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Abstract—Traditional network management techniques often
struggle with the scale and dynamism of modern networks,
requiring significant human oversight and being prone to high
error rates. Large Language Models (LLMs) present a promising
alternative to conventional approaches by automating network
configuration and management. However, a systematic way to
evaluate their performance is lacking in the literature.

This paper introduces NETLLMBENCH, a novel framework
designed to rigorously assess the performance of LLMs in
managing computer networks. By integrating prompt engineering
and network emulation in a closed loop, NETLLMBENCH
benchmarks and validates LLMs’ responses in various configu-
ration scenarios. The findings establish foundational benchmarks
to guide future applications of LLMs in enhancing network
management efficiency.

Index Terms—Large Language Models (LLMs), Autonomous
Network Management, Benchmark

I. INTRODUCTION

The increasing complexity of modern network infrastruc-

tures necessitates sophisticated management solutions that can

rapidly adapt to dynamic changes and scale according to

emerging demands. Traditional network management tech-

niques often rely heavily on human expertise, which can be

time-consuming and prone to errors, particularly in large-scale

or highly dynamic environments [1]. The advent of Artificial

Intelligence (AI) and Machine Learning (ML) technologies,

especially Generative AI and Large Language Models (LLMs),

introduces a promising paradigm for enhancing automation

and intelligent decision-making within network management.

The integration of AI into network management has at-

tracted considerable interest in recent years. Among the most

promising developments in this area is the application of

LLMs for automating and optimizing networking tasks [2].

These models, with their advanced natural language processing

capabilities, are well-suited for automating complex network

management tasks, potentially reducing the dependency on

human intervention and increasing efficiency.

Recent literature has explored the use of LLMs for net-

work management through various applications, ranging from

incident management [3], [4] to providing technical insights

for human users [5]. These studies underscore the potential of

LLMs to generate contextually relevant insights for networking

tasks. However, despite the growing application areas and

implementations of LLMs, there is no clear methodology to

assess the suitability and performance of these models for

network management.

The implementation of LLMs in network management is

still in its developmental stages, with a significant insuffi-

ciency in comprehensive evaluation frameworks. Existing re-

search [3]–[7] tends to focus on isolated applications, lacking a

comprehensive assessment of LLM performance across diverse

network management scenarios. This research gap raises the

need for a standardized benchmarking framework capable of

systematically evaluating the performance of different LLMs

in real-world network settings. The real-world complexity

of network systems, characterized by dynamic topologies

and diverse protocols and configurations, calls for a robust

methodology to evaluate the practical utility of LLMs in this

domain.

To address this need, we introduce a novel framework

NETLLMBENCH. NETLLMBENCH is specifically designed

to evaluate various LLMs across a range of predefined net-

working tasks, such as IP address and default gateway con-

figuration. The proposed framework provides a systematic

methodology for testing and validating LLMs within emulated

network environments, thereby offering essential insights into

their practical utility. Additionally, NETLLMBENCH solves

the problem of LLM model comparison by establishing a

quantitative metric to compare different models through au-

tomation, as human-performed model verification is not feasi-

ble and prone to errors. By delivering a systematic approach

for testing and validating LLMs, NETLLMBENCH offers

crucial insights into their applicability for networking and

paves the way for future advancements in AI-driven network

management.

Through the NETLLMBENCH framework, this work es-

tablishes a foundational step towards comprehensively ana-

lyzing the performance of AI technologies in network man-

agement. As part of our primary analyses with NETLLM-

BENCH, we benchmark four of the popular LLMs in the

Ollama [8] environment, including their variations with dif-

ferent numbers of model parameters. Our analyses include

Meta AI’s LLama3 [9], Mistral AI’s Mistral [10], Google’s

Gemma [11] and Alibaba Cloud’s Qwen [12]. We evaluate

each model’s performance systematically within an emulated

network scenario to provide a comparative understanding of

their capabilities in real-world network management tasks. As



a contribution to the research community and in support of

reproducible research, we are making our framework publicly

available [13].

The remainder of this paper is organized as follows: Sec. II

describes NETLLMBENCH in detail. Sec. III presents the

empirical evaluation. Sec. IV reviews related work on LLM

applications for networking, and Sec. V concludes the paper

and outlines future research directions.

II. FRAMEWORK

This section discusses the challenges involved in developing

an LLM benchmarking framework and introduces NETLLM-

BENCH.

A. Challenges

Developing a framework for autonomously benchmarking

LLMs for networking tasks involves several complex chal-

lenges that must be addressed to ensure the reliability of the

framework. One of the primary challenges lies in defining a

comprehensive and representative set of networking tasks that

encapsulate a wide range of real-world scenarios. The creation

of these tasks requires knowledge in the networking field and

potential capabilities of LLMs. Currently, the task creation for

NETLLMBENCH is done manually.

Ensuring that the LLMs’ outputs are consistently structured

and easily parsable is also crucial. For the validation stage,

the outputs of the LLMs must adhere to the predefined JSON

format. This necessitates the presence of a JSON verification

stage in NETLLMBENCH.

The practical applicability of LLM outputs needs to be

verified within an emulated network environment. This re-

quires an emulator capable of providing feedback to the

LLMs. A significant challenge is the provision of precise

error feedback to the LLMs. This feedback is essential in

refining the LLMs’ responses in subsequent iterations. De-

signing a feedback mechanism that effectively communicates

with LLMs to improve their response accuracy is one of the

major challenges of NETLLMBENCH.

Finally, establishing clear and measurable benchmarking

criteria and evaluation metrics is also essential to systemat-

ically assess the performance of LLMs. By addressing these

challenges, the NETLLMBENCH framework aims to provide

a rigorous, systematic evaluation of LLMs in network man-

agement, setting a benchmark for future developments in AI-

driven network management technologies.

B. NETLLMBENCH

NETLLMBENCH introduces a novel method to au-

tonomously benchmark LLMs for networking tasks. This

benchmarking process is designed to be systematic and repli-

cable. Fig. 1 provides a block diagram of the NETLLM-

BENCH, illustrating its structured approach. NETLLMBENCH

involves four phases: task definition, testing, format verifica-

tion, and emulation.

The initial task definition phase involves specifying partic-

ular networking tasks to evaluate the capabilities of LLMs
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Fig. 1. Block diagram of NETLLMBENCH. It autonomously evaluates LLMs
in networking tasks through a sequence of JSON validation and error feedback
integration. NETLLMBENCH systematically evaluates the LLM under Test’s
performance in network management tasks.

in network settings. These tasks, derived from real-world

scenarios, are formulated as questions that resemble typical

or critical networking challenges. Each task should be clearly

defined with specified input conditions and expected outcomes.

The outcome requires the LLM to generate precise network

configuration commands in JSON format, where the keys

are "command" and "machine" (network entity where the

command is to be executed).

In the testing phase, the LLM under Test is queried us-

ing these predefined tasks, and responses are systematically

collected. In the format verification phase, these responses

undergo a three-stage verification process to ensure adherence

to the JSON format. Initially, a JSON verifier checks the

syntactic correctness and structure. If valid, the JSON is parsed

and validated in the network emulator. If the verifier rejects

the structure, the JSON Provider component employs prompt

engineering by providing an example of the correct JSON

format for the LLM under Test to improve its response. If

corrections fail, a Master LLM, specifically a LLama3 model

with 70 billion parameters, is prompted to output the correctly

formatted JSON string.

Finally, in the emulation phase, once the LLM under Test’s

outputs pass format verification, they are input into a custom-

built emulator, developed using Kathará [14], which replicates

a networking environment to practically test these outputs.

This emulation phase is crucial for verifying the practical

applicability of the LLM under Test’s responses. It provides

error feedback that is used to guide the iterative refinement

process. This feedback is crucial for adjusting responses to

ensure they are practically applicable. The LLM under Test

is allowed a predefined maximum number of iterations to

solve the task. Each iteration is used either for verifying the

JSON structure or for refining the response based on the

error feedback from the network emulator. After emulation,

the framework evaluates the LLM under Test’s responses

against the feedback from the network emulator. Compre-

hensive performance metrics, including task-solving iterations,



accuracy, and model throughput, are analyzed, and the results

are presented in Sec. III.

III. EVALUATION

This section presents the measurement testbed, topology,

and tasks used for the analysis, as well as the findings from

NETLLMBENCH.

A. Measurement Testbed

We use four high-performance servers running Ubuntu

22.04 with the 5.15.0-107-generic kernel. Two servers are

equipped with dual NVIDIA A40 GPUs, which are used for

model inference. The models are managed using Ollama, a

tool that is capable of deploying LLMs on NVIDIA GPUs

with model parallelism. One GPU server consistently runs the

llama3-70b model, acting as the Master LLM, and the LLM

under Test is deployed on the second GPU server.

The third server hosts the Kathará network emulator. Finally,

an orchestration computer oversees the workflow, managing

the exchange of information between the LLM under Test

and the network emulator. It ensures synchronous operation

throughout the testing process. This setup tests the LLMs’

ability to accurately manage and configure networks with

NETLLMBENCH.

B. Topology and Tasks

We create an example topology for the evaluation of

NETLLMBENCH. The network topology for the validation of

LLM under Test’s responses includes a router, two switches,

and three hosts, as illustrated in Fig. 2. Each of the hosts is

connected to the switches, which operate in Layer 2 forward-

ing mode by default, hence requiring no specific configuration

steps. A router is integrated within this setup to facilitate all-

to-all connectivity among the network components.

The entire topology is emulated with active links and con-

nections, yet initially, none of the IP addresses are configured.

The initial tasks assigned to the LLM under Test involve con-

figuring the IP addresses of the respective interfaces of hosts

and the router, as highlighted in blue in the figure (TASKS 1-

5). The secondary tasks include configuring the correct default

gateways in the hosts for correct routing (TASKS 6-8), before

finally performing a ping test between the different subnets

(TASK 9). The complete list of tasks and prompts is accessible

via [13]. For the evaluation, we set the maximum allowed

number of iterations to solve the task to 3. This gives the

LLM under Test the opportunity to utilize all the provided

format verification components within NETLLMBENCH.

C. Evaluated LLMs and Metrics

We evaluate NETLLMBENCH with the following LLMs:

llama3-70b [9], one of the largest and most recent models with

70 billion parameters developed by Meta Inc. Our evaluation

focuses on the 8-bit quantized version of the model tuned for

instruction use cases. With 70 billion parameters, and each

parameter represented with a byte, the model occupies 70GB
of GPU memory.
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Fig. 2. Network topology for testing the LLMs. The considered topology
includes a router, two switches, and three hosts.

llama3-8b [9], a smaller variant in the Llama environment

with 8 billion parameters. It balances performance and com-

putational efficiency, making it deployable in small-scale envi-

ronments. Our evaluation focuses on the 16-bit floating point

version of the model tuned for instruction use cases. The model

occupies 16GB of GPU memory.

mistral-7b [10], a model developed by Mistral AI with 7 bil-

lion parameters. Our evaluation focuses on the 16-bit floating

point version of the model tuned for instruction use cases. The

model occupies 14GB of GPU memory.

gemma-7b [11], Google’s state-of-the-art model with 7 billion

parameters. Our evaluation focuses on the 16-bit floating point

version of the model tuned for instruction use cases. The model

occupies 14GB of GPU memory.

gemma-2b [11], the lightweight version of gemma-7b with

only 2 billion parameters. It is ideal for applications where

resource efficiency is crucial. Our evaluation focuses on the

16-bit floating point version of the model tuned for instruction

use cases. The model occupies 4GB of GPU memory.

qwen-4b [12], a model developed by Alibaba Cloud featuring

4 billion parameters. Our evaluation focuses on the 16-bit

floating point version of the model tuned for chat use cases,

as tuning for instruction use cases do not exist for this specific

model. The model occupies 8GB of GPU memory.

The framework collects three key metrics to comprehen-

sively evaluate the LLMs’ performance in networking tasks:

Chat History, LLM Performance Statistics, and Task Perfor-

mance Statistics. Chat History consists of the log files of

the interactions between the prompts and LLM responses.

It captures the sequence of interactions between the LLM

and the task prompts, providing insights into the LLM’s

reasoning process and response patterns. LLM Performance

Statistics include metrics such as task completion time, re-

source utilization, and model throughput. Task Performance

Statistics evaluate the practical effectiveness of the LLM’s

solutions within the network emulator, measuring syntactical

correctness and accuracy of task completion. These metrics
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Fig. 3. Number of iterations required by each LLM to complete network
management tasks.

together enable a thorough analysis of both the conversational

and technical capabilities of the LLMs in a networking context.

D. Results

1) Iterations to Solve a Task: Fig. 3 shows the bar plot

of each LLM’s number of iterations to solve the task against

the Task ID. It categorizes the performance of each LLM by

the number of iterations needed to complete the tasks. The

evaluated LLMs are shown with various colors in each bar.

A single iteration to solve the task means that the task is

successfully completed, whereas more than one iteration to

solve the task does not convey information on the correctness

of the completed task. Since each LLM is given a maximum

of three iterations to solve a single task, regardless of its

successful completion, our framework continues with the

next task. In general, NETLLMBENCH evaluates each LLM’s

capability to solve a given task, and it is dependent on the

LLM whether the iterations are being used for receiving an

error feedback from the emulator or fixing its response to a

JSON-compatible format.

The figure shows that llama3-70b is capable of completing

all of the tasks in a single iteration. llama3-8b is capable

of completing all of the tasks except the last one in a

single iteration. Although all of the configuration tasks are

done correctly by llama3-8b, the final ping test fails. This

indicates that while all tasks were passed in the network

emulator, suggesting the correctness of the issued commands,

a configuration error exists. Inspection of the Chat History logs

indicates that llama3-8b misconfigures the default gateway

of the hosts. However, since the generated commands are

syntactically correct, they are issued in the emulator without

any errors. The final ping test, which covers cases for semantic

misconfigurations, reveals that although llama3-8b produces

correct commands, it cannot pass the final benchmark.

mistral-7b is the only other LLM that can solve Task 1 in

a single iteration. However, its performance in the subsequent

tasks also requires three iterations.

gemma-7b, gemma-2b, and qwen-4b cannot solve the tasks

in a single iteration. The investigation of the conversation

history shows that these LLMs are incapable of producing

JSON-compliant outputs even after two stages of prompting.

For these models, NETLLMBENCH relies on the Master LLM
to extract the correctly formatted output.

2) Model Throughput and Task Performance: High

throughput indicates an LLM’s ability to process queries faster,

thereby significantly reducing the response time for each

individual request. This metric is particularly important in

investigating an application’s real-time capabilities.

Fig. 4 shows the throughput and task completion perfor-

mance of various language models across different tasks. Each

model is plotted in separate subplots. The horizontal axes

represent the different tasks, labeled by task IDs. The tasks are

numbered sequentially, with the iteration number indicated by

a subscore. The vertical axes display the throughput in tokens

per second, showing how many tokens each model outputs

per second. The color of the scattered points indicates the

task completion status. Green means the task was completed

successfully, yellow indicates a needed iteration, and red

shows the task has failed.

Overall, the first subplot shows that llama3-70b is capable

of solving all the tasks without any iterations. The model also

achieves a throughput around the 7.45 to 7.50 token/s range.

The second subplot, with llama3-8b, indicates almost 5 times

higher throughput than its bulkier counterpart with 70 billion

parameters. However, despite the computational efficiency of

the model, llama3-8b fails the final task.

The second row of subplots shows the performance of

mistral-7b and gemma-7b respectively. While having the same

number of model parameters, gemma-7b consistently achieves

lower throughput than mistral-7b. This indicates that the

Gemma model architecture is bulkier. Task completion wise,

gemma-7b performs better, completing 5 out of the 9 tasks

correctly in comparison to 4 out of 9.

The final row of subplots indicates the performance of

gemma-2b and qwen-4b, which are two of the smallest

analyzed LLMs. gemma-2b exhibits a significantly higher

throughput than all the other models between 70 and 80

tokens/s. Considering that the number of correctly completed

tasks between Gemma’s 2 billion and 7 billion parameter

models is the same, gemma-2b benefits from its lightweight

structure when evaluated with NETLLMBENCH. Finally, our

benchmarks indicate that qwen-4b achieves the worst task

completion benchmark across all the models.

3) Model Size: When examining the model sizes, the

llama3-70b model stands out by requiring 70GB of GPU

memory, compared to 16GB or less for the other models.

Consequently, it is not astonishing that llama3-70b shows the

best performance, successfully completing all tasks without

iterations. However, our evaluation reveals that significantly

smaller LLMs also exhibit substantial potential, even if they do
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Fig. 4. Throughput performance of various LLMs across different network management tasks, measured in tokens per second. Correctly solved tasks are
marked with green, whereas yellow shows that an iteration for the task is needed, and red indicates that the task has been unsuccessful.

not always succeed in completing the tasks. This observation

raises a critical research question: what is the minimum size

of an LLM necessary to effectively perform meaningful net-

work management tasks? We believe that our initial findings,

together with NETLLMBENCH will enable future research on

benchmarking and improving the performance of promising

smaller LLMs.

IV. RELATED WORK

Many AI applications in the field of networking are pro-

posed and explored in the literature. Beurer-Kellner et al. [15]

introduce a neural algorithmic reasoning approach for finding

and generating scalable network configurations. The use of

Natural Language Processing (NLP) methods for network

configuration tasks is investigated by Ben-Houdi et al. [16]

as an alternative to manually configured networks.

As LLMs have advanced, traditional ML and NLP ap-

proaches are often found inadequate for handling complex

tasks or processing extensive contexts. LLMs have demon-

strated promising capabilities in the last few years for gener-

ating human-like text. Although LLMs are originally designed

for tasks such as text generation or language translation, their

potential applications have rapidly expanded across various

domains. In network management, these models are now

utilized to automate complex processes such as predictive

maintenance, anomaly detection, and dynamic resource al-

location [2]. Such applications not only enhance operational

efficiency but also significantly reduce the likelihood of human

error and downtime, proving that LLMs can be essential in the

optimization of network operations.

The survey by Zhou et al. [2] overviews the applications of

LLMs in telecommunications. It highlights the use of LLMs

for various tasks including code and network configuration

generation, traffic classification, resource optimization, and

traffic load prediction within the telecom sector. Additionally,

the survey addresses the challenges associated with training

these models and the necessity of prompt engineering for ef-

fective deployment in telecommunication tasks. This analysis

emphasizes the potential of LLMs to enhance automation,

improve efficiency, and overcome complexities of network

management and configuration. However, the survey’s analysis

lacks a structured methodology, relying predominantly on

subjective human evaluation.

Moreover, additional LLM use cases are emerging, includ-

ing AI-driven network incident management [3], [4], synthe-

sizing router configurations [17], and serving as co-pilots for

network managers [5]. Recent advancements by Mondal et

al. [17] highlight the challenges LLMs face in synthesizing

correct router configurations. This work emphasizes the ne-

cessity for verified prompt programming to enhance accuracy

and reduce manual oversight. Similarly, Wang et al. [7] inves-

tigate whether LLMs can facilitate network configuration and

management, proposing a methodological approach to evaluate

their effectiveness. These studies reflect a growing consensus

on the potential of LLMs to manage network configurations

but also underline the complexity and error-proneness of

current models without sufficient verification mechanisms.

PROSPER [18] serves as a model that leverages LLMs

to extract protocol specifications from Internet RFCs. Their

approach demonstrates how combining textual and non-textual

components from RFCs can enhance the extraction accuracy.

In a similar approach, Xiang et al. [19] explore the reproduc-

tion of network research results using LLMs, pushing forward

the discussion on the replicability and reliability of AI-driven

network research.

While LLMs are finding their place in a variety of appli-



cations, the reliability of their performance remains uncertain.

There is no unified and automated way of evaluating LLMs’

performance. The NETLLMBENCH framework addresses the

gap in the literature by providing a robust and systematic

evaluation of LLMs for network management tasks.

V. CONCLUSION

This paper addresses the lack of systematic evaluation

frameworks for LLMs in network management by introducing

NETLLMBENCH, which provides a structured approach to

test LLMs in realistic network scenarios using a custom-built

network emulator. Our foundational analysis with NETLLM-

BENCH shows significant performance differences among the

benchmarked models. Not surprisingly, the largest model,

llama3-70b, performs the best, solving all tasks without it-

erations. Our evaluation reveals significant performance dif-

ferences in smaller models, demonstrating their potential even

if they are unsuccessful in the completion of the benchmark.

Future research should expand NETLLMBENCH to more

tasks and diverse environments, improve feedback mecha-

nisms, and explore integrating LLMs with mechanisms to

improve task accuracy. We believe that this framework will

lay the groundwork for systematic benchmarking of newly

produced LLM architectures for network management tasks.
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