
Technical University of Munich

TUM School of Engineering and Design

Chair of Computational Modeling and Simulation

Leveraging Parametric Modeling for Building Design

Adaptation toward Code Compliance – the case of

building egress requirements

Master thesis

for the Master of Science Course Civil Engineering

Author: Muhammad Ali Malik

Matriculation number: 03755090

Supervisors: Prof. Dr.-Ing. André Borrmann

 Jiabin Wu, M.Sc.

Date of issue: 01. April 2024

Submission date: 30. September 2024

Abstract II

The continued advancement of Building Information Modelling (BIM) has enabled Au-

tomated Compliance Checking (ACC). Despite improvements in highly advanced code

compliance checkers to ensure adherence to regulatory standards and adjust building

designs for compliance, there remains a significant gap in automating and optimizing

this process for complex and diverse design scenarios. Manually adjusting building

models based on building code specifications takes time, effort, and is typically error-

prone, reducing total project efficiency. This thesis proposes a code compliance frame-

work to automate code checking and adjust violation-related parameters, ensuring

code-compliant building designs, specifically focusing on building egress require-

ments. It also integrates the use of Generative Design (GD) and Genetic Algorithm

(GA) with parametric BIM modeling to optimize the means of egress by finding the

optimized parameter configuration that yields the least travel distances. It ensures that

the building design not only complies with building regulations but is also optimized to

enhance the safety of occupants. The proposed approach was validated using a case

study. The results illustrate the significance of the proposed framework in automating

compliance checking, adjusting violation-related parameters, and optimizing building

design to enhance the safety of occupants during emergency scenarios.

Abstract

Zusammenfassung III

Die Weiterentwicklung der BIM hat die automatisierte Prüfung der Einhaltung von Bau-

vorschriften möglich gemacht. Trotz der Verbesserungen bei den hochmodernen Prüf-

programmen, die die Einhaltung gesetzlicher Normen sicherstellen und Gebäudeent-

würfe auf ihre Konformität hin anpassen, gibt es immer noch eine erhebliche Lücke bei

der vollständigen Automatisierung und Optimierung dieses Prozesses für komplexe

und vielfältige Entwurfsszenarien. Die manuelle Anpassung von Gebäudemodellen auf

der Grundlage von Bauvorschriften ist zeitaufwändig, erfordert einen erheblichen Ar-

beitsaufwand und ist oft fehleranfällig, was sich auf die Gesamteffizienz des Projekts

auswirkt. In dieser Masterarbeit wird das „code compliance framework“ vorgeschlagen,

um die Überprüfung von Codes zu automatisieren und verletzungsbedingte Parameter

anzupassen, um codekonforme Gebäudeentwürfe zu gewährleisten, wobei ein beson-

derer Schwerpunkt auf den Anforderungen an die Fluchtwege von Gebäuden liegt. Es

integriert auch die Verwendung von Generativem Design (GD) und Genetischem Al-

gorithmus (GA) mit parametrischer BIM-Modellierung, um die Ausstiegsmöglichkeiten

des Gebäudes zu optimieren, indem die optimale Parameterkonfiguration gefunden

wird, die die geringsten Laufwege ergibt. Dadurch wird sichergestellt, dass das Ge-

bäudedesign nicht nur den Bauvorschriften entspricht, sondern auch so optimiert ist,

dass die Sicherheit der Bewohner erhöht wird. Der vorgeschlagene Ansatz wurde an-

hand einer Fallstudie validiert. Die Ergebnisse zeigen die Effektivität des vorgeschla-

genen Rahmens bei der automatischen Überprüfung der Einhaltung von Vorschriften,

der Anpassung von Parametern, die mit Verstößen zusammenhängen, und der Opti-

mierung des Gebäudedesigns, um die Sicherheit der Bewohner in Notfallszenarien zu

verbessern.

Zusammenfassung

Table of contents IV

1 Introduction 10

1.1 Overview ...10

1.2 Research Objectives ...11

1.3 Outline of Thesis ...11

2 State of the Art 13

2.1 Automated Compliance Checking ...13

2.2 Techniques in ACC Development ...14

2.2.1 Software Applications ...14

2.2.2 Object-based approach ...16

2.2.3 Logical approach ...18

2.2.4 Ontological approach ..20

2.2.5 Challenges encountered in ACC ...21

2.3 Parametric BIM Modeling ..24

2.4 Building Egress Requirements ..27

2.5 Generative Design ..29

2.6 Optimization Algorithms ..32

2.6.1 Genetic Algorithm ...33

2.6.2 Simulated Annealing ...34

2.6.3 Particle Swarm Optimization ...35

3 Methodology 36

3.1 Code Compliance Framework...37

3.2 Optimization Framework ...39

4 Implementation 44

4.1 Input Requirements from IBC..44

4.1.1 Occupancy Classification and Use ..44

4.1.2 Selection of Code Compliance Rules ..45

4.2 Parametric Model Setup ...48

4.2.1 Shared Parameters ...49

4.2.2 Setting Constraints for Parametric Modeling ...50

Table of contents

Table of contents V

4.2.3 Creation of Room Elements ..51

4.2.4 Determination of Required Capacity of Egress Path52

4.2.5 Custom Tag for Occupant Load ..54

4.3 Code Compliance Checking..55

4.3.1 Importing Requirement Specification ..56

4.3.2 Importing BIM Model Information ..57

4.3.3 Compliance Checking ...57

4.3.4 Adjustment of Violation-Related Parameters ..58

4.4 Optimization ..60

4.4.1 Identification of Potential Parameters ...60

4.4.2 Determining Available Egress Distance ..61

4.4.3 Achieving Optimized Parameter Configuration ...62

5 Case Study 64

5.1 Impact of Corridor Width ...65

5.2 Impact of Door-Wall Clearance ...66

5.3 Validating Code Compliance ...67

5.4 Optimization ..70

6 Discussion 75

6.1 Contribution...75

6.2 Limitations ...77

6.3 Future Work ..78

Bibliography 79

Appendix A1: Prototype for Automated Compliance Checking 87

Appendix A2: Prototype for Optimization 91

Appendix B: IBC Requirements 95

Affirmation 97

List of Figures VI

Figure 2.1: Four-stage process of ACC approaches (Luo & Gong, 2015) .. 14

Figure 2.2: User interface of the Solibri Model Checker (Preidel & Borrmann, 2018) ... 16

Figure 2.3: Three stages of the object-based approach (Yang & Li, 2001) ... 17

Figure 2.4: Recent approaches to automated compliance checking (Preidel & Borrmann, 2015) ... 18

Figure 2.5: Four Stages in Creating a Conceptual Graph for Logical Interpretation (Yang & Li, 2001) 19

Figure 2.6: Establishment of the Norwegian code with the RASE syntax (Hjelseth & Nisbet, 2011) ... 21

Figure 2.7: Representation of the black-box and white-box approaches (Preidel & Borrmann, 2018). 23

Figure 2.8 Instance of a parametric sketch (Borrmann & Berkhahn, 2018) .. 24

Figure 2.9: Integration of graph-based systems with parametric BIM modeling (Janssen, 2015). .. 26

Figure 2.10: Three components of means of egress (Shen, 2006) .. 28

Figure 2.11: Generative design using parametric modeling achieved with Grasshopper (Zarzycki, 2012).................................. 30

Figure 2.12: Graphical representation of feasibility region of an objective function (Berhe, 2012) .. 32

Figure 2.13: Generated floor plans using GA ... 34

Figure 3.1: Illustration of the proposed framework for ACC and building design optimization ... 36

Figure 3.2: Workflow of the Code Compliance Framework .. 38

Figure 3.3: Illustration of calculating the shortest path of a room ... 39

Figure 3.4: Workflow of calculating the shortest path ... 40

Figure 3.5: Dijkstra's Algorithm to calculate the shortest path .. 40

Figure 3.6: Illustration of roulette wheel selection based on fitness scores .. 42

Figure 3.7: Python code for the roulette wheel selection .. 42

Figure 3.8: Uniform crossover of parent chromosomes ... 42

Figure 3.9: Python code for the uniform crossover .. 42

Figure 3.10: Random resetting mutation .. 43

Figure 3.11: Python code for random resetting of genes with 10% mutation rate ... 43

Figure 3.12: Workflow of genetic algorithm used for the optimization of building design .. 43

Figure 4.1: Two approaches of assigning a global parameter .. 49

Figure 4.2: Defining occupant load of rooms as a shared parameter in Autodesk Revit ... 50

Figure 4.3: Defining boundary constraints of a building using grids ... 51

Figure 4.4: Using color schemes to identify the building's egress path (Orange: Egress Path, Grey: Rooms) 52

Figure 4.5: Using filters to include rooms in the schedule that are required for the calculations ... 53

Figure 4.6: Calculation of occupant load of a room .. 53

Figure 4.7: Creating a custom tag for the occupant load of building rooms .. 54

Figure 4.8: Illustration of a custom tag for occupant load of a room ... 55

Figure 4.9: Creating variables in the Python node for the required values of the IBC ... 56

List of Figures

List of Figures VII

Figure 4.10: Dynamo script for importing the calculated required capacity of the ground floor corridor from a schedule 56

Figure 4.11: Dynamo script for importing family parameter of door width ... 57

Figure 4.12: Dynamo script for importing global parameters into Dynamo GUI .. 57

Figure 4.13: Checking function for the minimum width of the doors (Appendix A1) .. 58

Figure 4.14: Dynamo script for checking code compliance and adjusting violation-related parameter values 59

Figure 4.15: Adjusting the global parameter of corridor width using the parameter dictionary .. 59

Figure 4.16: Adjusting the family parameter of door width using the parameter dictionary ... 59

Figure 4.17: Dynamo script for creating floor layouts. .. 61

Figure 4.18: Generation of building floor layout in dynamo .. 62

Figure 4.19: Dynamo script for identifying the points of origin and destination ... 62

Figure 5.1: 3D-View of physics department building (N6) of TUM .. 64

Figure 5.2: Minimum corridor width of 9m (Top), Maximum corridor Width of 15m (Bottom) .. 65

Figure 5.3: Effect of changing corridor width on the available egress distance... 66

Figure 5.4: Effect of changing door-wall clearance on the available egress distances ... 66

Figure 5.5: Results of automated compliance checking in Dynamo UI ... 67

Figure 5.6: Adjusting the width of the side corridor according to the IBC standards ... 68

Figure 5.7: Adjusting the width of the door according to the IBC standards ... 69

Figure 5.8: Adjusting the space between adjacent doors according to the IBC standards .. 69

Figure 5.9: Creation of variation space of all parameters ... 70

Figure 5.10: Python code for using genetic algorithm to identify the best individual (Appendix A2) .. 71

Figure 5.11: Fitness score evolution .. 71

Figure 5.12: Optimized parameter configuration of the best individual (Individual 7) .. 72

Figure 5.13: Comparison of floor layout. Initial design (Top), Generated floor plan using GA (Bottom) 72

Figure 5.14: The impact of additional extra exit on the available egress distance .. 73

Figure 5.15: Comparison of available egress distances after the implementation of an additional exit 73

List of Tables VIII

Table 3.1: Summary of the necessary values of education occupancy type as stated in the IBC ... 37

Table 3.2: Example of roulette wheel selection .. 41

Table 5.1: Building information of the physics department (N6), TUM .. 65

Table 5.2: Results of automated compliance checking .. 67

Table 5.3: Design variables/parameters used for the optimization of available egress distance ... 70

Table 5.4: The impact of an extra exit on the Available Egress Distance (AED)... 73

Table C.1: Occupancy classification of buildings (Section 302.1) .. 95

Table C.2: Minimum Corridor Width (Section 1020.2) .. 95

Table C.3: Occupant load factor (Section 1004.5) ... 96

Table C.4: Minimum number of exits based on the occupant load (Section 1006.3.2) ... 96

Table C.5: Exit access travel distance (Section 1017.2) .. 96

List of Tables

List of Abbreviations IX

ACC Automated Compliance Checking

AED Available Egress Distance

BIM Building Information Modeling

GA Genetic Algorithm

GD Generative Design

IBC International Building Code

MED Maximum Egress Distance

OL Occupant Load

VPL Visual Programming Language

List of Abbreviations

Introduction 10

1.1 Overview

The AEC industry follows specific standards to ensure that buildings are structurally

sound, reliable, and usable. Compliance with these codes is crucial for the proper func-

tioning of buildings and the safety of their users. In the past, ensuring adherence to

building standards relied on manual processes, mainly using 2D drawings. However,

due to a lack of automation, this approach is error-prone and time-consuming (Villaschi

et al., 2022).

The emergence of BIM technology has made Automated Compliance Checking (ACC)

possible. While current compliance checkers can verify adherence to regulatory stand-

ards and modify building designs for compliance, there is still a need to fully automate

and optimize this process for complex and diverse design scenarios (Patlakas et al.,

2018). As a result, architects and engineers manually change building models to meet

code requirements, which is time-consuming, labor-intensive, and iterative, frequently

resulting in errors and reducing the project's total profitability.

Many code compliance checkers use programmed codes to evaluate compliance.

However, this method only shows the input and output data, not the actual steps taken

to process it. As a result, designers don't know how the data is being processed and

only see the final results, which makes it difficult to ensure accuracy and fairness. Also,

designers find it challenging to make process changes to fit their specific needs without

developer intervention, which can be time-consuming and costly (Preidel & Borrmann,

2018).

To address these challenges, the manual adjustment of building models to achieve

code compliance can be automated by using generative design for parametric BIM

models. This thesis aims to examine and adjust design alternatives by modifying vio-

lation-related parameters to streamline code-compliant building designs and identify

the most efficient and compliant design solution using optimization algorithms. The GA

has been applied to optimize the building design to minimize the available egress dis-

tance. The proposed framework can automate not only the process of checking code

compliance but also the adjustment of BIM models to ensure that they are both code-

compatible and optimized for the safety of the occupants.

1 Introduction

Introduction 11

1.2 Research Objectives

This thesis aims to create a framework that combines parametric modeling and ad-

vanced optimization algorithms to identify an efficient and code-compliant design so-

lution for building egress requirements. It is essential to consider egress requirements

in building design as they contribute to the safety of building occupants during emer-

gencies and are essential for compliance with building regulations. This thesis aims to

address the following research question:

“How can automated design support be provided through generative design

and optimization algorithms to transform parametric models into code-com-

pliant solutions that minimize egress distances and enhance occupant

safety?”

This thesis introduces the code compliance framework designed to correct the BIM

models to ensure compliance with building codes. it automates code compliance

checking for the building's egress requirements and can automatically adjust violation-

related parameters to ensure code compliance. Using a visual programming language,

the building code limitations are imported and compared with the data of the building

elements in the BIM model to check code compliance. Once the non-compliant building

parameters are identified, they are automatically adjusted within the specified range of

building codes to ensure code compliance. This thesis aims to use generative design

to optimize egress routes by identifying the design variant with the shortest egress

distance, allowing quick evacuation in emergencies. This objective guarantees that the

building design not only adheres to building regulations but is also optimized to en-

hance the safety of occupants. The proposed framework has been tested in a case

study to check its accuracy and reliability. The case study considered in this thesis is

the Physics Department (N6) Building of the Technical University of Munich (TUM).

The obtained results are thoroughly explored, and potential enhancements are dis-

cussed.

1.3 Outline of Thesis

Chapter 2 investigates the current state of Automated Compliance Checking (ACC)

practices. This includes exploring how ACC was developed and the challenges it faces

today. The theoretical principles of parametric BIM modeling are also discussed, with

examples provided to illustrate its current usage in benefiting various projects.

Introduction 12

Furthermore, an in-depth analysis is carried out on generative modeling and optimiza-

tion algorithms commonly utilized in the AEC industry.

Chapter 3 outlines the proposed methodology, including the workflow and practical

application of the approach. An in-depth analysis of the building code, specifically used

for egress requirements is presented and objective function is created. Further in this

chapter, a detailed explanation is provided on the application of generative design and

genetic algorithm for the automatic adjustment of a parametric design to optimize the

egress distance of the building.

Chapter 4 presents the implementation of the code-compliance and optimization

framework. It begins by introducing ten compliance checks selected from the IBC. The

chapter then explains the process of creating a parametric BIM model and its applica-

tion in extracting building information for code compliance checks. Furthermore, it pro-

vides a comprehensive overview of the workflow of the Dynamo, which is utilized for

automating the adjustment of violation-related parameters. Finally, it showcases the

utilization of a genetic algorithm to achieve optimized parameter configuration for the

optimized egress distance.

Chapter 5 tests and validates the functionality of the proposed framework. This is ac-

complished through a case study of a building at TUM, for which a parametric BIM

model is constructed using the parameters selected in the preceding chapter. Subse-

quently, the model undergoes a code compliance check. When the model is deter-

mined to be non-compliant, the proposed framework is employed to automatically mod-

ify the model to ensure it meets the required code standards. Furthermore, the pro-

posed optimization framework is validated to reduce the egress distance while taking

building layout constraints into account.

Chapter 6 provides a detailed analysis of the research results, and summarizes the

contributions made by this thesis. It also outlines the limitations of the proposed meth-

odology and discusses possibilities for its future improvement.

State of the Art 13

2.1 Automated Compliance Checking

ACC increases the effectiveness and precision of the inspection process while also

providing opportunities to identify noncompliance with building standards. Building

codes represent a collection of international established regulations and standards that

aim to ensure the planning, construction and upkeep of buildings in a manner that

prioritizes safety and sustainability. These building regulations typically specify the

minimal prerequisites for building design, including prescribed materials, obligatory

structural components and mandated safety provisions. In recent years, there has

been a growing interest in structuring building codes to facilitate machine interpretation

and application to improve the accuracy and efficiency of building code enforcement

(Kincelova et al., 2020).

ACC is the subject of extensive research, focusing on leveraging BIM and knowledge

graph technologies. For instance, Peng and Liu (2023) conduct a study on ACC based

on BIM and knowledge graphs, aiming to automate the drawing review process. Using

natural language processing technology, they propose a framework to transform spec-

ification provisions into a computer-recognizable structured language. This solution ef-

fectively overcomes the problems of manual reliance and inefficiency in the review

procedure.

ACC techniques evaluate building designs through four stages: rule interpretation,

building model preparation, rule execution, and rule check reporting (Luo & Gong,

2015). Rule interpretation involves examining the construction code and identifying

pertinent rules and requirements. Building model preparation is the process of creating

a digital representation of the building that integrates all relevant design elements and

features. Rule execution is done through software that applies building code rules to a

building model and tests various design scenarios against building code requirements.

Rule check reporting involves generating a report that summarizes the results of the

rule execution and highlights areas where the building design does not meet the code

requirements. This report can subsequently be utilized to implement the necessary

design modifications and ensure building compliance with the relevant building codes.

2 State of the Art

State of the Art 14

Figure 2.1: Four-stage process of ACC approaches (Luo & Gong, 2015)

In current code compliance checkers, human expert involvement is necessary to re-

solve reported design flaws. Designers manually adjust the building model to ensure

conformance with codes, which is a laborious and iterative task. Moreover, implement-

ing design alterations is often prone to error, as satisfying one building regulation may

lead to violating other requirements (Wu et al., 2023).

2.2 Techniques in ACC Development

Research has been conducted to explore different methods of interpreting rules in var-

ious countries for ACC. These methods include rule-based, object-based, logical, and

ontological approaches (Ismail et al., 2017). The appropriate approach selection de-

pends on the problem's complexity and the accuracy required for ACC. This section

outlines some commonly used strategies for comprehending rules for developing Au-

tomated Compliance Checking.

2.2.1 Software Applications

Commercial software applications are frequently employed for rule checking since they

are accessible and simple to use. Some popular software for ACC includes Solibri

Model Checker (SMC), BIM Assure, SMARTreview, and CORENET.

Solibri Model Checker (SMC) is a software application developed by the Finnish com-

pany Solibri Inc. that has become increasingly popular among architects, engineers

and construction professionals (Solibri, 2024). The software is designed to help de-

signers identify and resolve design errors before and during the construction process.

One of the primary strengths of SMC is that it automates the design analysis and

checking process, making it easier for designers to identify potential issues such as

State of the Art 15

clashes, missing components, or accessibility problems. Using SMC, designers can

significantly reduce the risk of costly construction errors and delays, resulting in a more

efficient and streamlined construction process.

SMC uses a classification strategy to combine data from multiple discipline models and

BIM authoring tools. This strategy involves categorizing elements of construction

based on particular details included inside the building model. The categorization tech-

nique is a critical step in the process as it allows information from various construction

models to be filtered and prepared for the subsequent inspection procedure. The clas-

sification system helps to organize and structure the data, making it easier to identify

and inspect the different components of the building model. This procedure guarantees

that all data in the model is precise, full, and unified, lowering the likelihood of mistakes

and conflicts.

The Solibri application's checking methods are based on the Ruleset Manager, which

has a library of templates (Preidel & Borrmann, 2018). Each template provides a stand-

ard-checking approach that may be tailored to a set of parameters. Users can create

or modify these rule templates to suit their specific requirements. Rule compositions

can be saved as rule sets, making sharing and distributing specified rules possible.

SMC also has several built-in features that help users quickly identify potential issues,

such as highlighting areas where the design may not comply with accessibility stand-

ards.

The process of creating rules in SMC requires extensive knowledge of the rules them-

selves. Therefore, this process is usually performed by experts rather than users. As

a result, most users depend on SMC's established criteria and focus on key design

criteria such as information sufficiency or building component collision (Fig. 2.2). De-

spite this limitation, SMC remains a highly effective tool for identifying and resolving

design errors, and its popularity among professionals in the construction industry con-

tinues to grow (Greenwood et al., 2010).

State of the Art 16

Figure 2.2: User interface of the Solibri Model Checker (Preidel & Borrmann, 2018)

Kim and Nguyen (2011) explore the effectiveness of a plug-in application for automatic

code compliance checks. The approach requires using a plugin to retrieve the essential

information from the building design to perform building code checks. This is achieved

by utilizing a VB.Net plug-in to generate a conditional query. Although executing con-

ditional queries is not directly possible in Revit, it can be accomplished using the Revit

API. The framework possesses a static graphical model that exhibits building proper-

ties in both graphical and non-graphical formats. Their comprehensive analysis centers

on Autodesk Revit Architecture to ensure compliance with the International Building

Code (IBC). The focus is on three essential areas of compliance: firewall openings,

fireproofing scores, and lateral consistency. Their technology allows the extraction of

information not readily accessible in the building design. They develop additional pa-

rameters that encapsulate their understanding of the IBC building code, such as the

dimensions of firewall openings. This step proves necessary as the building model

alone does not furnish all the requisite information for compliance checks. The study

reveals that Autodesk Revit Architecture is an optimal platform for implementing auto-

mated building design systems, including code compliance verification. Incorporating

additional parameters based on the knowledge of building codes guarantees the avail-

ability of all necessary information for compliance checks.

2.2.2 Object-based approach

The object-based method is more appropriate for monitoring product quality and de-

tecting design flaws. This approach utilizes the object-oriented attributes of BIM. A

building model comprises distinct objects, each with unique characteristics and con-

nections to other objects, which are compared to relevant building codes for compli-

ance. The object-based approach is a strategy for organizing comprehension. This

State of the Art 17

structure is achieved by expressing categories of objects as units of information. The

technique of modeling building codes using the object-oriented approach includes

three parts (Yang & Li, 2001):

1. Categorization and Abstraction of Building Codes: This stage involves identifying all

information in the building codes and classifying them. This stage aims to ensure that

all significant information is encapsulated in the knowledge base.

2. Modeling of Rule Representation: This stage involves identifying all related objects

and establishing connections between them and building code classes.

3. Development of Knowledge Base: This stage entails recording and preserving data

and principles about construction regulations in a hierarchical style within an infor-

mation base. The objective of this stage is to ensure that the knowledge base is current

and precise.

Figure 2.3: Three stages of the object-based approach (Yang & Li, 2001)

Some studies demonstrate that machine learning can surpass rule-based techniques

under certain circumstances (Bloch & Sacks, 2018). Sacks et al. (2019) discuss artifi-

cial intelligence's strong, favorable implications in ACC. They highlight numerous pos-

sible applications for artificial intelligence approaches throughout the inspection pro-

cess. Furthermore, it is feasible to execute the entire rule-checking procedure using a

machine-learning algorithm (Bloch & Sacks, 2018). However, machine learning pre-

sents challenges, such as collecting training datasets and selecting data characteris-

tics from an enormous quantity of building information. It is vital to establish or identify

distinct data characteristics of buildings to evaluate different rules, as relevant and ef-

fective data features ensure high-accuracy outcomes from machine learning algo-

rithms.

CORENET e-PlanCheck was formally adopted in Singapore in September 2000 as an

example of an object-based methodology and automated code-checking system (Shih

& Sher, 2014). CORENET project is the pioneer project in the automation of code-

State of the Art 18

checking. The technology increases the productivity and precision of the verification

process, making it more reliable and faster. FORNAX is an independent platform and

C++ object library. By extending the IFC model and extracting FORNAX objects, rules

defined in plain language can be easily understood without requiring algorithm devel-

opment (Eastman et al., 2009).

Figure 2.4: Recent approaches to automated compliance checking (Preidel & Borrmann, 2015)

DesignCheck, an automated checking system, can create complete design information

with corresponding descriptions that map to building codes. Building codes are com-

prehended through an object-oriented description and subsequently encoded as ob-

ject-oriented rules using the programming language. The tool enables designers to

verify building models against certain clauses in the building code, or they may check

individual item kinds or groups of items rather than the full building design.

2.2.3 Logical approach

Building rules, the product of human creation, can be interpreted through formal meth-

odologies, such as converting logical constructs into statements in human language.

The formal interpretation process entails decomposing intricate rules into smaller,

more manageable components that can be expressed in a logical language. The lan-

guage most commonly employed for natural language translation is first-order predi-

cate logic, which allows for expressing complex ideas using simple symbols. First-or-

der predicate logic is a formal language that uses symbols and rules to depict logical

associations between objects and concepts. It is a powerful tool for expressing com-

plex ideas because it creates precise and unambiguous statements that humans and

machines can easily understand. Prolog, Datalog, and Answer Set Programming are

commonly used logical programming languages.

There are certain advantages of using logic-based reasoning in checking code compli-

ance (Zhang & El-Gohary, 2016). The binary nature of logic-based reasoning is one of

the main reasons. Logic-based reasoning evaluates statements or conditions as true

State of the Art 19

or false, following a logical sequence to conclude. Because logic-based reasoning is

binary, it may quickly assess if a building design is appropriate or in breach of specific

standards or rules. In addition, complex building codes can be effectively captured and

represented logically and structured using expressive logic-based reasoning, ensuring

accurate interpretation and implementation of the building code.

Lee (2010) discover that predicate logic is helpful for logical validation of checks. It can

reflect a verification technique, computation in the defined guidelines, numerous stand-

ard circumstances, and the ability to treat construction portions as predicate logic en-

tities. By confirming the logical combinations of conditions, the verification can be com-

pleted, resulting in validation findings that are either 'true' or 'false'. Park and Lee

(2016) provide KBimCode, which uses a logic rule-based mechanism to represent,

define, and evaluate building codes.

In addition to predicate logic, the conceptual graph is another method used to convert

rules into fundamental logic structures. It is a useful tool that allows experts to extract

rules, construct objects, and describe the interaction between them, including any re-

strictions, without requiring programming knowledge. Translating rules into a concep-

tual graph involves four steps (Figure 5). Firstly, the central idea of a rule, such as

"space", must be identified. Secondly, the individual sub-rules that make up each rule

must be recognized, as each sub-rule is independent. Thirdly, the atomic limits and

restrictions are determined. Finally, the most suitable conceptual graph is defined by

establishing the relationships between all the pieces.

Figure 2.5: Four Stages in Creating a Conceptual Graph for Logical Interpretation (Yang & Li, 2001)

Salama and Gohary (2011) conducts a study on the logical approach and develops the

deontology approach to make it easier to determine if a building model is authorized

or banned under applicable rules. This approach provides complex knowledge repre-

sentation and reasoning more effectively. The decision table technique, developed in

1969, is quite similar to the logical approach (Fenves et al., 1969). It was created to

help understand the steel design criteria of a structure. This method involves recording

logical rules as a parameter table and does not require computer programming. The

State of the Art 20

decision table organizes every consideration and judgment into an array, allowing in-

tricate reasoning to be expressed concisely and clearly.

2.2.4 Ontological approach

Ontology is a representation of knowledge that offers a structured framework for pre-

senting building objects, their attributes, and relationships in a particular domain

(Preidel & Borrmann, 2018). Ontology may be used to represent the connections and

restrictions that are present between various construction components and systems.

For example, relationships between different building materials, such as those used

for walls, roofs, and floors.

A graph effectively expresses complex ideas and relationships in the semantic network

(Decker et al., 2000). It is a visual representation of multiple objects and their logical

relationships. The Resource Description Framework (RDF) is usually utilized to gener-

ate such graphs. RDF is a language that allows you to specify graph structure by using

statements and expressions to describe the links between resources. These state-

ments, or RDF triples, comprise three parts: subject, predicate, and object. The subject

represents the resource, the predicate indicates their relationship, and the object rep-

resents the other resource. All three components work together to provide a compre-

hensive and precise overview of the resource relationships.

Zarli et al. (2008) present a framework with four components contributing to a compre-

hensive conformity-checking approach. First, an information collection approach was

developed utilizing RDF (Resource Description Framework) to define the framework

and construction rules. In addition, a logic system was created to align the design with

the construction codes. This method aids in detecting variations and flaws in the con-

struction model. Finally, they were included in a working model termed the C3R frame-

work to assist in developing the structure. The C3R system is a computer application

that compares code compliance to the building model.

The ICC adopted the ontological approach for regulatory compliance by developing

SMARTcodes in 2006 (Eastman et al., 2009). SMARTcodes are a set of codes that

incorporate the principles of ontology to provide a more structured and consistent ap-

proach to regulatory compliance. These codes are used for various purposes, including

building codes, fire codes, and energy codes. As part of the development of

SMARTcodes, the ICC established an International Energy Conservation Code (IECC)

dictionary. This dictionary is a knowledge acquisition method and a communication

State of the Art 21

platform between regulations and building models. Bouzidi et al. (2012) propose a

framework that utilizes semantic web technologies to formalize building regulations.

The framework is based on RDF Query Language (SPARQL). The framework incor-

porates an ontological approach called CQIEOntology to facilitate construction quality

inspection and evaluation. This approach evaluates construction quality by assessing

if required standards are met.

ACC also established the ontology concept through the RASE framework (Hjelseth &

Nisbet, 2011). The RASE approach organizes and structures specification rules, which

are transformed into a machine-readable format for automated compliance assess-

ment. These four components were employed as model-checking operators, and each

rule is divided into four-element groups. A requirement is a set of specified criteria a

building design must fulfill to comply with the building code. Requirements often begin

with 'shall' or 'shall not'. Applicability assesses whether a certain rule applies to the

building design. It involves identifying many sentences that relate to the same idea. If

a requirement is met, the selection element specifies the exact component to which it

applies. Exceptions are the opposite of Applicability; they account for any unique cir-

cumstances in which the requirement may not apply, even if it usually applies to the

building design. Exceptions often begin with 'unless'.

Figure 2.6: Establishment of the Norwegian code with the RASE syntax (Hjelseth & Nisbet, 2011)

2.2.5 Challenges encountered in ACC

With the advancement of technology, data can now be accessed and processed auto-

matically in machine-readable format. However, it is challenging to obtain what one

needs from an extensive number of written material. Natural language processing

(NLP) is widely utilized to fill the separation between machines and human languages,

enabling successful human-machine communication. NLP is a discipline of computer

science that studies the interaction between human and machine language. The

State of the Art 22

objective is for trained automated machines to understand, interpret, and develop hu-

man language. NLP enables machines to analyze large amounts of written text, dis-

cover patterns, and extract usable information. Zhang & El-Gohary (2017) propose a

framework for the ACC that addresses the challenge of manual coding rules. The sug-

gested system uses NLP to automate the process of coding rules, lowering the chance

of human mistakes. With this framework, the ACC achieves greater efficiency and ac-

curacy in its rule-making process. Moreover, Zhong et al. (2020) present an artificial

learning model that combines NLP with data extraction. This model helps analyze and

understand complex building regulations. By combining natural language processing

(NLP) and information retrieval, this model extracts critical information from large sets

of building codes, providing actionable insights to stakeholders.

The fundamental goal of ACC is to convert rules and guidelines into machine-usable

language. There are two distinct methods for this translation (Preidel & Borrmann,

2018). The translation process can be substantially simplified by shifting the evaluation

procedure directly to a coded program. In this approach, the digitization of code or

guideline materials focuses on defining machine-readable algorithms often hidden

from users. This concept is referred to as the Black-Box method, and it is a process

that displays incoming and exiting data, not the actual computation operation. How-

ever, the fundamental benefit of this method is an extremely small overall rate of mis-

takes due to the code-checking system's closedness and explicit use of internal data

structures. The Black-Box approach works well when the outcome is more important

than the procedure. However, the user's capacity to interpret the translated rules is

limited due to the hidden approaches used in the process. As a result, additions and

modifications can only be implemented via integration with the software developer.

White-Box methods are a type of testing approach that allows the internal processing

steps of a system to be visible and comprehensible to the user. Unlike hidden proce-

dures, which conceal the inner workings of a system, White-Box methods provide

transparency that enables users to understand and retrace the steps of the checking

procedure at any time. To reach this degree of accountability, each section of the trans-

lated rule or procedure must be clear by both the computer and the person using it.

This necessitates a code representation system comprising a set of signs and regula-

tions for describing objects, methods, and relationships clearly and comprehensibly to

the user.

State of the Art 23

Figure 2.7: Representation of the black-box and white-box approaches (Preidel & Borrmann, 2018).

The fundamental purpose of White-Box techniques is not just to encompass all poten-

tial data that an instruction or regulation may provide but additionally to allow the con-

sumer to track progress step by step. This means the regulations must be interpreted

using a user-friendly code representation system, allowing people to understand how

the system processes information at any given time. Despite creating and executing

such an approach that needs substantially more time than the closed verification tech-

nique, its benefits for carrying out an inspection assignment are significant. By provid-

ing users with a clear understanding of the inner workings of a system, White-Box

methods can help improve system performance, identify potential issues more quickly,

and ultimately lead to a better user experience.

Considering the rising level of digitization and outsourcing in the building sector, ac-

countability for the success of each process step ultimately falls on the planning engi-

neers or regulatory authorities due to legal constraints. Automated processes must be

cautiously approached, and their results must be manually checked for accuracy and

plausibility. In the AEC industry, it is common practice to periodically check results

manually by performing calculations or comparing them with established rules of

thumb. However, because organizing experts are often not software developers, tests

are not conducted using black-box approaches owing to a lack of openness. This lack

of openness frequently causes a lack of faith in the outcomes and raises concerns

about the trustworthiness of automated systems (Gross, 1996). As a result, a white-

box approach is preferred to meet the main objectives. This approach allows for trans-

parency and observability of individual processing steps, reducing the risk of hidden

procedures and errors. However, this raises the concern of whether total machinery

automation without human intervention or input is realistic. Guidelines may include

confusing semantics that a human with the necessary expertise, wisdom, and account-

ability must interpret. Therefore, it is advised that a partially automated technique be

State of the Art 24

employed. This strategy allows for user interaction and input while retaining the bene-

fits of automation.

2.3 Parametric BIM Modeling

Parametric BIM models are constructed utilizing relationships and restrictions, result-

ing in an adaptable framework which can rapidly and effectively adjust to forthcoming

or evolving circumstances (Borrmann et al., 2018). A “parameter” defines building ob-

jects' geometric and semantic information and helps establish interactive dependen-

cies. Using parametric modeling, architects and engineers can gain precise control

over building component information. Parametric modelling helps planners to swiftly

examine a variety of construction alternatives by integrating factors that represent the

limits and requirements of building regulations. It enables seamless modification of

component geometric and semantic data through parameters, allowing professionals

to automate the model adjustment process to ensure code compliance of building mod-

els.

In parametric modeling, the first step is to create a 2D sketch that includes all the ge-

ometric elements required to produce the final object (Borrmann & Berkhahn, 2018).

Afterward, the geometric elements are linked using two kinds of constraints: dimen-

sional and geometric. Dimensional constraints specify the dimensional value of geo-

metric elements such as length, width, or thickness, while geometric constraints ensure

that the geometric elements remain parallel or perpendicular. After assigning the con-

straints, the 2D parametric sketch can be used for operations, including extrusion or

rotation, to create the final 3D parametric body. Figure 2 illustrates that the rectangular

and round shapes confine an identical region due to dimension constraints.

Figure 2.8 Instance of a parametric sketch (Borrmann & Berkhahn, 2018)

State of the Art 25

Parametric modeling based on geometry involves creating shapes using rules that are

based on parameters. For example, a sketch is created with specific dimensional,

equational, and geometric constraints. This sketch is then combined with a procedural

geometric description, such as extrusion, to create a three-dimensional shape. This

method is considered an implicit representation because the entire construction history

is saved, allowing for modifications at each step of construction by adjusting parame-

ters. On the other hand, Parametric BIM modeling limits the flexibility of parametric

modeling because it relies on predefined object types and constraints within the BIM

application. The parametric approach in BIM operates on two levels: first, by establish-

ing geometric construction objects such as walls and stairs, and second, by defining

their positions within the overall building complex. This approach requires defining the

object's position within the building complex and often includes predefined constraints

between object types. These parameters involve considerations such as parallelism,

orthogonality, alignment, and distance between objects (Borrmann et al., 2018).

Parameters are crucial in defining the relationships between different building elements

and how they affect each other (Edmonds et al., 2022). It implies that any alteration in

a parameter will impact its dependent parameters, thereby influencing the overall de-

sign. For instance, an alteration in the parameter representing the width of a room

would automatically update its dependent parameter, i.e., the length of the wall. More-

over, a parameter could be established to ensure that the height of a door always

remains at 80% of the height of the wall it is set in. Consequently, any changes in the

wall height would automatically trigger adjustments in the door height to preserve this

relationship. This concept of parametric interdependency facilitates the development

of intelligent BIM models capable of automatic adjustments in response to changes.

This not only diminishes the time and effort required for design updates but also en-

hances the overall efficiency of projects.

A number of advances have been made to assist parametric modelling. The tightly

coupled method connects systems via the Application Programming Interface (API). In

this scenario, graph-based systems interact using the API, which directly generates

geometry in the BIM model each time that the graph-based model is performed. One

of the examples is Dynamo, which utilizes the Revit API. The loosely coupled technique

connects platforms by exchanging models. The graph-based approach frequently gen-

erates data in a typical file structure that can be put directly into the BIM platform. An

example of the loosely coupled technique is Grasshopper, which uses IFC as the

State of the Art 26

interchange format. These techniques are continually emerging. Nevertheless, of the

two options, the loosely coupled method based on sharing files has the essential ben-

efit of being process agnostic, allowing individuals to connect tools and systems to

enable multiple types of collaboration and exchange. For instance, while Geome-

tryGym generates an IFC file, users may link to any BIM platform capable of importing

IFC files (Janssen, 2015).

Figure 2.9: Integration of graph-based systems with parametric BIM modeling (Janssen, 2015).

Holzer (2015) explains the benefits of integrating BIM with parametric modeling. BIM

involves creating and maintaining digital representations of a project's physical and

functional qualities, resulting in a collaborative environment for all stakeholders en-

gaged in a building's lifetime. On the other hand, parametric design is a technique for

intelligently developing architectural objects based on relationships and rules defined

through parameters. The combination of BIM and parametric design provides a solid

foundation for tackling difficult design challenges. It allows architects and designers to

develop flexible models that can respond to changing design needs without having to

begin from the start.

Parametric models facilitate performance analysis early in the design process. By in-

tegrating analysis tools with parametric models, designers can assess performance

criteria such as daylighting, thermal comfort, and structural stability, enabling informed

design decisions. Károlyfi and Szép (2023) use parametric BIM modeling to generate

various structural solutions and evaluate their embodied environmental impact during

the conceptual design phase. The study showcases the effectiveness of parametric

State of the Art 27

BIM modeling through a case study of an unheated warehouse constructed using steel

frames, analyzing 48 different design solutions. The study concludes that parametric

design can be a valuable tool for conducting comprehensive environmental impact

evaluations.

Júnior et al. (2023) investigate the use of parametric modeling in BIM for the identifi-

cation of potential building pathologies. A parametric digital twin of an existing building

is created to facilitate a comprehensive analysis. It permits the linkage of relevant in-

formation to the operational duration of products and equipment in development. It

provides a proactive strategy for building maintenance, potentially leading to significant

savings in costs and resources. Yang et al. (2022) presents a framework that utilizes

parametric modeling to calculate the construction expenses. A construction cost esti-

mation model is developed employing a wide range of characteristics, emphasizing the

importance of financial viability as well as expense assessment during the initial design

phase of initial-stage construction tasks.

Barazzetti and Banfi (2022) study the use of parametric BIM and GIS information in

infrastructure design. Geospatial data is used extensively in infrastructure and land

administration projects. GIS softwares are great at geospatial analyses but lacks par-

ametric modeling tools while BIM softwares excels at parametric modeling but lacks

geospatial tools. They suggest that BIM and GIS are complementary technologies, and

ongoing research is aimed at enhancing their interoperability, particularly at the build-

ing level. Integration of geoinformation and parametric modeling streamlines design

workflow. They provide simulated and real examples, showing that integration is fea-

sible at specific scales.

2.4 Building Egress Requirements

A means of escape is a continuous and unobstructed route between any point in the

structure to a public route or a designated area of safety (Shen, 2006). A building's

technique for escape is made up of three parts. Exit access is the path from any loca-

tion within a building to an outlet. Exit access is characterized as the portion of the way

of escape that connects to the entrance of an escape and is included in the total dis-

tance traveled to reach an exit. The exit shall be defined as the component of the

means of escape that has protection from the zone of incidence and offers a safe pas-

sage to the exit discharge. An exit is generally a door that leads to the outdoors or, in

a multi-story structure, an enclosed exit staircase. The exit discharge shall include any

State of the Art 28

part of the route between the exit's termination and the exterior or the refuge area

(Bukowski & Tubbs, 2016).

Figure 2.10: Three components of means of egress (Shen, 2006)

Sun and Turkan (2019) used BIM to simulate fire situations and human behavior, en-

abling the comparison of available and required evacuation times. The study highlights

the importance of including building layout, fire characteristics, and human behavior in

evacuation simulations to improve the means of egress. The findings suggest that by

comparing available and required evacuation times, one can select an optimal building

architecture that reduces the required evacuation time, thereby enhancing occupant

safety. Kodur et al. (2020) investigate evacuation techniques inside a thirty-two-story

standard workplace during various fire-induced scenarios. He discovers that the two

most important factors determining evacuation duration are the location of the stairs

within the structure and the floors where the explosion of flame begins. The study also

finds that using situational awareness in urgent evacuation protocols can increase

evacuation efficiency, resulting in up to a 24% reduction in time.

Usman et al. (2020) proposes a computational method for automating semantic rule

testing of flame escape situations in the architectural layout of a building. The tool uses

dynamic crowd simulations to consider space semantics and the impact of design

State of the Art 29

space on human safety during possible egress evacuations, going beyond static geo-

metric information. Integrating spatial semantics with dynamic crowd simulations ena-

bles a more thorough study of egress scenarios, leading to safer architectural solu-

tions. The case study demonstrates that standard egress planning approaches lacking

spatial semantics or dynamic human behavior may violate IBC regulations and put

human safety at risk. Nourkojouri et al. (2023) address the critical issue of emergency

evacuation in building design. The study acknowledges the challenges of analyzing

the various factors that affect evacuation and the time-consuming nature of simulation-

based assessments during the early design stages. To address this, the researchers

use two deep learning algorithms, Pix2Pix and XGBoost, to assess the evacuation

process. The Pix2Pix model accurately generates heat maps showing potential con-

gested routes, while the XGBoost model effectively predicts evacuation times with an

average inaccuracy of 36 seconds. The study suggests that this approach offers a fast,

reliable alternative to the typical time-consuming evacuation simulations during the

early stages of design, enabling more efficient and safe architectural planning.

Wang et al. (2017) conduct a study to enhance evacuation efficiency during emergen-

cies in complex infrastructure. The research addresses problems arising from compet-

itive behavior and congestion in narrow corridors during evacuations, which can signif-

icantly reduce evacuation rates and exit efficiency. The study introduces a unique tech-

nique that combines network analysis with BIM to create a decision-making framework

for evacuation routes based on graph theory. This strategy also integrates psycholog-

ical elements and simulation studies to influence evacuation behavior, considering how

flames, dust, and psychological stress affect the desire of individuals to flee. The study

demonstrates that integrating advanced micro-pedestrian models, computer-aided

techniques, and psychological insights can optimize evacuation procedures.

2.5 Generative Design

Generative design is a paradigm shift in the AEC industry that leverages algorithms to

generate an array of design possibilities, all of which adhere to a set of predefined

criteria and constraints (Filippo, 2021). Generative design learns and evolves with each

cycle, refining subsequent iterations and increasing efficiency. Traditional design pro-

cesses in architectural and engineering design have been predominantly characterized

by linearity and determinism, with the scope of solutions frequently constrained by sub-

jective experiences. Generative design deviates from this paradigm by adopting a non-

State of the Art 30

linear and investigative approach. It automates the generation of design variations,

facilitating a comprehensive exploration of the design space that would be otherwise

time-consuming for a human designer to replicate manually.

Zarzycki (2012) explains the use of parametric modeling for generative design. Para-

metric modeling is a crucial methodology that allows for creating complex architectural

forms by adjusting algorithmically defined parameters and constraints. This method

helps establish variables that control design characteristics, which are then intercon-

nected through computational rules to generate numerous design variations. Further-

more, the iterative process can be fine-tuned by integrating with analytical tools to op-

timize the design for specific performance metrics.

Figure 2.11: Generative design using parametric modeling achieved with Grasshopper (Zarzycki, 2012)

State of the Art 31

BIM models play a crucial role in modern architecture and construction projects but

creating them may be laborious and susceptible to user mistakes and inaccuracies.

Moreover, making changes to finished models can be a challenging task. In this con-

text, generative design is a promising solution to address these issues. Generative

design aims to enhance efficiency, minimize the risk of errors, and increase design

flexibility by automating tasks and interconnecting components. It also offers the ad-

vantage of using an implemented parametric model as a template for future projects

or for comparing different design versions quickly. This means that designers can de-

fine a set of parameters and generate many solutions in a fraction of the time it would

take manually. In the initial stages of the design process, generative design allows for

more iterations and enables faster implementation of changes than traditional design

models (Fischer et al., 2012).

Generative design is a programming-centered approach that empowers designers to

use computer programs to autonomously generate potential solutions for a given prob-

lem or task. This methodology is particularly pertinent to the AEC industry, which often

entails a diverse range of potential solutions for a single problem and involves numer-

ous factors that influence the optimal solution. By leveraging generative design, pro-

fessionals can explore various design possibilities and efficiently navigate the complex

landscape of design considerations (Kalkan et al., 2018).

Based on generative design, a generalized framework called Model Healing has been

suggested, which presents algorithmic approaches for parametric construction plan-

ning and model-based presentation in solution domains to automatically modify incon-

sistent building plans (Wu et al., 2022). A healing metric is used as an assessment

indication throughout the adjustment procedure to choose the design version that com-

plies with building rules while deviating the least from the original design. An initial

version of a responsive construction layout for the German norm is developed to show

the framework's applicability, ensuring emissions escape from exit points. The funda-

mental variant is "healed" to a conforming layout by lightly increasing the size of the

emissions ports and installing one extra emissions release to the roof. In recent years,

the use of AI methods in generative design has emerged as a significant advancement.

Li et al. (2024) provides an autonomous structure planning method that streamlines

the method from generative design to preparation stages for precast structures. The

system uses the BIM model to develop new design choices that properly anticipate

State of the Art 32

construction efficiency under wind conditions. This is accomplished using a trained

Graph Convolutional Neural Network (GCNN) to optimize design choices efficiently.

2.6 Optimization Algorithms

Optimization algorithms represent a class of computational methodologies designed to

systematically search for the optimal solution within a predefined solution space for a

given problem (Stork et al., 2022). An optimization algorithm aims to decrease or raise

a certain objective function while satisfying certain constraints, thereby addressing var-

ious real-world problems across diverse domains (Gad, 2022).

Defining an objective function is a crucial part of any optimization process because it

outlines the objectives of a particular problem. The objective function is a function that

is either maximized or minimized based on the optimization goal. The feasible region

is defined based on the constraints. It represents the region where all objective function

constraints are satisfied, leading to the decision variables being located at the corners

of the feasible region. The optimum solution is the values of decision variables at which

the objective function is maximized or minimized.

Figure 2.12: Graphical representation of feasibility region of an objective function (Berhe, 2012)

Optimization algorithms are effective tools for addressing challenging issues that are

frequently utilized in a variety of industries. Every approach contains unique ad-

vantages and drawbacks. Therefore, the algorithm selection is typically determined by

the individual situation. For example, a study showed that PSO provides the shortest

distance solutions, while SA is more efficient in execution time (Mirsadeghi &

Khodayifar, 2020).

State of the Art 33

2.6.1 Genetic Algorithm

Holland and his fellow researchers created the notion of the GA in the early 1960s

(Sivanandam & Deepa, 2008). The GA is motivated by the concept of natural selection.

Natural selection causes inadequate and unsuitable creatures in their habitat to be-

come obsolete. Powerful individuals have a better chance of carrying on their DNA to

subsequent generations through breeding. Over time, organisms with the proper mix

of genes dominate their populations. The GA is frequently employed to develop excel-

lent approaches for optimization and query issues by employing ecologically based

drivers. The GA was first designed to populate the population with random candidate

solutions and evolve the ideal answer from generation to generation.

Zhou et al. (2022) introduce a novel framework using the GA for the optimum perfor-

mance of the hospital. The framework’s objective is to adapt the spatial configuration

of healthcare facilities to fulfill varying operational demands, ensuring superior effec-

tiveness under typical conditions and mitigating danger amid pandemics. The study

first analyzes the key parameters influencing hospital layout. Subsequently, to address

the dual objectives of efficiency and safety, the study establishes constraints in the

form of a nearby fitness rating and probability of an infection index. Finally, an autono-

mous design process produces numerous building layout schemes, from which the

best hospital building plan is chosen.

Zhao et al. (2019) propose a framework that utilizes GA to estimate construction pro-

ject costs. The framework has been validated by evaluating the construction costs of

20 building projects, demonstrating its effectiveness and reliability. Zhang (2010) study

GA to develop maintenance schedules to minimize user maintenance plan delays. It is

observed that a larger population size led to a better spread of solutions. He et al.

(2019) introduces an optimization model based on GA that assesses the factors and

constraints leading to delays and increased costs in construction projects. The model

utilizes BIM to simulate real construction projects before they commence, enabling the

identification of all factors contributing to delays and cost overruns. Attia et al. (2023)

develop a plugin for BIM authoring tools to reduce the time and cost of building con-

struction projects using GA. Validation has shown that the plugin can reduce project

time by approximately 20% and save project costs.

Tafraout et al. (2019) propose a framework for automating the generation of the struc-

tural layout of a building using a Genetic Algorithm (GA). A Multi-Objective Genetic

State of the Art 34

Algorithm (MOGA) has been utilized to generate multiple potential floor layouts that

comply with structural and seismic building codes. Each floor layout generated by the

GA is analyzed to determine its fitness score. The fittest layouts are then selected for

the next generation through crossover and mutation. Finally, the best individual from

the last generation is chosen as the optimal architectural floor layout for the building.

Figure 2.13: Generated floor plans using GA

2.6.2 Simulated Annealing

Kirkpatrick et al. (1983) have used simulated annealing in combinatorial optimization

for the first time. The simulated annealing technique relies on the annealing process in

manufacturing, which involves rapidly heating a metal to extreme temperatures and

then slowly cooling it. The simulated annealing techniques tackle solo and multiobjec-

tive optimization queries by hiding a desired global minimum/maximum amid multiple

local minima/maxima.

In SA, the procedure of search begins with an intense phase (a starting solution) and

slowly reduces the temperature (a control variable) till it reaches a low-energy state

(the ideal solution). The key benefit of simulated annealing is its capacity to flee re-

gional minimums and settle on a single global minimum. The simulated annealing is

also simple to construct and requires no previous understanding of exploring regions

(Chopard & Tomassini, 2018). The simulated annealing is utilized to propose a classi-

fication system of existing ACC approaches by considering various criteria such as

framework development concepts, industry application suitability, and open standards

compatibility (Doukari et al., 2022).

State of the Art 35

2.6.3 Particle Swarm Optimization

Kennedy and Eberhart developed the particle swarm optimization algorithm, which rep-

licates interpersonal interactions (Juneja & Nagar, 2016). Particle swarm optimization

was initially developed for continuous problems, but it cannot handle discrete prob-

lems. The two developed an independent binary variant of the particle swarm optimi-

zation to overcome this issue. As the name asserts, this method draws inspiration from

the swarm of insects. Analogous to how insects identify an optimal location within a

swarm, PSO employs the same principle to ascertain the most suitable solution within

a given search space. Insect swarms demonstrate cooperative behavior in their hunt

for food, which is replicated in the particle swarm optimization method. Each part of

the colony adapts its search pattern depending on its unique learning experiences and

those of other members, optimizing the collective search process. This dynamic adap-

tation of search patterns is a crucial feature of the particle swarm optimization algo-

rithm, contributing to its efficacy in solving complex optimization problems.

Han et al. (2019) implements the particle swarm optimization algorithm using a visual

programming language (VPL) to facilitate multiple-objective building design optimiza-

tion to reduce building energy consumption. An office space in the building is chosen

to investigate how the opening, depth, and window-wall ratio affect the space's sunlight

heat transfer. After determining the impact of these design parameters, a Multi-Objec-

tive Particle Swarm Optimization (MOPSO) solver is created and utilized to optimize

the aforementioned structure layout parameters to improve building performance, such

as lowering solar radiation heat gain and increasing daylight factor.

Methodology 36

This chapter presents the proposed framework for the ACC and the optimization of the

parametric model, as shown in Figure 3.1. The framework is structured into a four-step

process. It begins with a comprehensive review of building codes, focusing on two

main objectives: identifying the required values for building egress compliance and

deriving the relevant objective function. Next, all essential parameters required for the

egress requirements are introduced in the BIM model during the parametric modeling.

The compliance checking is then carried out by comparing the egress requirements

mentioned in the building regulations with the parametric values obtained from the BIM

model. In case of non-compliance, the parameters related to the violation are automat-

ically adjusted to ensure the building model is code-compliant. Finally, the framework

concludes with an optimization phase, where the most efficient design solution is iden-

tified to provide optimum security for occupants during emergencies.

Figure 3.1: Illustration of the proposed framework for ACC and building design optimization. Step 1: Review of
building codes. Step 2: Parametric BIM modeling. Step 3: Compliance checking. Step 4: Optimization.

3 Methodology

Methodology 37

3.1 Code Compliance Framework

The code compliance framework is designed to correct the BIM models to ensure com-

pliance with building codes. It can automate checking code compliance for a building's

means of egress and automatically adjust violations to ensure code compliance. After

a thorough review of the IBC, ten compliance-checking rules specifically related to

egress requirements were selected (Section 4.1.2). These rules were chosen with the

aim of addressing design requirements that are associated with the means of egress.

Based on these selected rules, key parameters for modeling the case study were iden-

tified and created. The case study considered in this thesis lies in the category of edu-

cation occupancy type; therefore, the building model must follow the following require-

ments.

Table 3.1: Summary of the necessary values of education occupancy type as stated in the IBC

Building Section Required Value IBC Section

Minimum Corridor Width 72 inches (1828.8 mm) 1020.2

Required Capacity of Corridor OL * 0.2 inch (5.1 mm) 1005.3.2

Minimum Stairway Width 44 inches (1118 mm) 1011.2

Required Capacity of Stairway OL * 0.3 inch (7.6 mm) 1005.3.1

Minimum Ceiling Height 7 feet, 6 inches (2286
mm)

1003.2

Minimum Door Width 32 inches (813 mm) 1010.1.1

Minimum Door Height 80 inches (2032 mm) 1010.1.1

Minimum Space between two Doors 48 inches (1219 mm) 1010.1.8

Minimum Number of Exits per Story 2 1006.3.2

Egress Distance 250 feet (76.2 meters) 1017.2

*OL = Occupant Load

A parametric BIM model is designed to incorporate all required information for code

compliance. Parameters and constraints are defined at the element level, such as door

width and height, as well as between different building elements, for example, corridor

width and space between two doors. Furthermore, certain required values indicated in

Methodology 38

the IBC (Table 3.1) can be retrieved directly from the BIM model using the design

authoring tool's API. This eliminates the need to create separate parameters. For in-

stance, data such as the number of exits per story, egress distance, and ceiling height

can be accessed through the API. After the parametric modeling is completed, the

necessary information for code compliance is extracted from the design authoring tool,

which serves as input for the Python node. The checking functions are created with

Python to verify if the building model parameters lie within the specified range of build-

ing code or not. If the checking function fails, the difference is automatically calculated,

and the non-compliant parameter value is adjusted to the required value of IBC, and if

the checking function passes, the parameter value remains unchanged (Figure 4.13).

Once all the checking functions have validated the parameter values, a dictionary is

created with the “Parameter_Name: Parameter_Value” pairs with the adjusted values

of parameters. Dynamo utilizes this dictionary to assign the corresponding parameters

to the code-compliant values, ensuring the building model complies with the IBC reg-

ulations.

Figure 3.2: Workflow of the Code Compliance Framework

Methodology 39

3.2 Optimization Framework

This proposed framework optimizes the egress distance while considering building lay-

out constraints. Therefore, during the optimization process, only those parameters will

be considered that affect the egress distance, while other parameters used during code

compliance will not be considered. The exit access travel distance, also known as the

maximum egress distance, is specified in Table 1017.2 of the IBC. The distance is

determined based on the building's occupancy classification. To reduce the occupants'

travel distance, the objective function can be defined as

Maximize 𝑓(𝑥) = ∑(𝑑𝑚 − 𝑑𝑎)

𝑛

𝑖=1

 (1)

Subject to: 𝑑𝑎 ≤ 𝑑𝑚

𝑑𝑚 is the maximum egress distance (IBC – Table 1017.2). 𝑑𝑎 is the available egress

distance. 𝑛 is the number of building stories.

To calculate the available egress distance, the floor plans of each building story are

generated using the API of the design authoring tool. The room doors serve as the

points of origin, and the floor exits (door/stairway) serve as the points of destination

(Figure 4.19). A developed tool is used to find the shortest distance, which includes a

custom node called "VisibilityGraph.ShortestPath" (Ortega, 2018). This node requires

three inputs: the floor layout, points of origin, and points of destination. It computes the

distance from each origin point to each destination point and subsequently identifies

the shortest path by comparing these calculated distances.

Figure 3.3: Illustration of calculating the shortest path of a room

Methodology 40

Figure 3.4: Workflow of calculating the shortest path

Figure 3.5: Dijkstra's Algorithm to calculate the shortest path

Real-coded genetic algorithm is used for the optimization of egress distance. A total of

ten design variables consisting of floating-point numbers are defined. Each design var-

iable represents the parameter that affects the egress distance.

 𝑥 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥10} (2)

The move limits of design variables are defined for the generation of design space.

The lower limit is based on the required minimum values of IBC, while the constraints

to preserve the initial design topology determine the upper limit (Table 5.3). These

Methodology 41

move limits are set according to the requirements of IBC to ensure that the building

model remains code-compliant during the optimization process.

 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 (3)

𝑥𝐿 is the lower limit of the parameter range. 𝑥𝑈 is the upper limit of the parameter range.

The roulette wheel selection, also known as the fitness-proportionate selection, is used

for the genetic algorithm's selection process. This method effectively balances reward-

ing higher-fitness individuals and preserving diversity in the population. Even lower-

fitness individuals still have a chance to be selected, encouraging genetic diversity,

which is crucial for preventing the algorithm from getting stuck in the local optima.

The initial population is created by selecting a floating-point number within the defined

design space for each variable. Parents are then chosen from the population using the

roulette wheel selection method. This selection method selects individuals based on

their fitness scores. Each individual’s chance of being picked is proportional to their

fitness score. Initially, the fitness score of all individuals is calculated, and then a ran-

dom number is generated between 0 and the total fitness. The selection function iter-

ates over the population, summing up the fitness scores cumulatively. The correspond-

ing individual is selected when this cumulative sum exceeds the random pick. Individ-

uals with higher fitness scores occupy the more prominent segment and thus have

more chances of being selected.

Table 3.2: Example of roulette wheel selection

S.No. Fitness
Score

Accumulated
Fitness

Occupied (Segment) Occupied (Percentage)

1. 16 16 0 - 16 17%

2. 3 19 17 - 19 3%

3. 25 44 20 - 44 27%

4. 40 84 44 - 84 42%

5. 10 94 85 - 94 11%

Methodology 42

Figure 3.6: Illustration of roulette wheel selection based on fitness scores

Figure 3.7: Python code for the roulette wheel selection

Genetic algorithm has different types of crossovers, among which the uniform crosso-

vers method has been utilized to mix chromosomes. In uniform crossover, each child's

gene is selected randomly from one of the corresponding genes of the parent chromo-

somes with a 50% crossover. Each child's gene is equally likely to be inherited by any

of the parents.

Figure 3.8: Uniform crossover of parent chromosomes

Figure 3.9: Python code for the uniform crossover

Mutation is introduced to create diversity among the offspring, preventing the algorithm

from getting stuck in local optima or converging prematurely and promoting better pa-

rameter space exploration. The random resetting approach of mutation with a 10%

1, 17%

2, 3%

3, 27%
4, 42%

5, 11%

Selection
Point

Wheel
Rotation

Methodology 43

probability has been used, which assigns a random value from the defined parameter

range.

Figure 3.10: Random resetting mutation

Figure 3.11: Python code for random resetting of genes with 10% mutation rate

The children then replace the current population to form the next generation. This pro-

cess is repeated until the maximum number of generations is reached. Once the last

generation is created, the best individual is identified from it, and the genetic algorithm

is stopped. The chromosomes of this individual are termed as the optimized parameter

configuration and applied to the BIM model, leading to an optimized building design

that enhances occupant safety.

Figure 3.12: Workflow of genetic algorithm used for the optimization of building design

Implementation 44

4.1 Input Requirements from IBC

The IBC is a comprehensive collection of principles developed by the International

Code Council (ICC) and is chosen as the regulatory framework for this thesis. The IBC

establishes baseline criteria for various aspects of building design and construction,

including material selection, structural system design, fire safety implementation, and

the provision of accessibility features (IBC, 2018). These standards are basically in-

tended to protect the welfare of building occupants and others in the community.

Chapter 10 of the IBC defines the fundamental standards for the design of egress sys-

tems, which are positioned as the principal method for protecting humans within built

environments by allowing for the rapid relocation or evacuation of inhabitants. This

chapter includes descriptive and performance-oriented terminology to lay the ground-

work for developing a safe egress system that applies to all occupancies. It includes

all parts of the egress system, including exit access, exits, and exit discharge, as well

as the design criteria and laws that govern individual components. The criteria include

precise specifications for the size, arrangement, quantity, and protection of egress

components. Furthermore, the chapter describes the functional and operational quali-

ties that allow for safely using these components without requiring specialized exper-

tise or effort.

4.1.1 Occupancy Classification and Use

Chapter 3 of the IBC outlines the criteria for classifying buildings and structures into

different use groups and occupancies (Appendix C). Occupancy classification is the

official categorization of a building's primary purpose or a specific part of it. Buildings

are classified into one or more occupancy groups based on the potential hazards and

risks associated with their intended use. Different occupancy classes and uses involve

varying danger levels and risks to building occupants. The process of occupancy clas-

sification is crucial in determining many aspects of construction, including means of

egress. This classification is an important tool in ensuring the safety and functionality

of built environments.

4 Implementation

Implementation 45

4.1.2 Selection of Code Compliance Rules

After a detailed review of Chapter 10 of the IBC, ten checking rules are finalized upon

which code compliance will be conducted. Each of these rules is related to the egress

path and ensures the safety of occupants.

1. Minimum Corridor Width

One of the most important parameters in case of egress requirements is the width of

corridors, which will be used to evacuate occupants in an emergency. The width of the

corridors should be sufficient to accommodate the maximum number of possible occu-

pants. Section 1020 of the IBC describes the requirements for the design and con-

struction of corridors in detail. Table 1020.2 provides the minimum corridor width for

different types of occupancies. As the next chapter of this thesis explains the case

study of the N6 building of the Technical University of Munich (TUM), therefore the

occupancy classification of “Educational” (Group E) is considered while taking the

egress requirements from the code. The main corridor in the case study should have

a minimum width of 72 inches (1828.8 mm) since the occupant load is over 100. Side

corridors with an occupant load of less than 50 must have a minimum width of 36

inches (914.4 mm) to ensure safe evacuation space for occupants.

2. Required Capacity of Corridors

Section 1005.3.2 of the IBC explains the corridor's required capacity based on occu-

pant load. The required capacity of egress components other than stairways shall be

calculated by multiplying the occupant load served by the egress component by the

egress capacity factor, i.e., 0.2 inch (5.1 mm) per occupant.

𝐶𝑜𝑟𝑟𝑖𝑑𝑜𝑟 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =

𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝐿𝑜𝑎𝑑

𝐸𝑔𝑟𝑒𝑠𝑠 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 ≈ 0.2 𝑖𝑛𝑐ℎ / 5.1 𝑚𝑚
 (4)

Where:
𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝐿𝑜𝑎𝑑 = ∑

(𝑅𝑜𝑜𝑚 𝐴𝑟𝑒𝑎)𝑖

(𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝐿𝑜𝑎𝑑 𝐹𝑎𝑐𝑡𝑜𝑟)𝑖

𝑛

𝑖=1

𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑜𝑜𝑚𝑠 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝐶𝑜𝑟𝑟𝑖𝑑𝑜𝑟

(5)

The occupant load factor is the maximum floor space permitted per occupant. It is used

to calculate occupant load, which is the maximum number of occupants that can oc-

cupy a building or a section of a building at any given moment. The occupancy load

factor is determined based on the function of the space. If it is for a space where usually

Implementation 46

many occupants are present, it will have a lower occupant load factor. On the other

hand, if the function of space is such that at any given time, usually there are few

occupants present, then such space will have a higher occupancy load factor. Table

1004.5 of the IBC provides the values of different occupant load factors. After exami-

nation of the considered case study, a total of six different functions of spaces were

identified, and their occupancy load factor values are taken from Table 1004.5.

3. Minimum Stairway Width

Stairways are one of the essential egress components that must be designed to ac-

commodate the occupant load in an emergency. Section 1011.2 of the IBC explains

that the width of stairways should not be less than 44 inches (1118 mm). To elaborate

on the requirements governing stairway landings, Section 1011.6 of the IBC states that

a floor or landing must be provided at the top and bottom of each stairway. The width

of these landings, measured perpendicular to the direction of travel, must at least

match the width of the stairways they service. Doors that open onto a landing shall not

reduce the landing to less than half of its minimum width. The door cannot protrude

more than 7 inches (178 mm) into the landing when completely opened. These stand-

ards protect the safety and accessibility of stairways in various building types.

4. Required Capacity of Stairways

Section 1005.3.1 of the IBC explains the required capacity of stairways based on oc-

cupant load. The required capacity of stairways shall be calculated by multiplying the

occupant load served by stairways by the egress capacity factor, i.e., 0.3 inch (7.6 mm)

per occupant. When stairways serve many levels, the required capacity of the stair-

ways serving each story should be determined entirely by the occupant load of each

story.

𝑆𝑡𝑎𝑖𝑟𝑤𝑎𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =

𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝐿𝑜𝑎𝑑

𝐸𝑔𝑟𝑒𝑠𝑠 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 ≈ 0.3 𝑖𝑛𝑐ℎ / 7.6 𝑚𝑚
 (6)

Where:
𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝐿𝑜𝑎𝑑 = ∑

(𝑅𝑜𝑜𝑚 𝐴𝑟𝑒𝑎)𝑖

(𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝐿𝑜𝑎𝑑 𝐹𝑎𝑐𝑡𝑜𝑟)𝑖

𝑛

𝑖=1

𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑜𝑜𝑚𝑠 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝐸𝑔𝑟𝑒𝑠𝑠 𝑃𝑎𝑡ℎ

(7)

Implementation 47

5. Minimum Ceiling Height

Section 1003.2 of the IBC specifies building ceiling heights to allow enough headroom

for safe occupant evacuation. According to this specification, the egress passage shall

have a ceiling height of at least 7 feet 6 inches (2286 mm) above the finished surface

of the floor.

6. Minimum Width of Doors

Section 1010.1.1 of the IBC explains the minimum width of the door. After considering

the function of space and occupant load, it was decided that a minimum clear opening

width of 32 inches (813 mm) should be provided. In the context of doorways equipped

with swinging doors, the clear opening width is quantified by measuring the distance

between the face of the door and the stop when the door is positioned at an angle of

90 degrees. In instances where an opening is comprised of two door leaves without a

mullion, it is mandated that one leaf should furnish a minimum clear opening width of

32 inches (813 mm). This requirement ensures adequate access through the doorway.

7. Minimum Height of Doors

The height of each building door is critical to ensure the safety and efficient evacuation

of occupants. According to Section 1010.1.1 of the IBC, the minimum clear opening

height for building doors is specified to be 80 inches (2032 mm). This requirement is

essential to accommodate each room's corresponding occupant load and facilitate safe

and quick evacuation in an emergency.

8. Minimum Space Between Two Doors

Section 1010.1.8 of the IBC, titled "Door Arrangement" provides specific guidelines for

the layout of doors, particularly focusing on series configurations. This section outlines

that the minimum distance between two successive doors in a series should be at least

48 inches (1219 mm), along with the additional width required for a door that swings

into this space. Furthermore, it stipulates that all doors in a sequence must swing in

the same direction or away from the space between them. This minimum space be-

tween two doors ensures adequate space for safe and efficient movement through

doorways, particularly in emergencies.

9. Minimum Number of Exits per Story

It is important to define the minimum number of separate exits that must be provided

per building story or occupied roof to accommodate the exit discharge. Occupant load

Implementation 48

is an important factor in determining the minimum number of exits. Section 1006.3.2 of

the IBC classifies the occupant load per story into 3 groups, and a minimum number

of exits is defined for each group.

10. Maximum Travel Distance

Establishing a maximum travel distance within a building while considering the means

of egress is critical in ensuring the safety and efficiency of built environments. This key

parameter considers the building's layout, size, and occupancy to determine the dis-

tance a person would need to travel to reach a safe exit. By carefully assessing these

factors, building designers and safety professionals can ensure that occupants can

swiftly and safely evacuate during emergencies, minimizing the potential for injury or

loss of life. Section 1017.2 of the IBC provides the value of this key parameter based

on the occupancy type and whether the building is equipped with a sprinkler system.

A sprinkler system in a building can influence the “Exit Access Travel Distance” due to

its role in fire suppression and safety. A sprinkler system can control a fire in its early

stages, slowing its spread and reducing the smoke and heat produced, providing oc-

cupants additional time to evacuate the building safely.

4.2 Parametric Model Setup

In Revit, parameters and constraints can be defined on the element level (family pa-

rameters) and between different building elements (global parameters). Family param-

eters are employed in the creation of specific building elements. These parameters are

specific to the family (i.e., the type of element, such as a wall, door, window, etc.) and

control the properties of the elements within that family. For instance, a wall can be created

by defining its width, height, and length as parameters. On the other hand, global param-

eters are established across various building components and can control dimensions or

relationships between elements within the project. For example, a global parameter can

control the distance between a wall and its reference grid. Global parameters facilitate

coordinated updates across multiple elements, enhancing the design process's efficiency

and accuracy.

Assignment of global parameters is possible in two ways; the first approach uses a global

parameter as a label for a dimension string. When a label is assigned to a dimension

string, the global parameter determines the value of the dimension. This approach is

usually used to adjust the size of various elements in a model. The second approach

is to add a global parameter directly to an element at the instance or type level. This

Implementation 49

can be accomplished by choosing the element and locating the instance or type pa-

rameter. After clicking the button to the right of the parameter value, an associate

global parameter dialogue opens, and a global parameter from the list is selected and

assigned to the selected parameter.

Figure 4.1: Two approaches of assigning a global parameter

4.2.1 Shared Parameters

Autodesk Revit offers the ability to make use of shared parameters. These are param-

eter sets that can be extended to various families or projects. In Autodesk Revit, shared

parameters are saved as a text file (.txt) that is not associated with any family file or

Revit project. This enables several families or projects to use the same set of param-

eters. The utilization of shared parameters provides significant benefits. Once created,

this document can be used with other projects, avoiding establishing these parameters

from scratch for any project requiring a means of egress evaluation. This promotes

reusability and efficiency in the design process.

Shared parameters help generate custom tags. For instance, after creating a shared

parameter for occupant load, it can be used inside the tag family to show the maximum

number of occupants in each room. This makes it more feasible to view critical infor-

mation within the building model. Using shared parameters improves the efficiency and

accuracy of egress evaluations in building design. Shared parameters are an effective

tool in the BIM process since they allow for reusability and uniformity. Considering the

benefits of shared parameters, all the parameters necessary for evaluating the means

of egress are defined as shared parameters.

Implementation 50

Figure 4.2: Defining occupant load of rooms as a shared parameter in Autodesk Revit

4.2.2 Setting Constraints for Parametric Modeling

In parametric modeling, it is essential to define a set of principles that will be followed

during parametric modeling because, without any future consideration, it can lead to

lots of confusion during the modeling process. Building elements are linked to one

another using two kinds of constraints: dimensional and geometric. Dimensional con-

straints specify the dimensional value of geometric elements such as length, width, or

thickness, while geometric constraints ensure that the geometric elements remain par-

allel or perpendicular to each other.

One of the important constraints in parametric modeling is the boundary constraint.

After creating the boundary walls of a building, they need to be constrained so that any

future changes in other parameters will not cause the boundary walls to exceed the

defined constraints. In Revit, boundary constraints can be defined by using grids. Grids

must be defined on the boundary, and the boundary walls must be locked with these

defined grids to create the boundary constraints of a building.

Implementation 51

Figure 4.3: Defining boundary constraints of a building using grids

To evaluate and optimize the means of egress, one of the key parameters that should

be considered is the width of the corridor. If the width is adjusted, the corridor walls will

move from their original position, so it's important to constrain other attached building

elements, such as adjacent walls, columns, stairways, or railings, to move along with

the corridor walls.

4.2.3 Creation of Room Elements

During the code compliance check, each room area is required to calculate the re-

quired capacity of corridors and stairways (Section 4.1.2). For the optimization stage,

each room's boundaries are required to generate one surface for finding the shortest

path (Section 4.4.2). Considering these requirements of the thesis, it is necessary to

define room elements in Revit for each closed space. Room elements in Autodesk

Revit are 3D model elements used to define a closed space's boundaries and proper-

ties. These boundaries of the closed space are defined by certain types of building

elements, including walls, floors, and ceilings. Additionally, room separation lines can

also be used to modify the boundaries of the room according to the user's require-

ments. The properties of each building element can be defined whether it is a room-

bounding element or not; it allows the user to accurately define room boundaries and

to ignore elements that should not define the room boundaries. Once the boundaries

of the room element are defined, its parameters are automatically computed, including

room area, volume, perimeter, and unbounded height. One of the main advantages of

room elements in parametric modeling is that the room's boundaries will change with

the change of parameter values. As a result, the properties of each room will

Implementation 52

automatically update according to the new boundaries, eliminating the need to manu-

ally adjust room areas for calculations of the required capacity of corridors and stair-

ways.

Rooms can also aid in the visualization of the egress path of the building with the help

of the “Color Scheme” built-in parameter of the floor plan view. This parameter assigns

different colors to the rooms in the floor plan based on their properties. To assign a

specific color to the egress path of the building, all rooms of the egress path should be

given a unique name, and with the help of a color scheme built-in parameter, the rooms

with this unique name will be given a different color than other rooms.

Figure 4.4: Using color schemes to identify the building's egress path (Orange: Egress Path, Grey: Rooms)

Rooms can also be imported in Dynamo, where a room of each building story can be

classified, and their boundaries are used for defining one combined surface of the floor

plan. Another advantage of using room boundaries in defining the floor surface is that

it will automatically include the barriers that occupants face while going out of a build-

ing, as room boundaries are defined by walls and other obstacles that come in the

egress path.

4.2.4 Determination of Required Capacity of Egress Path

The required capacity of corridors and stairways can be determined by the help of room

schedules. By applying filters, specific building elements can be isolated, providing a

focused view while concealing unnecessary information. Moreover, schedules offer the

functionality to create calculated values through the use of formulas derived from dif-

ferent columns, enabling efficient analysis and decision-making.

Implementation 53

To consider the rooms of different building stories separately, a separate room sched-

ule is created for each building story, and for each schedule, a filter is applied to ignore

the rooms of other building stories. Additionally, as the rooms of the egress path do

not contribute to the calculations of their required capacity, these rooms will be filtered

out. For example, in the case of the room schedule of the ground floor, the following

filter can be used to consider only those rooms that will be considered for the calcula-

tion. This filter allows the selection of only ground floor rooms, excluding the egress

path, as it will not be considered for the calculation of the required capacity of corridors

and stairways. Furthermore, if there are more than one corridor in a building story, an

additional parameter of “Location” could be introduced to filter out the connected rooms

for each corridor.

Figure 4.5: Using filters to include rooms in the schedule that are required for the calculations

The initial step of the calculation of the required capacity of corridors and stairways is

the calculation of occupant load, which can be calculated by dividing the room area by

the occupant load factor. The occupant load, representing the number of people per-

mitted in a particular space, must be specified as an integer value. To ensure increased

safety, a "roundup" keyword is used to round the occupant load to the nearest whole

number.

Figure 4.6: Calculation of occupant load of a room

Implementation 54

4.2.5 Custom Tag for Occupant Load

Room elements in Autodesk Revit are 3D model elements used to define a closed

space's boundaries and properties (Section 4.2.3). However, room tags are required

to display the information of these 3D elements in floor plans, elevation, or section

views. Room tags are annotation elements used to display specific information about

room elements for a better understanding of users, such as room name, number,

height, area, volume, etc. With the help of shared parameters, room tag families can

be customized to calculate and display extra information about rooms. In the case of

means of egress, occupant load is one of the important parameters used for code

compliance and optimization; that’s why custom tags are created for the calculation

and display of the occupant load of each room element. Initially, parameters required

to calculate the occupant load are identified, including the room's area and occupant

load factor. Area parameters are available by default for each room element; however,

shared parameters will be used to import occupant load factor into the custom tag. As

all parameters of this thesis are shared parameters for the purpose of reusability and

increased efficiency in the design process, there is no need to create a new parameter

for the occupant load factor in the custom tag.

After identifying and importing the parameters required for calculating the custom tag

of occupant load, a label is created to use these parameters to calculate and display

the room’s occupant load. A label is an annotation element just like a text, but instead

of displaying a single piece of information, labels can use parameters to create equa-

tions to calculate and display the custom information for each room. To calculate oc-

cupant load, the room area is divided by the occupant load factor (Figure 4.7). After

the creation of the label, the custom tag can be imported into the project and used to

display the occupant load of any created room in a building.

Figure 4.7: Creating a custom tag for the occupant load of building rooms

Implementation 55

Figure 4.8: Illustration of a custom tag for occupant load of a room

4.3 Code Compliance Checking

After selecting code compliance checks and creating the BIM model, this section will

explain how to automate the code checking of the chosen rules. It's important to con-

sider various criteria and limitations to ensure accurate results. Dynamo is a visual

programming language that presents code in a graphical format and accesses neces-

sary data through Revit API, allowing direct interaction with the building model's infor-

mation. This approach visually represents the rules and makes them easily under-

standable, which is particularly beneficial for editors with limited programming exper-

tise. Therefore, dynamo (version 2.18.1) is used to automate the code compliance pro-

cess in this thesis.

Ensuring that the BIM model is enriched with all the necessary parameters for the pro-

posed framework to function correctly is essential. This thesis considers ten checking

rules, and their corresponding parameters have already been included in the BIM

model for the framework's functionality (Section 3.1). The process of automating code

compliance is divided into four steps. The first step involves importing the specified

code limits of different building elements in the IBC into the Dynamo. The second step

includes importing the relevant information from the BIM model into the Dynamo. The

third step is the checking phase, in which the code values are compared with the cor-

responding values of the BIM model. The last step is the adjustment of violation-related

parameters; the difference between the required values of the building code and the

corresponding building data will be calculated and adjusted to make the building model

code compliant.

Implementation 56

4.3.1 Importing Requirement Specification

The first step in automating code compliance is to import all required values from the

building code into the Dynamo script. These required values can be categorized into

two types. The first type consists of minimum or maximum values specified in the build-

ing code, such as the maximum egress distance for an educational occupancy classi-

fication building equipped with a sprinkler system, which is 250 feet (76.2 meters) as

per Table 1017.2. These required values are defined as variables inside the Python

node of the Dynamo script and further compared with the corresponding building data.

Figure 4.9: Creating variables in the Python node for the required values of the IBC

The second category of building code values consists of formulae that need to be cal-

culated, rather than numerical values. For example, the required capacity of corridors

and stairways is calculated by dividing the occupant load by the egress capacity factor

(Section 4.1.2). When calculating the area of rooms, the areas of egress paths need

to be excluded as they are designed according to the occupant load of the connected

rooms. Considering these conditions, schedules in Revit filter out the rooms that need

to be considered, and then the required capacity of corridors and stairways is calcu-

lated. These calculated values from schedules are then imported directly into the Py-

thon node of the Dynamo script for further comparison with the corresponding dimen-

sions of corridors and stairways.

Figure 4.10: Dynamo script for importing the calculated required capacity of the ground floor corridor from a
schedule

Implementation 57

4.3.2 Importing BIM Model Information

After importing all the required values into the Dynamo script, it is necessary to have

the corresponding building data for checking. Building model information can be im-

ported into the Dynamo script using parameters. The parameters of the families used

to create the building model elements are imported into the Dynamo script. For exam-

ple, below is a Dynamo script for importing the family parameter "Door Width" of all the

doors in the building model.

Figure 4.11: Dynamo script for importing family parameter of door width

Secondly, the building code includes certain values that aren't specifically for individual

building elements but rather for relationships between elements, such as the width of

a corridor. In these cases, it's necessary to define global parameters to manage and

adjust them based on the building code's required values. Below is an example of a

Dynamo script for importing global parameters.

Figure 4.12: Dynamo script for importing global parameters into Dynamo GUI

4.3.3 Compliance Checking

Once all the required data for code compliance is imported into Dynamo, it is collected

in the form of lists, which are then imported into the Python node. This thesis has de-

fined 10 selection rules, and a checking function is created for each compliance check-

ing rule. Each checking function imports 2 parameters: parameter value and the re-

quired value. Additionally, variables "Result" and "Difference" are created. The Result

variable stores either "Pass" or "Fail" depending on the comparison between the pa-

rameter value and the required value. The Difference variable stores the difference

between the parameter and the required value in case of non-compliance.

Implementation 58

After importing the function parameters and creating the necessary variables, a check

is performed to verify if the building model parameter falls within the specified range

for the building code. If the parameter value is within the specified range, then "Pass"

is stored in the result variable. If the parameter value is outside the range of the building

code, the difference between the parameter value and the required value is calculated

and stored in the difference variable, and “Fail” is stored in the result variable and the

required value of IBC is assigned to the parameter value. At the end of the checking

function, these two variables ("Result" and "Parameter Value") are returned. They are

further used in Dynamo to show code compliance results and adjust the parameter

values to make the building model code-compliant.

Figure 4.13: Checking function for the minimum width of the doors (Appendix A1)

It is important to gather all the results from the checking functions and organize them

into a single data structure. In Python, this can be achieved using a dictionary. A dic-

tionary is a robust data structure that stores values in "key:value" pairs. Similar to a

traditional dictionary where meanings are assigned to words, numerical values can be

assigned to unique keys in Python when defining a dictionary. This makes it easier to

access the values using the unique keys. To better organize the results of the checking

functions, a dictionary is created to store the adjusted parameter values with their pa-

rameter names as keys.

4.3.4 Adjustment of Violation-Related Parameters

After checking the code compliance, violation-related parameter values are adjusted

to make the building model code compliant. The output of the Python node consists of

two data structures. The first data structure comprises a list of outcomes from 10 com-

pliance checks, providing visibility into successful and unsuccessful checks. The "dif-

ference" variable allows for an analysis of the extent to which parameter values require

adjustment. Meanwhile, the second data structure consists of a dictionary featuring

"Parameter_Name : Parameter_Value" pairs. These specific parameter values have

been adjusted to align with building code specifications and will subsequently serve

the purpose of refining the building model.

Implementation 59

Figure 4.14: Dynamo script for checking code compliance and adjusting violation-related parameter values

The parameter dictionary is used to access all the adjusted parameter values. These

values are then used to update parameters not meeting the building code require-

ments. As previously discussed, there are two types of parameters - family parameters

and global parameters. Dynamo provides the ability to modify both types of parame-

ters.

Figure 4.15: Adjusting the global parameter of corridor width using the parameter dictionary

Figure 4.16: Adjusting the family parameter of door width using the parameter dictionary

When adjusting violation-related parameters, it is crucial to consider the specific type

of parameter being adjusted. For instance, if a parameter is labeled as "length" in Revit,

assigning it an integer value will not result in any adjustments. In such cases, in order

to adjust the parameter, it is necessary to assign a value of type double or float to it.

Implementation 60

Therefore, it is important to consider the type of each parameter before making any

adjustments.

4.4 Optimization

The proposed optimization framework is designed to minimize the distance occupants

need to travel to reach the building exit, while also taking into account the layout con-

straints of the building. This means that only those parameters that impact the egress

distance will be taken into consideration during the optimization process, while other

parameters related to code compliance will not be included in the analysis. The opti-

mization of egress distance will guarantee that the building model not only meets the

code requirements but is also optimized for the safety of its occupants.

4.4.1 Identification of Potential Parameters

The objective function maximizes the difference between the available and maximum

egress distances (Section 3.2). The key parameters that will have the most effect on

the egress distances can now be identified. The width of the corridor is an important

parameter that can affect the egress distance of each room. Changing the width of the

main or side corridors can increase the egress distance of some rooms while decreas-

ing it for others. Therefore, it is essential to calculate the optimum value of this param-

eter to maximize the objective function. Another crucial factor affecting the egress dis-

tance is the location of doors. Doors should be positioned to allow occupants to exit

the room easily, reducing the overall egress distance. Introducing parameters such as

the distance of a door from its adjacent wall can help change the location of doors

effectively.

When making adjustments to potential parameters for building layout optimization, it is

important to establish upper and lower limits. The move limits of parameters are de-

fined for the generation of design space. The lower limit is based on the required min-

imum values of IBC, while the building layout consideration of education occupancy

type determines the upper limit. These move limits are set according to the require-

ments of IBC to ensure that the building model remains code-compliant during the

optimization process.

Implementation 61

4.4.2 Determining Available Egress Distance

According to Chapter 10 of the IBC, available egress distance is defined as the shortest

and unobstructed route from any point in a building story to the closest exit in an emer-

gency. This distance represents the actual path that an occupant would take to reach

the nearest exit as quickly as possible, ensuring their safety. In Dynamo, calculating

the available egress distance requires three key components: a complete floor layout,

origin points (Room Doors), and destination points (Exit Doors). Considering these

factors, it is possible to determine the shortest path from any point of the building to

the nearest exit.

To import the floor layout into the Dynamo script, the room elements can be utilized to

outline the layout boundaries by using the "Room.FinishBoundary" node. From these

room boundaries, a surface is created; however, as the room elements are closed

polylines, only closed spaces are generated without door openings. It is crucial to in-

clude door openings in the floor layout to calculate available egress distance. The door

elements are imported into the Dynamo script to incorporate door thresholds in the

room outlines. Each door's location is denoted by a point using the "Element.GetLoca-

tion" node. Once the location of each door is determined, it should be translated to the

width and thickness of the door. Consequently, a surface is formed for each door di-

mension, which is then merged with the surface of the rooms to create one complete

polysurface of the floor layout. The final floor layout is derived from this polysurface

using the "Surface.PerimeterCurves" node.

Figure 4.17: Dynamo script for creating floor layouts.

Implementation 62

Figure 4.18: Generation of building floor layout in dynamo

After creating the floor layout, the origin and destination points are identified. Each door

and stairway have been assigned a parameter called "Exit_Type". If it is a destination

point, the parameter is labeled "Floor Exit," and if it's an origin point, the parameter is

labeled "Room Exit". Using this semantic data, Dynamo filters the points of origin and

destination and determines their locations with the "Element.GetLocation" node.

Figure 4.19: Dynamo script for identifying the points of origin and destination

A custom "Graphical" plugin is used to find the shortest distance. This plugin includes

a node, "VisibilityGraph.ShortestPath," that requires three inputs: the floor layout,

points of origin, and points of destination (Ortega, 2018). It then calculates the distance

from each point of origin to each destination point. By comparing these distances, the

shortest path can be determined. For instance, when a floor layout has three exits, the

distance from the room exit to all three exits is calculated and compared, and the short-

est distance among them is selected (Figure 3.3).

4.4.3 Achieving Optimized Parameter Configuration

After creating the dynamo script to calculate the available egress distance, it can be

further developed for optimization. Real-coded genetic algorithm is used to identify the

optimized parameter configuration. The following functions are necessary to execute

Implementation 63

GA (Appendix A2). The first function is “initialize_population,” which generates a list of

individuals with parameters assigned random numbers from the specified parameter

ranges. Another function named “fitness_scores” is used to calculate the fitness score

of each individual in the population, playing a crucial role in the selection process.

To select two individuals with higher fitness scores from the entire population, another

function named “select_individual” has been created. These two individuals are re-

ferred to as “Parent1” and “Parent2.” After identifying the parents, the “crossover” func-

tion is used to create offspring, where each offspring contains mixed genes/parameter

values from both parents. Following the generation of offspring, the “mutate” function

introduces variability in the offspring through the mutation process. It prevents the al-

gorithm from local optima or premature convergence. This process continues until the

specified number of generations is reached, at which point the best individual in the

final population is identified.

The Revit API enables users to modify the document (opened project) by employing

the concept of a transaction. A transaction consists of a series of steps, such as creat-

ing, deleting, or modifying elements, ensuring that all changes are executed as a single

step, which can then be saved or discarded if not needed. To calculate the shortest

path and make changes to the project, necessary Revit libraries and a custom dynamo

package of “Graphical” are imported into the Python node (Ortega, 2018). The first

step is to access the opened Revit document from the Python node to extract all global

parameters from it. Two functions are defined for the interaction of the Python node

with the Revit API. The first function, "set_global_parameters," applies the given pa-

rameter values to the corresponding global parameters. The second function, "Short-

est_Path," calculates the available egress distance of the current design solution.

After a thorough iterative process, the genetic algorithm explores all generations. Once

the specified number of generations has evolved, the best individual in the final popu-

lation is identified. Its parametric configuration is saved as the optimized parameter

configuration and assigned to the global parameters of the opened Revit document,

resulting in an optimized BIM model for improved occupant safety.

Case Study 64

To verify the validity of the proposed framework, the physics department building (N6)

of the Technical University of Munich (TUM) is considered. The initial step involves

creating a parametric model of the building and integrating all the essential parameters

into the BIM model.

Figure 5.1: 3D-View of physics department building (N6) of TUM

Following the building modeling, sensitivity analysis will be performed to assess the

impact of the parameters on the available egress distance. Moreover, the code com-

pliance framework will be applied to the building model to check the code compliance

with the IBC and automatically adjust parameters related to code violations to achieve

code compliance. Subsequently, optimization will be conducted to ascertain the best

parameter configuration, providing maximum safety for occupants by minimizing travel

distances. Additionally, the impact of adding an extra exit to the building is examined,

and the optimal location for the additional door is determined. The building model con-

sists of 6 floors in total; after the modeling of the building model, each floor’s occupant

load and available egress distance are calculated.

5 Case Study

Case Study 65

Table 5.1: Building information of the physics department (N6), TUM

Floor No. of
Rooms

Occupant Load Max AED (m) Σ AED (m)

Basement 2 4 5 7.99 21.96

Basement 1 22 251 25.87 336.03

Ground Floor 15 272 23.96 369.66

First Floor 32 192 35.86 566.08

Second Floor 32 186 36.76 622.80

Third Floor 29 167 40.20 853.54

5.1 Impact of Corridor Width

The width of the main corridor is a crucial factor that influences the available egress

distance in any building. Therefore, evaluating this parameter's impact on egress dis-

tance is important. The change in corridor width may increase or decrease the egress

distance depending on the building layout. The corridor width varies from 9 to 15 me-

ters in 0.5-meter increments to observe its impact on the travel distance.

Figure 5.2: Minimum corridor width of 9m (Top), Maximum corridor Width of 15m (Bottom)

Case Study 66

Changing the corridor width affects the travel distance of rooms to the nearest building

exit. The egress distance of rooms on the north side of the building increases, while

the distance for rooms on the south side of the building decreases. This is because 4

out of the 5 building exits are located in the southern part of the building. As a result,

the sum of all travel distances (Σ AED) remains more or less the same, without signif-

icant changes. However, as the maximum available egress distance is calculated from

the north side of the building, the maximum travel distance is increased with an in-

crease in the corridor width.

Figure 5.3: Effect of changing corridor width on the available egress distance

5.2 Impact of Door-Wall Clearance

Another significant factor affecting the available egress distance is the proximity of the

door to its adjacent wall. The door-wall clearance is varied from 0.5 to 3 meters in 0.5-

meter increments to observe its impact on the travel distance. It is observed that in-

creasing the door-wall clearance results in an increase in both the sum of available

egress distances (Σ AED) and the maximum available egress.

Figure 5.4: Effect of changing door-wall clearance on the available egress distances

Case Study 67

5.3 Validating Code Compliance

The BIM model is used to gather building information required for code checking, which

is used as input for a Python node, where 10 compliance checks are conducted (Sec-

tion 4.3.3). Out of these, 7 compliance checks passed, while 3 checks failed.

Table 5.2: Results of automated compliance checking

S.No. Checking Function Result Difference (cm)

1. Minimum Corridor Width Fail 20.8

2. Required Capacity of Corridor Pass -

3. Minimum Stairway Width Pass -

4. Required Capacity of Stairway Pass -

5. Minimum Ceiling Height Pass -

6. Minimum Door Width Fail 1.3

7. Minimum Door Height Pass -

8. Minimum Space between two Doors Fail 3.9

9. Minimum Number of Exits per Story Pass -

10. Egress Distance Pass -

Figure 5.5: Results of automated compliance checking in Dynamo UI

The first adjustment involves an increase in the width of the side corridor. The building

code specifies a minimum corridor width of 1.83 meters. However, the building model

initially had a corridor width of only 1.62 meters. As a result, the first compliance check

failed, and the width of the side corridor was automatically adjusted to ensure code

compliance.

Case Study 68

Figure 5.6: Adjusting the width of the side corridor according to the IBC standards

The second adjustment is being made to the door width in the basement of the building

model. The door originally had a width of 800 mm, but the building code specifies a

minimum door width of 813 mm.

Case Study 69

Figure 5.7: Adjusting the width of the door according to the IBC standards

The third adjustment involves the space between two adjacent doors. According to the

IBC, a minimum space of 1.22 meters should be provided between adjacent doors.

However, in the washroom on the ground floor, the space between two doors was only

1.18 meters.

Figure 5.8: Adjusting the space between adjacent doors according to the IBC standards

With the help of the code compliance framework, the building model was checked for

code compliance, and any violation-related parameters were automatically adjusted.

This is one of the main advantages of parametric modeling. When non-compliance is

identified, the building model can be automatically adjusted, saving time and money

compared to manual adjustments to the BIM model.

Case Study 70

5.4 Optimization

After ensuring that the building meets all code requirements, the building model is fur-

ther analyzed to optimize the available egress distance. Only those parameters that

impact the egress distance will be taken into consideration during the optimization pro-

cess, while other parameters related to code compliance will not be included in the

analysis. Ten parameters are selected for the optimization process, which affects the

available egress distance. Custom ranges of each parameter have been defined to

create a variation space; the lower limit is based on the required minimum values of

IBC, while the constraints to preserve the initial design topology determine the upper

limit. These move limits are set according to the requirements of IBC to ensure that the

building model remains code-compliant during the optimization process.

Table 5.3: Design variables/parameters used for the optimization of available egress distance

S.No. Design variable Location Lower Limit Upper Limit

1
Main Corridor

Width

North 6 7

2 South 6 7

3
Side Corridor

Width

North 1 2

4 South 1 2

5

Door-Wall
Clearance

Classroom 0.5 2

6 Laboratory 0.5 2

7 Meeting Room 0.5 2

8 Office 0.5 2

9 Storage 0.5 2

10 Washroom 0.5 2

Figure 5.9: Creation of variation space of all parameters

Case Study 71

With the help of GA, instead of checking each potential design solution individually, the

two design solutions with higher fitness scores are selected from each generation, and

new design solutions are created after the process of crossover and mutation (Section

3.2). During the optimization, 20 generations have been generated, with a population

size of 10 individuals each. Once the maximum number of specified generations is

analyzed, the fitness score of the last population is calculated, and the individual with

the highest fitness score comprises the optimized parameter configuration, which is

automatically assigned to the BIM model, resulting in an optimized BIM model.

Figure 5.10: Python code for using genetic algorithm to identify the best individual (Appendix A2)

Figure 5.11: Fitness score evolution

Case Study 72

Figure 5.12: Optimized parameter configuration of the best individual (Individual 7)

Figure 5.13: Comparison of floor layout. Initial design (Top), Generated floor plan using GA (Bottom)

After identifying the optimized parameter configuration, adding an extra building exit is

another important factor to consider in enhancing occupant safety. The impact on the

available egress distance by adding an additional exit is observed on each building

floor, and the best location for providing an additional exit is determined. In the consid-

ered case study, building exits are already located on the south and east sides of the

Case Study 73

building. Therefore, additional exits are provided on the north and west sides of the

building, and their impact is considered.

Table 5.4: The impact of an extra exit on the Available Egress Distance (AED)

Building Story Location Max AED (m) Σ AED (m)

Ground Floor West 23.96 351.78

North 5.23 290.59

First Floor West 25.25 496.48

North 14.65 465.38

Second Floor West 26.92 546.81

North 17.97 494.94

Third Floor West 35.26 795.17

North 19.38 704.46

Figure 5.14: The impact of additional extra exit on the available egress distance

Figure 5.15: Comparison of available egress distances after the implementation of an additional exit

After adding an additional building exit, the shortest path of many points of origin to the

building exit has changed. The points of origin on the east or south side of the building

Case Study 74

did not experience any changes in their available egress distance; however, the points

of origin located on the northern and eastern sides of the building, their shortest path,

have been altered due to the provision of additional exits. Given the building layout,

many rooms are positioned on the northern side instead of the eastern side. As a result,

adding a door on the north side has impacted the travel distances for most of the points

of origin. The same trend has been observed on the other floors of the building. Hence,

it can be concluded that the optimal location for an additional building exit is on the

northern side of the building. Similarly, this framework can also be applied to determine

the optimal location for an extra building exit during the planning phase of any con-

struction project, ensuring the safety of occupants is maximized.

Discussion 75

6.1 Contribution

This paper makes an essential contribution to the Building Information Modeling (BIM)

field by introducing a BIM-based method for automatically checking code compliance

and adjusting parameters related to violations. Additionally, it presents an optimization

framework that can be utilized to minimize the available egress distance using para-

metric modeling to improve occupant safety.

State-of-the-art code compliance checkers have advanced to confirm adherence to

regulatory standards and adjust building designs for compliance. However, a signifi-

cant gap exists in fully automating and optimizing this process for complex and diverse

design scenarios. As a result, architects and designers have to manually modify the

building model to meet code requirements. This process takes a lot of time and effort

and involves multiple iterations, often resulting in errors during the design and con-

struction stages.

Many code compliance checkers use the Black-Box method, which utilizes coded pro-

grams to evaluate code compliance. This approach only presents the incoming and

outgoing information, not the actual processing procedure. Consequently, users re-

main unaware of the processing steps and are only provided with the results, leading

to a lack of transparency. Without transparency, verifying the processing steps' cor-

rectness and fairness becomes challenging. Moreover, users cannot modify or opti-

mize the process to meet specific needs or preferences. Any changes or improvements

require developer intervention, leading to potential time and cost implications.

This thesis introduces a framework that can automate not only the process of checking

code compliance but also the adjustment of BIM models to ensure they are code-com-

patible and optimized for the safety of the occupants. The proposed framework has

been successfully implemented in the physics department building (N6) at the Tech-

nical University of Munich (TUM), demonstrating its practicality and effectiveness. A

detailed analysis comprising ten code compliance checks was carried out, resulting in

the passage of 7 checks, while 3 checks did not meet the required standards. To rectify

the violations, the parameters of the BIM model were automatically adjusted. These

6 Discussion

Discussion 76

adjustments encompassed widening side corridors, increasing door width, and ensur-

ing the specified spacing between two doors adhered to the IBC regulations.

The impact of changing corridor width and door-wall clearance on the available egress

distance was analyzed. The corridor width varied from 9 to 15 meters in 0.5-meter

increments, and the door-wall clearance varied from 0.5 to 3 meters in 0.5-meter in-

crements. The analysis revealed that changes in the corridor width did not significantly

affect the sum of available egress distances (ΣAED) due to the specific layout of the

considered case study. Since the rooms were distributed on the north and south sides

of the building, and most of the exits were located on the southern side, altering the

corridor width resulted in increased egress distance for northern rooms and decreased

distance for southern rooms, leading to a negligible overall change in the sum. How-

ever, adjusting the door-wall clearance was observed to increase the sum of egress

distances, indicating its significant impact.

GA was utilized to optimize the available egress distance. A total of ten parameters

were adjusted within specified ranges. Each generation was examined to create a cor-

responding floor layout, origin, and destination points. Two individuals with higher fit-

ness scores from each generation were chosen for the crossover and mutation pro-

cess, and this process was repeated for subsequent generations. After analyzing 20

generations with a population size of 10 individuals, the individual in the last generation

with the highest fitness score was identified. Its parametric configuration was saved as

the optimized parameter configuration and automatically assigned to the BIM model,

resulting in an optimized building design.

The proposed framework can be used in building projects' planning and design phases

to automate code compliance checking and adjust the building model. This eliminates

the need for manual modification of the BIM model to meet code requirements. Using

this framework will save time and cost compared to the traditional method. Besides, it

provides full transparency into the processing steps, allowing users to verify the cor-

rectness and fairness of the process. Users can also modify or optimize the framework

to fulfill their specific needs without relying on the developers of a specific code com-

pliance checker.

Discussion 77

6.2 Limitations

The proposed framework has been successfully implemented in the case study,

demonstrating its practicality and effectiveness. However, there are a few limitations

that need to be considered. When calculating the available egress distance for exiting

a building, only the room boundaries and door thresholds are considered for generating

floor plans, and furniture within the building is not considered. However, in real-life

situations, occupants will only use the available space. Therefore, the actual travel

distance will be slightly longer than the calculated egress distance.

The point of origin is currently taken from the room's door. However, in reality, occu-

pants begin evacuation from inside the room. In future work, instead of using the se-

mantic information of doors to determine the point of origin, an approach that uses the

centroid of room elements to calculate the point of origin from the middle of the room

could be employed to more realistically compute egress distances.

The proposed framework requires the BIM model to be enriched with all the necessary

parameters for complete functionality. This thesis considers ten checking rules, and

their corresponding parameters are already included in the BIM model to make the

proposed framework work. If additional checking rules need to be considered, the re-

quired parameters must be manually added to the BIM model. Depending on the build-

ing design's complexity, this process could be time-consuming.

There is a heavy reliance on custom parameters to meet the dynamo script require-

ments for calculating the available egress distance. This is because not all the neces-

sary information is present in the BIM model by default. For example, Revit cannot

automatically detect whether a created building door is the floor exit door or a room

exit door. This determination is essential for finding the points of origin and the point of

destination. Therefore, to determine the location of the starting point and the destina-

tion, a custom parameter named "Exit_Type" has been created for the corresponding

doors and stairways. For the starting point, the value of this parameter is "Room Exit"

and for the destination, it is "Floor Exit". Dynamo scripts then utilize this semantic in-

formation to distinguish between starting points and destinations. The user must en-

sure that the specified custom parameter contains the same information used in the

dynamo script. For instance, if the user inputs "Floor exit" instead of "Floor Exit", the

dynamo script will not be able to recognize the destination points.

Discussion 78

When adjusting violation-related parameters, the proposed framework calculates the

difference between the actual building data and the required values of IBC. Afterward,

it automatically adjusts these parameters without providing further details about the

building component. For example, users can view the adjusted parameter values, but

they won't see specific details about the building component, such as the building floor,

type of building component, or element ID of the adjusted building component.

6.3 Future Work

There are some improvements through which the proposed framework can be further

enhanced. In the scope of this thesis, ten compliance-checking rules are being final-

ized, and they could be further expanded to allow the framework to check the building

design in more detail. Additionally, the level of detail of generated floor plans could be

improved such that in addition to considering walls and doors, it could also consider

the furniture and other possible obstacles.

The location of stairways should be considered when calculating the egress distance

as they serve as the destination points for each building story. To maximize the safety

of occupants, stairways should be strategically placed so that occupants have to travel

the shortest distance from any room to reach the nearest stairway. One way to achieve

this is by creating a parameter to control the placement of the stairways and then iden-

tifying the optimized configuration for this parameter during the optimization phase.

To improve user experience, a custom plugin could be created to allow even those

without experience using Dynamo or Python to utilize the proposed frameworks. Addi-

tionally, it could be designed so that when the plugin is run, the user would automati-

cally receive a comprehensive list of information about adjusted building components

and be able to view them directly in Revit with just a single click.

 79

Alzara, M., Attia, Y., Mahfouz, S., & Yosri, A. (2023). Building a Genetic Algorithm-

Based and BIM-Based 5D Time and Cost Optimization Model. IEEE Access,

11, 122502-122515. doi:https://doi.org/10.1109/ACCESS.2023.3317137

Anton, I., & Tănase, D. (2016). Parametric Modelling and Energy Analysis in Early

Stages of Design. Energy Procedia, 85, 9–16.

doi:https://doi.org/10.1016/j.egypro.2015.12.269

Berhe, H. W. (2012). Penalty function methods using matrix laboratory. African Journal

of Mathematics and Computer Science, 5(13), 209-246.

doi:http://dx.doi.org/10.5897/AJMCSR12.027

Bloch, T., & Sacks, R. (2018). Comparing machine learning and rule-based inferencing

for semantic enrichment of BIM models. Automation in Construction, 91, 256-

272. doi:https://doi.org/10.1016/j.autcon.2018.03.018

Borrmann, A., & Berkhahn, V. (2018). Principles of Geometric Modeling: Technology

Foundations and Industry Practice. Building Information Modeling, 27-41.

doi:http://dx.doi.org/10.1007/978-3-319-92862-3_2

Borrmann, A., König, M., Koch, C., & Beetz, J. (2018). Building Information Modeling:

Technology Foundations and Industry Practice. doi:https://doi.org/10.1007/978-

3-319-92862-3

Bouzidi, K. R., Fies, B., Zucker, F., & Zarli, A. (2012). Semantic Web Approach to Ease

Regulation Compliance Checking in Construction Industry. Future Internet, 4(3),

830-851. doi:https://doi.org/10.3390/fi4030830

Bukowski, R. W., & Tubbs, J. S. (2016). Egress Concepts and Design Approaches.

Handbook of Fire Protection Engineering. doi:https://doi.org/10.1007/978-1-

4939-2565-0_56

Chopard, B., & Tomassini, M. (2018). Simulated Annealing. An Introduction to

Metaheuristics for Optimization, 59-79. doi:https://doi.org/10.1007/978-3-319-

93073-2

 Bibliography

 80

Decker, S., Mitra, P., & Melnik, S. (2000). Framework for the semantic Web: an RDF

tutorial. IEEE Internet Computing, 4(6), 68-73.

doi:https://doi.org/10.1109/4236.895018

Dimyadi, J., & Amor, R. (2013). Automated Building Code Compliance Checking -

Where is it at? 19th International CIB World Building Congress.

doi:http://dx.doi.org/10.13140/2.1.4920.4161

Doukari, O., Greenwood, D., Rogage, K., & Kassem, M. (2022). Object-centred

automated compliance checking: a novel, bottom-up approach. Journal of

Information Technology in Construction (ITcon), 27, 335-362.

doi:https://doi.org/10.36680/j.itcon.2022.017

Eastman, C. M., Lee, J.-m., Jeong, Y.-s., & Lee, J.-k. (2009). Automatic rule-based

checking of building designs. Automation in Construction, 18(8), 1011-1033.

doi:https://doi.org/10.1016/j.autcon.2009.07.002

Edmonds, A., Mourtis, T., & Boyle, M. (2022). Parametric Design—A Drive Towards a

Sustainable Future. Innovation in Construction. A Practical Guide to

Transforming the Construction Industry, 221–257.

doi:https://doi.org/10.1007/978-3-030-95798-8_10

Fenves, S., Gaylord, E., & Goel, S. (1969). Decision Table Formulation of The 1969

Aisc Specification. Univ-Dept Civ Eng-Structural Research.

Filippo, A. (2021). Generative Design for project optimization. The 27th International

Conference on Distributed Multimedia Systems.

doi:http://dx.doi.org/10.18293/DMSVIVA21-014

Fischer, T., Biswas, K. D., Ham, J., & Naka, R. (2012). Beyond Codes and Pixels:

Proceedings of the 17th International Conference on Computer-Aided

Architectural Design Research. Association for Computer-Aided Architectural

Design Research in Asia (CAADRIA), 537–546.

Gad, A. (2022). Particle Swarm Optimization Algorithm and Its Applications: A

Systematic Review. Archives of Computational Methods in Engineering, 29,

2531–2561. doi:https://doi.org/10.1007/s11831-021-09694-4

Greenwood, D., Lockley, S., Malsane, S., & Matthews, J. (2010). Automated

compliance checking using building information models. The Construction,

Building and Real Estate Research Conference of the Royal Institution of

 81

Chartered Surveyors.

doi:http://www.rics.org/site/download_feed.aspx?fileID=7953&fileExtension=P

DF

Gross, M. D. (1996). Why can't CAD be more like Lego? CKB, a program for building

construction kits. Automation in Construction, 5(4), 285-300.

Han, Z., Cao, N., Liu, G., & Yan, W. (2019). MOPSO for BIM: a multi-objective

optimization tool using particle swarm optimization algorithm on a BIMbased

visual programming platform. 18th International Conference, CAAD Futures

2019, 39-51.

He, W., Shi, Y., & Kong, D. (2019). Construction of a 5D duration and cost optimisation

model based on genetic algorithm and BIM. Journal of Engineering, Design and

Technology, 17(5), 929-942. doi:https://doi.org/10.1108/JEDT-12-2018-0214

Hjelseth, E., & Nisbet, N. N. (2011). Capturing normative constraints by use of the

semantic mark-up RASE methodology. Computer Science.

Holzer, D. (2015). BIM and Parametric Design in Academia and Practice:The

Changing Context of Knowledge Acquisition andApplication in the Digital Age.

International Journal of Architectural Computing, 13(1), 65-82.

doi:https://doi.org/10.1260/1478-0771.13.1.65

IBC. (2018). International Building Code (IBC). International Code Council (ICC).

Ismail, A. S., Ali, K. N., & Iahad, N. (2017). A Review on BIM-based automated code

compliance checking system. 5th International Conference on Research and

Innovation in Information Systems (ICRIIS).

doi:http://dx.doi.org/10.1109/ICRIIS.2017.8002486

Janssen, P. (2015). Parametric BIM Workflows. 20th International Conference of the

Association for Computer-Aided Architectural Design Research in Asia

(CAADRIA), 437-446.

Juneja, M., & Nagar, S. K. (2016). Particle swarm optimization algorithm and its

parameters: A review. International Conference on Control, Computing,

Communication and Materials (ICCCCM), 1-5.

doi:https://doi.org/10.1109/ICCCCM.2016.7918233

 82

Júnior, J., Santos, J., & Santos, M. (2023). Parametric modeling using the BIM

methodology for the process of pathology identification in buildings. Journal of

Building Pathology and Rehabilitation, 8(62).

doi:https://doi.org/10.1007/s41024-023-00311-4

Kalkan, E., Okur, F. Y., & Altunışık, A. C. (2018). Applications and usability of

parametric modeling. Journal of Construction Engineering, Management &

Innovation, 1(3), 139-146. doi:https://doi.org/10.31462/jcemi.2018.03139146

Károlyfi, K. A., & Szép, J. (2023). A Parametric BIM Framework to Conceptual

Structural Design for Assessing the Embodied Environmental Impact.

Sustainability, 15(15). doi:https://doi.org/10.3390/su151511990

Kim, J., & Nguyen, T.-H. (2011). Building code compliance checking using BIM

technology. Winter Simulation Conference.

doi:http://dx.doi.org/10.1109/WSC.2011.6148035

Kincelova, K., Boton, C., Blanchet, P., & Dagenais, C. (2020). Fire Safety in Tall Timber

Building: A BIM-Based Automated Code-Checking Approach. Buildings, 10(7).

doi:https://doi.org/10.3390/buildings10070121

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated

Annealing. Science, 220(4598), 671-680.

doi:https://doi.org/10.1126/science.220.4598.671

Kodur, V. K., Venkatachari, S., & Naser, M. Z. (2020). Egress Parameters Influencing

Emergency Evacuation in High-Rise Buildings. Fire Technology, 56, 2035–

2057. doi:https://doi.org/10.1007/s10694-020-00965-3

Lee, J. (2010). Automated checking of building requirements on circulation over a

range of design phases. Georgia Institute of Technology.

doi:http://hdl.handle.net/1853/34802

Li, K., Gan, V., Li, M., Gao, M. Y., Tiong, R., & Yang, Y. (2024). Automated generative

design and prefabrication of precast buildings using integrated BIM and graph

convolutional neural network. Developments in the Built Environment, 18.

doi:https://doi.org/10.1016/j.dibe.2024.100418

Luo, H., & Gong, P. (2015). A BIM-based Code Compliance Checking Process of Deep

Foundation Construction Plans. Journal of Intelligent & Robotic Systems, 79(3),

549–576. doi:https://doi.org/10.1007/s10846-014-0120-z

 83

Mirsadeghi, E., & Khodayifar, S. (2020). Hybridizing particle swarm optimization with

simulated annealing and differential evolution. Cluster Computing, 24, 1135–

1163. doi:https://doi.org/10.1007/s10586-020-03179-y

Nourkojouri, H., Dehnavi, A. N., Bahadori, S., & Tahsildoost, M. (2023). Early design

stage evaluation of architectural factors in fire emergency evacuation of the

buildings using Pix2Pix and explainable XGBoost model. Journal of Building

Performance Simulation, 16(4), 415-433.

doi:https://doi.org/10.1080/19401493.2022.2163422

Ortega, A. (2018). Graphical Package for Dynamo. Retrieved from

https://github.com/alvpickmans/GraphicalDynamo

Park, S., & Lee, J. (2016). KBimCode Based Applications for the Representation,

Definition and Evaluation of Building Permit Rules. The International

Association for Automation and Robotics in Construction, 720–728.

doi:https://doi.org/10.22260/ISARC2016/0087

Patlakas, P., Livingstone, A., Hairstans, R., & Neighbour, G. (2018). Automatic code

compliance with multi-dimensional data fitting in a BIM context. Advanced

Engineering Informatics, 216–231.

doi:https://doi.org/10.1016/j.aei.2018.07.002

Peng, J., & Liu, X. (2023). Automated code compliance checking research based on

BIM and knowledge graph. Scientific Reports, 13(1).

doi:http://dx.doi.org/10.1038/s41598-023-34342-1

Preidel, C., & Borrmann, A. (2015). Automated Code Compliance Checking Based on

a Visual Language and Building Information Modeling. Proceedings of the 32nd

ISARC, Oulu, Finland, 1–8. doi:https://doi.org/10.22260/ISARC2015/0033

Preidel, C., & Borrmann, A. (2018). BIM-Based Code Compliance Checking. In A.

Borrmann, M. König, C. Koch, & J. Beetz, Building Information Modeling (pp.

367-381). Springer. doi:http://dx.doi.org/10.1007/978-3-319-92862-3_22

Sacks, R., Bloch, T., Katz, M., & Yosef, R. (2019). Automating Design Review with

Artificial Intelligence and BIM: State of the Art and Research Framework.

Computing in Civil Engineering, 353-360.

doi:https://doi.org/10.1061/9780784482421.045

 84

Salama, D., & Gohary, N. M. (2011). Semantic Modeling for Automated Compliance

Checking. International Workshop on Computing in Civil Engineering.

doi:http://dx.doi.org/10.1061/41182(416)79

Shen, T. S. (2006). Building Egress Analysis. Journal of Fire Sciences, 24.

doi:https://doi.org/10.1177/0734904106052549

Shih, S.-Y., & Sher, W. (2014). Development of Building Information Modelling Enabled

Code Checking Systems for Australia. Proceedings of the 17th International

Symposium on Advancement of Construction Management and Real Estate,

1003–1010. doi:http://dx.doi.org/10.1007/978-3-642-35548-6_103

Sivanandam, S. N., & Deepa, S. N. (2008). Genetic Algorithm Optimization Problems.

Introduction to Genetic Algorithms, 165–209. doi:https://doi.org/10.1007/978-3-

540-73190-0_7

Solibri. (2024). Retrieved from A Nemetschek Company: https://www.solibri.com/

Stork, J., Eiben, A. E., & Beielstein, T. B. (2022). A new taxonomy of global optimization

algorithms. Natural Computing, 21, 219–242.

doi:https://doi.org/10.1007/s11047-020-09820-4

Sun, Q., & Turkan, Y. (2019). A BIM Based Simulation Framework for Fire Evacuation

Planning. Advances in Informatics and Computing in Civil and Construction

Engineering, 431–438. doi:https://doi.org/10.1007/978-3-030-00220-6_51

Tafraout, S., Bourahla, N., Bourahla, Y., & Mebarki , A. (2019). Automatic structural

design of RC wall-slab buildings using a genetic algorithm with application in

BIM environment. Automation in Construction, 106.

doi:https://doi.org/10.1016/j.autcon.2019.102901

Usman, M., Mao, Y., Schaumann, D., Faloutsos, P., & Kapadia, M. (2020). From

semantic-based rule checking to simulation-powered emergency egress

analytics. Proceedings of the 11th Annual Symposium on Simulation for

Architecture and Urban Design.

Villaschi, F., Carvalho, J., & Bragança, L. (2022). BIM-Based Method for the

Verification of Building Code Compliance. Applied System Innovation, 5(64).

doi:https://doi.org/10.3390/asi5040064

 85

Wu, J., Dubey, R. K., Abualdenien, J., & Borrmann, A. (2022, Sep). Model Healing:

Toward a Framework for Building Designs to Achieve Code Compliance.

Proceedings of the 14th European Conference on Product and Process

Modelling, ECPPM, 450–457. doi:https://doi.org/10.1201/9781003354222-58

Wu, J., Nousias, S., & Borrmann, A. (2023, June). Parametrization-based solution

space exploration for Model Healing. Proc. of the 30th Int. Conference on

Intelligent Computing in Engineering (EG-ICE).

Yang, Q. Z., & Li, X. (2001). Representation and Execution of Building Codes for

Automated Code Checking. Computer Aided Architectural Design Futures, 315-

329. doi:http://dx.doi.org/10.1007/978-94-010-0868-6_24

Yang, S.-W., Moon, S.-W., Jang, H., Choo, S., & Kim, S.-A. (2022). Parametric Method

and Building Information Modeling-Based Cost Estimation Model for

Construction Cost Prediction in Architectural Planning. Applied Sciences,

12(19). doi:https://doi.org/10.3390/app12199553

Zarli, A., Yurchyshyna, A., Thanh, N., & Zucker, C. (2008). Towards an ontology-based

approach for formalizing expert knowledge in the conformity-checking model in

construction. In eWork and eBusiness in Architecture, Engineering and

Construction (pp. 447-456). doi:http://dx.doi.org/10.1201/9780203883327.ch50

Zarzycki, A. (2012). Parametric BIM as a generative design tool. 100th ACSA Annual

Meeting Proceedings, Digital Aptitudes.

Zhang, J., & El-Gohary, N. M. (2016). Semantic-Based Logic Representation and

Reasoning for Automated Regulatory Compliance Checking. Journal of

Computing in Civil Engineering, 31(1).

doi:https://doi.org/10.1061/(ASCE)CP.1943-5487.0000583

Zhang, J., & El-Gohary, N. M. (2017). Integrating semantic NLP and logic reasoning

into a unified system for fully-automated code checking. Automation in

Construction, 73, 45-57. doi:https://doi.org/10.1016/j.autcon.2016.08.027

Zhang, Y. (2010). Genetic Algorithms for Bridge Maintenance Scheduling. Technical

University of Munich.

Zhao, L., Zhang, W., & Wang, W. (2019). Construction Cost Prediction Based on

Genetic Algorithm and BIM. International Journal of Pattern Recognition and

Artificial Intelligence, 34(7). doi:https://doi.org/10.1142/S0218001420590260

 86

Zhong, B., He, W., Huang, Z., Love, P., Tang, J., & Luo, H. (2020). A building regulation

question answering system: A deep learning methodology. Advanced

Engineering Informatics, 46. doi:https://doi.org/10.1016/j.aei.2020.101195

Zhou, Y., Wang, Y., Li, C., Ding, L., & Wang, C. (2022). Automatic generative design

and optimization of hospital building layouts in consideration of public health

emergency. Engineering, Construction and Architectural Management, 31(4).

doi:https://doi.org/10.1108/ECAM-08-2022-0757

 87

1 import sys

2 import clr

3 clr.AddReference('ProtoGeometry')

4 from Autodesk.DesignScript.Geometry import *

5

6 # The inputs to this python node are stored as a list in the IN var

 iable

7 dataEnteringNode = IN

8

9 # Building_Model_Data:

10 Corridor_Width = IN[0][0]

11 Stairways_Width = IN[0][1]

12 Ceiling_Height = IN[0][2]

13 Door_Width = IN[0][3]

14 Door_Height = IN[0][4]

15 Space_between_Two_Doors = IN[0][5]

16 Number_of_Exits_per_Story = IN[0][6]

17 Available_Egress_Distance = IN[0][7]

18

19 # International_Building_Code_Requirements

20 Minimum_Corridor_Width = 1.828

21 Minimum_Corridor_Width_Based_on_OL = IN[1][0] #OL = Occupant Load

22 Minimum_Stairways_Width = 1.118

23 Minimum_Stairways_Width_Based_on_OL = IN[1][1]

24 Minimum_Ceiling_Height = 2.286

25 Minimum_Door_Width = 0.813

26 Minimum_Door_Height = 2.032

27 Minimum_Space_between_Two_Doors = 1.219

28 Minimum_Number_of_Exits_per_Story = 2

29 Maximum_Egress_Distance = 76.2

30

31 # Check 01: Minimum Corridor Width

32 def Check_Minimum_Corridor_Width(Minimum_Corridor_Width, Corri

 dor_Width):

33 Result = 'Check#1 (Minimum Corridor Width): Pass'

34 for i in range(len(Corridor_Width)):

35 if Minimum_Corridor_Width > Corridor_Width[i]:

36 difference = round(Minimum_Corridor_Width – Corri

 dor_Width[i], 3)

37 Corridor_Width[i] = Minimum_Corridor_Width

38 Result = f'Check#1 (Minimum Corridor Width): Fail - Side

 Corridor Width has increased by {difference} meters'

39 return Result, Corridor_Width

40

41 # Check 02: Required Capacity of Corridors

42 def Check_Required_Capacity_of_Corridors(Minimum_Corri

 dor_Width_Based_on_OL, Corridor_Width):

43 Result = 'Check#2 (Required Capacity of Corridors): Pass'

44 for i in range(len(Minimum_Corridor_Width_Based_on_OL)):

45 min_width = Minimum_Corridor_Width_Based_on_OL[i]

46 for j in range(len(Corridor_Width)):

47 if min_width > Corridor_Width[j]:

48 difference = round(min_width - Corridor_Width[j], 3)

49 Corridor_Width[j] = min_width

50 Result = f'Check#2 (Required Capacity of Corridors):

Appendix A1: Prototype for Automated Compliance Checking

 88

Fail - Corridor Width has increased by {difference}

meters'

51 return Result, Corridor_Width

52 return Result, Corridor_Width

53

54 # Check 03: Minimum Stairway Width

55 def Check_Minimum_Stairways_Width(Minimum_Stairways_Width, Stair

 ways_Width):

56 Result = 'Check#3 (Minimum Stairway Width): Pass'

57 for i in range(len(Stairways_Width)):

58 if Minimum_Stairways_Width > Stairways_Width[i]:

59 difference = round(Minimum_Stairways_Width – Stair

 ways_Width[i], 3)

60 Stairways_Width[i] = Minimum_Stairways_Width

61 Result = f'Check#3 (Minimum Stairway Width): Fail –

 Stairway Width has increased by {difference} meters'

62 return Result, Stairways_Width

63

64 # Check 04: Required Capacity of Stairways

65 def Check_Required_Capacity_of_Stairways(Minimum_Stair

 ways_Width_Based_on_OL, Stairways_Width):

66 Result = 'Check#4 (Required Capacity of Stairways): Pass'

67 for i in range(len(Minimum_Stairways_Width_Based_on_OL)):

68 min_width = Minimum_Stairways_Width_Based_on_OL[i]

69 for j in range(len(Stairways_Width)):

70 if min_width > Stairways_Width[j]:

71 difference = round(min_width - Stairways_Width[j],

 3)

72 Stairways_Width[j] = min_width

73 Result = f'Check#4 (Required Capacity of Stairways):

 Pass'

74 return Result, Stairways_Width

75 return Result, Stairways_Width

76

77 # Check 05: Minimum Ceiling Height

78 def Check_Minimum_Ceiling_Height(Minimum_Ceiling_Height, Ceil

 ing_Height):

79 Result = 'Check#5 (Minimum Ceiling Height): Pass'

80 for i in range(len(Ceiling_Height)):

81 if Minimum_Ceiling_Height > Ceiling_Height[i]:

82 difference = round(Minimum_Ceiling_Height – Ceil

 ing_Height[i], 3)

83 Ceiling_Height[i] = Minimum_Ceiling_Height

84 Result = f'Check#5 (Minimum Ceiling Height): Fail –

 Ceiling Height has increased by {difference} meters'

85 return Result, Ceiling_Height

86

87 # Check 06: Minimum Door Width

88 def Check_Minimum_Door_Width(Minimum_Door_Width, Door_Width):

89 Result = 'Check#6 (Minimum Door Width): Pass'

90 for i in range(len(Door_Width)):

91 if Minimum_Door_Width > Door_Width[i]:

92 difference = round(Minimum_Door_Width - Door_Width[i],

 3)

93 Door_Width[i] = Minimum_Door_Width

94 Result = f'Check#6 (Minimum Door Width): Fail - Door

 Width has increased by {difference} meters'

95 return Result, Door_Width

96

97 # Check 07: Minimum Door Height

98 def Check_Minimum_Door_Height(Minimum_Door_Height, Door_Height):

99 Result = 'Check#7 (Minimum Door Height): Pass'

100 for i in range(len(Door_Height)):

 89

101 if Minimum_Door_Height > Door_Height[i]:

102 difference = round(Minimum_Door_Height - Door_Height[i],

 3)

103 Door_Height[i] = Minimum_Door_Height

104 Result = f'Check#7 (Minimum Door Height): Fail - Door

 Height has increased by {difference} meters'

105 return Result, Door_Height

106

107 # Check 08: Minimum Space between Doors

108 def Check_Minimum_Space_between_Two_Doors(Minimum_Space_be

 tween_Two_Doors, Space_between_Two_Doors):

109 Result = 'Check#8 (Minimum Space between two doors): Pass'

110 if Minimum_Space_between_Two_Doors > Space_between_Two_Doors:

111 difference = round(Minimum_Space_between_Two_Doors –

 Space_between_Two_Doors, 3)

112 Space_between_Two_Doors = Minimum_Space_between_Two_Doors

113 Result = f'Check#8 (Minimum Space between two doors): Fail –

 Space between two doors has increased by {difference} me

 ters'

114 return Result, Space_between_Two_Doors

115

116 # Check 09: Minimum Number of Exits per Story

117 def Check_Minimum_Number_of_Exits_per_Story(Minimum_Number_of_Ex

 its_per_Story, Number_of_Exits_per_Story):

118 Result = 'Check#9 (Minimum Number of Exits per Story): Pass'

119 for i in range(len(Number_of_Exits_per_Story)):

120 if Minimum_Number_of_Exits_per_Story > Number_of_Ex

 its_per_Story[i]:

121 difference = round(Minimum_Number_of_Exits_per_Story –

 Number_of_Exits_per_Story[i], 3)

122 Number_of_Exits_per_Story[i] = Minimum_Number_of_Ex

 its_per_Story

123 Result = f'Check#9 (Minimum Number of Exits per Story):

 Fail - {difference} additional Exits are required'

124 return Result, Number_of_Exits_per_Story

125

126 # Check 10: Maximum Travel Distance

127 def Check_Maximum_Egress_Distance(Maximum_Egress_Distance, Availa

 ble_Egress_Distance):

128 Result = 'Check#10 (Maximum Egress Distance): Pass'

129 for i in range(len(Available_Egress_Distance)):

130 if Maximum_Egress_Distance < Available_Egress_Distance[i]:

131 difference = round(Available_Egress_Distance[i] – Maxi

 mum_Egress_Distance, 3)

132 Result = f'Check#10 (Maximum Egress Distance): Fail –

 Egress Distance exceeds by {difference} meters '

133 return Result, Available_Egress_Distance

134

135 # Applying Check Functions and Organizing the Results

136 Results_List = []

137 Building_Model_Data_List = []

138

139 check_functions = [

140 Check_Minimum_Corridor_Width, Check_Required_Capacity_of_Corri

dors, Check_Minimum_Stairways_Width,

141 Check_Required_Capacity_of_Stairways, Check_Minimum_Ceil

ing_Height, Check_Minimum_Door_Width,

142 Check_Minimum_Door_Height, Check_Minimum_Space_be

tween_Two_Doors, Check_Minimum_Number_of_Exits_per_Story,

143 Check_Maximum_Egress_Distance

144]

145

146 parameters = [

 90

147 (Minimum_Corridor_Width, Corridor_Width),

148 (Minimum_Corridor_Width_Based_on_OL, Corridor_Width),

149 (Minimum_Stairways_Width, Stairways_Width),

150 (Minimum_Stairways_Width_Based_on_OL, Stairways_Width),

151 (Minimum_Ceiling_Height, Ceiling_Height),

152 (Minimum_Door_Width, Door_Width),

153 (Minimum_Door_Height, Door_Height),

154 (Minimum_Space_between_Two_Doors, Space_between_Two_Doors),

155 (Minimum_Number_of_Exits_per_Story, Number_of_Exits_per_Story),

156 (Maximum_Egress_Distance, Available_Egress_Distance)

157]

158

159 for check_function, params in zip(check_functions, parameters):

160 result, updated_data = check_function(*params)

161 Results_List.append(result)

162 if not Building_Model_Data_List or updated_data != Build

 ing_Model_Data_List[-1]:

163 Building_Model_Data_List.append(updated_data)

164

165 # Creating Dictionary of Parameters

166 keys = [

167 "Corridor_Width", "Stairways_Width", "Ceiling_Height",

"Door_Width", "Door_Height", "Space_between_Two_Doors",

"Number_of_Exits_per_Story", "Available_Egress_Distance"

168]

169

170 Building_Model_Data_Dict = {key: value for key, value in zip(keys,

 Building_Model_Data_List)}

171

172 # Assigning output to the OUT variable

173 OUT = Results_List, Building_Model_Data_Dict

 91

1 import GraphicalDynamo as S

2 import clr

3 import time

4 import random

5

6 clr.AddReference('RevitServices')

7 clr.AddReference('RevitAPI')

8 clr.AddReference('RevitAPIUI')

9

10 from RevitServices.Persistence import DocumentManager

11 from Autodesk.Revit.DB import *

12

13 POPULATION_SIZE = 10

14 GENERATIONS = 20

15 MUTATION_RATE = 0.1

16 MED = 76.2

17

18 doc = DocumentManager.Instance.CurrentDBDocument

19 global_params =

 FilteredElementCollector(doc).OfClass(GlobalParameter).ToElements()

20

21 def custom_range(start, end, step):

22 while start <= end:

23 yield start

24 start += step

25

26 range_Main_Corridor_Width_Half_North = list(custom_range(6, 7, 0.5))

27 range_Main_Corridor_Width_Half_South = list(custom_range(6, 7, 0.5))

28 range_Side_Corridor_Width_North = list(custom_range(1, 2, 0.5))

29 range_Side_Corridor_Width_South = list(custom_range(1, 2, 0.5))

30 range_Door_Wall_Clearance_Classroom = list(custom_range(0.5, 2,

 0.5))

31 range_Door_Wall_Clearance_Laboratory = list(custom_range(0.5, 2,

 0.5))

32 range_Door_Wall_Clearance_Meeting_Room = list(custom_range(0.5, 2,

 0.5))

33 range_Door_Wall_Clearance_Office = list(custom_range(0.5, 2, 0.5))

34 range_Door_Wall_Clearance_Storage = list(custom_range(0.5, 2, 0.5))

35 range_Door_Wall_Clearance_Washroom = list(custom_range(0.5, 2, 0.5))

36

37 def set_global_parameters(doc, values):

38 transaction = Transaction(doc, "Set Global Parameters Values")

39 transaction.Start()

40 try:

41 for param in global_params:

42 if param.Name in values:

43 new_value = DoubleParameterValue(values[param.Name]

 * 3.28084) # Converting meters to feet

44 param.SetValue(new_value)

45 transaction.Commit()

46 except Exception as e:

47 transaction.RollBack()

48 print("Specified global parameter was not found")

49 raise e

50

51 def ShortestPath(Visibility_Graph, Origins, Destinations):

Appendix A2: Prototype for Optimization

 92

52 results = []

53 for origin in Origins:

54 sub_list = []

55 for destination in Destinations:

56 shortest_path =

S.Graphs.VisibilityGraph.ShortestPath(Visibility_Graph,

origin, destination)

57 shortest_path_length = shortest_path["length"]

58 sub_list.append(shortest_path_length)

59 results.append(sub_list)

60 return results

61

62 def initialize_population():

63 population = []

64 for _ in range(POPULATION_SIZE):

65 individual = {

66 "Main_Corridor_Width_Half_North":

 random.choice(range_Main_Corridor_Width_Half_North),

67 "Main_Corridor_Width_Half_South":

 random.choice(range_Main_Corridor_Width_Half_South),

68 "Side_Corridor_Width_North":

 random.choice(range_Side_Corridor_Width_North),

69 "Side_Corridor_Width_South":

 random.choice(range_Side_Corridor_Width_South),

70 "Door_Wall_Clearance_Classroom":

 random.choice(range_Door_Wall_Clearance_Classroom),

71 "Door_Wall_Clearance_Laboratory":

 random.choice(range_Door_Wall_Clearance_Laboratory),

72 "Door_Wall_Clearance_Meeting_Room":

 random.choice(range_Door_Wall_Clearance_Meeting_Room),

73 "Door_Wall_Clearance_Office":

 random.choice(range_Door_Wall_Clearance_Office),

74 "Door_Wall_Clearance_Storage":

 random.choice(range_Door_Wall_Clearance_Storage),

75 "Door_Wall_Clearance_Washroom":

 random.choice(range_Door_Wall_Clearance_Washroom),

76 }

77 population.append(individual)

78 return population

79

80 def fitness_function(individual):

81 set_global_parameters(doc, individual)

82 time.sleep(1)

83 Visibility_Graph = IN[0]

84 Origins = IN[1]

85 Destinations = IN[2]

86 shortest_paths = ShortestPath(Visibility_Graph, Origins,

 Destinations)

87 current_shortest_paths = [min(sublist) for sublist in

 shortest_paths]

88 AED = max(current_shortest_paths)

89 fitness = MED-AED

90 return fitness

91

92 def select_individual(population, fitness_scores):

93 total_fitness = sum(fitness_scores)

94 pick = random.uniform(0, total_fitness)

95 current = 0

96 for individual, score in zip(population, fitness_scores):

97 current += score

98 if current > pick:

99 return individual

100

 93

101 def crossover(parent1, parent2):

102 child = {}

103 for key in parent1.keys():

104 child[key] = parent1[key] if random.random() < 0.5 else

 parent2[key]

105 return child

106

107 def mutate(individual):

108 for key in individual.keys():

109 if random.random() < MUTATION_RATE:

110 if key == "Main_Corridor_Width_Half_North":

111 individual[key] =

 random.choice(range_Main_Corridor_Width_Half_North)

112 elif key == "Main_Corridor_Width_Half_South":

113 individual[key] =

 random.choice(range_Main_Corridor_Width_Half_South)

114 elif key == "Side_Corridor_Width_North":

115 individual[key] =

 random.choice(range_Side_Corridor_Width_North)

116 elif key == "Side_Corridor_Width_South":

117 individual[key] =

 random.choice(range_Side_Corridor_Width_South)

118 elif key == "Door_Wall_Clearance_Classroom":

119 individual[key] =

 random.choice(range_Door_Wall_Clearance_Classroom)

120 elif key == "Door_Wall_Clearance_Laboratory":

121 individual[key] =

 random.choice(range_Door_Wall_Clearance_Laboratory)

122 elif key == "Door_Wall_Clearance_Meeting_Room":

123 individual[key] =

 random.choice(range_Door_Wall_Clearance_Meeting_Room)

124 elif key == "Door_Wall_Clearance_Office":

125 individual[key] =

 random.choice(range_Door_Wall_Clearance_Office)

126 elif key == "Door_Wall_Clearance_Storage":

127 individual[key] =

 random.choice(range_Door_Wall_Clearance_Storage)

128 elif key == "Door_Wall_Clearance_Washroom":

129 individual[key] =

 random.choice(range_Door_Wall_Clearance_Washroom)

130 return individual

131

132 # Initialize Population

133 population = initialize_population()

134

135 for generation in range(GENERATIONS):

136 fitness_scores = [fitness_function(individual) for individual in

 population]

137

138 new_population = []

139 for _ in range(POPULATION_SIZE // 2):

140 parent1 = select_individual(population, fitness_scores)

141 parent2 = select_individual(population, fitness_scores)

142

143 child1 = crossover(parent1, parent2)

144 child2 = crossover(parent1, parent2)

145

146 child1 = mutate(child1)

147 child2 = mutate(child2)

148

149 new_population.extend([child1, child2])

150

151 population = new_population

 94

152

153 # Selecting Optimized Parameter Configuration

154 fitness_scores = [fitness_function(individual) for individual in

 population]

155 best_individual = population[fitness_scores.index(max(fit

 ness_scores))]

156

157 # Applying Optimized Parameter Configuration to the open Revit docu

 ment

158 set_global_parameters(doc, best_individual)

159

160 OUT = best_individual

Table C.1: Occupancy classification of buildings (Section 302.1)

Table C.2: Minimum Corridor Width (Section 1020.2)

Appendix B: IBC Requirements

Table C.3: Occupant load factor (Section 1004.5)

Table C.4: Minimum number of exits based on the occupant load (Section 1006.3.2)

Table C.5: Exit access travel distance (Section 1017.2)

Hereby I declare to have written the Master Thesis autonomously. Only the cited

sources and means have been used. Verbally or semantically transferred intellectual

property I distinguished as such.

Further I assure not to have handed in the Thesis for another examination.

München, 30. September 2024

Malik, Muhammad Ali

Affirmation

