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Abstract – Sixth-generation networks propose integrating multiple networks while ensuring seamless network per-
formance. Hence, networks are becoming increasingly complex while the traditional methods to manage networks are
facing significant challenges as the topology sizes, traffic patterns, and network domains are changing. Autonomous
network management solutions, which are often built on digital twins, are emerging as possible candidates for addressing
these challenges.

Machine learning models are widely used for realizing digital twins. Among many neural network structures, graph
neural networks are a subclass of promising machine learning methods that perform well in graph-structured data such
as network topologies. In this paper, we explore GNN performance on real network data and present our solution
to per-flow mean delay prediction which achieves a MAPE of 35.39%, improving the baseline solutions by over 20%
together with additional findings and further improved models for Graph Neural Networking Challenge 2023.
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1. INTRODUCTION
Networks serve as the backbone of our interconnected
world, ranging from social networks and transportation
systems to communication infrastructures and the In-
ternet itself. Understanding and autonomously manag-
ing these networks is crucial for optimizing performance,
ensuring robustness, and proactively addressing poten-
tial challenges. The traditional approaches to network
management often face problems while capturing the re-
lationships and dynamic behaviors inherent in emerging
novel forms of networks (e.g. body area networks, vehic-
ular networks, and satellite networks). The increasing
number of nodes, distinct network characteristics, and
topologies render the existing network management so-
lutions unsuitable for ensuring network guarantees in
real time.

To address this challenge, the current trend in the liter-
ature is shifting the focus from manual configurations
to self-driving and autonomously-managed networks.
State-of-the-art Machine Learning (ML) methods power
autonomous network management paradigms. An ex-
ample of the emerging ML methods widely considered is
Graph Neural Networks (GNNs), a subclass of ML mod-
els tailored for tasks involving graph-structured data.
GNNs perform well in learning representations of nodes
and edges within a graph, making them well-suited for
modeling real-world networks [1]. However, while GNNs
have demonstrated promising capabilities when trained
on synthetic data, this approach has inherent limita-
tions. Network simulators and synthetic datasets, while
useful for initial model training and evaluation, do not

fully capture the complexities and unpredictabilities of
real-world network environments. Simulated data often
lacks the intricate details of real network traffic, such
as unexpected congestion patterns, hardware-induced
latencies, and environmental variables that can signif-
icantly impact network performance [2]. Our paper
investigates the possibility of creating a network digi-
tal twin that is based on real-world data by leveraging
GNNs. By using actual network statistics, traffic pat-
terns, and performance metrics, our approach aims to
bridge the gap between theoretical models and the un-
predictable nature of real networks.

Specifically, this article explores the creation of a net-
work digital twin with a specific emphasis on leveraging
GNNs to model and evaluate real network data. The re-
mainder of this paper is structured as follows: Section 2
provides an overview of the background. Section 3 de-
scribes the state of the research in the literature. Sec-
tion 4 discusses our approach and Section 5 presents the
findings. We finally conclude and present the digital ar-
tifacts in Section 6.

2. BACKGROUND
This section provides an overview of the challenge and
basic information on GNNs.

2.1 Challenge description
This work is developed in the context of the Graph Neu-
ral Networking Challenge 2023 Creating a Network Dig-
ital Twin with Real Network Data [3, 4]. The goal of this



challenge is to create a real network digital twin based
on a GNN model that can accurately estimate flow level
delay. In recent years, modern GNN architectures en-
abled building lightweight and accurate network digi-
tal twins that can operate faster than real time, hence
enabling what-if analysis. However, since these mod-
els were mainly based on synthetic data, existing ML-
based network digital twins were mainly developed and
trained using simulation data. The synthetic nature of
training datasets puts a strong limitation against our
understanding of the real network characteristics that
lay behind real datasets. Hence, this challenge aims to
explore the possibility of building a network digital twin
based on real network data.

2.2 Requirements and restrictions
This challenge involves two datasets generated from a
real network testbed, featuring various topologies, rout-
ing configurations, and traffic flows. The first dataset
uses Constant-Bit Rate (CBR) traffic, while the second
employs Multi-Burst Rate (MBR). The testbed emu-
lates realistic network conditions, capturing the nuances
of real traffic behavior and network interactions. Each
dataset consists of samples labeled with average per-flow
performance measurements. The objective is to predict
the mean per-flow delay.

A test dataset, with similar distributions but lacking
delay information, is also provided for ranking solutions
based on the Mean Absolute Percentage Error (MAPE)
score. The test dataset excludes flow performance mea-
surements such as delay, jitter, and loss, prohibiting
their use as input for proposed solutions. RouteNet-
Fermi [5], a GNN architecture, serves as a baseline for
the challenge with an open-source implementation [6].

2.3 Digital twins
In the era of rapid technological advancements, the
concept of a digital twin is emerging as a powerful
paradigm that promises to provide a virtual representa-
tion of physical entities. While digital twins have found
widespread application across various domains, in re-
cent years, their integration into the networking domain
is gaining increased attention due to modern networks’
complex interdependencies and dynamic nature.

Digital twins represent the mapping of a physical world
into a digital space, which offers a real-time digital coun-
terpart of a physical object or a process. By mirroring a
physical entity in a digital realm, digital twins facilitate
the modeling of an entity to predict its future states
and enable remote control. Hence, the networking com-
munity’s interest in digital twins for network modeling
and management has grown enormously in the last few
years [7]. The potential applications of a digital twin can
help to troubleshoot network problems, detect anoma-
lies, and apply what-if analysis faster than real time [8].

Hence, the operations, that are unfeasible in a physical
network become viable with digital twins.

Representing the physical world in its digital counter-
part require accuracy and preferably fast execution.
Hence, ML models are emerging as one of the pos-
sible candidates for realizing digital twins. For net-
work performance modeling, the recent developments
in GNN-based ML architectures are gaining popular-
ity. Since the networks can essentially be modeled as
graphs, the state-of-the-art network performance analy-
sis implementations, such as RouteNet [9] and xNet [2]
rely on GNN-based neural network architectures.

2.4 Graph neural networks
In recent years, GNNs [10] have become increasingly
popular for representing data in the form of graphs.
Unlike traditional neural networks that assume a fixed-
dimensional input space and predetermined connection
structures, GNNs dynamically determine their architec-
ture based on input graphs. This flexibility allows them
to leverage the inherent graph structure of input data,
facilitating the modeling of relationships between ele-
ments in the graph.

From a network management perspective, the ultimate
goal for network managers is to oversee actions taken
by the autonomous network management framework.
GNN-based ML models offer the potential to accurately
predict network characteristics, serving as a powerful
tool for network analysis and autonomous network man-
agement. The structural similarity of GNNs to com-
puter networks ensures that predicted results are mean-
ingful and suitable for analysis. Additionally, GNNs ex-
hibit promising capabilities to generalize to unseen data,
topologies, and traffic characteristics [11], which make
them a suitable candidate for a successful autonomous
network management framework.

3. RELATED WORK
Recent advancements in ML have led to its extensive
use in network analysis, as detailed in Fadlullah et al.’s
survey [12]. This research highlights various ML meth-
ods for tasks like traffic classification and latency analy-
sis. The literature shows diverse ML model applications,
from support vector regression for analyzing queuing
and latency [13] to causal Bayesian networks [14]. These
methods are versatile but recent studies are exploring
graph-based data structures in networks more deeply.

GNNs, introduced by Gori et al. [1], represent graph-
structured data through message passing between graph
nodes. GNNs have been applied in various fields, from
object localization to webpage ranking, and now in net-
work analysis. They offer a faster alternative to tra-
ditional network analysis methods. Deep-Q [15] and
RouteNet [9] are examples of GNN implementations



Figure 1 – Architecture of our proposed model.

in network analysis, focusing on path delay prediction
and key network characteristics, respectively. Another
recent development, xNet [2], aims to replace simula-
tion studies for Data Center Network (DCN) topolo-
gies. However, current GNN approaches are limited as
they rely on simulation data, which may not accurately
reflect hardware characteristics and challenges in mod-
eling complex topologies.

The potential for digital twins in network management
is greatly enhanced by the rapid execution of GNNs.
Ferriol et al. [16] and Almasan et al. [8] have discussed
the possibilities of using GNNs for digital twins.

In this context, our work aims to develop a GNN ar-
chitecture trained on real hardware data to create an
autonomous network management framework aided by
the digital twin paradigm. Our approach addresses the
current limitations of GNN-based network analysis by
exposing them to real network data on training.

4. METHODOLOGY
This section provides an overview of our approach, GNN
model, and the training testbed.

4.1 Model
Our GNN model offers significant opportunities for ad-
vancing digital twin implementations in network man-
agement. By accurately predicting flow delays and un-
derstanding network behavior under various conditions,
the model can support what-if analysis, allowing net-
work operators to simulate potential scenarios and their
impacts without affecting the live network. This capa-
bility is particularly valuable in proactive network man-
agement, where potential issues can be anticipated and
mitigated before they affect users. Moreover, the inte-
gration of real network data enhances the model’s ap-
plicability to real-world scenarios, making it a powerful
tool for dynamic and autonomous network management.

Our model is based on the baseline model RouteNet-
Fermi [5]. Fig. 1 shows a block diagram that represents
the architecture of the GNN algorithm. The algorithm
processes two types of input features: Link Features

and Flow Features. Both sets of inputs are first pro-
cessed by separate Embedding blocks, each described
as a 2-stage Dense NN, indicating two stages of dense
neural networks used for embedding. Although both
embeddings share a similar structure, the different in-
put dimensions of link and flow features require separate
embedding stages.

The embedded features from the Link Features
are then fed into a Link Hidden State block,
where they undergo a Gated Recurrent Unit (GRU)
Update. Here, GRU captures the temporal relation-
ship between the link features. Simultaneously, the em-
bedded Flow Features are passed to a Path Hidden
State block. The state of this block is updated using
an RNN Update.

The Link Hidden State and Path Hidden State are
then involved in a Message Passing process, where in-
formation is passed along the edges of the graph. The
result of the message passing is then fed into a Readout
block described as a 3-stage Dense NN. Finally, the
output of the readout block is processed for computing
the delay.

Additionally, alternatives to the blocks, which are pre-
sented in red, indicate the different functions to im-
prove the model. Mainly, our work focused on capturing
the temporal dependencies in the link and path hidden
states. For this reason, we used RNNs and LSTMs for
the hidden state updates, and a Sigmoid activation func-
tion in the readout layer instead of a Softplus activation.
However, our final model selection was adapted from the
provided baseline model RouteNet-Fermi [5].

4.2 Features and hyperparameters
Table 1 lists the hyperparameters chosen for the train-
ing of the GNN. The hyperparameters are chosen from
RouteNet [9] training settings without any fine tuning.
It specifies the dimensions of the link and path state rep-
resentations as well as the size of the readout layer, each
set to 64. The model performs eight rounds of message
passing. The learning rate is set to 0.001 and is adap-
tive, decreasing by 99% after each epoch. The Adam
optimizer is used for its efficiency in handling sparse
gradients and adaptive learning rate capabilities. The
loss function employed is the MAPE. Early stopping is
implemented to prevent overfitting, with the condition
that training will stop if the change in validation loss is
less than 0.0001.

Table 2 outlines the set of features utilized in the train-
ing of the model. These features capture various aspects
of network traffic and topology, such as the average
bandwidth per flow, the number of packets per flow, and
the size of the packets. It also includes more structural
characteristics like flow type, flow length, link capacity,
and the topology of the network represented by lists of



Table 1 – Hyperparameters used for training the graph neural
network model.

Parameter Value
Link State Dimensions 64
Path State Dimensions 64
Readout Layer Size 64
Message Passing Rounds 8
Learning Rate 0.001 (Adaptive)
Optimizer Adam
Loss MAPE
Early Stopping Δvalidation_loss < 1𝑒 − 4

Table 2 – Input features used for the graph neural network model.

Features
Average bandwidth per flow (normalized)
Number of packets per flow (normalized)
Size of the generated packets per flow (normalized)
Flow type
Flow length (physical path)
Link capacity
List of links traced per flow
List of flows per link
Inter packet gap per flow (𝜇, 𝜎2, percentiles)
Percentage of packet losses per flow

links per flow and flows per link. All of these features
are present in the provided baseline for the challenge.

The last two features, highlighted in bold, represent an
extension to the baseline feature set. The Inter gap
per flow is defined as the time interval between the
transmission of consecutive packets within a single flow
of data in a network. It is described by its mean, vari-
ance, and percentiles. The inclusion of every 10𝑡ℎ per-
centile reveals the underlying distribution of the inter-
packet gap. Therefore, the inter-packet gap helps to cap-
ture the burstiness, and hence the likeliness of a flow to
suffer from congestion, which acts as an explaining fac-
tor to the flow level delay. The Percentage of packet
losses per flow is computed by calculating the per-
centage of lost packets in a flow. Since packet losses
are a good indicator of congestion which majorly con-
tributes to delay, it also serves as an explanatory factor
for the flow level delay.1

4.3 Testbed
Fig. 2 illustrates the architecture of the testbed environ-
ment designed for training ML jobs. The setup consists
of four servers, labeled from Server 1 to Server 4, each
equipped with two GPUs. These GPUs are indicated as
GPU0 and GPU1 within each server, and training tasks
are containerized using Docker, hence making the de-
ployment and reproducibility of our work far easier. All
servers are interconnected through a centralized switch,
facilitating communication and data exchange with the
1Packet loss information was not available in the challenge test
dataset. Hence, it is not included in this paper.
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Figure 2 – Architecture of the testbed environment for training
ML jobs.

Network Attached Storage (NAS). We offload the train-
ing tasks to our compute testbed to facilitate the train-
ing time. For the scope of this work, our approaches do
not employ training parallelism.

5. EVALUATION

This section compares the alternative models considered
and investigates the importance of normalized features.

5.1 Model performance

Table 3 provides a performance comparison of three dis-
tinct models based on the MAPE metric. The com-
pared models include Baseline Model, Model with IPG,
and Extended Model with Packet Loss. The Model
with IPG indicates the adapted baseline model with
the Inter gap per flow feature. Finally, the Extended
Model with Packet Loss refers to the extended version
of the Model with IPG. The extension of the model is
done with the inclusion of the Percentage of packet
losses per flow feature.

The Baseline Model, which serves as a reference point,
achieved a MAPE of 45.00%. Model with IPG, which
includes the extended inter-packet gap feature, showed
improved performance with a MAPE of 35.39%. Finally,
the results show that the Extended Model with Packet
Loss, outperformed the other models with a MAPE of
23.25%, indicating a substantial enhancement in the tar-
get loss metric, MAPE.

Fig. 3 presents a scatter plot of model predictions
against the true delay values. In an ideal scenario with-
out any prediction error, the points are expected to lie
on the diagonal axis. Fig. 3(a) shows the scatter plot
for Model with IPG, and Fig. 3(b) illustrates Extended
Model with Packet Loss. The plots show that the predic-
tions of the Extended Model with Packet Loss lie closer
to the correct values on average, which is also reflected
with a lower MAPE of 23.25% in comparison to 35.39%.



Table 3 – Comparison of model performances based on MAPE.

Model MAPE
Baseline Model 45.00%
Model with IPG 35.39%
Extended Model with Packet Loss 23.25%
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(a) Model with IPG.
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(b) Extended Model with
Packet Loss.

Figure 3 – Scatter plot of delay predictions of the models against
the ground truth.

5.2 Feature importance
Analyzing feature importance is crucial for understand-
ing the mechanics of the model performance. Unlike
traditional ML methods, assessing the feature impor-
tance of GNNs is not viable via traditional Principal
Component Analysis (PCA). Therefore, to analyze the
feature importance, we follow a method to introduce
noise to inputs and check the decline or improvement in
the prediction performance as described in [17].

Specifically, we introduce a random Gaussian noise
𝒩(0, 1) to the inputs and check the percentage change
in test MAPE. Since the range of values in the non-
normalized features differ, we only introduce the noise
to the normalized features. Fig. 4 shows the horizon-
tal bar plot of feature importance for the size of gen-
erated packets per flow, number of packets per flow,
and average bandwidth per flow features. The analysis
shows that perturbing any of the normalized inputs to
the model results in a decrease in the test MAPE. Quan-
titatively, introducing noise to the size of the generated
packets per flow leads to a 7.41% increase in MAPE,
whereas the number of generated packets per flow leads
to 3.74%, and average bandwidth per flow leads to a
17.40% increase in MAPE due to the increased conges-
tion in the network. This indicates that the most impor-
tant feature contributing to a better model performance
among the normalized features is the average bandwidth
per flow.

6. CONCLUSION
This paper presented an extended GNN model designed
to enhance flow delay prediction. Our models with ex-
tended features have improved the baseline MAPE from
45% to 35.39% and 23.25% respectively, resulting in an
improvement of 48.3%. The feature importance analysis
highlighted the criticality of certain features, with the
average bandwidth per flow being the most significant.

0 5 10 15
Importance Metric [%]

Avg. Bw.No. PacketsPacket Size

Figure 4 – Bar plot of feature importance for the normalized
features. Feature labels are shown on the y-axis, whereas the
target importance metric which is the percentage change in test
MAPE is shown on the x-axis.

Our results contribute valuable insights to the field, po-
tentially guiding the development of more effective au-
tonomous network management frameworks aided by
GNNs exposed to real network data. Finally, for repro-
ducibility reasons, our code and artifacts are available
under GitHub2.
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