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Abstract   II 
 

 

The continued advancement of Building Information Modelling (BIM) has enabled Au-

tomated Compliance Checking (ACC). Despite improvements in highly advanced code 

compliance checkers to ensure adherence to regulatory standards and adjust building 

designs for compliance, there remains a significant gap in automating and optimizing 

this process for complex and diverse design scenarios. Manually adjusting building 

models based on building code specifications takes time, effort, and is typically error-

prone, reducing total project efficiency. This thesis proposes a code compliance frame-

work to automate code checking and adjust violation-related parameters, ensuring 

code-compliant building designs, specifically focusing on building egress require-

ments. It also integrates the use of Generative Design (GD) and Genetic Algorithm 

(GA) with parametric BIM modeling to optimize the means of egress by finding the 

optimized parameter configuration that yields the least travel distances. It ensures that 

the building design not only complies with building regulations but is also optimized to 

enhance the safety of occupants. The proposed approach was validated using a case 

study. The results illustrate the significance of the proposed framework in automating 

compliance checking, adjusting violation-related parameters, and optimizing building 

design to enhance the safety of occupants during emergency scenarios. 
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Die Weiterentwicklung der BIM hat die automatisierte Prüfung der Einhaltung von Bau-

vorschriften möglich gemacht. Trotz der Verbesserungen bei den hochmodernen Prüf-

programmen, die die Einhaltung gesetzlicher Normen sicherstellen und Gebäudeent-

würfe auf ihre Konformität hin anpassen, gibt es immer noch eine erhebliche Lücke bei 

der vollständigen Automatisierung und Optimierung dieses Prozesses für komplexe 

und vielfältige Entwurfsszenarien. Die manuelle Anpassung von Gebäudemodellen auf 

der Grundlage von Bauvorschriften ist zeitaufwändig, erfordert einen erheblichen Ar-

beitsaufwand und ist oft fehleranfällig, was sich auf die Gesamteffizienz des Projekts 

auswirkt. In dieser Masterarbeit wird das „code compliance framework“ vorgeschlagen, 

um die Überprüfung von Codes zu automatisieren und verletzungsbedingte Parameter 

anzupassen, um codekonforme Gebäudeentwürfe zu gewährleisten, wobei ein beson-

derer Schwerpunkt auf den Anforderungen an die Fluchtwege von Gebäuden liegt. Es 

integriert auch die Verwendung von Generativem Design (GD) und Genetischem Al-

gorithmus (GA) mit parametrischer BIM-Modellierung, um die Ausstiegsmöglichkeiten 

des Gebäudes zu optimieren, indem die optimale Parameterkonfiguration gefunden 

wird, die die geringsten Laufwege ergibt. Dadurch wird sichergestellt, dass das Ge-

bäudedesign nicht nur den Bauvorschriften entspricht, sondern auch so optimiert ist, 

dass die Sicherheit der Bewohner erhöht wird. Der vorgeschlagene Ansatz wurde an-

hand einer Fallstudie validiert. Die Ergebnisse zeigen die Effektivität des vorgeschla-

genen Rahmens bei der automatischen Überprüfung der Einhaltung von Vorschriften, 

der Anpassung von Parametern, die mit Verstößen zusammenhängen, und der Opti-

mierung des Gebäudedesigns, um die Sicherheit der Bewohner in Notfallszenarien zu 

verbessern. 
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1.1 Overview 

The AEC industry follows specific standards to ensure that buildings are structurally 

sound, reliable, and usable. Compliance with these codes is crucial for the proper func-

tioning of buildings and the safety of their users. In the past, ensuring adherence to 

building standards relied on manual processes, mainly using 2D drawings. However, 

due to a lack of automation, this approach is error-prone and time-consuming (Villaschi 

et al., 2022). 

The emergence of BIM technology has made Automated Compliance Checking (ACC) 

possible. While current compliance checkers can verify adherence to regulatory stand-

ards and modify building designs for compliance, there is still a need to fully automate 

and optimize this process for complex and diverse design scenarios (Patlakas et al., 

2018). As a result, architects and engineers manually change building models to meet 

code requirements, which is time-consuming, labor-intensive, and iterative, frequently 

resulting in errors and reducing the project's total profitability. 

Many code compliance checkers use programmed codes to evaluate compliance. 

However, this method only shows the input and output data, not the actual steps taken 

to process it. As a result, designers don't know how the data is being processed and 

only see the final results, which makes it difficult to ensure accuracy and fairness. Also, 

designers find it challenging to make process changes to fit their specific needs without 

developer intervention, which can be time-consuming and costly (Preidel & Borrmann, 

2018). 

To address these challenges, the manual adjustment of building models to achieve 

code compliance can be automated by using generative design for parametric BIM 

models. This thesis aims to examine and adjust design alternatives by modifying vio-

lation-related parameters to streamline code-compliant building designs and identify 

the most efficient and compliant design solution using optimization algorithms. The GA 

has been applied to optimize the building design to minimize the available egress dis-

tance. The proposed framework can automate not only the process of checking code 

compliance but also the adjustment of BIM models to ensure that they are both code-

compatible and optimized for the safety of the occupants. 

1 Introduction 
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1.2 Research Objectives 

This thesis aims to create a framework that combines parametric modeling and ad-

vanced optimization algorithms to identify an efficient and code-compliant design so-

lution for building egress requirements. It is essential to consider egress requirements 

in building design as they contribute to the safety of building occupants during emer-

gencies and are essential for compliance with building regulations. This thesis aims to 

address the following research question: 

“How can automated design support be provided through generative design 

and optimization algorithms to transform parametric models into code-com-

pliant solutions that minimize egress distances and enhance occupant 

safety?” 

This thesis introduces the code compliance framework designed to correct the BIM 

models to ensure compliance with building codes. it automates code compliance 

checking for the building's egress requirements and can automatically adjust violation-

related parameters to ensure code compliance. Using a visual programming language, 

the building code limitations are imported and compared with the data of the building 

elements in the BIM model to check code compliance. Once the non-compliant building 

parameters are identified, they are automatically adjusted within the specified range of 

building codes to ensure code compliance. This thesis aims to use generative design 

to optimize egress routes by identifying the design variant with the shortest egress 

distance, allowing quick evacuation in emergencies. This objective guarantees that the 

building design not only adheres to building regulations but is also optimized to en-

hance the safety of occupants. The proposed framework has been tested in a case 

study to check its accuracy and reliability. The case study considered in this thesis is 

the Physics Department (N6) Building of the Technical University of Munich (TUM). 

The obtained results are thoroughly explored, and potential enhancements are dis-

cussed. 

1.3 Outline of Thesis 

Chapter 2 investigates the current state of Automated Compliance Checking (ACC) 

practices. This includes exploring how ACC was developed and the challenges it faces 

today. The theoretical principles of parametric BIM modeling are also discussed, with 

examples provided to illustrate its current usage in benefiting various projects. 
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Furthermore, an in-depth analysis is carried out on generative modeling and optimiza-

tion algorithms commonly utilized in the AEC industry. 

Chapter 3 outlines the proposed methodology, including the workflow and practical 

application of the approach. An in-depth analysis of the building code, specifically used 

for egress requirements is presented and objective function is created. Further in this 

chapter, a detailed explanation is provided on the application of generative design and 

genetic algorithm for the automatic adjustment of a parametric design to optimize the 

egress distance of the building. 

Chapter 4 presents the implementation of the code-compliance and optimization 

framework. It begins by introducing ten compliance checks selected from the IBC. The 

chapter then explains the process of creating a parametric BIM model and its applica-

tion in extracting building information for code compliance checks. Furthermore, it pro-

vides a comprehensive overview of the workflow of the Dynamo, which is utilized for 

automating the adjustment of violation-related parameters. Finally, it showcases the 

utilization of a genetic algorithm to achieve optimized parameter configuration for the 

optimized egress distance. 

Chapter 5 tests and validates the functionality of the proposed framework. This is ac-

complished through a case study of a building at TUM, for which a parametric BIM 

model is constructed using the parameters selected in the preceding chapter. Subse-

quently, the model undergoes a code compliance check. When the model is deter-

mined to be non-compliant, the proposed framework is employed to automatically mod-

ify the model to ensure it meets the required code standards. Furthermore, the pro-

posed optimization framework is validated to reduce the egress distance while taking 

building layout constraints into account. 

Chapter 6 provides a detailed analysis of the research results, and summarizes the 

contributions made by this thesis. It also outlines the limitations of the proposed meth-

odology and discusses possibilities for its future improvement. 
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2.1 Automated Compliance Checking 

ACC increases the effectiveness and precision of the inspection process while also 

providing opportunities to identify noncompliance with building standards. Building 

codes represent a collection of international established regulations and standards that 

aim to ensure the planning, construction and upkeep of buildings in a manner that 

prioritizes safety and sustainability. These building regulations typically specify the 

minimal prerequisites for building design, including prescribed materials, obligatory 

structural components and mandated safety provisions. In recent years, there has 

been a growing interest in structuring building codes to facilitate machine interpretation 

and application to improve the accuracy and efficiency of building code enforcement 

(Kincelova et al., 2020). 

ACC is the subject of extensive research, focusing on leveraging BIM and knowledge 

graph technologies. For instance, Peng and Liu (2023) conduct a study on ACC based 

on BIM and knowledge graphs, aiming to automate the drawing review process. Using 

natural language processing technology, they propose a framework to transform spec-

ification provisions into a computer-recognizable structured language. This solution ef-

fectively overcomes the problems of manual reliance and inefficiency in the review 

procedure. 

ACC techniques evaluate building designs through four stages: rule interpretation, 

building model preparation, rule execution, and rule check reporting (Luo & Gong, 

2015). Rule interpretation involves examining the construction code and identifying 

pertinent rules and requirements. Building model preparation is the process of creating 

a digital representation of the building that integrates all relevant design elements and 

features. Rule execution is done through software that applies building code rules to a 

building model and tests various design scenarios against building code requirements. 

Rule check reporting involves generating a report that summarizes the results of the 

rule execution and highlights areas where the building design does not meet the code 

requirements. This report can subsequently be utilized to implement the necessary 

design modifications and ensure building compliance with the relevant building codes. 

2 State of the Art 
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Figure 2.1: Four-stage process of ACC approaches (Luo & Gong, 2015) 

In current code compliance checkers, human expert involvement is necessary to re-

solve reported design flaws. Designers manually adjust the building model to ensure 

conformance with codes, which is a laborious and iterative task. Moreover, implement-

ing design alterations is often prone to error, as satisfying one building regulation may 

lead to violating other requirements (Wu et al., 2023). 

2.2 Techniques in ACC Development 

Research has been conducted to explore different methods of interpreting rules in var-

ious countries for ACC. These methods include rule-based, object-based, logical, and 

ontological approaches (Ismail et al., 2017). The appropriate approach selection de-

pends on the problem's complexity and the accuracy required for ACC. This section 

outlines some commonly used strategies for comprehending rules for developing Au-

tomated Compliance Checking. 

2.2.1 Software Applications 

Commercial software applications are frequently employed for rule checking since they 

are accessible and simple to use. Some popular software for ACC includes Solibri 

Model Checker (SMC), BIM Assure, SMARTreview, and CORENET. 

Solibri Model Checker (SMC) is a software application developed by the Finnish com-

pany Solibri Inc. that has become increasingly popular among architects, engineers 

and construction professionals (Solibri, 2024). The software is designed to help de-

signers identify and resolve design errors before and during the construction process. 

One of the primary strengths of SMC is that it automates the design analysis and 

checking process, making it easier for designers to identify potential issues such as 
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clashes, missing components, or accessibility problems. Using SMC, designers can 

significantly reduce the risk of costly construction errors and delays, resulting in a more 

efficient and streamlined construction process. 

SMC uses a classification strategy to combine data from multiple discipline models and 

BIM authoring tools. This strategy involves categorizing elements of construction 

based on particular details included inside the building model. The categorization tech-

nique is a critical step in the process as it allows information from various construction 

models to be filtered and prepared for the subsequent inspection procedure. The clas-

sification system helps to organize and structure the data, making it easier to identify 

and inspect the different components of the building model. This procedure guarantees 

that all data in the model is precise, full, and unified, lowering the likelihood of mistakes 

and conflicts. 

The Solibri application's checking methods are based on the Ruleset Manager, which 

has a library of templates (Preidel & Borrmann, 2018). Each template provides a stand-

ard-checking approach that may be tailored to a set of parameters. Users can create 

or modify these rule templates to suit their specific requirements. Rule compositions 

can be saved as rule sets, making sharing and distributing specified rules possible. 

SMC also has several built-in features that help users quickly identify potential issues, 

such as highlighting areas where the design may not comply with accessibility stand-

ards. 

The process of creating rules in SMC requires extensive knowledge of the rules them-

selves. Therefore, this process is usually performed by experts rather than users. As 

a result, most users depend on SMC's established criteria and focus on key design 

criteria such as information sufficiency or building component collision (Fig. 2.2). De-

spite this limitation, SMC remains a highly effective tool for identifying and resolving 

design errors, and its popularity among professionals in the construction industry con-

tinues to grow (Greenwood et al., 2010). 
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Figure 2.2: User interface of the Solibri Model Checker (Preidel & Borrmann, 2018) 

Kim and Nguyen (2011) explore the effectiveness of a plug-in application for automatic 

code compliance checks. The approach requires using a plugin to retrieve the essential 

information from the building design to perform building code checks. This is achieved 

by utilizing a VB.Net plug-in to generate a conditional query. Although executing con-

ditional queries is not directly possible in Revit, it can be accomplished using the Revit 

API. The framework possesses a static graphical model that exhibits building proper-

ties in both graphical and non-graphical formats. Their comprehensive analysis centers 

on Autodesk Revit Architecture to ensure compliance with the International Building 

Code (IBC). The focus is on three essential areas of compliance: firewall openings, 

fireproofing scores, and lateral consistency. Their technology allows the extraction of 

information not readily accessible in the building design. They develop additional pa-

rameters that encapsulate their understanding of the IBC building code, such as the 

dimensions of firewall openings. This step proves necessary as the building model 

alone does not furnish all the requisite information for compliance checks. The study 

reveals that Autodesk Revit Architecture is an optimal platform for implementing auto-

mated building design systems, including code compliance verification. Incorporating 

additional parameters based on the knowledge of building codes guarantees the avail-

ability of all necessary information for compliance checks. 

2.2.2 Object-based approach 

The object-based method is more appropriate for monitoring product quality and de-

tecting design flaws. This approach utilizes the object-oriented attributes of BIM. A 

building model comprises distinct objects, each with unique characteristics and con-

nections to other objects, which are compared to relevant building codes for compli-

ance. The object-based approach is a strategy for organizing comprehension. This 
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structure is achieved by expressing categories of objects as units of information. The 

technique of modeling building codes using the object-oriented approach includes 

three parts (Yang & Li, 2001):  

1. Categorization and Abstraction of Building Codes: This stage involves identifying all 

information in the building codes and classifying them. This stage aims to ensure that 

all significant information is encapsulated in the knowledge base. 

2. Modeling of Rule Representation: This stage involves identifying all related objects 

and establishing connections between them and building code classes.  

3. Development of Knowledge Base: This stage entails recording and preserving data 

and principles about construction regulations in a hierarchical style within an infor-

mation base. The objective of this stage is to ensure that the knowledge base is current 

and precise. 

 

Figure 2.3: Three stages of the object-based approach (Yang & Li, 2001) 

Some studies demonstrate that machine learning can surpass rule-based techniques 

under certain circumstances (Bloch & Sacks, 2018). Sacks et al. (2019) discuss artifi-

cial intelligence's strong, favorable implications in ACC. They highlight numerous pos-

sible applications for artificial intelligence approaches throughout the inspection pro-

cess. Furthermore, it is feasible to execute the entire rule-checking procedure using a 

machine-learning algorithm (Bloch & Sacks, 2018). However, machine learning pre-

sents challenges, such as collecting training datasets and selecting data characteris-

tics from an enormous quantity of building information. It is vital to establish or identify 

distinct data characteristics of buildings to evaluate different rules, as relevant and ef-

fective data features ensure high-accuracy outcomes from machine learning algo-

rithms. 

CORENET e-PlanCheck was formally adopted in Singapore in September 2000 as an 

example of an object-based methodology and automated code-checking system (Shih 

& Sher, 2014). CORENET project is the pioneer project in the automation of code-
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checking. The technology increases the productivity and precision of the verification 

process, making it more reliable and faster. FORNAX is an independent platform and 

C++ object library. By extending the IFC model and extracting FORNAX objects, rules 

defined in plain language can be easily understood without requiring algorithm devel-

opment (Eastman et al., 2009).  

 

Figure 2.4: Recent approaches to automated compliance checking (Preidel & Borrmann, 2015) 

DesignCheck, an automated checking system, can create complete design information 

with corresponding descriptions that map to building codes. Building codes are com-

prehended through an object-oriented description and subsequently encoded as ob-

ject-oriented rules using the programming language. The tool enables designers to 

verify building models against certain clauses in the building code, or they may check 

individual item kinds or groups of items rather than the full building design. 

2.2.3 Logical approach 

Building rules, the product of human creation, can be interpreted through formal meth-

odologies, such as converting logical constructs into statements in human language. 

The formal interpretation process entails decomposing intricate rules into smaller, 

more manageable components that can be expressed in a logical language. The lan-

guage most commonly employed for natural language translation is first-order predi-

cate logic, which allows for expressing complex ideas using simple symbols. First-or-

der predicate logic is a formal language that uses symbols and rules to depict logical 

associations between objects and concepts. It is a powerful tool for expressing com-

plex ideas because it creates precise and unambiguous statements that humans and 

machines can easily understand. Prolog, Datalog, and Answer Set Programming are 

commonly used logical programming languages. 

There are certain advantages of using logic-based reasoning in checking code compli-

ance (Zhang & El-Gohary, 2016). The binary nature of logic-based reasoning is one of 

the main reasons. Logic-based reasoning evaluates statements or conditions as true 
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or false, following a logical sequence to conclude. Because logic-based reasoning is 

binary, it may quickly assess if a building design is appropriate or in breach of specific 

standards or rules. In addition, complex building codes can be effectively captured and 

represented logically and structured using expressive logic-based reasoning, ensuring 

accurate interpretation and implementation of the building code. 

Lee (2010) discover that predicate logic is helpful for logical validation of checks. It can 

reflect a verification technique, computation in the defined guidelines, numerous stand-

ard circumstances, and the ability to treat construction portions as predicate logic en-

tities. By confirming the logical combinations of conditions, the verification can be com-

pleted, resulting in validation findings that are either 'true' or 'false'. Park and Lee 

(2016) provide KBimCode, which uses a logic rule-based mechanism to represent, 

define, and evaluate building codes. 

In addition to predicate logic, the conceptual graph is another method used to convert 

rules into fundamental logic structures. It is a useful tool that allows experts to extract 

rules, construct objects, and describe the interaction between them, including any re-

strictions, without requiring programming knowledge. Translating rules into a concep-

tual graph involves four steps (Figure 5). Firstly, the central idea of a rule, such as 

"space", must be identified. Secondly, the individual sub-rules that make up each rule 

must be recognized, as each sub-rule is independent. Thirdly, the atomic limits and 

restrictions are determined. Finally, the most suitable conceptual graph is defined by 

establishing the relationships between all the pieces.  

 

Figure 2.5: Four Stages in Creating a Conceptual Graph for Logical Interpretation (Yang & Li, 2001) 

Salama and Gohary (2011) conducts a study on the logical approach and develops the 

deontology approach to make it easier to determine if a building model is authorized 

or banned under applicable rules. This approach provides complex knowledge repre-

sentation and reasoning more effectively. The decision table technique, developed in 

1969, is quite similar to the logical approach (Fenves et al., 1969). It was created to 

help understand the steel design criteria of a structure. This method involves recording 

logical rules as a parameter table and does not require computer programming. The 
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decision table organizes every consideration and judgment into an array, allowing in-

tricate reasoning to be expressed concisely and clearly. 

2.2.4 Ontological approach 

Ontology is a representation of knowledge that offers a structured framework for pre-

senting building objects, their attributes, and relationships in a particular domain 

(Preidel & Borrmann, 2018). Ontology may be used to represent the connections and 

restrictions that are present between various construction components and systems. 

For example, relationships between different building materials, such as those used 

for walls, roofs, and floors. 

A graph effectively expresses complex ideas and relationships in the semantic network 

(Decker et al., 2000). It is a visual representation of multiple objects and their logical 

relationships. The Resource Description Framework (RDF) is usually utilized to gener-

ate such graphs. RDF is a language that allows you to specify graph structure by using 

statements and expressions to describe the links between resources. These state-

ments, or RDF triples, comprise three parts: subject, predicate, and object. The subject 

represents the resource, the predicate indicates their relationship, and the object rep-

resents the other resource. All three components work together to provide a compre-

hensive and precise overview of the resource relationships. 

Zarli et al. (2008) present a framework with four components contributing to a compre-

hensive conformity-checking approach. First, an information collection approach was 

developed utilizing RDF (Resource Description Framework) to define the framework 

and construction rules. In addition, a logic system was created to align the design with 

the construction codes. This method aids in detecting variations and flaws in the con-

struction model. Finally, they were included in a working model termed the C3R frame-

work to assist in developing the structure. The C3R system is a computer application 

that compares code compliance to the building model. 

The ICC adopted the ontological approach for regulatory compliance by developing 

SMARTcodes in 2006 (Eastman et al., 2009). SMARTcodes are a set of codes that 

incorporate the principles of ontology to provide a more structured and consistent ap-

proach to regulatory compliance. These codes are used for various purposes, including 

building codes, fire codes, and energy codes. As part of the development of 

SMARTcodes, the ICC established an International Energy Conservation Code (IECC) 

dictionary. This dictionary is a knowledge acquisition method and a communication 
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platform between regulations and building models. Bouzidi et al. (2012) propose a 

framework that utilizes semantic web technologies to formalize building regulations. 

The framework is based on RDF Query Language (SPARQL). The framework incor-

porates an ontological approach called CQIEOntology to facilitate construction quality 

inspection and evaluation. This approach evaluates construction quality by assessing 

if required standards are met.  

ACC also established the ontology concept through the RASE framework (Hjelseth & 

Nisbet, 2011). The RASE approach organizes and structures specification rules, which 

are transformed into a machine-readable format for automated compliance assess-

ment. These four components were employed as model-checking operators, and each 

rule is divided into four-element groups. A requirement is a set of specified criteria a 

building design must fulfill to comply with the building code. Requirements often begin 

with 'shall' or 'shall not'. Applicability assesses whether a certain rule applies to the 

building design. It involves identifying many sentences that relate to the same idea. If 

a requirement is met, the selection element specifies the exact component to which it 

applies. Exceptions are the opposite of Applicability; they account for any unique cir-

cumstances in which the requirement may not apply, even if it usually applies to the 

building design. Exceptions often begin with 'unless'. 

 

Figure 2.6: Establishment of the Norwegian code with the RASE syntax (Hjelseth & Nisbet, 2011) 

2.2.5 Challenges encountered in ACC 

With the advancement of technology, data can now be accessed and processed auto-

matically in machine-readable format. However, it is challenging to obtain what one 

needs from an extensive number of written material. Natural language processing 

(NLP) is widely utilized to fill the separation between machines and human languages, 

enabling successful human-machine communication. NLP is a discipline of computer 

science that studies the interaction between human and machine language. The 
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objective is for trained automated machines to understand, interpret, and develop hu-

man language. NLP enables machines to analyze large amounts of written text, dis-

cover patterns, and extract usable information. Zhang & El-Gohary (2017) propose a 

framework for the ACC that addresses the challenge of manual coding rules. The sug-

gested system uses NLP to automate the process of coding rules, lowering the chance 

of human mistakes. With this framework, the ACC achieves greater efficiency and ac-

curacy in its rule-making process. Moreover, Zhong et al. (2020) present an artificial 

learning model that combines NLP with data extraction. This model helps analyze and 

understand complex building regulations. By combining natural language processing 

(NLP) and information retrieval, this model extracts critical information from large sets 

of building codes, providing actionable insights to stakeholders. 

The fundamental goal of ACC is to convert rules and guidelines into machine-usable 

language. There are two distinct methods for this translation (Preidel & Borrmann, 

2018). The translation process can be substantially simplified by shifting the evaluation 

procedure directly to a coded program. In this approach, the digitization of code or 

guideline materials focuses on defining machine-readable algorithms often hidden 

from users. This concept is referred to as the Black-Box method, and it is a process 

that displays incoming and exiting data, not the actual computation operation. How-

ever, the fundamental benefit of this method is an extremely small overall rate of mis-

takes due to the code-checking system's closedness and explicit use of internal data 

structures. The Black-Box approach works well when the outcome is more important 

than the procedure. However, the user's capacity to interpret the translated rules is 

limited due to the hidden approaches used in the process. As a result, additions and 

modifications can only be implemented via integration with the software developer. 

White-Box methods are a type of testing approach that allows the internal processing 

steps of a system to be visible and comprehensible to the user. Unlike hidden proce-

dures, which conceal the inner workings of a system, White-Box methods provide 

transparency that enables users to understand and retrace the steps of the checking 

procedure at any time. To reach this degree of accountability, each section of the trans-

lated rule or procedure must be clear by both the computer and the person using it. 

This necessitates a code representation system comprising a set of signs and regula-

tions for describing objects, methods, and relationships clearly and comprehensibly to 

the user. 
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Figure 2.7: Representation of the black-box and white-box approaches (Preidel & Borrmann, 2018). 

The fundamental purpose of White-Box techniques is not just to encompass all poten-

tial data that an instruction or regulation may provide but additionally to allow the con-

sumer to track progress step by step. This means the regulations must be interpreted 

using a user-friendly code representation system, allowing people to understand how 

the system processes information at any given time. Despite creating and executing 

such an approach that needs substantially more time than the closed verification tech-

nique, its benefits for carrying out an inspection assignment are significant. By provid-

ing users with a clear understanding of the inner workings of a system, White-Box 

methods can help improve system performance, identify potential issues more quickly, 

and ultimately lead to a better user experience. 

Considering the rising level of digitization and outsourcing in the building sector, ac-

countability for the success of each process step ultimately falls on the planning engi-

neers or regulatory authorities due to legal constraints. Automated processes must be 

cautiously approached, and their results must be manually checked for accuracy and 

plausibility. In the AEC industry, it is common practice to periodically check results 

manually by performing calculations or comparing them with established rules of 

thumb. However, because organizing experts are often not software developers, tests 

are not conducted using black-box approaches owing to a lack of openness. This lack 

of openness frequently causes a lack of faith in the outcomes and raises concerns 

about the trustworthiness of automated systems (Gross, 1996). As a result, a white-

box approach is preferred to meet the main objectives. This approach allows for trans-

parency and observability of individual processing steps, reducing the risk of hidden 

procedures and errors. However, this raises the concern of whether total machinery 

automation without human intervention or input is realistic. Guidelines may include 

confusing semantics that a human with the necessary expertise, wisdom, and account-

ability must interpret. Therefore, it is advised that a partially automated technique be 
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employed. This strategy allows for user interaction and input while retaining the bene-

fits of automation. 

2.3 Parametric BIM Modeling 

Parametric BIM models are constructed utilizing relationships and restrictions, result-

ing in an adaptable framework which can rapidly and effectively adjust to forthcoming 

or evolving circumstances (Borrmann et al., 2018). A “parameter” defines building ob-

jects' geometric and semantic information and helps establish interactive dependen-

cies. Using parametric modeling, architects and engineers can gain precise control 

over building component information. Parametric modelling helps planners to swiftly 

examine a variety of construction alternatives by integrating factors that represent the 

limits and requirements of building regulations. It enables seamless modification of 

component geometric and semantic data through parameters, allowing professionals 

to automate the model adjustment process to ensure code compliance of building mod-

els.  

In parametric modeling, the first step is to create a 2D sketch that includes all the ge-

ometric elements required to produce the final object (Borrmann & Berkhahn, 2018). 

Afterward, the geometric elements are linked using two kinds of constraints: dimen-

sional and geometric. Dimensional constraints specify the dimensional value of geo-

metric elements such as length, width, or thickness, while geometric constraints ensure 

that the geometric elements remain parallel or perpendicular. After assigning the con-

straints, the 2D parametric sketch can be used for operations, including extrusion or 

rotation, to create the final 3D parametric body. Figure 2 illustrates that the rectangular 

and round shapes confine an identical region due to dimension constraints. 

 

Figure 2.8 Instance of a parametric sketch (Borrmann & Berkhahn, 2018) 
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Parametric modeling based on geometry involves creating shapes using rules that are 

based on parameters. For example, a sketch is created with specific dimensional, 

equational, and geometric constraints. This sketch is then combined with a procedural 

geometric description, such as extrusion, to create a three-dimensional shape. This 

method is considered an implicit representation because the entire construction history 

is saved, allowing for modifications at each step of construction by adjusting parame-

ters. On the other hand, Parametric BIM modeling limits the flexibility of parametric 

modeling because it relies on predefined object types and constraints within the BIM 

application. The parametric approach in BIM operates on two levels: first, by establish-

ing geometric construction objects such as walls and stairs, and second, by defining 

their positions within the overall building complex. This approach requires defining the 

object's position within the building complex and often includes predefined constraints 

between object types. These parameters involve considerations such as parallelism, 

orthogonality, alignment, and distance between objects (Borrmann et al., 2018). 

Parameters are crucial in defining the relationships between different building elements 

and how they affect each other (Edmonds et al., 2022). It implies that any alteration in 

a parameter will impact its dependent parameters, thereby influencing the overall de-

sign. For instance, an alteration in the parameter representing the width of a room 

would automatically update its dependent parameter, i.e., the length of the wall. More-

over, a parameter could be established to ensure that the height of a door always 

remains at 80% of the height of the wall it is set in. Consequently, any changes in the 

wall height would automatically trigger adjustments in the door height to preserve this 

relationship. This concept of parametric interdependency facilitates the development 

of intelligent BIM models capable of automatic adjustments in response to changes. 

This not only diminishes the time and effort required for design updates but also en-

hances the overall efficiency of projects. 

A number of advances have been made to assist parametric modelling. The tightly 

coupled method connects systems via the Application Programming Interface (API). In 

this scenario, graph-based systems interact using the API, which directly generates 

geometry in the BIM model each time that the graph-based model is performed. One 

of the examples is Dynamo, which utilizes the Revit API. The loosely coupled technique 

connects platforms by exchanging models. The graph-based approach frequently gen-

erates data in a typical file structure that can be put directly into the BIM platform. An 

example of the loosely coupled technique is Grasshopper, which uses IFC as the 
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interchange format. These techniques are continually emerging. Nevertheless, of the 

two options, the loosely coupled method based on sharing files has the essential ben-

efit of being process agnostic, allowing individuals to connect tools and systems to 

enable multiple types of collaboration and exchange. For instance, while Geome-

tryGym generates an IFC file, users may link to any BIM platform capable of importing 

IFC files (Janssen, 2015). 

 

Figure 2.9: Integration of graph-based systems with parametric BIM modeling (Janssen, 2015). 

Holzer (2015) explains the benefits of integrating BIM with parametric modeling. BIM 

involves creating and maintaining digital representations of a project's physical and 

functional qualities, resulting in a collaborative environment for all stakeholders en-

gaged in a building's lifetime. On the other hand, parametric design is a technique for 

intelligently developing architectural objects based on relationships and rules defined 

through parameters. The combination of BIM and parametric design provides a solid 

foundation for tackling difficult design challenges. It allows architects and designers to 

develop flexible models that can respond to changing design needs without having to 

begin from the start.  

Parametric models facilitate performance analysis early in the design process. By in-

tegrating analysis tools with parametric models, designers can assess performance 

criteria such as daylighting, thermal comfort, and structural stability, enabling informed 

design decisions. Károlyfi and Szép (2023) use parametric BIM modeling to generate 

various structural solutions and evaluate their embodied environmental impact during 

the conceptual design phase. The study showcases the effectiveness of parametric 
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BIM modeling through a case study of an unheated warehouse constructed using steel 

frames, analyzing 48 different design solutions. The study concludes that parametric 

design can be a valuable tool for conducting comprehensive environmental impact 

evaluations. 

Júnior et al. (2023) investigate the use of parametric modeling in BIM for the identifi-

cation of potential building pathologies. A parametric digital twin of an existing building 

is created to facilitate a comprehensive analysis. It permits the linkage of relevant in-

formation to the operational duration of products and equipment in development. It 

provides a proactive strategy for building maintenance, potentially leading to significant 

savings in costs and resources. Yang et al. (2022) presents a framework that utilizes 

parametric modeling to calculate the construction expenses. A construction cost esti-

mation model is developed employing a wide range of characteristics, emphasizing the 

importance of financial viability as well as expense assessment during the initial design 

phase of initial-stage construction tasks.  

Barazzetti and Banfi (2022) study the use of parametric BIM and GIS information in 

infrastructure design. Geospatial data is used extensively in infrastructure and land 

administration projects. GIS softwares are great at geospatial analyses but lacks par-

ametric modeling tools while BIM softwares excels at parametric modeling but lacks 

geospatial tools. They suggest that BIM and GIS are complementary technologies, and 

ongoing research is aimed at enhancing their interoperability, particularly at the build-

ing level. Integration of geoinformation and parametric modeling streamlines design 

workflow. They provide simulated and real examples, showing that integration is fea-

sible at specific scales. 

2.4 Building Egress Requirements 

A means of escape is a continuous and unobstructed route between any point in the 

structure to a public route or a designated area of safety (Shen, 2006). A building's 

technique for escape is made up of three parts. Exit access is the path from any loca-

tion within a building to an outlet. Exit access is characterized as the portion of the way 

of escape that connects to the entrance of an escape and is included in the total dis-

tance traveled to reach an exit. The exit shall be defined as the component of the 

means of escape that has protection from the zone of incidence and offers a safe pas-

sage to the exit discharge. An exit is generally a door that leads to the outdoors or, in 

a multi-story structure, an enclosed exit staircase. The exit discharge shall include any 



State of the Art  28 
 

part of the route between the exit's termination and the exterior or the refuge area 

(Bukowski & Tubbs, 2016). 

 

Figure 2.10: Three components of means of egress (Shen, 2006) 

Sun and Turkan (2019) used BIM to simulate fire situations and human behavior, en-

abling the comparison of available and required evacuation times. The study highlights 

the importance of including building layout, fire characteristics, and human behavior in 

evacuation simulations to improve the means of egress. The findings suggest that by 

comparing available and required evacuation times, one can select an optimal building 

architecture that reduces the required evacuation time, thereby enhancing occupant 

safety. Kodur et al. (2020) investigate evacuation techniques inside a thirty-two-story 

standard workplace during various fire-induced scenarios. He discovers that the two 

most important factors determining evacuation duration are the location of the stairs 

within the structure and the floors where the explosion of flame begins. The study also 

finds that using situational awareness in urgent evacuation protocols can increase 

evacuation efficiency, resulting in up to a 24% reduction in time.  

Usman et al. (2020) proposes a computational method for automating semantic rule 

testing of flame escape situations in the architectural layout of a building. The tool uses 

dynamic crowd simulations to consider space semantics and the impact of design 
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space on human safety during possible egress evacuations, going beyond static geo-

metric information. Integrating spatial semantics with dynamic crowd simulations ena-

bles a more thorough study of egress scenarios, leading to safer architectural solu-

tions. The case study demonstrates that standard egress planning approaches lacking 

spatial semantics or dynamic human behavior may violate IBC regulations and put 

human safety at risk. Nourkojouri et al. (2023) address the critical issue of emergency 

evacuation in building design. The study acknowledges the challenges of analyzing 

the various factors that affect evacuation and the time-consuming nature of simulation-

based assessments during the early design stages. To address this, the researchers 

use two deep learning algorithms, Pix2Pix and XGBoost, to assess the evacuation 

process. The Pix2Pix model accurately generates heat maps showing potential con-

gested routes, while the XGBoost model effectively predicts evacuation times with an 

average inaccuracy of 36 seconds. The study suggests that this approach offers a fast, 

reliable alternative to the typical time-consuming evacuation simulations during the 

early stages of design, enabling more efficient and safe architectural planning. 

Wang et al. (2017) conduct a study to enhance evacuation efficiency during emergen-

cies in complex infrastructure. The research addresses problems arising from compet-

itive behavior and congestion in narrow corridors during evacuations, which can signif-

icantly reduce evacuation rates and exit efficiency. The study introduces a unique tech-

nique that combines network analysis with BIM to create a decision-making framework 

for evacuation routes based on graph theory. This strategy also integrates psycholog-

ical elements and simulation studies to influence evacuation behavior, considering how 

flames, dust, and psychological stress affect the desire of individuals to flee. The study 

demonstrates that integrating advanced micro-pedestrian models, computer-aided 

techniques, and psychological insights can optimize evacuation procedures. 

2.5 Generative Design 

Generative design is a paradigm shift in the AEC industry that leverages algorithms to 

generate an array of design possibilities, all of which adhere to a set of predefined 

criteria and constraints (Filippo, 2021). Generative design learns and evolves with each 

cycle, refining subsequent iterations and increasing efficiency. Traditional design pro-

cesses in architectural and engineering design have been predominantly characterized 

by linearity and determinism, with the scope of solutions frequently constrained by sub-

jective experiences. Generative design deviates from this paradigm by adopting a non-
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linear and investigative approach. It automates the generation of design variations, 

facilitating a comprehensive exploration of the design space that would be otherwise 

time-consuming for a human designer to replicate manually. 

Zarzycki (2012) explains the use of parametric modeling for generative design. Para-

metric modeling is a crucial methodology that allows for creating complex architectural 

forms by adjusting algorithmically defined parameters and constraints. This method 

helps establish variables that control design characteristics, which are then intercon-

nected through computational rules to generate numerous design variations. Further-

more, the iterative process can be fine-tuned by integrating with analytical tools to op-

timize the design for specific performance metrics. 

 

 

 

Figure 2.11: Generative design using parametric modeling achieved with Grasshopper (Zarzycki, 2012) 
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BIM models play a crucial role in modern architecture and construction projects but 

creating them may be laborious and susceptible to user mistakes and inaccuracies. 

Moreover, making changes to finished models can be a challenging task. In this con-

text, generative design is a promising solution to address these issues. Generative 

design aims to enhance efficiency, minimize the risk of errors, and increase design 

flexibility by automating tasks and interconnecting components. It also offers the ad-

vantage of using an implemented parametric model as a template for future projects 

or for comparing different design versions quickly. This means that designers can de-

fine a set of parameters and generate many solutions in a fraction of the time it would 

take manually. In the initial stages of the design process, generative design allows for 

more iterations and enables faster implementation of changes than traditional design 

models (Fischer et al., 2012).  

Generative design is a programming-centered approach that empowers designers to 

use computer programs to autonomously generate potential solutions for a given prob-

lem or task. This methodology is particularly pertinent to the AEC industry, which often 

entails a diverse range of potential solutions for a single problem and involves numer-

ous factors that influence the optimal solution. By leveraging generative design, pro-

fessionals can explore various design possibilities and efficiently navigate the complex 

landscape of design considerations (Kalkan et al., 2018).  

Based on generative design, a generalized framework called Model Healing has been 

suggested, which presents algorithmic approaches for parametric construction plan-

ning and model-based presentation in solution domains to automatically modify incon-

sistent building plans (Wu et al., 2022). A healing metric is used as an assessment 

indication throughout the adjustment procedure to choose the design version that com-

plies with building rules while deviating the least from the original design. An initial 

version of a responsive construction layout for the German norm is developed to show 

the framework's applicability, ensuring emissions escape from exit points. The funda-

mental variant is "healed" to a conforming layout by lightly increasing the size of the 

emissions ports and installing one extra emissions release to the roof. In recent years, 

the use of AI methods in generative design has emerged as a significant advancement. 

Li et al. (2024) provides an autonomous structure planning method that streamlines 

the method from generative design to preparation stages for precast structures. The 

system uses the BIM model to develop new design choices that properly anticipate 
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construction efficiency under wind conditions. This is accomplished using a trained 

Graph Convolutional Neural Network (GCNN) to optimize design choices efficiently. 

2.6 Optimization Algorithms 

Optimization algorithms represent a class of computational methodologies designed to 

systematically search for the optimal solution within a predefined solution space for a 

given problem (Stork et al., 2022). An optimization algorithm aims to decrease or raise 

a certain objective function while satisfying certain constraints, thereby addressing var-

ious real-world problems across diverse domains (Gad, 2022). 

Defining an objective function is a crucial part of any optimization process because it 

outlines the objectives of a particular problem. The objective function is a function that 

is either maximized or minimized based on the optimization goal. The feasible region 

is defined based on the constraints. It represents the region where all objective function 

constraints are satisfied, leading to the decision variables being located at the corners 

of the feasible region. The optimum solution is the values of decision variables at which 

the objective function is maximized or minimized. 

 

Figure 2.12: Graphical representation of feasibility region of an objective function (Berhe, 2012) 

Optimization algorithms are effective tools for addressing challenging issues that are 

frequently utilized in a variety of industries. Every approach contains unique ad-

vantages and drawbacks. Therefore, the algorithm selection is typically determined by 

the individual situation. For example, a study showed that PSO provides the shortest 

distance solutions, while SA is more efficient in execution time (Mirsadeghi & 

Khodayifar, 2020). 



State of the Art  33 
 

2.6.1 Genetic Algorithm 

Holland and his fellow researchers created the notion of the GA in the early 1960s 

(Sivanandam & Deepa, 2008). The GA is motivated by the concept of natural selection. 

Natural selection causes inadequate and unsuitable creatures in their habitat to be-

come obsolete. Powerful individuals have a better chance of carrying on their DNA to 

subsequent generations through breeding. Over time, organisms with the proper mix 

of genes dominate their populations. The GA is frequently employed to develop excel-

lent approaches for optimization and query issues by employing ecologically based 

drivers. The GA was first designed to populate the population with random candidate 

solutions and evolve the ideal answer from generation to generation. 

Zhou et al. (2022) introduce a novel framework using the GA for the optimum perfor-

mance of the hospital. The framework’s objective is to adapt the spatial configuration 

of healthcare facilities to fulfill varying operational demands, ensuring superior effec-

tiveness under typical conditions and mitigating danger amid pandemics. The study 

first analyzes the key parameters influencing hospital layout. Subsequently, to address 

the dual objectives of efficiency and safety, the study establishes constraints in the 

form of a nearby fitness rating and probability of an infection index. Finally, an autono-

mous design process produces numerous building layout schemes, from which the 

best hospital building plan is chosen. 

Zhao et al. (2019) propose a framework that utilizes GA to estimate construction pro-

ject costs. The framework has been validated by evaluating the construction costs of 

20 building projects, demonstrating its effectiveness and reliability. Zhang (2010) study 

GA to develop maintenance schedules to minimize user maintenance plan delays. It is 

observed that a larger population size led to a better spread of solutions. He et al. 

(2019) introduces an optimization model based on GA that assesses the factors and 

constraints leading to delays and increased costs in construction projects. The model 

utilizes BIM to simulate real construction projects before they commence, enabling the 

identification of all factors contributing to delays and cost overruns. Attia et al. (2023) 

develop a plugin for BIM authoring tools to reduce the time and cost of building con-

struction projects using GA. Validation has shown that the plugin can reduce project 

time by approximately 20% and save project costs. 

Tafraout et al. (2019) propose a framework for automating the generation of the struc-

tural layout of a building using a Genetic Algorithm (GA). A Multi-Objective Genetic 
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Algorithm (MOGA) has been utilized to generate multiple potential floor layouts that 

comply with structural and seismic building codes. Each floor layout generated by the 

GA is analyzed to determine its fitness score. The fittest layouts are then selected for 

the next generation through crossover and mutation. Finally, the best individual from 

the last generation is chosen as the optimal architectural floor layout for the building. 

       

Figure 2.13: Generated floor plans using GA 

2.6.2 Simulated Annealing 

Kirkpatrick et al. (1983) have used simulated annealing in combinatorial optimization 

for the first time. The simulated annealing technique relies on the annealing process in 

manufacturing, which involves rapidly heating a metal to extreme temperatures and 

then slowly cooling it. The simulated annealing techniques tackle solo and multiobjec-

tive optimization queries by hiding a desired global minimum/maximum amid multiple 

local minima/maxima.  

In SA, the procedure of search begins with an intense phase (a starting solution) and 

slowly reduces the temperature (a control variable) till it reaches a low-energy state 

(the ideal solution). The key benefit of simulated annealing is its capacity to flee re-

gional minimums and settle on a single global minimum. The simulated annealing is 

also simple to construct and requires no previous understanding of exploring regions 

(Chopard & Tomassini, 2018). The simulated annealing is utilized to propose a classi-

fication system of existing ACC approaches by considering various criteria such as 

framework development concepts, industry application suitability, and open standards 

compatibility (Doukari et al., 2022).  
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2.6.3 Particle Swarm Optimization 

Kennedy and Eberhart developed the particle swarm optimization algorithm, which rep-

licates interpersonal interactions (Juneja & Nagar, 2016). Particle swarm optimization 

was initially developed for continuous problems, but it cannot handle discrete prob-

lems. The two developed an independent binary variant of the particle swarm optimi-

zation to overcome this issue. As the name asserts, this method draws inspiration from 

the swarm of insects. Analogous to how insects identify an optimal location within a 

swarm, PSO employs the same principle to ascertain the most suitable solution within 

a given search space. Insect swarms demonstrate cooperative behavior in their hunt 

for food, which is replicated in the particle swarm optimization method. Each part of 

the colony adapts its search pattern depending on its unique learning experiences and 

those of other members, optimizing the collective search process. This dynamic adap-

tation of search patterns is a crucial feature of the particle swarm optimization algo-

rithm, contributing to its efficacy in solving complex optimization problems. 

Han et al. (2019) implements the particle swarm optimization algorithm using a visual 

programming language (VPL) to facilitate multiple-objective building design optimiza-

tion to reduce building energy consumption. An office space in the building is chosen 

to investigate how the opening, depth, and window-wall ratio affect the space's sunlight 

heat transfer. After determining the impact of these design parameters, a Multi-Objec-

tive Particle Swarm Optimization (MOPSO) solver is created and utilized to optimize 

the aforementioned structure layout parameters to improve building performance, such 

as lowering solar radiation heat gain and increasing daylight factor. 
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This chapter presents the proposed framework for the ACC and the optimization of the 

parametric model, as shown in Figure 3.1. The framework is structured into a four-step 

process. It begins with a comprehensive review of building codes, focusing on two 

main objectives: identifying the required values for building egress compliance and 

deriving the relevant objective function. Next, all essential parameters required for the 

egress requirements are introduced in the BIM model during the parametric modeling. 

The compliance checking is then carried out by comparing the egress requirements 

mentioned in the building regulations with the parametric values obtained from the BIM 

model. In case of non-compliance, the parameters related to the violation are automat-

ically adjusted to ensure the building model is code-compliant. Finally, the framework 

concludes with an optimization phase, where the most efficient design solution is iden-

tified to provide optimum security for occupants during emergencies. 

 

Figure 3.1: Illustration of the proposed framework for ACC and building design optimization. Step 1: Review of 
building codes. Step 2: Parametric BIM modeling. Step 3: Compliance checking. Step 4: Optimization. 

3 Methodology 
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3.1 Code Compliance Framework 

The code compliance framework is designed to correct the BIM models to ensure com-

pliance with building codes. It can automate checking code compliance for a building's 

means of egress and automatically adjust violations to ensure code compliance. After 

a thorough review of the IBC, ten compliance-checking rules specifically related to 

egress requirements were selected (Section 4.1.2). These rules were chosen with the 

aim of addressing design requirements that are associated with the means of egress. 

Based on these selected rules, key parameters for modeling the case study were iden-

tified and created. The case study considered in this thesis lies in the category of edu-

cation occupancy type; therefore, the building model must follow the following require-

ments. 

Table 3.1: Summary of the necessary values of education occupancy type as stated in the IBC 

Building Section Required Value IBC Section 

Minimum Corridor Width 72 inches (1828.8 mm) 1020.2 

Required Capacity of Corridor OL * 0.2 inch (5.1 mm) 1005.3.2 

Minimum Stairway Width 44 inches (1118 mm) 1011.2 

Required Capacity of Stairway OL * 0.3 inch (7.6 mm) 1005.3.1 

Minimum Ceiling Height 7 feet, 6 inches (2286 
mm) 

1003.2 

Minimum Door Width 32 inches (813 mm) 1010.1.1 

Minimum Door Height 80 inches (2032 mm) 1010.1.1 

Minimum Space between two Doors 48 inches (1219 mm) 1010.1.8 

Minimum Number of Exits per Story 2 1006.3.2 

Egress Distance 250 feet (76.2 meters) 1017.2 

*OL = Occupant Load 

A parametric BIM model is designed to incorporate all required information for code 

compliance. Parameters and constraints are defined at the element level, such as door 

width and height, as well as between different building elements, for example, corridor 

width and space between two doors. Furthermore, certain required values indicated in 
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the IBC (Table 3.1) can be retrieved directly from the BIM model using the design 

authoring tool's API. This eliminates the need to create separate parameters. For in-

stance, data such as the number of exits per story, egress distance, and ceiling height 

can be accessed through the API. After the parametric modeling is completed, the 

necessary information for code compliance is extracted from the design authoring tool, 

which serves as input for the Python node. The checking functions are created with 

Python to verify if the building model parameters lie within the specified range of build-

ing code or not. If the checking function fails, the difference is automatically calculated, 

and the non-compliant parameter value is adjusted to the required value of IBC, and if 

the checking function passes, the parameter value remains unchanged (Figure 4.13). 

Once all the checking functions have validated the parameter values, a dictionary is 

created with the “Parameter_Name: Parameter_Value” pairs with the adjusted values 

of parameters. Dynamo utilizes this dictionary to assign the corresponding parameters 

to the code-compliant values, ensuring the building model complies with the IBC reg-

ulations. 

 

Figure 3.2: Workflow of the Code Compliance Framework 
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3.2 Optimization Framework 

This proposed framework optimizes the egress distance while considering building lay-

out constraints. Therefore, during the optimization process, only those parameters will 

be considered that affect the egress distance, while other parameters used during code 

compliance will not be considered. The exit access travel distance, also known as the 

maximum egress distance, is specified in Table 1017.2 of the IBC. The distance is 

determined based on the building's occupancy classification. To reduce the occupants' 

travel distance, the objective function can be defined as 

 
Maximize  𝑓(𝑥) =  ∑(𝑑𝑚 − 𝑑𝑎)

𝑛

𝑖=1

 (1) 

Subject to: 𝑑𝑎 ≤ 𝑑𝑚  

𝑑𝑚 is the maximum egress distance (IBC – Table 1017.2). 𝑑𝑎 is the available egress 

distance. 𝑛 is the number of building stories. 

To calculate the available egress distance, the floor plans of each building story are 

generated using the API of the design authoring tool. The room doors serve as the 

points of origin, and the floor exits (door/stairway) serve as the points of destination 

(Figure 4.19). A developed tool is used to find the shortest distance, which includes a 

custom node called "VisibilityGraph.ShortestPath" (Ortega, 2018). This node requires 

three inputs: the floor layout, points of origin, and points of destination. It computes the 

distance from each origin point to each destination point and subsequently identifies 

the shortest path by comparing these calculated distances. 

 

Figure 3.3: Illustration of calculating the shortest path of a room 
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Figure 3.4: Workflow of calculating the shortest path 

 

Figure 3.5: Dijkstra's Algorithm to calculate the shortest path 

Real-coded genetic algorithm is used for the optimization of egress distance. A total of 

ten design variables consisting of floating-point numbers are defined. Each design var-

iable represents the parameter that affects the egress distance. 

 𝑥 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥10} (2) 

The move limits of design variables are defined for the generation of design space. 

The lower limit is based on the required minimum values of IBC, while the constraints 

to preserve the initial design topology determine the upper limit (Table 5.3). These 
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move limits are set according to the requirements of IBC to ensure that the building 

model remains code-compliant during the optimization process. 

 𝑥𝐿 ≤  𝑥 ≤  𝑥𝑈 (3) 

𝑥𝐿 is the lower limit of the parameter range. 𝑥𝑈 is the upper limit of the parameter range. 

The roulette wheel selection, also known as the fitness-proportionate selection, is used 

for the genetic algorithm's selection process. This method effectively balances reward-

ing higher-fitness individuals and preserving diversity in the population. Even lower-

fitness individuals still have a chance to be selected, encouraging genetic diversity, 

which is crucial for preventing the algorithm from getting stuck in the local optima. 

The initial population is created by selecting a floating-point number within the defined 

design space for each variable. Parents are then chosen from the population using the 

roulette wheel selection method. This selection method selects individuals based on 

their fitness scores. Each individual’s chance of being picked is proportional to their 

fitness score. Initially, the fitness score of all individuals is calculated, and then a ran-

dom number is generated between 0 and the total fitness. The selection function iter-

ates over the population, summing up the fitness scores cumulatively. The correspond-

ing individual is selected when this cumulative sum exceeds the random pick. Individ-

uals with higher fitness scores occupy the more prominent segment and thus have 

more chances of being selected. 

Table 3.2: Example of roulette wheel selection 

S.No. Fitness 
Score 

Accumulated 
Fitness 

Occupied (Segment) Occupied (Percentage) 

1. 16 16 0 - 16 17% 

2. 3 19 17 - 19 3% 

3. 25 44 20 - 44 27% 

4. 40 84 44 - 84 42% 

5. 10 94 85 - 94 11% 
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Figure 3.6: Illustration of roulette wheel selection based on fitness scores 

 

Figure 3.7: Python code for the roulette wheel selection 

Genetic algorithm has different types of crossovers, among which the uniform crosso-

vers method has been utilized to mix chromosomes. In uniform crossover, each child's 

gene is selected randomly from one of the corresponding genes of the parent chromo-

somes with a 50% crossover. Each child's gene is equally likely to be inherited by any 

of the parents. 

 

Figure 3.8: Uniform crossover of parent chromosomes 

 

Figure 3.9: Python code for the uniform crossover 

Mutation is introduced to create diversity among the offspring, preventing the algorithm 

from getting stuck in local optima or converging prematurely and promoting better pa-

rameter space exploration. The random resetting approach of mutation with a 10% 

1, 17%

2, 3%

3, 27%
4, 42%

5, 11%

Selection
Point

Wheel 
Rotation
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probability has been used, which assigns a random value from the defined parameter 

range. 

 

Figure 3.10: Random resetting mutation 

 

Figure 3.11: Python code for random resetting of genes with 10% mutation rate 

The children then replace the current population to form the next generation. This pro-

cess is repeated until the maximum number of generations is reached. Once the last 

generation is created, the best individual is identified from it, and the genetic algorithm 

is stopped. The chromosomes of this individual are termed as the optimized parameter 

configuration and applied to the BIM model, leading to an optimized building design 

that enhances occupant safety. 

 

Figure 3.12: Workflow of genetic algorithm used for the optimization of building design 
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4.1 Input Requirements from IBC 

The IBC is a comprehensive collection of principles developed by the International 

Code Council (ICC) and is chosen as the regulatory framework for this thesis. The IBC 

establishes baseline criteria for various aspects of building design and construction, 

including material selection, structural system design, fire safety implementation, and 

the provision of accessibility features (IBC, 2018). These standards are basically in-

tended to protect the welfare of building occupants and others in the community. 

Chapter 10 of the IBC defines the fundamental standards for the design of egress sys-

tems, which are positioned as the principal method for protecting humans within built 

environments by allowing for the rapid relocation or evacuation of inhabitants. This 

chapter includes descriptive and performance-oriented terminology to lay the ground-

work for developing a safe egress system that applies to all occupancies. It includes 

all parts of the egress system, including exit access, exits, and exit discharge, as well 

as the design criteria and laws that govern individual components. The criteria include 

precise specifications for the size, arrangement, quantity, and protection of egress 

components. Furthermore, the chapter describes the functional and operational quali-

ties that allow for safely using these components without requiring specialized exper-

tise or effort. 

4.1.1 Occupancy Classification and Use 

Chapter 3 of the IBC outlines the criteria for classifying buildings and structures into 

different use groups and occupancies (Appendix C). Occupancy classification is the 

official categorization of a building's primary purpose or a specific part of it. Buildings 

are classified into one or more occupancy groups based on the potential hazards and 

risks associated with their intended use. Different occupancy classes and uses involve 

varying danger levels and risks to building occupants. The process of occupancy clas-

sification is crucial in determining many aspects of construction, including means of 

egress. This classification is an important tool in ensuring the safety and functionality 

of built environments. 

 

4 Implementation 
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4.1.2 Selection of Code Compliance Rules 

After a detailed review of Chapter 10 of the IBC, ten checking rules are finalized upon 

which code compliance will be conducted. Each of these rules is related to the egress 

path and ensures the safety of occupants.  

1. Minimum Corridor Width 

One of the most important parameters in case of egress requirements is the width of 

corridors, which will be used to evacuate occupants in an emergency. The width of the 

corridors should be sufficient to accommodate the maximum number of possible occu-

pants. Section 1020 of the IBC describes the requirements for the design and con-

struction of corridors in detail. Table 1020.2 provides the minimum corridor width for 

different types of occupancies. As the next chapter of this thesis explains the case 

study of the N6 building of the Technical University of Munich (TUM), therefore the 

occupancy classification of “Educational” (Group E) is considered while taking the 

egress requirements from the code. The main corridor in the case study should have 

a minimum width of 72 inches (1828.8 mm) since the occupant load is over 100. Side 

corridors with an occupant load of less than 50 must have a minimum width of 36 

inches (914.4 mm) to ensure safe evacuation space for occupants. 

2. Required Capacity of Corridors 

Section 1005.3.2 of the IBC explains the corridor's required capacity based on occu-

pant load. The required capacity of egress components other than stairways shall be 

calculated by multiplying the occupant load served by the egress component by the 

egress capacity factor, i.e., 0.2 inch (5.1 mm) per occupant. 

 
𝐶𝑜𝑟𝑟𝑖𝑑𝑜𝑟 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =

𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝐿𝑜𝑎𝑑 

𝐸𝑔𝑟𝑒𝑠𝑠 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 ≈ 0.2 𝑖𝑛𝑐ℎ / 5.1 𝑚𝑚
 (4) 

Where: 
𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝐿𝑜𝑎𝑑 =  ∑

(𝑅𝑜𝑜𝑚 𝐴𝑟𝑒𝑎)𝑖

(𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝐿𝑜𝑎𝑑 𝐹𝑎𝑐𝑡𝑜𝑟)𝑖

𝑛

𝑖=1

 

𝑛 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑜𝑜𝑚𝑠 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝐶𝑜𝑟𝑟𝑖𝑑𝑜𝑟 

 

(5) 

The occupant load factor is the maximum floor space permitted per occupant. It is used 

to calculate occupant load, which is the maximum number of occupants that can oc-

cupy a building or a section of a building at any given moment. The occupancy load 

factor is determined based on the function of the space. If it is for a space where usually 
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many occupants are present, it will have a lower occupant load factor. On the other 

hand, if the function of space is such that at any given time, usually there are few 

occupants present, then such space will have a higher occupancy load factor. Table 

1004.5 of the IBC provides the values of different occupant load factors. After exami-

nation of the considered case study, a total of six different functions of spaces were 

identified, and their occupancy load factor values are taken from Table 1004.5. 

3. Minimum Stairway Width 

Stairways are one of the essential egress components that must be designed to ac-

commodate the occupant load in an emergency. Section 1011.2 of the IBC explains 

that the width of stairways should not be less than 44 inches (1118 mm). To elaborate 

on the requirements governing stairway landings, Section 1011.6 of the IBC states that 

a floor or landing must be provided at the top and bottom of each stairway. The width 

of these landings, measured perpendicular to the direction of travel, must at least 

match the width of the stairways they service. Doors that open onto a landing shall not 

reduce the landing to less than half of its minimum width. The door cannot protrude 

more than 7 inches (178 mm) into the landing when completely opened. These stand-

ards protect the safety and accessibility of stairways in various building types. 

4. Required Capacity of Stairways 

Section 1005.3.1 of the IBC explains the required capacity of stairways based on oc-

cupant load. The required capacity of stairways shall be calculated by multiplying the 

occupant load served by stairways by the egress capacity factor, i.e., 0.3 inch (7.6 mm) 

per occupant. When stairways serve many levels, the required capacity of the stair-

ways serving each story should be determined entirely by the occupant load of each 

story. 

 
𝑆𝑡𝑎𝑖𝑟𝑤𝑎𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =

𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝐿𝑜𝑎𝑑

𝐸𝑔𝑟𝑒𝑠𝑠 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 ≈ 0.3 𝑖𝑛𝑐ℎ / 7.6 𝑚𝑚
 (6) 

Where: 
𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝐿𝑜𝑎𝑑 =  ∑

(𝑅𝑜𝑜𝑚 𝐴𝑟𝑒𝑎)𝑖

(𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝐿𝑜𝑎𝑑 𝐹𝑎𝑐𝑡𝑜𝑟)𝑖

𝑛

𝑖=1

 

𝑛 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑜𝑜𝑚𝑠 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝐸𝑔𝑟𝑒𝑠𝑠 𝑃𝑎𝑡ℎ 

 

(7) 
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5. Minimum Ceiling Height 

Section 1003.2 of the IBC specifies building ceiling heights to allow enough headroom 

for safe occupant evacuation. According to this specification, the egress passage shall 

have a ceiling height of at least 7 feet 6 inches (2286 mm) above the finished surface 

of the floor.  

6. Minimum Width of Doors 

Section 1010.1.1 of the IBC explains the minimum width of the door. After considering 

the function of space and occupant load, it was decided that a minimum clear opening 

width of 32 inches (813 mm) should be provided. In the context of doorways equipped 

with swinging doors, the clear opening width is quantified by measuring the distance 

between the face of the door and the stop when the door is positioned at an angle of 

90 degrees. In instances where an opening is comprised of two door leaves without a 

mullion, it is mandated that one leaf should furnish a minimum clear opening width of 

32 inches (813 mm). This requirement ensures adequate access through the doorway. 

7. Minimum Height of Doors 

The height of each building door is critical to ensure the safety and efficient evacuation 

of occupants. According to Section 1010.1.1 of the IBC, the minimum clear opening 

height for building doors is specified to be 80 inches (2032 mm). This requirement is 

essential to accommodate each room's corresponding occupant load and facilitate safe 

and quick evacuation in an emergency. 

8. Minimum Space Between Two Doors 

Section 1010.1.8 of the IBC, titled "Door Arrangement" provides specific guidelines for 

the layout of doors, particularly focusing on series configurations. This section outlines 

that the minimum distance between two successive doors in a series should be at least 

48 inches (1219 mm), along with the additional width required for a door that swings 

into this space. Furthermore, it stipulates that all doors in a sequence must swing in 

the same direction or away from the space between them. This minimum space be-

tween two doors ensures adequate space for safe and efficient movement through 

doorways, particularly in emergencies. 

9. Minimum Number of Exits per Story 

It is important to define the minimum number of separate exits that must be provided 

per building story or occupied roof to accommodate the exit discharge. Occupant load 
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is an important factor in determining the minimum number of exits. Section 1006.3.2 of 

the IBC classifies the occupant load per story into 3 groups, and a minimum number 

of exits is defined for each group. 

10.  Maximum Travel Distance 

Establishing a maximum travel distance within a building while considering the means 

of egress is critical in ensuring the safety and efficiency of built environments. This key 

parameter considers the building's layout, size, and occupancy to determine the dis-

tance a person would need to travel to reach a safe exit. By carefully assessing these 

factors, building designers and safety professionals can ensure that occupants can 

swiftly and safely evacuate during emergencies, minimizing the potential for injury or 

loss of life. Section 1017.2 of the IBC provides the value of this key parameter based 

on the occupancy type and whether the building is equipped with a sprinkler system. 

A sprinkler system in a building can influence the “Exit Access Travel Distance” due to 

its role in fire suppression and safety. A sprinkler system can control a fire in its early 

stages, slowing its spread and reducing the smoke and heat produced, providing oc-

cupants additional time to evacuate the building safely. 

4.2 Parametric Model Setup 

In Revit, parameters and constraints can be defined on the element level (family pa-

rameters) and between different building elements (global parameters). Family param-

eters are employed in the creation of specific building elements. These parameters are 

specific to the family (i.e., the type of element, such as a wall, door, window, etc.) and 

control the properties of the elements within that family. For instance, a wall can be created 

by defining its width, height, and length as parameters. On the other hand, global param-

eters are established across various building components and can control dimensions or 

relationships between elements within the project. For example, a global parameter can 

control the distance between a wall and its reference grid. Global parameters facilitate 

coordinated updates across multiple elements, enhancing the design process's efficiency 

and accuracy. 

Assignment of global parameters is possible in two ways; the first approach uses a global 

parameter as a label for a dimension string. When a label is assigned to a dimension 

string, the global parameter determines the value of the dimension. This approach is 

usually used to adjust the size of various elements in a model. The second approach 

is to add a global parameter directly to an element at the instance or type level. This 
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can be accomplished by choosing the element and locating the instance or type pa-

rameter. After clicking the button to the right of the parameter value, an associate 

global parameter dialogue opens, and a global parameter from the list is selected and 

assigned to the selected parameter. 

    

Figure 4.1: Two approaches of assigning a global parameter 

4.2.1 Shared Parameters 

Autodesk Revit offers the ability to make use of shared parameters. These are param-

eter sets that can be extended to various families or projects. In Autodesk Revit, shared 

parameters are saved as a text file (.txt) that is not associated with any family file or 

Revit project. This enables several families or projects to use the same set of param-

eters. The utilization of shared parameters provides significant benefits. Once created, 

this document can be used with other projects, avoiding establishing these parameters 

from scratch for any project requiring a means of egress evaluation. This promotes 

reusability and efficiency in the design process.  

Shared parameters help generate custom tags. For instance, after creating a shared 

parameter for occupant load, it can be used inside the tag family to show the maximum 

number of occupants in each room. This makes it more feasible to view critical infor-

mation within the building model. Using shared parameters improves the efficiency and 

accuracy of egress evaluations in building design. Shared parameters are an effective 

tool in the BIM process since they allow for reusability and uniformity. Considering the 

benefits of shared parameters, all the parameters necessary for evaluating the means 

of egress are defined as shared parameters. 
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Figure 4.2: Defining occupant load of rooms as a shared parameter in Autodesk Revit 

4.2.2 Setting Constraints for Parametric Modeling 

In parametric modeling, it is essential to define a set of principles that will be followed 

during parametric modeling because, without any future consideration, it can lead to 

lots of confusion during the modeling process. Building elements are linked to one 

another using two kinds of constraints: dimensional and geometric. Dimensional con-

straints specify the dimensional value of geometric elements such as length, width, or 

thickness, while geometric constraints ensure that the geometric elements remain par-

allel or perpendicular to each other. 

One of the important constraints in parametric modeling is the boundary constraint. 

After creating the boundary walls of a building, they need to be constrained so that any 

future changes in other parameters will not cause the boundary walls to exceed the 

defined constraints. In Revit, boundary constraints can be defined by using grids. Grids 

must be defined on the boundary, and the boundary walls must be locked with these 

defined grids to create the boundary constraints of a building. 
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Figure 4.3: Defining boundary constraints of a building using grids 

To evaluate and optimize the means of egress, one of the key parameters that should 

be considered is the width of the corridor. If the width is adjusted, the corridor walls will 

move from their original position, so it's important to constrain other attached building 

elements, such as adjacent walls, columns, stairways, or railings, to move along with 

the corridor walls. 

4.2.3 Creation of Room Elements 

During the code compliance check, each room area is required to calculate the re-

quired capacity of corridors and stairways (Section 4.1.2). For the optimization stage, 

each room's boundaries are required to generate one surface for finding the shortest 

path (Section 4.4.2). Considering these requirements of the thesis, it is necessary to 

define room elements in Revit for each closed space. Room elements in Autodesk 

Revit are 3D model elements used to define a closed space's boundaries and proper-

ties. These boundaries of the closed space are defined by certain types of building 

elements, including walls, floors, and ceilings. Additionally, room separation lines can 

also be used to modify the boundaries of the room according to the user's require-

ments. The properties of each building element can be defined whether it is a room-

bounding element or not; it allows the user to accurately define room boundaries and 

to ignore elements that should not define the room boundaries. Once the boundaries 

of the room element are defined, its parameters are automatically computed, including 

room area, volume, perimeter, and unbounded height. One of the main advantages of 

room elements in parametric modeling is that the room's boundaries will change with 

the change of parameter values. As a result, the properties of each room will 
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automatically update according to the new boundaries, eliminating the need to manu-

ally adjust room areas for calculations of the required capacity of corridors and stair-

ways. 

Rooms can also aid in the visualization of the egress path of the building with the help 

of the “Color Scheme” built-in parameter of the floor plan view. This parameter assigns 

different colors to the rooms in the floor plan based on their properties. To assign a 

specific color to the egress path of the building, all rooms of the egress path should be 

given a unique name, and with the help of a color scheme built-in parameter, the rooms 

with this unique name will be given a different color than other rooms.  

 

Figure 4.4: Using color schemes to identify the building's egress path (Orange: Egress Path, Grey: Rooms) 

Rooms can also be imported in Dynamo, where a room of each building story can be 

classified, and their boundaries are used for defining one combined surface of the floor 

plan. Another advantage of using room boundaries in defining the floor surface is that 

it will automatically include the barriers that occupants face while going out of a build-

ing, as room boundaries are defined by walls and other obstacles that come in the 

egress path. 

4.2.4 Determination of Required Capacity of Egress Path 

The required capacity of corridors and stairways can be determined by the help of room 

schedules. By applying filters, specific building elements can be isolated, providing a 

focused view while concealing unnecessary information. Moreover, schedules offer the 

functionality to create calculated values through the use of formulas derived from dif-

ferent columns, enabling efficient analysis and decision-making. 
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To consider the rooms of different building stories separately, a separate room sched-

ule is created for each building story, and for each schedule, a filter is applied to ignore 

the rooms of other building stories. Additionally, as the rooms of the egress path do 

not contribute to the calculations of their required capacity, these rooms will be filtered 

out. For example, in the case of the room schedule of the ground floor, the following 

filter can be used to consider only those rooms that will be considered for the calcula-

tion. This filter allows the selection of only ground floor rooms, excluding the egress 

path, as it will not be considered for the calculation of the required capacity of corridors 

and stairways. Furthermore, if there are more than one corridor in a building story, an 

additional parameter of “Location” could be introduced to filter out the connected rooms 

for each corridor. 

 

Figure 4.5: Using filters to include rooms in the schedule that are required for the calculations 

The initial step of the calculation of the required capacity of corridors and stairways is 

the calculation of occupant load, which can be calculated by dividing the room area by 

the occupant load factor. The occupant load, representing the number of people per-

mitted in a particular space, must be specified as an integer value. To ensure increased 

safety, a "roundup" keyword is used to round the occupant load to the nearest whole 

number. 

 

Figure 4.6: Calculation of occupant load of a room 
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4.2.5 Custom Tag for Occupant Load 

Room elements in Autodesk Revit are 3D model elements used to define a closed 

space's boundaries and properties (Section 4.2.3). However, room tags are required 

to display the information of these 3D elements in floor plans, elevation, or section 

views. Room tags are annotation elements used to display specific information about 

room elements for a better understanding of users, such as room name, number, 

height, area, volume, etc. With the help of shared parameters, room tag families can 

be customized to calculate and display extra information about rooms. In the case of 

means of egress, occupant load is one of the important parameters used for code 

compliance and optimization; that’s why custom tags are created for the calculation 

and display of the occupant load of each room element. Initially, parameters required 

to calculate the occupant load are identified, including the room's area and occupant 

load factor. Area parameters are available by default for each room element; however, 

shared parameters will be used to import occupant load factor into the custom tag. As 

all parameters of this thesis are shared parameters for the purpose of reusability and 

increased efficiency in the design process, there is no need to create a new parameter 

for the occupant load factor in the custom tag.  

After identifying and importing the parameters required for calculating the custom tag 

of occupant load, a label is created to use these parameters to calculate and display 

the room’s occupant load. A label is an annotation element just like a text, but instead 

of displaying a single piece of information, labels can use parameters to create equa-

tions to calculate and display the custom information for each room. To calculate oc-

cupant load, the room area is divided by the occupant load factor (Figure 4.7). After 

the creation of the label, the custom tag can be imported into the project and used to 

display the occupant load of any created room in a building. 

 

Figure 4.7: Creating a custom tag for the occupant load of building rooms 
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Figure 4.8: Illustration of a custom tag for occupant load of a room 

4.3 Code Compliance Checking 

After selecting code compliance checks and creating the BIM model, this section will 

explain how to automate the code checking of the chosen rules. It's important to con-

sider various criteria and limitations to ensure accurate results. Dynamo is a visual 

programming language that presents code in a graphical format and accesses neces-

sary data through Revit API, allowing direct interaction with the building model's infor-

mation. This approach visually represents the rules and makes them easily under-

standable, which is particularly beneficial for editors with limited programming exper-

tise. Therefore, dynamo (version 2.18.1) is used to automate the code compliance pro-

cess in this thesis.  

Ensuring that the BIM model is enriched with all the necessary parameters for the pro-

posed framework to function correctly is essential. This thesis considers ten checking 

rules, and their corresponding parameters have already been included in the BIM 

model for the framework's functionality (Section 3.1). The process of automating code 

compliance is divided into four steps. The first step involves importing the specified 

code limits of different building elements in the IBC into the Dynamo. The second step 

includes importing the relevant information from the BIM model into the Dynamo. The 

third step is the checking phase, in which the code values are compared with the cor-

responding values of the BIM model. The last step is the adjustment of violation-related 

parameters; the difference between the required values of the building code and the 

corresponding building data will be calculated and adjusted to make the building model 

code compliant. 
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4.3.1 Importing Requirement Specification 

The first step in automating code compliance is to import all required values from the 

building code into the Dynamo script. These required values can be categorized into 

two types. The first type consists of minimum or maximum values specified in the build-

ing code, such as the maximum egress distance for an educational occupancy classi-

fication building equipped with a sprinkler system, which is 250 feet (76.2 meters) as 

per Table 1017.2. These required values are defined as variables inside the Python 

node of the Dynamo script and further compared with the corresponding building data. 

 

Figure 4.9: Creating variables in the Python node for the required values of the IBC 

The second category of building code values consists of formulae that need to be cal-

culated, rather than numerical values. For example, the required capacity of corridors 

and stairways is calculated by dividing the occupant load by the egress capacity factor 

(Section 4.1.2). When calculating the area of rooms, the areas of egress paths need 

to be excluded as they are designed according to the occupant load of the connected 

rooms. Considering these conditions, schedules in Revit filter out the rooms that need 

to be considered, and then the required capacity of corridors and stairways is calcu-

lated. These calculated values from schedules are then imported directly into the Py-

thon node of the Dynamo script for further comparison with the corresponding dimen-

sions of corridors and stairways. 

 

Figure 4.10: Dynamo script for importing the calculated required capacity of the ground floor corridor from a 
schedule 
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4.3.2 Importing BIM Model Information 

After importing all the required values into the Dynamo script, it is necessary to have 

the corresponding building data for checking. Building model information can be im-

ported into the Dynamo script using parameters. The parameters of the families used 

to create the building model elements are imported into the Dynamo script. For exam-

ple, below is a Dynamo script for importing the family parameter "Door Width" of all the 

doors in the building model. 

 

Figure 4.11: Dynamo script for importing family parameter of door width 

Secondly, the building code includes certain values that aren't specifically for individual 

building elements but rather for relationships between elements, such as the width of 

a corridor. In these cases, it's necessary to define global parameters to manage and 

adjust them based on the building code's required values. Below is an example of a 

Dynamo script for importing global parameters. 

 

Figure 4.12: Dynamo script for importing global parameters into Dynamo GUI 

4.3.3 Compliance Checking 

Once all the required data for code compliance is imported into Dynamo, it is collected 

in the form of lists, which are then imported into the Python node. This thesis has de-

fined 10 selection rules, and a checking function is created for each compliance check-

ing rule. Each checking function imports 2 parameters: parameter value and the re-

quired value. Additionally, variables "Result" and "Difference" are created. The Result 

variable stores either "Pass" or "Fail" depending on the comparison between the pa-

rameter value and the required value. The Difference variable stores the difference 

between the parameter and the required value in case of non-compliance.  
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After importing the function parameters and creating the necessary variables, a check 

is performed to verify if the building model parameter falls within the specified range 

for the building code. If the parameter value is within the specified range, then "Pass" 

is stored in the result variable. If the parameter value is outside the range of the building 

code, the difference between the parameter value and the required value is calculated 

and stored in the difference variable, and “Fail” is stored in the result variable and the 

required value of IBC is assigned to the parameter value. At the end of the checking 

function, these two variables ("Result" and "Parameter Value") are returned. They are 

further used in Dynamo to show code compliance results and adjust the parameter 

values to make the building model code-compliant. 

 

Figure 4.13: Checking function for the minimum width of the doors (Appendix A1) 

It is important to gather all the results from the checking functions and organize them 

into a single data structure. In Python, this can be achieved using a dictionary. A dic-

tionary is a robust data structure that stores values in "key:value" pairs. Similar to a 

traditional dictionary where meanings are assigned to words, numerical values can be 

assigned to unique keys in Python when defining a dictionary. This makes it easier to 

access the values using the unique keys. To better organize the results of the checking 

functions, a dictionary is created to store the adjusted parameter values with their pa-

rameter names as keys. 

4.3.4 Adjustment of Violation-Related Parameters 

After checking the code compliance, violation-related parameter values are adjusted 

to make the building model code compliant. The output of the Python node consists of 

two data structures. The first data structure comprises a list of outcomes from 10 com-

pliance checks, providing visibility into successful and unsuccessful checks. The "dif-

ference" variable allows for an analysis of the extent to which parameter values require 

adjustment. Meanwhile, the second data structure consists of a dictionary featuring 

"Parameter_Name : Parameter_Value" pairs. These specific parameter values have 

been adjusted to align with building code specifications and will subsequently serve 

the purpose of refining the building model. 
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Figure 4.14: Dynamo script for checking code compliance and adjusting violation-related parameter values 

The parameter dictionary is used to access all the adjusted parameter values. These 

values are then used to update parameters not meeting the building code require-

ments. As previously discussed, there are two types of parameters - family parameters 

and global parameters. Dynamo provides the ability to modify both types of parame-

ters. 

 

Figure 4.15: Adjusting the global parameter of corridor width using the parameter dictionary 

 

Figure 4.16: Adjusting the family parameter of door width using the parameter dictionary 

When adjusting violation-related parameters, it is crucial to consider the specific type 

of parameter being adjusted. For instance, if a parameter is labeled as "length" in Revit, 

assigning it an integer value will not result in any adjustments. In such cases, in order 

to adjust the parameter, it is necessary to assign a value of type double or float to it. 



Implementation  60 
 

Therefore, it is important to consider the type of each parameter before making any 

adjustments. 

4.4 Optimization 

The proposed optimization framework is designed to minimize the distance occupants 

need to travel to reach the building exit, while also taking into account the layout con-

straints of the building. This means that only those parameters that impact the egress 

distance will be taken into consideration during the optimization process, while other 

parameters related to code compliance will not be included in the analysis. The opti-

mization of egress distance will guarantee that the building model not only meets the 

code requirements but is also optimized for the safety of its occupants. 

4.4.1 Identification of Potential Parameters  

The objective function maximizes the difference between the available and maximum 

egress distances (Section 3.2). The key parameters that will have the most effect on 

the egress distances can now be identified. The width of the corridor is an important 

parameter that can affect the egress distance of each room. Changing the width of the 

main or side corridors can increase the egress distance of some rooms while decreas-

ing it for others. Therefore, it is essential to calculate the optimum value of this param-

eter to maximize the objective function. Another crucial factor affecting the egress dis-

tance is the location of doors. Doors should be positioned to allow occupants to exit 

the room easily, reducing the overall egress distance. Introducing parameters such as 

the distance of a door from its adjacent wall can help change the location of doors 

effectively. 

When making adjustments to potential parameters for building layout optimization, it is 

important to establish upper and lower limits. The move limits of parameters are de-

fined for the generation of design space. The lower limit is based on the required min-

imum values of IBC, while the building layout consideration of education occupancy 

type determines the upper limit. These move limits are set according to the require-

ments of IBC to ensure that the building model remains code-compliant during the 

optimization process. 
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4.4.2 Determining Available Egress Distance 

According to Chapter 10 of the IBC, available egress distance is defined as the shortest 

and unobstructed route from any point in a building story to the closest exit in an emer-

gency. This distance represents the actual path that an occupant would take to reach 

the nearest exit as quickly as possible, ensuring their safety. In Dynamo, calculating 

the available egress distance requires three key components: a complete floor layout, 

origin points (Room Doors), and destination points (Exit Doors). Considering these 

factors, it is possible to determine the shortest path from any point of the building to 

the nearest exit. 

To import the floor layout into the Dynamo script, the room elements can be utilized to 

outline the layout boundaries by using the "Room.FinishBoundary" node. From these 

room boundaries, a surface is created; however, as the room elements are closed 

polylines, only closed spaces are generated without door openings. It is crucial to in-

clude door openings in the floor layout to calculate available egress distance. The door 

elements are imported into the Dynamo script to incorporate door thresholds in the 

room outlines. Each door's location is denoted by a point using the "Element.GetLoca-

tion" node. Once the location of each door is determined, it should be translated to the 

width and thickness of the door. Consequently, a surface is formed for each door di-

mension, which is then merged with the surface of the rooms to create one complete 

polysurface of the floor layout. The final floor layout is derived from this polysurface 

using the "Surface.PerimeterCurves" node. 

 

Figure 4.17: Dynamo script for creating floor layouts. 



Implementation  62 
 

 

Figure 4.18: Generation of building floor layout in dynamo 

After creating the floor layout, the origin and destination points are identified. Each door 

and stairway have been assigned a parameter called "Exit_Type". If it is a destination 

point, the parameter is labeled "Floor Exit," and if it's an origin point, the parameter is 

labeled "Room Exit". Using this semantic data, Dynamo filters the points of origin and 

destination and determines their locations with the "Element.GetLocation" node. 

 

Figure 4.19: Dynamo script for identifying the points of origin and destination 

A custom "Graphical" plugin is used to find the shortest distance. This plugin includes 

a node, "VisibilityGraph.ShortestPath," that requires three inputs: the floor layout, 

points of origin, and points of destination (Ortega, 2018). It then calculates the distance 

from each point of origin to each destination point. By comparing these distances, the 

shortest path can be determined. For instance, when a floor layout has three exits, the 

distance from the room exit to all three exits is calculated and compared, and the short-

est distance among them is selected (Figure 3.3). 

4.4.3 Achieving Optimized Parameter Configuration 

After creating the dynamo script to calculate the available egress distance, it can be 

further developed for optimization. Real-coded genetic algorithm is used to identify the 

optimized parameter configuration. The following functions are necessary to execute 
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GA (Appendix A2). The first function is “initialize_population,” which generates a list of 

individuals with parameters assigned random numbers from the specified parameter 

ranges. Another function named “fitness_scores” is used to calculate the fitness score 

of each individual in the population, playing a crucial role in the selection process.  

To select two individuals with higher fitness scores from the entire population, another 

function named “select_individual” has been created. These two individuals are re-

ferred to as “Parent1” and “Parent2.” After identifying the parents, the “crossover” func-

tion is used to create offspring, where each offspring contains mixed genes/parameter 

values from both parents. Following the generation of offspring, the “mutate” function 

introduces variability in the offspring through the mutation process. It prevents the al-

gorithm from local optima or premature convergence. This process continues until the 

specified number of generations is reached, at which point the best individual in the 

final population is identified. 

The Revit API enables users to modify the document (opened project) by employing 

the concept of a transaction. A transaction consists of a series of steps, such as creat-

ing, deleting, or modifying elements, ensuring that all changes are executed as a single 

step, which can then be saved or discarded if not needed. To calculate the shortest 

path and make changes to the project, necessary Revit libraries and a custom dynamo 

package of “Graphical” are imported into the Python node (Ortega, 2018). The first 

step is to access the opened Revit document from the Python node to extract all global 

parameters from it. Two functions are defined for the interaction of the Python node 

with the Revit API. The first function, "set_global_parameters," applies the given pa-

rameter values to the corresponding global parameters. The second function, "Short-

est_Path," calculates the available egress distance of the current design solution.  

After a thorough iterative process, the genetic algorithm explores all generations. Once 

the specified number of generations has evolved, the best individual in the final popu-

lation is identified. Its parametric configuration is saved as the optimized parameter 

configuration and assigned to the global parameters of the opened Revit document, 

resulting in an optimized BIM model for improved occupant safety. 
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To verify the validity of the proposed framework, the physics department building (N6) 

of the Technical University of Munich (TUM) is considered. The initial step involves 

creating a parametric model of the building and integrating all the essential parameters 

into the BIM model.  

 

Figure 5.1: 3D-View of physics department building (N6) of TUM 

Following the building modeling, sensitivity analysis will be performed to assess the 

impact of the parameters on the available egress distance. Moreover, the code com-

pliance framework will be applied to the building model to check the code compliance 

with the IBC and automatically adjust parameters related to code violations to achieve 

code compliance. Subsequently, optimization will be conducted to ascertain the best 

parameter configuration, providing maximum safety for occupants by minimizing travel 

distances. Additionally, the impact of adding an extra exit to the building is examined, 

and the optimal location for the additional door is determined. The building model con-

sists of 6 floors in total; after the modeling of the building model, each floor’s occupant 

load and available egress distance are calculated. 

 

 

 

5 Case Study 
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Table 5.1: Building information of the physics department (N6), TUM 

Floor No. of 
Rooms 

Occupant Load Max AED (m) Σ AED (m) 

Basement 2 4 5 7.99 21.96 

Basement 1 22 251 25.87 336.03 

Ground Floor 15 272 23.96 369.66 

First Floor 32 192 35.86 566.08 

Second Floor 32 186 36.76 622.80 

Third Floor 29 167 40.20 853.54 

5.1 Impact of Corridor Width 

The width of the main corridor is a crucial factor that influences the available egress 

distance in any building. Therefore, evaluating this parameter's impact on egress dis-

tance is important. The change in corridor width may increase or decrease the egress 

distance depending on the building layout. The corridor width varies from 9 to 15 me-

ters in 0.5-meter increments to observe its impact on the travel distance. 

 

 

Figure 5.2: Minimum corridor width of 9m (Top), Maximum corridor Width of 15m (Bottom) 
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Changing the corridor width affects the travel distance of rooms to the nearest building 

exit. The egress distance of rooms on the north side of the building increases, while 

the distance for rooms on the south side of the building decreases. This is because 4 

out of the 5 building exits are located in the southern part of the building. As a result, 

the sum of all travel distances (Σ AED) remains more or less the same, without signif-

icant changes. However, as the maximum available egress distance is calculated from 

the north side of the building, the maximum travel distance is increased with an in-

crease in the corridor width. 

     

Figure 5.3: Effect of changing corridor width on the available egress distance 

5.2 Impact of Door-Wall Clearance 

Another significant factor affecting the available egress distance is the proximity of the 

door to its adjacent wall. The door-wall clearance is varied from 0.5 to 3 meters in 0.5-

meter increments to observe its impact on the travel distance. It is observed that in-

creasing the door-wall clearance results in an increase in both the sum of available 

egress distances (Σ AED) and the maximum available egress. 

    

Figure 5.4: Effect of changing door-wall clearance on the available egress distances 
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5.3 Validating Code Compliance 

The BIM model is used to gather building information required for code checking, which 

is used as input for a Python node, where 10 compliance checks are conducted (Sec-

tion 4.3.3). Out of these, 7 compliance checks passed, while 3 checks failed. 

Table 5.2: Results of automated compliance checking 

S.No. Checking Function Result Difference (cm) 

1. Minimum Corridor Width Fail 20.8 

2. Required Capacity of Corridor Pass - 

3. Minimum Stairway Width Pass - 

4. Required Capacity of Stairway Pass - 

5. Minimum Ceiling Height Pass - 

6. Minimum Door Width Fail 1.3 

7. Minimum Door Height Pass - 

8. Minimum Space between two Doors Fail 3.9 

9. Minimum Number of Exits per Story Pass - 

10. Egress Distance Pass - 

 

 

Figure 5.5: Results of automated compliance checking in Dynamo UI 

The first adjustment involves an increase in the width of the side corridor. The building 

code specifies a minimum corridor width of 1.83 meters. However, the building model 

initially had a corridor width of only 1.62 meters. As a result, the first compliance check 

failed, and the width of the side corridor was automatically adjusted to ensure code 

compliance. 
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Figure 5.6: Adjusting the width of the side corridor according to the IBC standards 

The second adjustment is being made to the door width in the basement of the building 

model. The door originally had a width of 800 mm, but the building code specifies a 

minimum door width of 813 mm. 
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Figure 5.7: Adjusting the width of the door according to the IBC standards 

The third adjustment involves the space between two adjacent doors. According to the 

IBC, a minimum space of 1.22 meters should be provided between adjacent doors. 

However, in the washroom on the ground floor, the space between two doors was only 

1.18 meters. 

 

 

Figure 5.8: Adjusting the space between adjacent doors according to the IBC standards 

With the help of the code compliance framework, the building model was checked for 

code compliance, and any violation-related parameters were automatically adjusted. 

This is one of the main advantages of parametric modeling. When non-compliance is 

identified, the building model can be automatically adjusted, saving time and money 

compared to manual adjustments to the BIM model. 
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5.4 Optimization 

After ensuring that the building meets all code requirements, the building model is fur-

ther analyzed to optimize the available egress distance. Only those parameters that 

impact the egress distance will be taken into consideration during the optimization pro-

cess, while other parameters related to code compliance will not be included in the 

analysis. Ten parameters are selected for the optimization process, which affects the 

available egress distance. Custom ranges of each parameter have been defined to 

create a variation space; the lower limit is based on the required minimum values of 

IBC, while the constraints to preserve the initial design topology determine the upper 

limit. These move limits are set according to the requirements of IBC to ensure that the 

building model remains code-compliant during the optimization process. 

Table 5.3: Design variables/parameters used for the optimization of available egress distance 

S.No. Design variable Location Lower Limit Upper Limit 

1 
Main Corridor 

Width  

North 6 7 

2 South 6 7 

3 
Side Corridor 

Width 

North 1 2 

4 South 1 2 

5 

Door-Wall 
Clearance 

Classroom 0.5 2 

6 Laboratory 0.5 2 

7 Meeting Room 0.5 2 

8 Office 0.5 2 

9 Storage 0.5 2 

10 Washroom 0.5 2 

 

Figure 5.9: Creation of variation space of all parameters 
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With the help of GA, instead of checking each potential design solution individually, the 

two design solutions with higher fitness scores are selected from each generation, and 

new design solutions are created after the process of crossover and mutation (Section 

3.2). During the optimization, 20 generations have been generated, with a population 

size of 10 individuals each. Once the maximum number of specified generations is 

analyzed, the fitness score of the last population is calculated, and the individual with 

the highest fitness score comprises the optimized parameter configuration, which is 

automatically assigned to the BIM model, resulting in an optimized BIM model. 

 

Figure 5.10: Python code for using genetic algorithm to identify the best individual (Appendix A2) 

 

Figure 5.11: Fitness score evolution 
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Figure 5.12: Optimized parameter configuration of the best individual (Individual 7) 

 

 

Figure 5.13: Comparison of floor layout. Initial design (Top), Generated floor plan using GA (Bottom)  

After identifying the optimized parameter configuration, adding an extra building exit is 

another important factor to consider in enhancing occupant safety. The impact on the 

available egress distance by adding an additional exit is observed on each building 

floor, and the best location for providing an additional exit is determined. In the consid-

ered case study, building exits are already located on the south and east sides of the 
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building. Therefore, additional exits are provided on the north and west sides of the 

building, and their impact is considered. 

Table 5.4: The impact of an extra exit on the Available Egress Distance (AED) 

Building Story Location Max AED (m) Σ AED (m) 

Ground Floor West 23.96 351.78 

North 5.23 290.59 

First Floor West 25.25 496.48 

North 14.65 465.38 

Second Floor West 26.92 546.81 

North 17.97 494.94 

Third Floor West 35.26 795.17 

North 19.38 704.46 

 

Figure 5.14: The impact of additional extra exit on the available egress distance 

 

Figure 5.15: Comparison of available egress distances after the implementation of an additional exit  

After adding an additional building exit, the shortest path of many points of origin to the 

building exit has changed. The points of origin on the east or south side of the building 
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did not experience any changes in their available egress distance; however, the points 

of origin located on the northern and eastern sides of the building, their shortest path, 

have been altered due to the provision of additional exits. Given the building layout, 

many rooms are positioned on the northern side instead of the eastern side. As a result, 

adding a door on the north side has impacted the travel distances for most of the points 

of origin. The same trend has been observed on the other floors of the building. Hence, 

it can be concluded that the optimal location for an additional building exit is on the 

northern side of the building. Similarly, this framework can also be applied to determine 

the optimal location for an extra building exit during the planning phase of any con-

struction project, ensuring the safety of occupants is maximized. 
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6.1 Contribution 

This paper makes an essential contribution to the Building Information Modeling (BIM) 

field by introducing a BIM-based method for automatically checking code compliance 

and adjusting parameters related to violations. Additionally, it presents an optimization 

framework that can be utilized to minimize the available egress distance using para-

metric modeling to improve occupant safety. 

State-of-the-art code compliance checkers have advanced to confirm adherence to 

regulatory standards and adjust building designs for compliance. However, a signifi-

cant gap exists in fully automating and optimizing this process for complex and diverse 

design scenarios. As a result, architects and designers have to manually modify the 

building model to meet code requirements. This process takes a lot of time and effort 

and involves multiple iterations, often resulting in errors during the design and con-

struction stages. 

Many code compliance checkers use the Black-Box method, which utilizes coded pro-

grams to evaluate code compliance. This approach only presents the incoming and 

outgoing information, not the actual processing procedure. Consequently, users re-

main unaware of the processing steps and are only provided with the results, leading 

to a lack of transparency. Without transparency, verifying the processing steps' cor-

rectness and fairness becomes challenging. Moreover, users cannot modify or opti-

mize the process to meet specific needs or preferences. Any changes or improvements 

require developer intervention, leading to potential time and cost implications. 

This thesis introduces a framework that can automate not only the process of checking 

code compliance but also the adjustment of BIM models to ensure they are code-com-

patible and optimized for the safety of the occupants. The proposed framework has 

been successfully implemented in the physics department building (N6) at the Tech-

nical University of Munich (TUM), demonstrating its practicality and effectiveness. A 

detailed analysis comprising ten code compliance checks was carried out, resulting in 

the passage of 7 checks, while 3 checks did not meet the required standards. To rectify 

the violations, the parameters of the BIM model were automatically adjusted. These 

6 Discussion  
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adjustments encompassed widening side corridors, increasing door width, and ensur-

ing the specified spacing between two doors adhered to the IBC regulations. 

The impact of changing corridor width and door-wall clearance on the available egress 

distance was analyzed. The corridor width varied from 9 to 15 meters in 0.5-meter 

increments, and the door-wall clearance varied from 0.5 to 3 meters in 0.5-meter in-

crements. The analysis revealed that changes in the corridor width did not significantly 

affect the sum of available egress distances (ΣAED) due to the specific layout of the 

considered case study. Since the rooms were distributed on the north and south sides 

of the building, and most of the exits were located on the southern side, altering the 

corridor width resulted in increased egress distance for northern rooms and decreased 

distance for southern rooms, leading to a negligible overall change in the sum. How-

ever, adjusting the door-wall clearance was observed to increase the sum of egress 

distances, indicating its significant impact. 

GA was utilized to optimize the available egress distance. A total of ten parameters 

were adjusted within specified ranges. Each generation was examined to create a cor-

responding floor layout, origin, and destination points. Two individuals with higher fit-

ness scores from each generation were chosen for the crossover and mutation pro-

cess, and this process was repeated for subsequent generations. After analyzing 20 

generations with a population size of 10 individuals, the individual in the last generation 

with the highest fitness score was identified. Its parametric configuration was saved as 

the optimized parameter configuration and automatically assigned to the BIM model, 

resulting in an optimized building design. 

The proposed framework can be used in building projects' planning and design phases 

to automate code compliance checking and adjust the building model. This eliminates 

the need for manual modification of the BIM model to meet code requirements. Using 

this framework will save time and cost compared to the traditional method. Besides, it 

provides full transparency into the processing steps, allowing users to verify the cor-

rectness and fairness of the process. Users can also modify or optimize the framework 

to fulfill their specific needs without relying on the developers of a specific code com-

pliance checker. 
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6.2 Limitations 

The proposed framework has been successfully implemented in the case study, 

demonstrating its practicality and effectiveness. However, there are a few limitations 

that need to be considered. When calculating the available egress distance for exiting 

a building, only the room boundaries and door thresholds are considered for generating 

floor plans, and furniture within the building is not considered. However, in real-life 

situations, occupants will only use the available space. Therefore, the actual travel 

distance will be slightly longer than the calculated egress distance.  

The point of origin is currently taken from the room's door. However, in reality, occu-

pants begin evacuation from inside the room. In future work, instead of using the se-

mantic information of doors to determine the point of origin, an approach that uses the 

centroid of room elements to calculate the point of origin from the middle of the room 

could be employed to more realistically compute egress distances. 

The proposed framework requires the BIM model to be enriched with all the necessary 

parameters for complete functionality. This thesis considers ten checking rules, and 

their corresponding parameters are already included in the BIM model to make the 

proposed framework work. If additional checking rules need to be considered, the re-

quired parameters must be manually added to the BIM model. Depending on the build-

ing design's complexity, this process could be time-consuming. 

There is a heavy reliance on custom parameters to meet the dynamo script require-

ments for calculating the available egress distance. This is because not all the neces-

sary information is present in the BIM model by default. For example, Revit cannot 

automatically detect whether a created building door is the floor exit door or a room 

exit door. This determination is essential for finding the points of origin and the point of 

destination. Therefore, to determine the location of the starting point and the destina-

tion, a custom parameter named "Exit_Type" has been created for the corresponding 

doors and stairways. For the starting point, the value of this parameter is "Room Exit" 

and for the destination, it is "Floor Exit". Dynamo scripts then utilize this semantic in-

formation to distinguish between starting points and destinations. The user must en-

sure that the specified custom parameter contains the same information used in the 

dynamo script. For instance, if the user inputs "Floor exit" instead of "Floor Exit", the 

dynamo script will not be able to recognize the destination points. 
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When adjusting violation-related parameters, the proposed framework calculates the 

difference between the actual building data and the required values of IBC. Afterward, 

it automatically adjusts these parameters without providing further details about the 

building component. For example, users can view the adjusted parameter values, but 

they won't see specific details about the building component, such as the building floor, 

type of building component, or element ID of the adjusted building component. 

6.3 Future Work 

There are some improvements through which the proposed framework can be further 

enhanced. In the scope of this thesis, ten compliance-checking rules are being final-

ized, and they could be further expanded to allow the framework to check the building 

design in more detail. Additionally, the level of detail of generated floor plans could be 

improved such that in addition to considering walls and doors, it could also consider 

the furniture and other possible obstacles. 

The location of stairways should be considered when calculating the egress distance 

as they serve as the destination points for each building story. To maximize the safety 

of occupants, stairways should be strategically placed so that occupants have to travel 

the shortest distance from any room to reach the nearest stairway. One way to achieve 

this is by creating a parameter to control the placement of the stairways and then iden-

tifying the optimized configuration for this parameter during the optimization phase. 

To improve user experience, a custom plugin could be created to allow even those 

without experience using Dynamo or Python to utilize the proposed frameworks. Addi-

tionally, it could be designed so that when the plugin is run, the user would automati-

cally receive a comprehensive list of information about adjusted building components 

and be able to view them directly in Revit with just a single click.
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1      import sys 

2      import clr 

3      clr.AddReference('ProtoGeometry') 

4      from Autodesk.DesignScript.Geometry import * 

5   

6      # The inputs to this python node are stored as a list in the IN var 

 iable 

7      dataEnteringNode = IN 

8   

9      # Building_Model_Data: 

10     Corridor_Width = IN[0][0] 

11     Stairways_Width = IN[0][1] 

12     Ceiling_Height = IN[0][2] 

13     Door_Width = IN[0][3] 

14     Door_Height = IN[0][4] 

15     Space_between_Two_Doors = IN[0][5] 

16     Number_of_Exits_per_Story = IN[0][6] 

17     Available_Egress_Distance = IN[0][7] 

18  

19     # International_Building_Code_Requirements 

20     Minimum_Corridor_Width = 1.828 

21     Minimum_Corridor_Width_Based_on_OL = IN[1][0]   #OL = Occupant Load 

22     Minimum_Stairways_Width = 1.118 

23     Minimum_Stairways_Width_Based_on_OL = IN[1][1] 

24     Minimum_Ceiling_Height = 2.286 

25     Minimum_Door_Width = 0.813 

26     Minimum_Door_Height = 2.032 

27     Minimum_Space_between_Two_Doors = 1.219 

28     Minimum_Number_of_Exits_per_Story = 2 

29     Maximum_Egress_Distance = 76.2 

30  

31     # Check 01: Minimum Corridor Width 

32     def Check_Minimum_Corridor_Width(Minimum_Corridor_Width, Corri 

 dor_Width): 

33         Result = 'Check#1 (Minimum Corridor Width): Pass' 

34         for i in range(len(Corridor_Width)): 

35             if Minimum_Corridor_Width > Corridor_Width[i]: 

36                 difference = round(Minimum_Corridor_Width – Corri 

 dor_Width[i], 3) 

37                 Corridor_Width[i] = Minimum_Corridor_Width 

38                 Result = f'Check#1 (Minimum Corridor Width): Fail - Side  

 Corridor Width has increased by {difference} meters' 

39         return Result, Corridor_Width 

40  

41     # Check 02: Required Capacity of Corridors 

42     def Check_Required_Capacity_of_Corridors(Minimum_Corri 

 dor_Width_Based_on_OL, Corridor_Width):     

43         Result = 'Check#2 (Required Capacity of Corridors): Pass' 

44         for i in range(len(Minimum_Corridor_Width_Based_on_OL)): 

45             min_width = Minimum_Corridor_Width_Based_on_OL[i] 

46             for j in range(len(Corridor_Width)): 

47                 if min_width > Corridor_Width[j]: 

48                     difference = round(min_width - Corridor_Width[j], 3) 

49                     Corridor_Width[j] = min_width 

50                     Result = f'Check#2 (Required Capacity of Corridors):  

Appendix A1: Prototype for Automated Compliance Checking 
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Fail - Corridor Width has increased by {difference} 

meters' 

51                      return Result, Corridor_Width 

52         return Result, Corridor_Width 

53  

54     # Check 03: Minimum Stairway Width 

55     def Check_Minimum_Stairways_Width(Minimum_Stairways_Width, Stair 

 ways_Width): 

56         Result = 'Check#3 (Minimum Stairway Width): Pass' 

57         for i in range(len(Stairways_Width)): 

58             if Minimum_Stairways_Width > Stairways_Width[i]: 

59                 difference = round(Minimum_Stairways_Width – Stair 

 ways_Width[i], 3) 

60                 Stairways_Width[i] = Minimum_Stairways_Width 

61                 Result = f'Check#3 (Minimum Stairway Width): Fail –  

 Stairway Width has increased by {difference} meters' 

62         return Result, Stairways_Width 

63  

64     # Check 04: Required Capacity of Stairways 

65     def Check_Required_Capacity_of_Stairways(Minimum_Stair 

 ways_Width_Based_on_OL, Stairways_Width):     

66         Result = 'Check#4 (Required Capacity of Stairways): Pass' 

67         for i in range(len(Minimum_Stairways_Width_Based_on_OL)): 

68             min_width = Minimum_Stairways_Width_Based_on_OL[i] 

69             for j in range(len(Stairways_Width)): 

70                 if min_width > Stairways_Width[j]: 

71                     difference = round(min_width - Stairways_Width[j],  

     3) 

72                     Stairways_Width[j] = min_width 

73                     Result = f'Check#4 (Required Capacity of Stairways):  

     Pass' 

74                     return Result, Stairways_Width 

75         return Result, Stairways_Width 

76  

77     # Check 05: Minimum Ceiling Height 

78     def Check_Minimum_Ceiling_Height(Minimum_Ceiling_Height, Ceil 

 ing_Height): 

79         Result = 'Check#5 (Minimum Ceiling Height): Pass' 

80         for i in range(len(Ceiling_Height)): 

81             if Minimum_Ceiling_Height > Ceiling_Height[i]: 

82                 difference = round(Minimum_Ceiling_Height – Ceil 

 ing_Height[i], 3) 

83                 Ceiling_Height[i] = Minimum_Ceiling_Height 

84                 Result = f'Check#5 (Minimum Ceiling Height): Fail –  

 Ceiling Height has increased by {difference} meters' 

85         return Result, Ceiling_Height 

86  

87     # Check 06: Minimum Door Width 

88     def Check_Minimum_Door_Width(Minimum_Door_Width, Door_Width): 

89         Result = 'Check#6 (Minimum Door Width): Pass' 

90         for i in range(len(Door_Width)): 

91             if Minimum_Door_Width > Door_Width[i]: 

92                 difference = round(Minimum_Door_Width - Door_Width[i],  

 3) 

93                 Door_Width[i] = Minimum_Door_Width 

94                 Result = f'Check#6 (Minimum Door Width): Fail - Door  

 Width has increased by {difference} meters' 

95         return Result, Door_Width 

96  

97     # Check 07: Minimum Door Height 

98     def Check_Minimum_Door_Height(Minimum_Door_Height, Door_Height): 

99         Result = 'Check#7 (Minimum Door Height): Pass' 

100        for i in range(len(Door_Height)): 
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101            if Minimum_Door_Height > Door_Height[i]: 

102                difference = round(Minimum_Door_Height - Door_Height[i],  

 3) 

103                Door_Height[i] = Minimum_Door_Height 

104                Result = f'Check#7 (Minimum Door Height): Fail - Door  

 Height has increased by {difference} meters' 

105        return Result, Door_Height 

106 

107    # Check 08: Minimum Space between Doors 

108    def Check_Minimum_Space_between_Two_Doors(Minimum_Space_be 

 tween_Two_Doors, Space_between_Two_Doors): 

109        Result = 'Check#8 (Minimum Space between two doors): Pass' 

110        if Minimum_Space_between_Two_Doors > Space_between_Two_Doors: 

111            difference = round(Minimum_Space_between_Two_Doors –  

   Space_between_Two_Doors, 3) 

112            Space_between_Two_Doors = Minimum_Space_between_Two_Doors 

113            Result = f'Check#8 (Minimum Space between two doors): Fail –  

   Space between two doors has increased by {difference} me 

   ters' 

114        return Result, Space_between_Two_Doors 

115 

116    # Check 09: Minimum Number of Exits per Story 

117    def Check_Minimum_Number_of_Exits_per_Story(Minimum_Number_of_Ex 

 its_per_Story, Number_of_Exits_per_Story): 

118        Result = 'Check#9 (Minimum Number of Exits per Story): Pass' 

119        for i in range(len(Number_of_Exits_per_Story)): 

120            if Minimum_Number_of_Exits_per_Story > Number_of_Ex 

   its_per_Story[i]: 

121                difference = round(Minimum_Number_of_Exits_per_Story –  

 Number_of_Exits_per_Story[i], 3) 

122                Number_of_Exits_per_Story[i] = Minimum_Number_of_Ex 

 its_per_Story 

123                Result = f'Check#9 (Minimum Number of Exits per Story):  

 Fail - {difference} additional Exits are required' 

124        return Result, Number_of_Exits_per_Story 

125 

126    # Check 10: Maximum Travel Distance 

127    def Check_Maximum_Egress_Distance(Maximum_Egress_Distance, Availa 

 ble_Egress_Distance): 

128        Result = 'Check#10 (Maximum Egress Distance): Pass' 

129        for i in range(len(Available_Egress_Distance)): 

130            if Maximum_Egress_Distance < Available_Egress_Distance[i]: 

131                difference = round(Available_Egress_Distance[i] – Maxi 

 mum_Egress_Distance, 3) 

132                Result = f'Check#10 (Maximum Egress Distance): Fail –  

 Egress Distance exceeds by {difference} meters ' 

133        return Result, Available_Egress_Distance 

134 

135    # Applying Check Functions and Organizing the Results 

136    Results_List = [] 

137    Building_Model_Data_List = [] 

138 

139    check_functions = [ 

140        Check_Minimum_Corridor_Width, Check_Required_Capacity_of_Corri 

dors, Check_Minimum_Stairways_Width,  

141        Check_Required_Capacity_of_Stairways, Check_Minimum_Ceil 

ing_Height, Check_Minimum_Door_Width,  

142        Check_Minimum_Door_Height, Check_Minimum_Space_be 

tween_Two_Doors, Check_Minimum_Number_of_Exits_per_Story,  

143        Check_Maximum_Egress_Distance 

144    ] 

145 

146    parameters = [ 
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147        (Minimum_Corridor_Width, Corridor_Width), 

148        (Minimum_Corridor_Width_Based_on_OL, Corridor_Width), 

149        (Minimum_Stairways_Width, Stairways_Width), 

150        (Minimum_Stairways_Width_Based_on_OL, Stairways_Width), 

151        (Minimum_Ceiling_Height, Ceiling_Height), 

152        (Minimum_Door_Width, Door_Width), 

153        (Minimum_Door_Height, Door_Height), 

154        (Minimum_Space_between_Two_Doors, Space_between_Two_Doors), 

155        (Minimum_Number_of_Exits_per_Story, Number_of_Exits_per_Story), 

156        (Maximum_Egress_Distance, Available_Egress_Distance) 

157    ] 

158 

159    for check_function, params in zip(check_functions, parameters): 

160        result, updated_data = check_function(*params) 

161        Results_List.append(result) 

162        if not Building_Model_Data_List or updated_data != Build 

     ing_Model_Data_List[-1]: 

163            Building_Model_Data_List.append(updated_data) 

164 

165    # Creating Dictionary of Parameters 

166    keys = [ 

167        "Corridor_Width", "Stairways_Width", "Ceiling_Height",  

"Door_Width", "Door_Height", "Space_between_Two_Doors", 

"Number_of_Exits_per_Story", "Available_Egress_Distance" 

168    ] 

169 

170    Building_Model_Data_Dict = {key: value for key, value in zip(keys,  

 Building_Model_Data_List)} 

171 

172    # Assigning output to the OUT variable 

173    OUT = Results_List, Building_Model_Data_Dict 
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1      import GraphicalDynamo as S 

2      import clr 

3      import time 

4      import random 

5   

6      clr.AddReference('RevitServices') 

7      clr.AddReference('RevitAPI') 

8      clr.AddReference('RevitAPIUI') 

9   

10     from RevitServices.Persistence import DocumentManager 

11     from Autodesk.Revit.DB import * 

12  

13     POPULATION_SIZE = 10 

14     GENERATIONS = 20 

15     MUTATION_RATE = 0.1 

16     MED = 76.2 

17  

18     doc = DocumentManager.Instance.CurrentDBDocument 

19     global_params =  

 FilteredElementCollector(doc).OfClass(GlobalParameter).ToElements() 

20  

21     def custom_range(start, end, step): 

22         while start <= end: 

23             yield start 

24             start += step 

25  

26     range_Main_Corridor_Width_Half_North = list(custom_range(6, 7, 0.5)) 

27     range_Main_Corridor_Width_Half_South = list(custom_range(6, 7, 0.5)) 

28     range_Side_Corridor_Width_North = list(custom_range(1, 2, 0.5)) 

29     range_Side_Corridor_Width_South = list(custom_range(1, 2, 0.5)) 

30     range_Door_Wall_Clearance_Classroom = list(custom_range(0.5, 2,  

 0.5)) 

31     range_Door_Wall_Clearance_Laboratory = list(custom_range(0.5, 2,  

 0.5)) 

32     range_Door_Wall_Clearance_Meeting_Room = list(custom_range(0.5, 2,  

 0.5)) 

33     range_Door_Wall_Clearance_Office = list(custom_range(0.5, 2, 0.5)) 

34     range_Door_Wall_Clearance_Storage = list(custom_range(0.5, 2, 0.5)) 

35     range_Door_Wall_Clearance_Washroom = list(custom_range(0.5, 2, 0.5)) 

36  

37     def set_global_parameters(doc, values): 

38         transaction = Transaction(doc, "Set Global Parameters Values") 

39         transaction.Start() 

40         try: 

41             for param in global_params: 

42                 if param.Name in values: 

43                     new_value = DoubleParameterValue(values[param.Name]  

     * 3.28084)   # Converting meters to feet 

44                     param.SetValue(new_value) 

45             transaction.Commit() 

46         except Exception as e: 

47             transaction.RollBack() 

48             print("Specified global parameter was not found") 

49             raise e 

50  

51     def ShortestPath(Visibility_Graph, Origins, Destinations): 

Appendix A2: Prototype for Optimization  
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52         results = [] 

53         for origin in Origins: 

54             sub_list = [] 

55             for destination in Destinations: 

56                 shortest_path =  

S.Graphs.VisibilityGraph.ShortestPath(Visibility_Graph,  

origin, destination) 

57                 shortest_path_length = shortest_path["length"] 

58                 sub_list.append(shortest_path_length) 

59             results.append(sub_list) 

60         return results 

61  

62     def initialize_population(): 

63         population = [] 

64         for _ in range(POPULATION_SIZE): 

65             individual = { 

66                 "Main_Corridor_Width_Half_North":  

 random.choice(range_Main_Corridor_Width_Half_North), 

67                 "Main_Corridor_Width_Half_South":  

 random.choice(range_Main_Corridor_Width_Half_South), 

68                 "Side_Corridor_Width_North":  

 random.choice(range_Side_Corridor_Width_North), 

69                 "Side_Corridor_Width_South":  

 random.choice(range_Side_Corridor_Width_South), 

70                 "Door_Wall_Clearance_Classroom":  

 random.choice(range_Door_Wall_Clearance_Classroom), 

71                 "Door_Wall_Clearance_Laboratory":  

 random.choice(range_Door_Wall_Clearance_Laboratory), 

72                 "Door_Wall_Clearance_Meeting_Room":  

 random.choice(range_Door_Wall_Clearance_Meeting_Room), 

73                 "Door_Wall_Clearance_Office":  

 random.choice(range_Door_Wall_Clearance_Office), 

74                 "Door_Wall_Clearance_Storage":  

 random.choice(range_Door_Wall_Clearance_Storage), 

75                 "Door_Wall_Clearance_Washroom":  

 random.choice(range_Door_Wall_Clearance_Washroom), 

76             } 

77             population.append(individual) 

78         return population 

79  

80     def fitness_function(individual): 

81         set_global_parameters(doc, individual) 

82         time.sleep(1) 

83         Visibility_Graph = IN[0] 

84         Origins = IN[1] 

85         Destinations = IN[2] 

86         shortest_paths = ShortestPath(Visibility_Graph, Origins,  

     Destinations) 

87         current_shortest_paths = [min(sublist) for sublist in  

     shortest_paths] 

88         AED = max(current_shortest_paths) 

89         fitness = MED-AED 

90         return fitness 

91  

92     def select_individual(population, fitness_scores): 

93         total_fitness = sum(fitness_scores) 

94         pick = random.uniform(0, total_fitness) 

95         current = 0 

96         for individual, score in zip(population, fitness_scores): 

97             current += score 

98             if current > pick: 

99                 return individual 

100 
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101    def crossover(parent1, parent2): 

102        child = {} 

103        for key in parent1.keys(): 

104            child[key] = parent1[key] if random.random() < 0.5 else  

   parent2[key] 

105        return child 

106 

107    def mutate(individual): 

108        for key in individual.keys(): 

109            if random.random() < MUTATION_RATE: 

110                if key == "Main_Corridor_Width_Half_North": 

111                    individual[key] =  

     random.choice(range_Main_Corridor_Width_Half_North) 

112                elif key == "Main_Corridor_Width_Half_South": 

113                    individual[key] =  

     random.choice(range_Main_Corridor_Width_Half_South) 

114                elif key == "Side_Corridor_Width_North": 

115                    individual[key] =  

     random.choice(range_Side_Corridor_Width_North) 

116                elif key == "Side_Corridor_Width_South": 

117                    individual[key] =  

     random.choice(range_Side_Corridor_Width_South) 

118                elif key == "Door_Wall_Clearance_Classroom": 

119                    individual[key] =  

     random.choice(range_Door_Wall_Clearance_Classroom) 

120                elif key == "Door_Wall_Clearance_Laboratory": 

121                    individual[key] =  

     random.choice(range_Door_Wall_Clearance_Laboratory) 

122                elif key == "Door_Wall_Clearance_Meeting_Room": 

123                    individual[key] =  

    random.choice(range_Door_Wall_Clearance_Meeting_Room) 

124                elif key == "Door_Wall_Clearance_Office": 

125                    individual[key] =  

     random.choice(range_Door_Wall_Clearance_Office) 

126                elif key == "Door_Wall_Clearance_Storage": 

127                    individual[key] =  

     random.choice(range_Door_Wall_Clearance_Storage) 

128                elif key == "Door_Wall_Clearance_Washroom": 

129                    individual[key] =  

     random.choice(range_Door_Wall_Clearance_Washroom) 

130        return individual 

131 

132    # Initialize Population 

133    population = initialize_population() 

134 

135    for generation in range(GENERATIONS): 

136        fitness_scores = [fitness_function(individual) for individual in  

     population] 

137         

138        new_population = [] 

139        for _ in range(POPULATION_SIZE // 2): 

140            parent1 = select_individual(population, fitness_scores) 

141            parent2 = select_individual(population, fitness_scores) 

142             

143            child1 = crossover(parent1, parent2) 

144            child2 = crossover(parent1, parent2) 

145             

146            child1 = mutate(child1) 

147            child2 = mutate(child2) 

148             

149            new_population.extend([child1, child2]) 

150         

151        population = new_population 
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152 

153    # Selecting Optimized Parameter Configuration 

154    fitness_scores = [fitness_function(individual) for individual in  

 population] 

155    best_individual = population[fitness_scores.index(max(fit 

 ness_scores))] 

156 

157    # Applying Optimized Parameter Configuration to the open Revit docu 

 ment 

158    set_global_parameters(doc, best_individual) 

159 

160    OUT = best_individual 



 

Table C.1: Occupancy classification of buildings (Section 302.1) 

 

 

Table C.2: Minimum Corridor Width (Section 1020.2) 

 

 

 

 

Appendix B: IBC Requirements 



 

Table C.3: Occupant load factor (Section 1004.5) 

 

 

Table C.4: Minimum number of exits based on the occupant load (Section 1006.3.2) 

 

 

Table C.5: Exit access travel distance (Section 1017.2) 
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