contour in Figs. 10.9(a) and
(b) at excitation frequencies of f = 3.84,GHz and f = 3.92,GHz, respectively. Similar to
the BV geometry, multiple spin wave modes appear in the ring, governed by the anisotropic
dispersion relation and the inhomogeneous internal magnetic field distribution. The spin
wave modes exhibit a discretized behavior and show reasonable agreement with the ring’s
eigenmodes. This suggests that transmission suppression in this frequency range is caused
by scattering and interference at the ring section, similar to the BV case.
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Figure 10.13. FT data extracted from ring section compared to ring eigenmodes. The FT
data was calculated within the dashed cyan-colored contour in Figs. 10.9(a) and (b). Red
dashed circles illustrate the ring eigenmodes across the width. For better contrast, the FT
data is displayed on a logarithmic scale.

Fig. 10.14 presents the transmission parameter RB/RA, which reflects the behavior dis-
cussed above. Transmission is suppressed in the frequency range from f = 3.72 GHz to
f = 4 GHz due to mode scattering and interference, while the band from f = 4 GHz to
f = 4.24 GHz is affected by hybridization.

To conclude, spin wave propagation in the DE geometry is less frequency-selective and
generally stronger attenuated across the structure compared to the BV case, with caustic
spin wave beams partially playing a role in mediating the transmission across the ring.
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Figure 10.14. Transmission
parameter RB/RA in the DE
geometry. Experimental values
with error bars exceeding 0.35
were set to zero, and no error bar
is shown for better visualization.
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Summary

This thesis investigated spin wave propagation in 200 nm thick yttrium iron garnet (YIG)
films, which provide a great magnonic playground due to their low magnetic damping. The
primary experimental focus was on the investigation of spin wave caustics, the hybridization of
propagating spin wave modes with perpendicular standing spin waves (PSSWs) in trapezoidal
waveguides, and spin wave propagation in ring-shaped waveguides.

The first set of experiments studied the properties of caustic spin wave beams (CSWBs),
which emerge due to anisotropies in the spin wave dispersion relation. These anisotropies can
give rise to stationary group velocity directions at certain points on the iso-frequency curve.
A Python-based toolkit was developed to systematically analyze beam properties such as
beam direction, wavenumber, and wavefront angle as a function of frequency and magnetic
field. Using time-resolved Kerr microscopy (TR-MOKE), the theoretical predictions were
tested in the low-frequency pocket, a region in frequency and magnetic field space where the
predicted caustic points exhibit relatively low wavenumbers. Half-ring microstrip antennas
and YIG antidots were used to excite a wide angular portion of the iso-frequency curve,
providing access to the caustic points. The observed spin wave beam properties showed
good agreement with theoretical predictions, suggesting that they were indeed CSWBs, and
demonstrating the ability to tailor spin wave beams.

In addition, the reflection of CSWBs at the edges of a magnonic waveguide was investigated
as a function of the external magnetic field and its angle. The reflection experiments showed
that the reflection efficiency varied with the external magnetic field, and the spin wave beams
could be steered by adjusting angle of the external magnetic field. Moreover, the reflections
did not follow Snell’s law for spin waves. In particular, the incoming angle was not equal
to the outgoing angle with respect to the reflection interface, as the position of the caustic
points on the iso-frequency curve determined the reflection behavior.

In the second set of experiments, the hybridization of Damon-Eshbach-like spin wave modes
with perpendicular standing spin waves (PSSWs) in trapezoidal magnonic waveguides was
investigated. This hybridization, marked by an anticrossing in the spin wave dispersion re-
lation, leads to significant attenuation of spin wave propagation. Micromagnetic simulations
revealed that the effective magnetic field gradually decreases along the center of the waveguide
due to geometry-induced demagnetizing effects. TR-MOKE experiments demonstrated that
the combination of mode hybridization and the geometry-induced inhomogeneous magnetic
field distribution allows for continuous control over the spin wave propagation distance by
adjusting the external magnetic field. The hybridization regime is accessed locally at different
points along the waveguide. Altering the waveguide geometry further influenced the sensitiv-
ity of this effect. Building on these results, all-electrical vector network analyzer (VNA) spin
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Summary

wave spectroscopy further demonstrated the ability to control electrical transmission between
microstrip antennas positioned along the trapezoid waveguide.

The third set of experiments investigated spin wave propagation in a ring-shaped magnonic
waveguide connected to a stripe section, focusing on frequency-dependent transmission.
Super-Nyquist sampling MOKE (SNS-MOKE) was used to study spin wave behavior in both
Backward-Volume (BV) and Damon-Eshbach (DE) configurations. In the stripe section,
mostly one spin wave mode was present, while in the ring section, multiple modes emerged
and were quantized due to the finite width of the waveguide. Demagnetizing effects near
and within the ring section further impacted spin wave propagation. Frequency-dependent
transmission across the ring structure was found, with a particular sharp frequency selectivity
in the BV configuration. A simple exponential decay of spin wave amplitude could not
explain transmission suppression at various frequencies. Instead, the transmission properties
were likely influenced by complex interference and scattering of spin wave modes within the
ring section. Additionally, in the DE configuration, transmission was further suppressed
over a specific frequency range due to hybridization effects with PSSWs.

The findings from these experiments provide valuable insights into spin wave manipu-
lation. Caustic beams, with their high amplitude and tunability, show great promise for
focused energy transfer. Control over hybridization effects enables localized tuning of spin
wave attenuation and propagation distance, which is particularly useful for magnonic logic
gates. Furthermore, the behavior of spin waves in ring structures demonstrates their poten-
tial for frequency-selective filtering. Overall, this thesis lays a solid foundation for advancing
magnonic applications and demonstrates the versatility of spin wave manipulation through
beam shaping, hybridization control, and frequency filtering.
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A. Extraction of Beam Parameters

A.1. Explanation and Example

The following shows a detailed guide on how the beam parameters were extracted in the
simulations and experiments in part II.

The values of θv,e, ke, and φe in the experiments are determined through image processing
and fitting analysis. All the errors are calculated via a bootstrapping procedure. This involves
normally distributed random data generated from the standard deviation of the residual of
an initial fit, subsequently adding this random data to the original data, and then repeating
the fit and parameter calculation 100 times. Twice the standard deviation of the resulting
parameters is used as the error bar for the fit parameters.

An exemplary analysis is conducted for experimentally obtained beams (cf. Section 6.1)
under f = 1.44 GHz and µ0H = 5 mT, excited by the half-ring antenna (see Fig. A.1(a)).
First, the beam direction is evaluated. To this end, distinct edges are identified in the
Kerr image using a so-called Canny edge detection algorithm [191] with suitable hysteresis
thresholding. Essentially, this results in a set of lines representing the beam wavefronts. The
two beam branches are fitted separately with a linear model as illustrated in Fig. A.1(b),
yielding a beam direction of (119.0 ± 1.2)◦ for beam I and (115.7 ± 1.4)◦ for beam II. Note
that all angular values are projected to the first quadrant of the iso-frequency curve.
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Figure A.1. Image pro-
cessing and fitting to ex-
tract beam direction. A
Canny Edge detection algo-
rithm is applied on the Kerr
image in (a), and the result-
ing edge points are fitted in
(b).

Next, the wavefront angle and wavenumber are specified. Each beam is subjected to a
mask centered around the previously found straight-line fits. Note that the sharpness of the
mask is determined by eye to best isolate the beams. The contours of the masks are sketched
in the Kerr image in Fig. A.2. Each isolated beam is then rotated to align with the x-axis.
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A. Extraction of Beam Parameters

This data is subsequently fitted individually with a 2D plane wave model of the form:

f(x, y) = A · sin (kx · cos (φfit) + ky · sin (φfit) + δ) · e
− x

Latt
·cos (φfit)− y

Latt
·sin (φfit). (A.1)

In this model, x and y are the coordinates, A represents the amplitude, k is the wavenum-
ber, φfit is the wavefront angle of the rotated data, δ is the phase, and Latt represents the
attenuation length.

A set of data and fits is displayed in Fig. A.2. The wavefront angles are obtained by
projecting the fit angle φfit back to the beam direction. Thus for the given example, the fitting
procedure yields kI = (1.04±0.07)µm−1, and φI = (52.4±1.9)◦, and kII = (1.07±0.09)µm−1,
and φII = (48.9 ± 2.1)◦. Regarding the apparent wavenumber, kapp was extracted from a
sinusoidal one-dimensional fit of each line of the rotated beams, resulting in kI,app = (0.41 ±
0.01)◦ and kII,app = (0.43 ± 0.04)◦.
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Figure A.2. Extraction of wavenumber and wavefront angle. Each beam, I and II, is isolated
and fitted separately.

In Sections 4.5 and 6.1, two beams are always analyzed, yielding two sets of error bars and
means for θv,e, ke, and φe for any experimental value. As in those sections, the focus is on the
general caustic properties, the means of the two beams are combined to yield θv,e = (117.4±
2.1)◦, ke = (1.06±0.08)µm−1, φe = (50.7±2.6)◦, and ke,app = (0.42±0.03)µm−1. Thus, the
error bars eventually shown in these two sections not only measure the fit quality but also
consider the deviation in experimental parameters between the two caustic branches. In the
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A.2. Test of Procedure

reflection experiments discussed in Section 6.4, the beam parameters are shown individually
unless stated otherwise.

Note that in the Kerr images from the experiments using antidots as scatter sources,
difficulties were encountered in identifying the beam direction due to the strong plane wave
background. To resolve this, an additional FT filter was applied: specific portions of the data
were set to 0 zero in reciprocal space, and the images were transformed back to real space,
eliminating the plane waves. An example of unfiltered and filtered Kerr images is provided
in Fig. A.3. Subsequently, the extraction procedure was conducted on twin beams, which
were emitted from the 5µm antidot (antidot in the middle) and oriented in different forward
directions.
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Figure A.3. (a) Kerr map
for antidot geometry under
f = 1.44 GHz, µ0H =
5 mT. (b) FT filtered image.

Similarly, in Section 6.4, solely applying the Canny edge detection and fitting the beam
direction with a straight line proved challenging. The presence of edges and the intersections
of beams at these edges introduced additional points that did not correspond to the actual
beam. This issue was addressed by using an initial linear estimate for each beam and only
including points within a specified distance from this estimate in the linear fit model. This
approach ensured a more accurate identification of the isolated beams.

A.2. Test of Procedure

Further considerations were made to naively assess the accuracy of the presented procedure
and better understand the error bars. A 2D beam array with predefined properties of θv =
115.05◦, k = 1.11µm−1, φ = 51.29◦ and a sharpness of 2.5µm was generated computationally.
Gaussian-distributed random noise was added to this array, followed by the 2D wave fitting
procedure. This procedure was repeated for different noise levels. The noise level was defined
as the ratio between the standard deviation of the added Gaussian distribution and the plane
wave amplitude.

The results in Figs. A.4(a)-(b) show that the mean fit parameters accurately reproduce the
initial k and φ values, although the error bars increase with increasing noise level. The green
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A. Extraction of Beam Parameters

line in Fig. A.4(c) further illustrates the trend of the error bars for φ.
These findings were compared to the noise levels of the experimental data. Here, only spin

wave beam II is considered; hence, the deviation in fit parameters between the two beams is
neglected. The resulting data points (red triangles) represent the error bars at the respective
noise level of the experimental data. Mostly, the experimental error bars are in reasonable
agreement with the simulated ones. Analogous analysis was carried out on the effect of beam
sharpness and beam direction on the accuracy of the fitting procedure. The values of k and
φ were reasonably restored, and only a significant effect on the error bars was found.
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Figure A.4. Test of fitting procedure. (a) Fitted wavenumbers and (b) wavefront angles at
different noise levels. (c) Behavior of the error bars with increasing noise level. The simulated
error bar size (blue curve) increases with the noise level. Red triangles show experimental
error bars for respective external magnetic field values.
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B. Extraction of External Magnetic Field
Angle from FT Data

Instead of extracting the external magnetic field angle from the deviation in the caustic
beam direction, in Section 6.4 a different approach was applied. An offset of the external
magnetic field direction effectively corresponds to a rotation of the iso-frequency curve in the
experimental frame of reference. Thus, the external magnetic field angle should possibly be
extracted from the FT data.

For this purpose, a function Ω(kx, α; f,H) was defined, which takes a kx as an input and
aims to find the corresponding ky at the given rotation α on the slowness at the given fre-
quency f and given applied field H. To be more specific, Ω(kx, α; f,H) first fully reconstructs
the iso-frequency curve over the entire angular range for the given frequency and magnetic
field as described in Ref. [26]. The algorithm effectively yields arrays of kx,rec and ky,rec which
correspond to the iso-frequency curve. This set of wavenumbers is then rotated by the angle
α using the transformation:(

kx,rot

ky,rot

)
=

(
cos(α) − sin(α)

sin(α) cos(α)

)(
kx,rec

ky,rec

)
. (B.1)

From the rotated kx,rot the value closest to the input kx is extracted and the corresponding
ky is returned by the function Ω(kx, α; f,H). This procedure allows for the extraction of the
corresponding ky for each input kx at an arbitrary field angle.

To extract the external magnetic field angle from the FT data, a local peak detection is first
applied to the FT image, yielding the coordinates of the experimental iso-frequency curve.
The experimental iso-frequency curve then undergoes a fitting procedure with the function
Ω(kx, α; f,H) to determine the external magnetic field angle αH . The standard deviation
of the fit serves as the error bars, providing a measure of the fit’s accuracy. Note that
for the fitting procedure, only the portions of the FT data and Ω(kx, α; f,H) with ky > 0
were considered to avoid ambiguities. An example of a fitting procedure is illustrated in
Figs. B.1(a)-(c).
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B. Extraction of External Magnetic Field Angle from FT Data
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Figure B.1. Extraction of the external magnetic field angle from the FT data. (a) FT
data obtained from the Kerr map. (b) Orange points correspond to the points extracted
from FT data using local peak detection, while the blue curve represents the iso-frequency
curve obtained from the fitting procedure using the function Ω(kx, α; f,H). An angle αH =
(26.6 ± 1.1)◦ was determined in this example. (c) FT data overlaid with the fitted iso-
frequency curve.
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C. Analysis of the Phase Shift in Caustic Spin
Wave Beam Reflection Experiments

In the following, an attempt is made to analyze the phase shift of CSWBs upon reflection
at the magnonic waveguide edges, as discussed in Section 6.4.1. However, this analysis is
complicated by several experimental uncertainties, as detailed at the end of Section 6.4.1.

Neglecting the attenuation length, an incoming caustic spin wave beam may be described
by a 2D plane wave of the form:

Ψc,in = Ac,in · sin (kc,inx · cos (φc,in) + kc,iny · sin (φc,in) + δc,in), (C.1)

and an outgoing caustic spin wave beam by:

Ψc,out = Ac,out · sin (kc,outx · cos (−φc,out) + kc,outy · sin (−φc,out) + δc,out)). (C.2)

Here, Ac,in and Ac,out denote the wave amplitudes, and δc,in and δc,out represent arbitrary
phases. The subscript ”c” refers to the parameters of the carrier wave of the beam. The
negative sign in front of φc,out indicates that, upon reflection at the edge, the ky component
changes sign.

From Eqs. (C.1) and (C.2), the phase difference upon reflection at a specific point (x0, y0)
in space can be calculated as:

∆ϕc =
∣∣ [kc,in cos (φc,in) − kc,out cos (φc,out)] · x0

+ [kc,in sin (φc,in) + kc,out sin (φc,out)] · y0
+ δc,in − δc,out

∣∣. (C.3)

Instead of considering the 2D plane wave model, the phase shift can also be interpreted
in terms of the apparent wavelength (cf. Section 4.2) along the beam direction s. Here, the
incoming and outgoing waves are modeled by:

Ψapp,in = Aapp,in · sin(kapp,ins + δapp,in), (C.4)

Ψapp,out = Aapp,out · sin(kapp,outs + δapp,out), (C.5)

where the subscript ”app” denotes the apparent beam parameters, namely wavenumber and
arbitrary phase. The resulting phase shift is then expressed as:

∆ϕapp = (kapp,in − kapp,out)s + δapp,in − δapp,out. (C.6)

Given that the carrier wave and the apparent wave of the beam are expected to exhibit the
same magnitude at a particular edge point, the condition ∆ϕc = ∆ϕapp should hold at the
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C. Analysis of the Phase Shift in Caustic Spin Wave Beam Reflection Experiments

edge, indicating that both approaches are theoretically equivalent and should yield consistent
results.

With the theoretical framework established, we can now turn our attention to the analysis
of the experimental data. Fig C.1(a) presents the experimentally acquired CSWB reflection
at the upper edge of the magnonic waveguide under an external magnetic field of µ0H = 5 mT
(cf. 6.12(e)). The dashed cyan and red contours indicate the extracted beams. The edge of the
waveguide, identified using a Laplacian of Gaussian (LoG) filter applied to the topographic
map, is marked by a dashed orange line. A detailed explanation of the LoG edge detection
procedure can be found in Appendix D. The bold orange segment in the figure highlights the
coordinates where the beams reflect, determined by the overlap of the incoming and outgoing
beam contours.
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Figure C.1. Phase shift upon reflection at µ0H = 5 mT. (a) Kerr map illustrating beams II
(dashed cyan contour) and RI (dashed red contour). The orange dashed line represents the
position of the edge as extracted from the topography. The bold orange segment highlights
the coordinates of the reflection site, which are considered in the analysis. (b) Profiles and
apparent wavelength fits along the cyan and red lines in (a), with s representing the direction
along the beams. The position at 0µm corresponds to the reflection edge point. A phase
shift between the incoming and reflected apparent wave is observed.

Figure C.1(b) illustrates the phase shift between the incoming beam II and the reflected
beam RI by displaying their line profiles (dotted lines) and corresponding apparent wavenum-
ber fits (solid lines) along the cyan and red lines, respectively, as indicated in Figure C.1(a).
The fits were applied to portions of the beams away from the edge where the beams inter-
sect. The fit data clearly shows a phase shift between the apparent waves of II and RI at the
reflection edge (s = 0µm).

The phase shift in terms of ∆ϕapp can be calculated for each point across the line where the
beams reflect, yielding an average phase shift. Fig C.2(a) presents the averaged phase shift
for CSWBs under various external magnetic field strengths with the phase shift represented
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within the interval −π to π. Additionally, the phase shift ∆ϕc, derived from the carrier wave
parameters1, is shown in Fig C.2(b). Both approaches yield comparable results, with most
data points falling within the error bars.
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Figure C.2. (a) Phase difference extracted from apparent wavenumber fit. (b) Phase
difference extracted from 2D plane wave fits of the beams. Error bars include uncertainty in
edge position and fit parameters.

The phase shift observed upon reflection of the CSWBs varies with the external magnetic
field, although no definitive trend is apparent. The phase shift ranges from close to 0 to close
π, with π corresponding to fully pinned boundary states and 0 indicating totally unpinned
boundary conditions at the reflection edge [56]. This could imply that the boundaries at
the reflection interface exhibit mixed or partially pinned conditions, potentially due to the
imperfect YIG boundary (cf. AFM images in Section 8.5). Additionally, the phase shifts
at the lower edge of the waveguide generally fall within the error bars of those observed at
the upper edge, indicating similar pinning conditions at both edges. However, as previously
noted, the observed phase shift could also just be an artifact of the experimental limitations,
such as the finite Wwdth of the CSWBs, misalignments of the reflection edge, and multiple
wavenumbers contributing to the beam.

1Note that here, Latt was considered in the fitting parameters as opposed to the apparent wavelength approach
where it is cumbersome to assign an attenuation length.
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D. Edge Detection from a Topographic Image

Fig. D.1(a) shows a typical topographic image from Section 6.4, where a magnonic waveguide
is located on the left of the half-ring antenna. Fig. D.1(b) shows a line profile across the dotted
orange line in Fig. D.1(a). To determine the edges of the waveguide, the edge positions were
identified seperately with a Laplacian of Gaussian (LoG) edge detection method [192, 193].
The LoG filter process involves first applying a Gaussian filter to smooth the data, followed
by the application of the Laplace operator. A more detailed description of edge detection
processes can be found in Ref. [193].
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Figure D.1. (a) Optically acquired topographic map of typical sample. (b) Line profile
across the dotted orange line in (a).

In Fig. D.1(b), at the edges, a transition from low to high amplitude or vice versa is
observed. However, a distinct minimum is observed at each edge. As the AFM data in a
similar system in Section 8.5 shows no such sharp features, the minimum presumably stems
from diffraction and scattering processes at the edges.

Fig. D.2(a) shows the first edge from the line profile in Fig. D.1(b). Fig. D.2(b) displays
data obtained by applying the LoG filter to the profile in Fig. D.2(a). The physical edge
of the system is assumed to lie at the midpoint of the transition from the minimum to the
maximum, corresponding to the point of maximal slope. By applying the LoG filter to the
line profile, which essentially results in the second derivative of the line profile, the edges
should be located at the zero-crossing of the LoG-processed data.

However, due to the limited pixel size of the recorded topographic images (typically with
a step size of 0.5µm), the zero-crossing is determined by further fitting of the LoG-processed
data with a Ricker wavelet function, or ”Mexican hat” wavelet function, given by [193]:

fRicker(x) = A

(
1 − (x− x0)

2

2σ2

)
e−

(x−x0)
2

2σ2 , (D.1)
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D. Edge Detection from a Topographic Image
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Figure D.2. Edge detection with Lapla-
cian of Gaussian (LoG) filter. (a) Pro-
file of the first edge from Fig. D.1(b). (b)
Data obtained by applying the LoG filter
to the edge profile. (c) Fit of the LoG-
processed data with the Ricker wavelet
function. The green dashed line repre-
sents the zero-crossing of the fitted LoG-
filtered data, corresponding to the edge in
the topographic line profile.

where A describes the amplitude, x0 is the center position of the wavelet, and σ is the
standard deviation that determines the width of the wavelet.

The corresponding Ricker fit is shown in Fig. D.2(c). From this fit, the zero-crossing
corresponding to the edge in the topographic image is extracted. The green vertical line in
Figs. D.2(a)-(c) illustrates the extracted edge position, which in this example is determined
to be 4.47±0.01µm. In an analogous approach, the position of the upper edge is determined.

The edge detection process can be repeated for each line profile across the waveguide width.
The distance between the two detected edges then gives the nominal waveguide width, which
in this case is found to be wwg = (39.18 ± 0.10),µm.
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