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German Abstract

Aktuelle Ergebnisse der Forschung zur Kausalinferenz haben gezeigt, dass die kausale
Struktur eines Systems von Zufallsvariablen oft aus (reinen) Beobachtungsdaten be-
stimmt werden kann. Prinzipiell kann die Kausalstruktur auch aus wenigen Interven-
tionsbeaobachtungen abgeleitet werden, falls es möglich ist diese zu erheben. In Situa-
tionen, in denen Beobachtungen sehr teuer sind, wir jedoch prinzipiell Interventionen
an den Systemvariablen vornehmen können, stellt sich die Frage, was die informativste
Intervention zur Bestimmung der Kausalstruktur ist.

In dieser Arbeit betrachten wir einen aktiven Bayes’schen Ansatz für das Lernen von
Kausalstrukturen. Er wurzelt in der Schnittmenge von statistischer Forschung zur Kau-
salinferenz und Forschung zum aktiven Lernen im Bereich der Künstlichen Intelligenz.
Der Ansatz wurde von [49, von Kügelgen et al.] vorgeschlagen und in dieser Arbeit
präsentieren wir zum ersten Mal numerische Ergebnisse der vollständigen Implementie-
rung. Dazu modellieren wir ein System von Zufallsvariablen mit Hilfe von strukturellen
Kausalmodellen (SCM), die einen gerichteten azyklischen Graphen (DAGs) implizieren,
und schätzen die darin enthaltenen funktionalen Beziehungen mittels Gauss Prozess
(GP) Regression. Wir nehmen an, dass perfekte Interventionen in die Systemvariablen
möglich sind. In einem sequenziellen Verfahren wählen wir in jedem Schritt das informa-
tivste Interventionsexperiment (unter Verwendung der Bayes’schen Versuchsplanung)
und erhalten einen Interventionsdatenpunkt aus der Durchführung des Experiments.
Dann berechnen wir die Posterior-Verteilung der DAGs (bzw. SCMs, die die kausale
Struktur kodieren) und aktualisieren anschließend die GP-Fits in den SCMs. Wir been-
den das Verfahren, sobald die Posterior-Wahrscheinlichkeit für ein DAG deutlich gößer
ist als für alle anderen. Wir haben das Verfahren für den Fall von zwei Zufallsvaria-
blen implementiert und den Algorithmus an synthetischen Daten getestet. Dabei hat
der Algorithmus die richtige kausale Struktur mit großer Zuverlässigkeit erkannt. In den
Experimenten hat die Implementierung versucht, wahrscheinliche kausale Beziehungen
zu bestätigen. Dafür is es am informativsten auf dem jeweiligen Grund der Kausalbezie-
hung zu intervenieren; immer in einer gleichbleibenden kleinen Region, in der wir bereits
einige anfängliche Beobachtungen haben und die Schätzung der funktionalen Beziehung
zwischen Grund und E↵ekt einen gewissen Grad an nichtlinearer Krümmung aufweist.
Außerdem wird beschrieben, wie die Implementierung auf den Fall von vier Variablen
verallgemeinert werden kann. Basierend auf den Beobachtungen über das Verhalten des
Algorithmus im bivariaten Fall schlagen wir heuristisch ein Verfahren vor, das durch Ide-
en aus der Bayes’schen Optimierung motiviert ist, und den Rechenaufwand verringern
kann.

Der Flaschenhals des Verfahrens ist das Optimierungsverfahren, welches schon bei vier
Variablen zu zeitaufwendige Rechnungen benötigt. Die Beobachtung, dass Interventio-
nen immer in dem selben Bereich gewählt werden deutet jedoch darauf hin, dass die
Optimierung sich vereinfachen lässt und es ein alternatives Verfahren mit vergleichbaren
Ergebnissen gibt.
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English Abstract

In Causal Discovery we aim to learn the causal structure from a set of system random
variables based on purely observational data. Recent results showed, that this is possible
in many cases. If interventions are possible, we can in principle infer the causal struc-
ture from comparably little interventional observations. In situations where observations
are very expensive but interventions can be done, it is natural to ask, what would be
the most informative intervention to determine the underlying causal structure. In this
thesis, we focus on learning causal relations using interventions and implement an algo-
rithm that simulates an intelligent agent which repeatedly interacts with its environment.

In this work we consider an Active Bayesian approach for causal structure learning. It
is rooted in the intersection of statistical research on Causal Discovery and research on
Active Learning in the area of Artificial Intelligence. The approach was proposed by [49,
von Kügelgen et al.] and in this paper we present numerical results of the full implemen-
tation for the first time. We model an environment of random variables using Structural
Causal Models (SCM) that imply corresponding Directed Acyclic Graphs (DAGs) and
estimate the functional relations therein using Gaussian Process (GP) regression. We
assume that we can perform perfect interventions on the environment variables. In each
step iteration of a sequential procedure we choose the most informative intervention
experiment (using Bayesian Experimental Design) and obtain one interventional data
point from performing the experiment. Then, we calculate the posterior distribution of
the DAGs (resp. SCMs, which encode the causal structure) and afterwards update the
GP fits in the SCM. We terminate the procedure as soon as the posterior probability
for one DAG is significantly larger than for all others.

We implement the procedure for the case of two random variables. We test the algorithm
on synthetic data from which the true causal relation is know. The implemented algo-
rithm finds the true causal relation with great reliability for many di↵erent parameter
choices. In the experiments we find indication that it is best to confirm likely causal
relations by intervening on the respective causes; always on the same support region,
where we already have some initial observations and where the estimate of the functional
relation has some degree of nonlinear curvature. We also describe how to generalize the
implementation to the case of four variables, for which computations become very time
consuming. Based on the observations about the behavior of the algorithm in the bi-
variate case, we heuristically propose a procedure how to overcome the computational
burden (motivated by ideas from Bayesian Optimization).

The bottleneck of the method is the optimization procedure, which already requires
too time-consuming calculations in the case of four variables. However, the observation
that interventions are always chosen in the same region indicates that the optimiza-
tion can be simplified and that there exists is an alternative procedure with comparable
results.
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List of Symbols

The next list describes several symbols that will be later used within the body of the
document

EX Expectation operator w.r.t. the distribution of the random variable X

(we omit X when it is clear from the context)

�(·) Gamma function; � : R+ ! R+; x 7!
R
1

0 t
x�1

e
�t

dt

� Lebesgue Measure

Indicator function

B(X) Borel-�-algebra of X, where (X, ⌧) is a topological space

F [·] Fourier Transf. ;F [f ](!) := (2⇡)�d/2
R
f(x)e�ihx,!i dx,! 2 Rd

, f 2 L
1(Rd)

O(·) Landau symbol

O⇤(·) Landau symbol for boundedness in probability (“tight”)

U [a, b] Uniform distribution over the real interval [a, b]

�(·) Cumulative density function of a standard normal random variable, � :

R! R; x 7!
R x

�1
e
�

t2

2 dt

�(·) Probability density function of a standard normal random variable, � :

R! R; t 7! e
�

t2

2

PX Distribution of the random variable X

pX Probability density function (w.r.t. Lebesgue or Counting Measure) of
the random variable X

Py Orthogonal projection from a Hilbert space H onto a subspace U , Py :=
argminx2U ky � xk

K Either R or C

X Respective set of interest

A b B A is a compact subset of B

C
1

c (⌦) := {' 2 C
1 : supp(') b ⌦}

L
1
loc(⌦) := {f : ⌦! K measurable : 8K b ⌦ it holds f |K 2 L

1(K)}
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1. Introduction

Causal relations are of central interest in almost all sciences. We start learning them in
early childhood, for example when throwing a ball. In principle we have two methods
to reveal such relations: manipulating features of our environment to see what other
features do or do not change; and observing the variation of features of our environment
without manipulating it. We call such a manipulation an intervention (experiment) and
if we can perform interventions it is possible to reveal the true causal structure [15, 16].
But in many cases interventions are impossible to perform, for example we cannot change
the blood type of a patient and observe its influence on some medication. In such cases
we must try to infer causal structures from purely observational data, which is known
as causal discovery or causal structure learning (see [31, 17],[23, IV Causal inference] for
an overview).
In this work we focus on learning causal relations using interventions, by simulating an
intelligent agent which repeatedly interacts with its environment. The approach of learn-
ing causal structures of some environment through experimenting, observing evidence
and subsequently updating our hypothesis is related to Artificial Intelligence research
which aims to build human like models [20] and closely follows the idea termed the
“child as a scientist” [18]. In context of causal discovery the most interesting feature of
the approach is that it may provide guidance for the selection of next experiment. Es-
pecially when performing interventions is very expensive or extremely time consuming,
it is of importance to find the most informative intervention experiment. The approach
discussed in this thesis can provide guidance for selecting the most beneficial next ex-
periment to infer the true causal structure of the environment variables.

Causal relations can be modeled by structural causal models which imply a correspond-
ing graph that allows us to read o↵ conditional independencies and a factorization of the
joint distribution [29, 26]. Further, Pearl [29, Theorem 3.4.1] developed the do-calculus
which provides a framework for interventions. We will utilize these advances in graphical
modeling that have been established over the past decades and connect them to Bayesian
Experimental Design [21] (an information theoretic concept based on the seminal work
of Shannon [39]), Gaussian Process regression [34] (a flexible non parametric regression
method) and Bayesian Optimization [24, 5] (a global optimization algorithm for black
box functions). Throughout this work, we will explore some interrelationships between
these lines of research.

This thesis considers a sequential active Bayesian approach for causal discovery pro-
posed in [49], where we want to find the most informative intervention (in an information
theoretic sense) at each step, then observe the respective interventional data point and
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1. Introduction

update the estimated structural equations according to a given graph. The structural
equations are estimated using Gaussian Process regression. In our setup we start with
very little knowledge about the system, i.e. a few purely observational data points and
try to find the most informative interventional data point, that allows us to decide on a
causal relation with high probability. Since we will decide on a hypothesis (DAG) based
on Bayesian inference we must pay attention on choosing the prior distribution (over
DAGs) and about the hypothesis space (DAG space) (refer to Lindley’s paradox [22]).
For the calculation of the posterior we must calculate likelihoods for all possible graphs
what implies a significant computational burden because of the super-exponential num-
ber of directed acyclic graphs [38]. In the bivariate case the approach performs well and
provides very interesting insight regarding the role of interventional data and the choice
of an intervention value among infinitely many possible values. The case of four ran-
dom variables already calls for sampling approaches such as Monte Carlo Markov Chain
(MCMC) or e�cient cluster calculations. We will only discuss an implementation and
heuristically point out alternative approaches that may be worth considering for future
research in this direction, but do not provide numerical examples.

This work is structured as follows: In Chapter 2 we review a detailed description of
the theoretical concepts we will use. For many results the derivations and proofs are
included because they provide interesting insights about the interrelationships between
the concepts. We start with GP regression, argue why we restrict on the Matérn ker-
nel as covariance function and give a full description of the resulting function space
from which we infer the regression function. Then, we introduce the information the-
oretic concepts we will need for Bayesian Optimization and introduce the special case
of Bayesian Experimental design we will use. Further we consider theory and a conver-
gence result for Bayesian Optimization. For graphical modelling we provide a detailed
introduction and present the most important results for our approach. In Chapter 3 we
introduce the approach proposed in [49] in much detail. We then start with the case of
only two variables where the interventional data enters the model independent of the ini-
tial observations. This already shows significant performance. After establishing a solid
understanding of the procedure we add the step to find the optimal intervention and
perform the most informative experiment to obtain the next intervention data point.
But this implies a dependence between the data points. We cope with this problem by
assuming a sequential structure, which allows to calculate the likelihood in closed form
consisting of Gaussian density functions. We then present numerical examples related to
existing research about additive noise models (a subclass of structural equation models).
Then, we turn to the fourvariate case, present the necessary calculation steps one would
need to perform, point out the computational challenges and present heuristic ideas how
one could possibly overcome the computational challenges. In Chapter 4 we conclude
the thesis.
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2. Theoretical Concepts

2.1. Gaussian Process Regression

This section provides a detailed derivation of the concepts of Gaussian process (GP)
regression, that we will use in the proceeding of this work. Gaussian processes are used
to describe a distribution over functions in a function space corresponding to a so called
kernel. We infer the regression function as the mean function of the posterior process
given some observations. The derivation loosely follows [34, Chapter 2] and the most
relevant results are summarized in theorem (2.6) at the end of this section.
At first we need the notion of a kernel, which will be used to specify the covariance
between any two points of our space under consideration, X . The following definition is
taken from [19].

Definition 2.1 (Kernel). Let X be a nonempty set. A symmetric function k : X⇥X ! R
is called a positive definite kernel, if for any n 2 N, (c1, . . . , cn) ⇢ R and (x1, . . . , xn) ⇢
X ,

nX

i=1

nX

j=1

cicjk(xi, xj) � 0.

To simplify notation, we treat kernel as a synonym for positive definite kernel.

For any finite collection of points, x = (x1, . . . , xn) 2 X , we denote by kXX the matrix
with entries [kXX ]ij = k(xi, xj). The above definition implies that kXX is a positive semi
definite matrix. In the literature kXX is called kernel matrix or Gram matrix.
The following definition of Gaussian processes closely follows [14] and [19].

Definition 2.2 (Gaussian processes). Let X be a nonempty set, k : X ⇥ X ! R be a
positive definite kernel and m : X ! R be any real-valued function. Then, a random
function f : X ! R is said to be a Gaussian Process (GP) with mean function m

and covariance kernel k, denoted by f ⇠ GP(m, k), if the following holds: For any finite
set X = (x1, . . . , xn) 2 X of any size n 2 N, the random vector

fX = (f(x1), . . . , f(xn))
| 2 Rn

follows the multivariate normal distribution N (mX , kXX) with covariance matrix kXX =
(k(xi, xj))ni,j=1 2 Rn⇥n and mean vector mX = (m(x1), . . . ,m(xn))|.

Remark 2.3. In [14, Theorem 12.1.3. on p. 443] it is proven, that there is a one-
to-one correspondence between Gaussian processes f ⇠ GP(m, k) and pairs (m, k) of
mean function m and kernel k. This relation follows from an application of Kolmogorovs
extension theorem.

3



2. Theoretical Concepts

Consider a situation where we have N i.i.d. samples, (xi, yi) 2 Z := X ⇥ Y for
1  i  N , drawn from an unknown probability distribution PZ on Z of the random
vector Z = (X, Y )|, where X denotes the input space and Y denotes the output space.
Assume that there exists a functional relation of the form

yi = f(xi) + ✏i,

where ✏i
i.i.d⇠ N (0, �2

n) for 1  i  N and jointly independent of x = (x1, . . . , xN).
If f ⇠ GP(0, k), then f̃ = f + m ⇠ GP(m, k) for a deterministic mean function m.
Therefore we can for simplicity assume our prior believes to have mean function zero,
i.e., assume f ⇠ GP(0, k) for some fixed kernel. A zero mean function is not necessarily
a drastic limitation in practical applications, since it does not restrict the mean function
of the posterior process to be zero.
We want to infer a function on some domain X̃⇤ ⇢ X . For this purpose we discretize
the domain in a suitable way such that our task reduces to infer the function values
at the points x⇤ = {x(1)

⇤ , . . . , x
(n)
⇤ } 2 X̃⇤. Denote the respective function values by

fX⇤ = (f(x(1)
⇤ ), . . . , f(x(n)

⇤ ))|. According to our assumptions, we thus have


y
fX⇤

�
|x,x

⇤
⇠ N

✓
0,


kXX + �

2
nI kXX⇤

kX⇤X kX⇤X⇤

�◆
.

Remark 2.4 (Conditional Distribution of Multivariate Gaussian Vector). Let N =
(X1, . . . , Xn, Y1, . . . , Yl) be multivariate normal with density fN(·). By definition, for
any ↵ 2 Rn+l it holds that ↵|

N is normally distributed, thus, the vector (Y1, . . . , Yl)
is also normally distributed with density fY. The conditional distribution of X given
Y, fX|Y(·,x) = fN (·)

fY(·) , is again normally distributed, what can be proven by actually
performing the division and use some inversion lemma for matrices to arrive at a normal
form of the distribution function.

Since a multivariate normal distribution is fully specified by its mean and variance, we
can obtain the posterior distribution by calculating E [fX⇤ |y,x,x⇤] and Var (fX⇤ |y,x,x⇤).
For this purpose we define A := �kX⇤X(kXX + �

2
nI)
�1 and an auxiliary normally dis-

tributed random variable z := fX⇤ + Ay that is orthogonal to y, since

Cov(z,y) = Cov(fX⇤ ,y) + Cov(Ay,y) = kX⇤X + A(kXX + �
2
nI) = kX⇤X � kX⇤X = 0,

and zero covariance between two Gaussians is equivalent to independence. We have

E [fX⇤ |y,x,x⇤] = E [z� Ay|y,x,x
⇤
] = E [z|y,x, x

⇤
]� E [Ay|y,x,x

⇤
]

y?z
= E [z|x,x

⇤
]� Ay = �Ay = kX⇤X(kXX + �

2
nI)
�1y

(2.1)
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and

Var (fX⇤ |y,x, x⇤) = Var (z� Ay|y,x,x
⇤
)

= Cov (z� Ay, z� Ay|y,x,x
⇤
)

= Var (z|y,x,x
⇤
) + Var (Ay|y,x,x

⇤
)| {z }

=0

�2ACov (y, z|y,x,x
⇤
)| {z }

=0

y?z
= Var(z|x, x

⇤
)

= Var(fX⇤ + Ay|x,x
⇤
)

= Var(fX⇤ |x,x⇤) + AVar(y|x,x
⇤
)A| + 2ACov(fX⇤ ,y|x,x⇤)

(kXX + �2
nI) symmetric = kX⇤X⇤ + kX⇤X(kXX + �

2
nI)
�1
kXX⇤ � 2kX⇤X(kXX + �

2
nI)
�1
kXX⇤

= kX⇤X⇤ � kX⇤X(kXX + �
2
nI)
�1
kXX⇤ .

(2.2)

To summarize, the predictive posterior distribution is,

fX⇤ |y,x,x⇤ ⇠ N
�
kX⇤X(kXX + �

2
nI)
�1y, kX⇤X⇤ � kX⇤X(kXX + �

2
nI)
�1
kXX⇤

�
. (2.3)

Another useful property in GP regression is that we can compute the marginal likeli-
hood, p(y|x) =

R
Rn p(y|fX ,x)p(fX |x) dfX , in closed form as below. Under the Gaussian

process model we have fX |x ⇠ N (0, kXX) and y|fX ,x ⇠ N (fX , �2
nIN). First we investi-

gate the product of the two densities

p(y|fX , x)p(fX |x) = (2⇡)�
N
2 det(kXX)

�
1
2 (2⇡)�

N
2 det(�2

nIN)
�

1
2

exp


�1

2
fX

|
k
�1
XXfX

�
exp


�1

2
(y� fX)

|(�2
nIN)

�1(y� fX)

�

= (2⇡)�N det(kXX)
�

1
2 det(�2

nIN)
�

1
2

exp


�1

2
f|Xk

�1
XXfX �

1

2
(y� fX)

|(�2
nIN)

�1(y� fX)

�

= (2⇡)�N det(kXX)
�

1
2 det(�2

nIN)
�

1
2

exp


�1

2
f|X (k�1XX + (�2

nIN)
�1)| {z }

:=⌃�1

fX �
1

2�2
n

y|y+
1

�2
n

y|fX

�

(⇤)
= (2⇡)�N det(kXX)

�
1
2 det(�2

nIN)
�

1
2

exp


�1

2
(fX �

1

�2
n

⌃y)|⌃�1(fX �
1

�2
n

⌃y)� 1

2
y|(kXX + �

2
nIN)

�1y

�

(⇤⇤)
= (2⇡)�

N
2 det((kXX + �

2
nIN)

�1)
1
2 exp


�1

2
y|(kXX + �

2
nIN)

�1y

�

(2⇡)�
N
2 det(⌃)�

1
2 exp


�1

2
(fX �

1

�2
n

⌃y|)⌃�1(fX �
1

�2
n

⌃y)

�

where we used that
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2. Theoretical Concepts

(⇤) :(fX �
1

�2
n

⌃y)|⌃�1(fX �
1

�2
n

⌃y) = fX
|⌃�1fX �

2

�2
n

y|fX +
1

�4
n

y|⌃y

A.9
= fX

|⌃�1fX �
2

�2
n

y|fX +
1

�2
n

y|y� y|(kXX + �
2
nIN)

�1y

and

(⇤⇤) : det(⌃) A.9
= det(kXX � kXX(kXX + �

2
nIN)

�1
kXX)

A.11
= det(kXX) det((kXX + �

2
nIN)

�1) det(kXX + �
2
nIN � kXXk

�1
XXkXX)

= det(kXX) det((kXX + �
2
nIN)

�1) det(�2
nIN).

Thus for the integral we calculate

p(y|x) =
Z

Rn

p(y|fX , x)p(fX |x)dfX

= (2⇡)�
N
2 det((kXX + �

2
nIN)

�1)
1
2 exp


�1

2
y|(kXX + �

2
nIN)

�1y

�

Z

Rn

(2⇡)�
N
2 det(⌃�1)�

1
2 exp


�1

2
(fX �

1

�2
n

⌃y)|⌃�1(fX �
1

�2
n

⌃y)

�
dfX

= (2⇡)�
N
2 det(kXX + �

2
nIN)

�
1
2 exp


�1

2
y|(kXX + �

2
nIN)

�1y

�
.

(2.4)

Remark 2.5. Another way to derive the marginal likelihood is to use (A.8) and im-
mediately arrive at the result. But the longer proof provides useful tools to work with
multivariate normal distributions, which is why it is presented above.

We summarize the above results in the following theorem.

Theorem 2.6. Under our Gaussian process model defined above (y = f(x) + ✏), the
marginal likelihood of observing the (noisy) targets y given the covariates x is the normal
density

y|x ⇠ N
�
0, kXX + �

2
nIN

�
. (2.5)

The predictive posterior distribution of the function values, fX⇤, at a set of covariates,

x⇤ = {x(1)
⇤ , . . . , x

(n)
⇤ }, is

fX⇤ |y,x,x⇤ ⇠ N
�
kX⇤X(kXX + �

2
nI)
�1y, kX⇤X⇤ � kX⇤X(kXX + �

2
nI)
�1
kXX⇤

�
. (2.6)

Proof. See the two calculations above.

Remark 2.7. Since (2.6) holds for any set of points X
⇤ 2 Xm of any size m 2 N,

Kolmogorovs extension theorem [14, Theorems 12.1.2] and the definition of GPs imply
that the process f ⇠ GP(0, k) conditioned on the training data x,y is a draw from
GP(m̄, k̄), with

m̄(x) = kxX(kXX + �
2
nI)
�1y, x 2 X ,

k̄(x, x0) = k(x, x0)� kxX(kXX + �
2
nI)
�1
kXx0 , x, x

0 2 X .
(2.7)

6



2. Theoretical Concepts

2.2. Matérn Kernel and its Function Space

In the previous section we have seen, that the GP regression heavily relies on the chosen
kernel. In the proceeding work we will only use the so called Matérn kernels, as it is
suggested in [42, Section 1.6]. The following section provides an overview of the class
of Matérn kernels and in particular their properties and the resulting function (sample)
space.

Matérn Class

Definition 2.8. The Matérn class of kernels (or covariance functions) is given by

k⌫,�(x, x
0) =

21�⌫

�(⌫)

 p
2⌫||x� x

0||2
�

!⌫

K⌫

 p
2⌫||x� x

0||2
�

!
, (2.8)

with ⌫, � 2 R+ and K⌫ a modified Bessel function of the second kind [46], i.e., for ⌫ 2 R
and x > 0,

K⌫(x) =

Z
1

0

cosh(⌫t) exp(�x cosh(t)) dt.

Remark 2.9. In general, the definition works with any norm. Since we are working in
Rn and therefore have norm equivalence, we choose the euclidean norm in the definition.

In the following the most important properties of the Matérn kernel, stated in [34,
Chapter 4], are summarized.

1. Matérn kernels are isotropic (and therefore also stationary) as functions of ||x �
x
0|| =: r and thus invariant to all rigid motions in the input space. In stochastic

process theory, processes with constant mean and covariance function invariant to
translations are called weakly stationary.

2. The process f ⇠ GP(m, k) is l-times mean square di↵erentiable if and only if ⌫ > l.

3. If ⌫ is half integer, that is ⌫ = p + 1
2 , with p 2 N+; then the Matérn kernel is a

product of an exponential and a polynomial of order p and can be written as

k⌫=p+ 1
2 ,�

= exp

 
�
p
2⌫r

�

!
�(p+ 1)

�(2p+ 1)

pX

i=0

(p+ i)!

i!(p� i)!

 p
8⌫r

�

!p�i

. (2.9)

4. For ⌫ = 1
2 we obtain the exponential (or Gaussian) kernel

kE(r) = exp(� r

�
).
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The corresponding process is mean square continuous but not mean square di↵er-
entiable. If the input space is one dimensional this is the covariance function of
the Ornstein-Uhlenbeck process [47].

5. For ⌫ !1 we obtain the squared exponential kernel

kSE(r) = exp(� r
2

2�2
)

(often this kernel is called radial-basis function (RBF) kernel).

As a practical guide it is suggested in [34, Section 4.2.1] to choose ⌫ 2 {3
2 ,

5
2}, because for

lower values the processes becomes very rough (like a standard Brownian Motion) and
for higher values the existence of higher order derivatives should be justified by prior
knowledge.

GP Sample Space for Matérn kernels

For readability we state only two main results and give some intuition on how to obtain
these facts. The required terminology and most important theorems are summarized
in (C). The below facts hold for the setup of this work. In particular we assume that
X ⇢ Rd is a compact metric space.

1. The posterior mean function of the GP regression using a Matérn kernel, k⌫,� , is
an element of the RKHS Hk⌫,� (see C.7 for an explicit characterization).

2. For a given f ⇠ GP(0, k⌫,�), there exists a version (see C.8 for a definition) f̃ such
that f̃ 2 Hk⌫0,�0 with probability 1 for all ⌫ 0, �0 > 0 satisfying ⌫ > ⌫

0 + d/2 2 N,
where Hk⌫0,�0 is the RKHS of the Matérn kernel k⌫0,�0 with parameters ⌫ 0 and �0.

Further the RKHS Hk⌫0,�0 is norm equivalent to the Sobolev space W (X )(⌫
0+d/2),2

(see C.13, C.5 and [19, Section 4] for details).

The first assertion follows from the result, that the posterior mean of a GP regression
with kernel k is equal to the result of a kernel ridge regression with the exact same kernel
[19, Proposition 3.6]. From the latter one it is known to be a member of the RKHS Hk

[19, Section 3.2].
The second fact relies on a couple of significant theorems from functional analysis and
requires a rich language before one can formally prove them. Therefore we only provide
a very short informal summary of the argumentation.
At first one can show that GP sample space for a given kernel k is equivalent to the
✓-power of the RKHS Hk (see C.10 for a definition). This means that the GP sample
space is an, with rougher functions, enlarged version of Hk (see C.11). Second, in case
of Matérn kernels, the resulting enlarged Hilbert space H✓

k⌫,� is equivalent to the RKHS
Hk⌫0,�0 of a modified Matérn kernel with parameters ⌫ 0, �0, and thus equivalent to a
Sobolev space of order (⌫ 0 + d/2), where ⌫ > ⌫

0 + d/2 2 N (see C.5). In total our GP
sample space is a Sobolev space which has approximately order ⌫ � d/2 and therefore
also includes functions that have ”less” weak derivatives than in the RKHS Hk⌫,� .

8



2. Theoretical Concepts

2.3. Information Theory

This section provides some basics of information theory that are needed to define the
information gain. In the computer science literature information gain often means the
mutual information between two random variables, which is the Kullback-Leibler (KL)
divergence between the joint distribution and the product of the two marginal distri-
butions. We start with classical definitions and lemmas taken from [11], that we need
for Bayesian Optimization and then describe the idea of designing an experiment which
gains us most information (in expectation) about the true parameter value in a Bayesian
sense (following [21]).

Definition 2.10. The di↵erential entropy of a setX1, X2, . . . , Xn of random variables
with density p(x1, x2, . . . , xn) is defined as

h(X1, X2, . . . , Xn) = �
Z

p(x) log p(x) dx. (2.10)

Definition 2.11. If X, Y have a joint density function p(x, y), we can define the con-
ditional di↵erential entropy h(X|Y ) as

h(X|Y ) = �
ZZ

p(x, y) log p(x|y) dx dy. (2.11)

Since in general p(x|y) = p(x, y)/p(y) with p(y) =
R
p(x, y) dx, we can also write (as-

suming any of the di↵erential entropies are finite)

h(X|Y ) = h(X, Y )� h(Y ). (2.12)

Theorem 2.12 (Entropy of a multivariate normal distribution). Let X ⇠ Nn(µ,⌃), i.e.
has multivariate normal distribution (A.5). Then

h(X) =
1

2
log ((2⇡e)n det(⌃)) . (2.13)

Proof. A calculation of (2.10) with the multivariate normal density yields the assertion
(see [11, Theorem 8.4.1]).

Definition 2.13. The mutual information I(X;Y ) between two random variables
with joint density p(x, y) is defined as

I(X;Y ) =

ZZ
p(x, y) log

p(x, y)

p(x)p(y)
dx dy. (2.14)

From the definition it is clear that

I(X;Y ) = h(X)� h(X|Y ) = h(Y )� h(Y |X) = h(X) + h(Y )� h(X, Y ), (2.15)

and that

I(X;Y ) = DKL (p(x, y) || p(x)p(y)) , (2.16)

where DKL denotes the Kullback-Leibler Divergence.
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Remark 2.14. In the setup of our GP regression model y = fX +✏ (2.6) we have, using
(2.12) and (2.13),

I(y; fX) = h(y)� h(y|fX)

=
1

2
log
�
(2⇡e)n det(kXX + �

2
nI)
�
� 1

2
log
�
(2⇡e)n det(�2

nI)
�

=
1

2
log

✓
(2⇡e)n�2n

n det(��2n kXX + I)

(2⇡e)n�2n
n det(I)

◆

=
1

2
log
�
det(��2n kXX + I)

�
.

(2.17)

2.3.1. Bayesian Experimental Design using Information Gain

For a general overview of Bayesian Experimental Design see [8]. Since we will only use
the information gain as the quantity of interest, it improves readability to restrict on
this case right away.
In Bayesian experimental design, the maximum information will be obtained when the
posterior distribution is concentrated on a single parameter value. We define the amount
of information provided by an experiment as the di↵erence between posterior information
and prior information [21]. Note that this quantity is large if the prior has a large variance
and the posterior has little variance (resp. is concentrated on a single value).

Definition 2.15. The amount of information provided by an experiment E (implying
a distribution for the observable outcome XE), with prior knowledge p(✓), when the
observation is xE , is

g(E , p(✓), xE) =

Z
p(✓|xE) log(p(✓|xE)) d✓ �

Z
p(✓) log(p(✓)) d✓. (2.18)

Remark 2.16. The expression depends on xE and some results are more informative
than others. This does not need to cause concern when we consider the average infor-
mation provided by an experiment.

Definition 2.17. The average amount of information (or information gain in ✓)
provided by the experiment E , with prior knowledge p(✓), is

g(E , p(✓)) = EXE

Z
p(✓|x) log(p(✓|x)) d✓ �

Z
p(✓) log(p(✓)) d✓

�
(2.19)

Remark 2.18. The expected information gain in ✓ from conducting the experiment E
is the mutual information between ✓ and the outcome of the experiment XE , i.e.

g(E , p(✓)) = I(✓;XE) = DKL (pE(✓, x) || p(✓)pE(x)) . (2.20)

With the notation pE we stress that the distribution depends on the chosen experiment.
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Proof. Since we have p(x|y) = p(x, y)/p(y) with p(y) =
R
p(x, y) dx, and Fubini’s theo-

rem [13, Satz 3.10] is applicable, it holds

g(E , p(✓)) =
ZZ

pE(✓, x) log

✓
pE(✓, x)

pE(x)

◆
d✓ dx�

ZZ
pE(✓, x) log (p(✓)) dx d✓

=

ZZ
pE(✓, x) log

pE(✓, x)

pE(x)p(✓)
dx d✓.

In this work we want to find the experimental design E , that maximizes the average
amount of information that we can gain from conducting the experiment, i.e. we try to
find

E⇤ = argmax
E

g(E , p(✓)) = argmax
E

DKL (pE(✓, x) || p(✓)pE(x)) . (2.21)

2.4. Bayesian Optimization

We consider a general definition of the Bayesian Optimization algorithm (see [5] for a
gentle introduction) and then turn to a specific version where we will state a convergence
result provided in [41]. Since the base proof for a simplified case of the convergence
contains useful insights, it can be found in (B).

Optimization Problem

Consider an optimization problem for a (nonlinear) function f : Xad ! R over an
admissible set Xad ⇢ Rd (d 2 N), defined via box constraints,

min
x2Xad

f(x). (2.22)

For this type of problem there exists an enormous body of literature and for all cases
where the objective function can be evaluated quickly there most probably exist more
e�cient algorithms than Bayesian optimization. But suppose we can only approximate
the function value with some costly Monte Carlo simulation, then we are in a setting
for which Bayesian Optimization is designed for, namely, optimization of a costly to
evaluate objective function, of which we have little knowledge.

2.4.1. Algorithm

The numerical experiments in this work use an implementation of the Bayesian Opti-
mization algorithm provided in the Python package ”scikit-optimization”. Therefore the
pseudo code below corresponds to that implementation.
In each iteration the algorithm fits a new GP model for the objective function using all
data points obtained up to this iteration and then finds the next data point by opti-
mizing a simple acquisition function. The three main acquisition functions proposed in
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the literature are the expected improvement (EI), lower confidence bound (LCB) and
probability of improvement (PI). Proper definitions of the acquisition functions can be
found after the pseudo code because we will define some required quantities therein.
Since we are in a setting with box constraints, it intuitively makes sense, that we will
eventually find an optimal value if we just try at su�ciently many points (of course
assuming some smoothness of f). The idea is to develop a strategy for picking points
that, e�ciently leads to an acceptable solution. In the literature this is often referred
to as a continuum armed bandit problem [41] and usually the essence of these types
of problems is to find approaches that balance exploration and exploitation suitably. In
our setting exploration approximately means to pick a point somewhere in the domain
where we have little knowledge and exploitation means to pick a point somewhere near
the best value of the points we picked so far.

Algorithm 1 Bayesian Optimization
Require: f(·), box constraints and n . method to evaluate the objective function
x0 = Initial Point Generator() . by default random choice
y0 = f(x0) . get a possibly noisy function evaluation
D0 = (x0, y0)
⇡ = GP(0, kMatérn) . prior for GP regression
for i = 1, 2, . . . , n do

Fit a GP model on Di�1 with prior ⇡. . hyperparameters tuned
Get the posterior distribution of the estimate f̂ ⇠ GP(µi�1,�2

i�1)
Find xi = argminx2Xad

u(µi�1(·),�i�1(·), xi) . optimize acquisition function u

Sample yi = f(xi)
Di = {Di�1, (xi, yi)}
j
⇤ = argminj2{0,...,i} yj . store current best choice
x
⇤

i = xj⇤ ; y⇤i = yj⇤

end for
return x

⇤

i , y
⇤

i

Note that the choice of the Matérn kernel implies that we model our objective function
f as a stationary Gaussian process. The following choices of acquisition functions are
readily used and also implemented in the Python package ”scikit-optimization”.

Definition 2.19 (Lower Confidence Bound). Let  > 0.

LCB(xi) = µi�1(xi)� �i�1(xi) (2.23)

Remark 2.20. The parameter  is the so called trade-o↵ (between exploitation and
exploration) parameter. While we consider minimization of the acquisition function in
the algorithm, literature often considers maximization and in that case one maximizes
the upper confidence bound (UCB) instead of minimizing the LCB.

UCB(xi) = µi�1(xi) + �i�1(xi). (2.24)
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We point this out here because the convergence result in [41] considers a Bayesian
optimization algorithm with maximization of UCB acquisition function.

Definition 2.21 ((Modified) Probability of Improvement). Let  > 0.

PI(xi) = P (f̂i�1(xi)  yi�1 � ) = �

✓
y
⇤

i�1 � � µi�1(xi)

�i�1(xi)

◆
(2.25)

Remark 2.22. Using the probability of improvement without the trade-o↵ parameter
 as acquisition function enhances pure exploitation, because points that have a high
probability of being infinitesimally greater than y

⇤

i�1 will be drawn over points that o↵er
larger gains but less certainty.

Using our knowledge about GP regression, one can establish a closed form of the ex-
pected improvement. By (·)� we denote the function that is the identity if the argument
is negative and zero otherwise.

Definition 2.23 (Expected Improvement). Assume that �i�1(xi) > 0, otherwise we
set EI(xi) = 0. Integration by parts yields

EI(xi) = E[(y⇤i�1 � f̂(xi))
�]

= y
⇤

i�1P (f̂i�1(xi)  y
⇤

i�1)�
Z y⇤i�1�µi�1(xi)

�i�1(xi)

�1

(z�i�1(xi) + µi�1(xi))
e
�

1
2 z

2

p
2⇡�i�1(xi)

dz

= (y⇤i�1 � µi�1(xi))�

✓
y
⇤

i�1 � µi�1(xi)

�i�1(xi)

◆
� �i�1(xi)�

✓
y
⇤

i�1 � µi�1(xi)

�i�1(xi)

◆

(2.26)

2.4.2. Convergence of GP optimization

We consider a convergence results for Bayesian Optimization with LCB (UCB) acqui-
sition function which combines the two necessary results in [41, Theorem 3, Theorem
5] for our setting. A full proof of a simplified case can be found in the appendix. The
details of lifting the (simple) proof to the general result can be found in [41, Appendix
B]. Therein a martingale concentration inequality is established to bound the distance
of the GP regression estimate of f to f . The remainder of the proof is then similar to
the one in (B). A prove of convergence for Bayesian optimization with EI acquisition
function is established in [6].
In the following GP-UCB algorithm is the same as Algorithm 1 but with taking UCB ac-
quisition function and the argmax instead of the argmin. In the following t indicates the
current iteration and T is the last iterate. The below theorem bounds the cumulative
regret RT after T iterations, which is the sum of instantaneous regrets rt = f(x⇤)�f(xt),
where x

⇤ = argmaxx2D f(x) (note that x⇤ does not have to be unique). The asymptotic
property we opt for is called no-regret, limT!1RT/T = 0. Intuitively the no-regret
property means that on average we do not regret in the long run, what is a very strong
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statement because the instantaneous regret is always larger than zero. Thus an algo-
rithm satisfying this property converges to a (possibly local) optimum. If we are able
to find a function of T that bounds RT , we can also quantify the speed of convergence.
Note that rt and RT are theoretic quantities which usually are not known and they are
never revealed to the algorithm. Since the algorithm picks the iterates based on a GP fit
that changes in every iteration it is clear that the rt quantities are neither independent
nor identically distributed. Thus, it is already very good if we can establish results that
bound the cumulative regret (with a quantity that grows slower than the identity) with
high probability.

Theorem 2.24. Let � 2 (0, 1), D ⇢ Rd be compact and convex, d 2 N and ⌫ > 1.
Assume that the true underlying f lies in the RKHS HkMatérn

(D) corresponding to the
kernel k⌫,�̃, and that the noise ✏t has zero mean conditioned on the history and is bounded
by � almost surely. In particular, assume kfk2k⌫,�̃  B and let �t = 2B+300�t log

3(t/�).

Running GP-UCB with �t, prior GP(0, k⌫,�̃) and noise model N (0, �2), we obtain a regret
bound of O⇤(

p
T (B
p
�T + �T )) with high probability (over the noise). Precisely,

P (RT 
p
C1T�T�T 8T � 1) � 1� �,

where C1 =
8

log(1+��2) and �T = O(T
d(d+1)

2⌫+d(d+1) log(T )).

Proof. See [41, Appendix B].

2.5. Causal Models

This section provides an introduction to the graphical concepts and models we develop
our causal discovery approach upon. We start with an introduction of directed acyclic
graphs (DAGs) and describe concepts which allow us to read of causalities from the
respective graphs. Then, we relate distributions generated by Structural Causal Models
(SCMs) to the corresponding graphs and obtain that they satisfy the necessary condi-
tions, such that we can read o↵ causal relations. We then turn to Additive Noise Models
(ANMs), where we can infer the correct DAG from purely observational data for most
distributions [32, Proposition 21]. We will later assume an additive noise structure but
also include interventional data, despite some (pure) observations. It will be interesting
to ask how the approach performs in cases where ANMs are non-identifiable from purely
observational data [32, 52]. Lastly we consider interventions, introduce the do notation
[28] and a procedure to calculate intervention distributions given a SCM. We mainly
follow [31, Chapter 6] and [32, Section 1].

2.5.1. Graphical Concepts

The first part of this section very closely follows [31, Section 6.1] where the definitions
are literally quoted.
Consider a N 3 p-dimensional random vector X = (X1, ..., Xp) with joint distribution

14



2. Theoretical Concepts

PX, density p(x) and index set V := {1, . . . , p}. A graph G = (V , E) consists of (finitely
many) nodes (or vertices) and edges E ✓ V2 with (⌫, ⌫) /2 E for any ⌫ 2 V .

Example 2.25 (Graph). Let V = {A,B,C} and E = {(A,B), (A,C), (C,A)}. Then
G = (V , E) takes the form,

AB C
.

A graph G1 = (V1, E1) is called a subgraph of G if V = V1 and E1 ✓ E ; we then write
G1  G. If additionally, E1 6= E , then G1 is a proper subgraph of G. A node i is called
a parent of j if (i, j) 2 E and (j, i) 6= E and a child if (j, i) 2 E and (i, j) 6= E . The set
of parents of j is denoted by PAG

j , and the set of its children by CHG

j .

Example 2.26 (Parents and Children). Let V = {A,B,C} and E = {(A,B), (B,C), (A,C)}.
Then G takes the form,

A

B C
,

and PAG

B = {A}, PAG

C = {A,B}, CHG

B = {C} and CHG

A = {C,B}.

Two nodes i and j are adjacent if either (j, i) 2 E or (i, j) 2 E . We call G fully
connected if all pairs of nodes are adjacent. We say that there is an undirected edge
between two adjacent nodes i and j if (j, i) 2 E and (i, j) 2 E . An edge between two
adjacent nodes is directed if it is not undirected (notation: i ! j for (i, j) 2 E). We
call G directed if all its edges are directed. Three nodes are called an immorality or a
v-structure if one node is a child of the two others that themselves are not adjacent.

Example 2.27 (V-structure (immorality)). Let V = {A,B,C} and E = {(B,C), (A,C)}.
Then G takes the form,

C

AB

.

The skeleton of G does not take the directions of the edges into account. This corre-
sponds to a graph where E is augmented by the other direction (j, i) of every edge (i, j),
if it is not an element already.
A path in G is a sequence of (at least two) distinct vertices i1, . . . , im, such that there
is an edge between ik and ik+1 for all k = 1, . . . ,m� 1. If ik�1 ! ik and ik+1 ! ik, ik is
called a collider relative to this path. If ik ! ik+1 for all k, we speak of a directed
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path from i1 to im and call i1 an ancestor of im and im a descendant of i1. The set
of all ancestors of i is denoted by ANG

i and i is not an ancestor of itself. Further, i is
neither a descendant nor a non-descendant of itself. We denote all descendants of i by
DEG

i , and all non-descendants of i, excluding i and including parents of i in graph G,
by NDG

i . A node without parents is called a source node, a node without children a
sink node. A permutation ⇡, that is a bijective function ⇡ : {1, . . . , d}! {1, . . . , d} is
called a topological or causal ordering if it satisfies ⇡(i) < ⇡(j) if j 2 DEG

i . A graph
G is called a partially directed acyclic graph (PDAG) if there is no directed cycle,
that is, if there is no pair (j, k) with directed paths from j to k and from k to j. G is
called a directed acyclic graph (DAG) if it is a PDAG and all edges are directed.

Definition 2.28 (Pearl’s d-separation). In a DAG G, a path between nodes i1 and im

is blocked by a set S (with neither i1 nor im in S) whenever there is a node ik, such
that one of the following two possibilities holds:

(i) ik 2 S

ik�1 ! ik ! ik+1

or ik�1  ik  ik+1

or ik�1  ik ! ik+1

(ii) neither ik nor any of its descendants is in S, i.e., ({ik} [DEik) \ S = ;, and

ik�1 ! ik  ik+1.

Furthermore, in a DAG G, we say that two disjoint subsets of vertices A and B are
d-separated by a third (also disjoint) subset S if every path between nodes in A and
B is blocked by S. We then write

A |= G B | S.

Definition 2.29 (Markov property). Given a DAG G and a joint distribution PX, this
distribution is said to satisfy the (global) Markov property with respect to the DAG
G if

A |= G B | C) A |= B | C

for all disjoint vertex sets A,B,C.

Remark 2.30 (Equivalent formulations of the Markov property). According to [31,
Theorem 6.22] the above definition of the Markov property is equivalent to the following
two definitions, if PX has a density p.
Let G be a DAG and PX be a joint distribution.

(i) PX is local Markov w.r.t. G if each variable is independent of its non-descendants
(without its parents) given its parents.

(ii) PX satisfies the Markov factorization property w.r.t. G if
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2. Theoretical Concepts

p(x) = p(x1, . . . , xd) =
dY

j=1

p(xj|paG

j ).

Example 2.31 (Illustrative example). Consider V = {A,B,C} and E = {(A,C), (C,B)},
i.e., G takes the form,

A C B
.

It holds that A |= G B | C, since A and B are blocked by C. Assume (A,B,C) ⇠ PX is
Markov w.r.t G, then we have A |= B | C. If PX has a density p, this implies

p(a|c)p(b|c) = p(a, b|c) = p(a, b, c)

p(c)

, p(a, b, c) = p(a|c)p(b|c)p(c)
, p(a, b, c) = p(a)p(c|a)p(b|c),

i.e., the Markov factorization property. Further, in this toy example, the equivalence
between the local and global Markov property is straight forward.

Definition 2.32 (Markov equivalence of graphs). We denote by M(G) := {PX :
PX (global) Markov w.r.t. G}, the set of all distributions that are Markov with respect
to G. Two DAGs G1 and G2 are Markov equivalent if M(G1) = M(G2) and the set of
all DAGs that are Markov equivalent to some DAG, G, is called Markov equivalence
class of G.

Remark 2.33. Markov equivalence is defined in a way such that two graphs are Markov
equivalent if and only if they satisfy the same set of d-separations, i.e., the same set
of (conditional) independence conditions. This characterisation can become arbitrarily
tedious to check. Verma and Pearl provide a convenient alternative characterisation in
[48, Theorem 1], which is quoted as a lemma below.

Lemma 2.34 (Characterisation of Markov equivalence). Two DAGs G1 and G2 are
Markov equivalent if and only if they have the same skeleton and the same v-structures.

Remark 2.35. An Markov equivalence class can be uniquely represented by a completed
PDAG. This graph has the property that (i, j) 2 E if and only if one member of the
Markov equivalence class has the same edge.

Example 2.36 (Illustrative example). In the below table all blue colored graphs belong
to the same Markov equivalence class. The red colored DAG is not in this Markov
equivalence class.
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CPDAG DAG 1 DAG 2 DAG 3 DAG 4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

The Markov property is a very common assumption and one key success factor of
DAG models in causal inference. It enables us to e�ciently exploit (conditional) inde-
pendencies of the distribution. In this work we will employ structural causal models for
causal discovery, which imply the Markov property directly. They will be introduced just
after this section.
We need one more assumption such that every directed edge in our graph encodes
a causality in a meaningful way. The reason is that typically any distribution PX is
Markov w.r.t. all fully connected acyclic graphs, i.e., we are in danger to have a bunch
of redundant directed edges in our graph. In earlier days, e�cient algorithms were pro-
posed which use the notion of faithfulness to resolve this issue. More recent approaches
typically assume causal minimality because it is a weaker assumption than faithfulness
and at the same time su�cient for the purpose of causal inference. We state here both
definitions following [31, Definition 6.33].

Definition 2.37 (Faithfulness and causal minimality). Consider a distribution PX and
a DAG G.

(i) PX is faithful to the DAG G if

A |= B | C) A |= G B | C.

(ii) A distribution satisfies causal minimality w.r.t. G if it is Markovian w.r.t. G, but
not to any proper subgraph of G.

We state the most important results about causal minimality taken from [31, Sec-
tion 6.5.3] below and then end this section.

Lemma 2.38. Any two nodes in a DAG G that are not directly connected by an edge
can be d-separated.

Proof. Let G be a DAG and i and j nodes that are not directly connected by an edge.
Assume we cannot d-separate the two nodes. If there is no path between the nodes they
can be d-separated by the empty set. Therefore, there must be at least one path from
i to j with at least one node in between h. The only possibility we can not d-separate
by h is, if it is a collider in one path and it satisfies one of the possibilities in [2.28, (i)].
But this would imply a cyclic structure what is a contradiction.

Lemma 2.39 (Faithfulness implies causal minimality). If PX is faithful and Markovian
w.r.t. G, then causal minimality is satisfied.
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Proof. If PX is Markovian w.r.t. a proper subgraph G̃ of G, there are two nodes that are
directly connected in G but not in G̃. Thus, they can be d-separated in G̃ but not in G.
The Markov condition implies a corresponding conditional independence statement in
PX but then PX can not be faithful w.r.t. G.

Lemma 2.40 (Equivalence of causal minimality). Consider the random vector X =
(X1, ..., Xp) and assume that the joint distribution has a density w.r.t. a product measure.
Suppose that PX is Markovian w.r.t. G. Then PX satisfies causal minimality w.r.t. G if
and only if 8Xj8Y 2 PAG

j we have that Xj |= PAG

j \ {Y }.

Proof. See [31, Appendix C.6].

2.5.2. Structural Causal Models (SCMs)

SCMs provide a framework which enables us to formalize causal discovery and causal
learning. They entail among others

• an observational distribution,

• a causal graph,

• and an intervention distribution.

A good introduction is provided in [31, Section 6.4]. We already covered the graphical
part but must connect it to SCM still. Intervention distributions are discussed in great
detail in the next section.
For the definition of SCMs we quote [31, Definition 6.2] and also present the example
provided therein. Then, the most important results for SCMs are presented.

Definition 2.41 (Structural Causal Models). A structural causal model (SCM)
C := (S,PN) consists of a collection S of d (structural) assignments

Xj := fj(PAj, Nj), j = 1, . . . , d, (2.27)

where PAj ✓ {X1, . . . , Xd} \ {Xj} are called parents of Xj; and a joint distribution
PN = PN1,...,Nd

over the noise variables, which we require to be jointly independent; that
is, PN is a product distribution.
The graph G of an SCM is obtained by creating one vertex for each Xj and drawing
edges from each parent PAj to Xj, that is, from each variable Xk occurring on the
right-hand side of equation (2.27) to Xj. We henceforth assume this graph to be acyclic.
We sometimes call the elements of PAj not only parents but also direct causes of Xj,
and we call Xj a direct e↵ect of each of its direct causes.

In order to avoid unintuitive structural assignments like X2 := 0 ⇥ X1 + NX2 , we
add the requirement of structural minimality. That is, whenever there is a random
variable with index k 2 {1, . . . , k} and a function g such that

fk(pak, nk) = g(pa⇤k, nk), 8pak, 8nk with p(nk) > 0, (2.28)
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where PA⇤k ( PAk, we choose the latter representation. This is not a restrictive as-
sumption, since there is a unique representation in which each function has a minimal
number of inputs [31, Remark 6.6].

Example 2.42 (Illustrative Example). An example to illustrate the connection of an
SCM to its graph G.

SCM Graph G Assumptions of SCM

X1 := f1(X3, N1)
X2 := f2(X1, N2)
X3 := f3(N3)
X4 := f4(X2, X3, N4)

X1

X2

X3

X4

• N1, . . . , N4 jointly in-
dependent

• G is acyclic

We can e�ciently sample from an SCM, by generating an i.i.d. sample ofN1
, . . . ,Nn ⇠

PN and then subsequently use the structural assignments to generate an i.i.d. sample of
the joint distribution of all variables. The following lemma quotes [31, Prop. 6.3].

Lemma 2.43 (Entailed distribution). A SCM C defines a unique distribution over the
variables X1, . . . , Xd: any X1, . . . , Xd, N1, . . . , Nd satisfying Xj = fj(PAj, Nj) almost
surely, where (N1, . . . , Nd) has the desired distribution, induce the same distribution
over X = (X1, . . . , Xd). We refer to it as the entailed distribution PG

X and sometimes
write PX.

Proof. See [31, Appendix C.2.]

The next result relates SCMs to their graphs. It states [29, Theorem 1.4.1].

Theorem 2.44. The law PX generated by an SCM with graph G is Markov w.r.t. its
graph.

Lastly we need to know how distributions, observed in practice, relate to our modeling
approach. The following result is taken from [32, Prop. 9].

Lemma 2.45. Consider X1, . . . , Xp and let PX have a strictly positive density w.r.t.
the Lebesgue measure and assume it is Markov w.r.t. G. Then there exists an SEM with
graph G that generates PX.

Proof. Let N1, . . . , Np ⇠ U [0, 1] and define Xj = fj(PAj, Nj) with

fj(xPAj , nj) = F
 

Xj |PAj=xPAj
(nj),

where F
 

Xj |PAj=xPAj
is the generalized inverse of the distribution function of Xj given

PAj. The assertion follows from the probability integral transform.
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2.5.3. Additive Noise Models (ANMs)

Recall (2.6). If we assume a normally distributed additive noise for the regression model
we have a closed form for the marginal likelihood, what tremendously improves numerical
tractability. This motivates the use use of additive noise models for our approach.

Definition 2.46 (Additive Noise Model). An additive noise model (ANM) is a
tuple (S,PN) that consists of a collection S of d equations

Xj := fj(PAj) +Nj, j = 1, . . . , d, (2.29)

where PN is a product distribution and the corresponding graph is acyclic.

It can be shown that for such models causal minimality reduces to the condition that
each function fj is not constant in any of its arguments [32, Proposition 17]. With the
additive noise assumption we can infer the underlying DAG from purely observational
data in the majority of the cases [32, Theorem 28]. But there are rare non-identifiable
cases where it is possible to find a backward model [32, Proposition 23]. Next, we define
what we mean with backward model for the bivariate case and then state one example
that is non-identifiable what will serve as example to test the approach upon.

Definition 2.47 ((Bivariate) Backward Model). Let C be an ANM with X1 := N1

and X2 := f2(X1) + N2. We denote by pN1 the probability density of N1 and use the
same notation for all other random variables. Assume that all densities are well defined
densities on R. The joint distribution of C factorizes, pC(x1, x2) = pN1(x1)pN2(x2�f2(x1)).
We call the ANM C̃, with X2 := Ñ2 and X1 := g1(X2)+ Ñ1, a (valid) backward model
if it satisfies pC(x1, x2) = pÑ2

(x2)pÑ1
(x1 � g1(x2)) = p

C̃
(x1, x2).

Example 2.48. Consider Xj = fj(Xi)+Nj with fully supported noise variable Nj that
is independent of Xi. If Xi is Gaussian, Nj is Gaussian and fj is linear we can find a valid
backward model, Xi = gi(Xj) +Mi with Mi independent of Xj. Thus, it is impossible
to infer a causal direction between the variables from purely observational data.

Proof. Since Xj is a sum of two independent Gaussians it is also Gaussian, therefore
we can consider Xj and Xi as elements of the Hilbert space L

2(R,B(R),�). Since Xi is
a closed convex subspace of L2(R) there exists a unique orthogonal projection P that
maps Xj onto Xi. We have that Xi = PXj +Xi � PXj where hPXj, Xi � PXjiL2 = 0.
Since uncorrelatedness implies independence for Gaussians we can always find a valid
backward model.

Consider an explicit example. Let X1 ⇠ N (0, �2) and X2 := aX1 + N2 with N2 ⇠
N (0, ⌧ 2), X1 |= N2, and �

2
, ⌧

2
, a 2 R be the true data generating process. Then, for

ã = a�2

(⌧2+a2�2) we have ãX2 ⇠ N (0, a2�4

⌧2+a2�2 ), X1 � ãX2 ⇠ N (0, (1 � ãa)2�2 + ã
2
⌧
2),

E[ãX2(X1 � ãX2)] = 0 and ãX2 + (X1 � ãX2) ⇠ N (0, �2). Thus, X2 ⇠ N (0, ⌧ 2 + a
2
�
2)

and X1 := ãX2 + N1 with N1 ⇠ N (0, �2⌧2

⌧2+a2�2 ) defines a valid backward model for the
true data generating distribution.
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2.6. Interventions

Observing enough interventions enables us to exactly identify the causal directions be-
tween random variables [15, 16]. Though, it is sometimes only a theoretical concept (for
example we cannot change the blood type of a patient), there are many cases where we
can perform interventions which may provide us with necessary information to do causal
inference in a meaningful way. The purpose of this section is to provide a summary on
definitions and results about intervention distributions, total causal e↵ects and methods
to calculate them given we know the SCM. We follow [31, Sections 6.3, 6.6, 6.7] and
quote the definitions and lemmas thereof.

2.6.1. Intervention Distribution

Definition 2.49 (Intervention distribution). Consider a SCM C := (S,PN) and its
entailed distribution PG

X. We replace one (or several) of the structural assignments to
obtain a new SCM C̃. Assume that we replace the assignment for Xk by

Xk := f̃( ˜PAk, Ñk).

We then call the entailed distribution of the new SCM an intervention distribution
and say that the variables whose structural assignment we have replaced have been
intervened on. We denote the new distribution by

PC̃

X =: PC;do(Xk:=f̃( ˜PAk,Ñk))
X .

The set of noise variables in C̃ now contains both some ”new” Ñ
0
s and some ”old” N ’s,

all of which are required to be jointly independent.
When f̃( ˜PAk, Ñk) puts a point mass on a real value a, we simply write PC;do(Xk:=a)

X

and call this an atomic (ideal) intervention. An intervention with P̃Ak = PAk, that
is, where direct causes remain direct causes, is called imperfect. We require that the
new SCM C̃ have an acyclic graph; the set of allowed interventions thus depends on the
graph induced by C.

An (perfect) intervention on Xk graphically corresponds to remove all incoming edges
to Xk from the graph. We say that a total causal e↵ect form X to Y exists, if we can
measure dependence between the two random variables after intervening on X.

Definition 2.50 (Total causal e↵ect). Given an SCM C, there is a total causal e↵ect
from X to Y if and only if

X 6 |= Y in PC;do(X:=ÑX)
X

for some random variable.

Lemma 2.51 (Characterisation of total causal e↵ect). Given an SCM C, the following
statements are equivalent:
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(i) There is a total causal e↵ect from X to Y .

(ii) There are x
M and x

⇤ such that PC;do(X:=xM)
Y 6= PC;do(X:=x⇤)

Y .

(iii) There is xM such that PC;do(X:=xM)
Y 6= PC

Y .

(iv) X 6 |= Y in PC;do(X:=ÑX)
X,Y for any ÑX whose distribution has full support.

Proof. See [31, Appendix C.4.].

Lemma 2.52 (Graphical criteria for total causal e↵ects). Assume we are given a SCM
C with corresponding graph G.

(i) If there is no directed path from X to Y , then there is no total causal e↵ect.

(ii) Sometimes there is a directed path but no total causal e↵ect.

Proof. (i) See [31, Appendix C.5.].

(ii) Consider the SCM X1 := N1, X2 := aX +N2, X3 := bX2 + cX +N3, for a, b, c 2 R
with Gaussian noise. If ab+ c = 0, then we have X1 |= X3. Further, in every inter-
vention distribution, where we perfectly intervene on X1, we also have X1 |= X3.
Thus, there is no total causal e↵ect from X1 to X3.
Note that, because we require structural minimality, this can only happen if there
is more than one directed path between the respective nodes.

2.6.2. Calculating Intervention Distributions

Given a SCM C, and writing pa(j) := PAG

j , we have that

Xj|Xpa(j) = f
(j)(xpa(j), Nj) ⌘ f

(j)(Nj).

For any SCM C̃ that is constructed from C by intervening on (some) Xk but not on Xj,
the parents and the noise of Xj are the same in C̃ and C. Therefore all these SCMs C̃
satisfy a very powerful invariance statement,

p
C̃(xj|xpa(j)) = p

C(xj|xpa(j)). (2.30)

Now consider C̃ := C; do(Xk := Ñk), where Ñk allows for a density p̃. The Markov
property together with (2.30) yields

p
C;do(Xk:=Ñk)(x1, . . . , xd) =

Y

j 6=k

p
C;do(Xk:=Ñk)(xj|xpa(j))p

C;do(Xk:=Ñk)(xk)

=
Y

j 6=k

p
C(xj|xpa(j))p̃(xk). (2.31)
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This result allows us to compute an interventional statement (left-hand side) from ob-
servational quantities (right-hand side). This is a very important result, which became
known under three di↵erent names: G-computation formula [37], truncated factorization
[27] and manipulation theorem [40].
In later considerations we will mainly use the following special case of ideal intervention,

p
C;do(Xk:=a)(x1, . . . , xd) =

(Q
j 6=k p

C(xj|xpa(j)) if xk = a

0 otherwise.
(2.32)

24



3. Active Bayesian Causal Discovery

Motivated by the active Bayesian approach, that uses interventional evidence for causal
discovery described in [49], we consider a setting where we have

• a low number of initial observations and

• the possibility to perform (perfect) interventions on every variable in the system
under consideration.

In all numerical experiments we chose five initial data points and include the (opti-
mal) intervention data points in a sequential way. The joint distribution factorizes the
following way

p(xinit., x
1
inter., . . . , x

n
inter.) = p(xinit.)p(x

1
inter.|xinit.) · · · p(xn

inter.|xinit., x
1
inter., . . . , x

n�1
inter.).

(3.1)

Since optimal interventional data depends on the initial observations, joint distribu-
tions would become very complex if we do not assume sequentiality. First we consider
a summary of the approach proposed in [49] and sketch a possible pseudo code. Then
we investigate the bivariate case in much detail and finally turn to the fourvariate case,
where we state the calculation steps needed and point out computational challenges. We
conclude this chapter with heuristic proposals to overcome these computational chal-
lenges.

3.1. General Approach

Problem setting

Consider a SCM over a set of d real-valued observable variables X = {X1, . . . , Xd} ⇠ PX

with a corresponding DAG G
⇤, i.e., we have structural assignments of the form

Xj := fj(PA
G⇤

j , Nj), j = 1, . . . , d, (3.2)

where the noise distribution, PN = PN1,...,Nd
, is jointly independent and PX factorises

according to the DAG G
⇤. Further, we require structural minimality.

We restrict ourselves to ANMs, where we additionally assume that the structural as-
signments are of the form

Xj := fj(PA
G⇤

j ) +Nj, j = 1, . . . , d. (3.3)
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3. Active Bayesian Causal Discovery

This assumption is also crucial to have closed forms of the likelihoods. But we here
additionally gain that causal minimality reduces to the condition that each function fj

is not constant in any of its arguments [32, Prop. 17] and identifiability based on purely
observational data, if the conditioned bivariate sub-models satisfy a certain Ordinary
Di↵erential Equation [32, Theorem 28].

Active Bayesian causal discovery

Let G be the set of all DAGs over d variables and PG a prior distribution over possible
causal graphs G̃ 2 G. We denote the parameters of each graph with ✓G̃ 2 ⇥G and place
another prior distribution P✓G|G over graph parameters given the graph. The pair (G, ✓G)
encodes a causal model which describes how to generate data D̃ 2 X and we define the
likelihood function in the causal model by pD|G,✓G(D̃|G̃, ✓G̃). According to the law of
total probability, the evidence of G̃ after observing data D̃ (marginal likelihood) is then
given by

pD|G(D̃|G̃) =

Z

⇥G

pD|G,✓G(D̃|G̃, ✓G̃)p✓G|G(✓G̃|G̃) d✓G̃ (3.4)

and the posterior distributions over graphs G and parameters are respectively given by

PG|D / PGPD|G, and P✓G|D,G / P✓G|GPD|✓G,G. (3.5)

In our approach, we want to perform the one intervention of the form do(Xj = x),
that gains us most information about (G, ✓G) from observing the remaining variables
(denoted by) X�j. In order to achieve this, we turn to Bayesian Experimental design
[21, 8], where we select an experiment, do(Xj = x), aiming to maximise a given utility
function U(X�j|do(Xj = x)). Given the current model specified by a prior P(G,✓G) and
a likelihood PX�j |(G,✓G),do(Xj=x), the optimal experiment is the one which maximises
expected utility,

(j⇤, x⇤) = argmax
j2{1,...,d}, x2Xj

Z
U(x�j|do(Xj = x))pX�j |do(Xj=x)(x�j|x) dx�j. (3.6)

As utility we use the information gain in (G, ✓G) from performing do(Xj = x) and
observing X�j,

U(X�j|do(Xj = x)) =

Z

(G,⇥G)

p(G,✓G)|X�j ,do(Xj=x) log(p(G,✓G)|X�j ,do(Xj=x)) d(G̃, ✓G̃)

�
Z

(G,⇥G)

p(G,✓G) log(p(G,✓G)) d(G̃, ✓G̃).

Since the ladder part is independent of do(Xj = x) it can be disregarded in optimization.
Because we are interested in learning the causal structure, we use the information gain
in G as utility, i.e.,

U(X�j|do(Xj = x)) =
X

G̃2G

pG|X�j ,do(Xj=x) log(pG|X�j ,do(Xj=x)). (3.7)
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3. Active Bayesian Causal Discovery

If we plug (3.7) in (3.6) and rearrange terms using Bayes theorem we arrive at

(j⇤, x⇤) = argmax
j2{1,...,d}, x2Xj

X

G̃2G

pG

Z
pX�j |G,do(Xj=x) log(pG|X�j ,do(Xj=x)) dx�j

= argmax
j2{1,...,d}, x2Xj

EG

⇥
EX�j |G,do(Xj=x)

⇥
log
�
pG|X�j ,do(Xj=x)(G|x�j, do(Xj = x))

�⇤⇤
.

(3.8)

If we employ (3.3), use GPs as priors over the functions fi and assume ✏i ⇠ N (0, �2
i ),

the marginal likelihood (3.4) and posteriors (3.5) are available in closed form. Thus we
can e�ciently sample x�j from the interventional distribution PX�j |G,do(Xj=x) implied
by a graph G. This enables us to use a Monte Carlo estimator for our objective,

(j⇤, x⇤) = argmax
j2{1,...,d}, x2Xj

X

G̃2G

pG(G̃)
1

M

MX

m=1

log(pG|X�j ,do(Xj=x)(G̃|x(m)
�j , do(Xj = x))).

(3.9)

To solve the optimization problem it is very convenient to use a derivative free optimiza-
tion algorithm such as Bayesian Optimization. It is designed for situations, where the
objective function is costly to evaluate and the gradient is not available.

Pseudo Code

The following pseudo code is rather coarse and leaves out many calculation steps of
the procedure. It summarizes the most important steps and supplements the previous
section in terms of an algorithmic view on the proposed approach.

Algorithm 2 Causal Discovery with Optimal Interventions
Require: D, Glist, ninterventions . data, list of graphs with corr. parameters
D0 = D
d = number of nodes
Compute p(D0|G) for all G in Glist and store.
Compute p(G|D0) for all G in Glist and store.
for i = 1, . . . , ninterventions do

(j⇤, xj⇤) = optimal intervention given Di�1 . perform Bayesian Opt.
Get sample Di = (xj⇤ ,x�j⇤) . perform intervention experiment
Compute p(Di|Di�1, G) for all G in Glist and store . likelihood based on

estimates of Di�1

Store p(Di,Di�1|G) = p(Di|Di�1, G)p(Di�1|G) for all G in Glist

Compute p(G|Di) for all G in Glist and i = 0, 1, . . . , ninterventions and store
Di = {Di,Di�1}

end for
return p(G|Di) for all G in Glist and i = 0, 1, . . . , ninterventions; Di for i =
1, . . . , ninterventions
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3. Active Bayesian Causal Discovery

3.2. Bivariate Case

At first we consider the bivariate setting, where we do perform random interventions
that are independent of the initial observations. This setup is close to the numerical
example given in [49] and produces very similar results. It is an interesting “base case”,
because it already works very well and extremely e�cient with respect to computation
time. In the second section we will then consider the necessary theory for the case of
optimal interventions, discuss and interpret numerical properties from it. In this work we
always assume to have no prior believes about the true underlying DAG and therefore
model the DAG prior using a uniform distribution. Further, we always use � = 1.75 as
parameter for the Matérn kernel, because it implies reasonable fits for our examples. The
implementation is coded in Python and uses the “scikit-learn” and the “scikit-optimize”
package.

3.2.1. Methodology for Numerical Experiments

In the numerical experiments presented in this thesis we always assume that we have
chosen model parameters for error variances and kernel parameters. The implementation
of the procedure allows to choose di↵erent variance parameters for all error terms in all
possible graphs. If we assume “known variance” (because we have a known measurement
error of the random variables) we must use these known variances in all possible ANMs
(DAGs). When we assume the variances to be known we will mainly work with the
following example, that assumes equal error variances. This assumption is discussed (in
a di↵erent context) for example in [9, 30].

Example 3.1 (Known Variance). Assume we are given five i.i.d. observations of the
true data generating process,

Graph ANM

Gtrue X1 X2
X1 := ✏1,
X2 := 2 tanh(X1)+ ✏2,

where ✏1 ⇠ N (0, 1) and ✏2 ⇠ N (0, 1). And we choose the true variances in every possible
graph.

If we do not know the variances and only have some initial observations, it is not clear
how to come up with the model parameters. We could estimate sample variances for
source nodes and we could estimate residual variances for child nodes. But methodologi-
cally this is rather di�cult, because we would define the ANMs based on our data. What
would be the most appropriate methodology in the case of unknown variance depends
on the specific use case.
The implementation was tested in many di↵erent scenarios and is able to detect the
true causal relation with great reliability. We will consider numerical examples with
parameter choices that are, from a statistical point of view, not methodologically appro-
priate, but, from a numerical point of view, insightful to understand the behavior of the
implemented algorithm. Below we introduce the example we will use for this purpose.
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3. Active Bayesian Causal Discovery

Example 3.2. Assume we are given five i.i.d. observations of the true data generating
process,

Graph ANM

Gtrue X1 X2
X1 := ✏1,
X2 := 2 tanh(X1)+ ✏2,

where ✏1 ⇠ N (0, 1) and ✏2 ⇠ N (0, 0.1). In the support area of [-1,1] the 2 tanh-function
is very close to a linear relation of the two variables. We have seen, that a linear relation
in Gaussian ANMs always allows a valid backward model (2.48). Thus, this example
is a hard problem for algorithms that infer causal directions from purely observational
data. It will become even more di�cult if we sample X1 from a Gaussian that is more
concentrated around zero than a standard Gaussian.
Let G1 = Gtrue, G2 be the graph where the edge is reversed and G3 be the empty graph.
In the implementation we must specify a variance for X1 and X2 in all three graphs. For
G1 we take the true parameters. Since the 2 tanh-function is very linear in the support
area of [-1,1] with a slope of 2, we can compute an approximate backward model for this
area. If we would choose the parameters for G2 according to this backward model and
if we would only have sampling points where X1 2 [�1, 1], the posterior probabilities
of G1 resp. G2 should be very similar and we would have two very plausible competing
models (for the initial data). It will be interesting to see what the most informative
intervention is in these cases, because in principle G2 can be cast out due to the fact
that the observed values of X1 from interventions on X2 are not having the variance
specified in G2.

Figure 3.1.: Plot of 2 tanh fct. and linear
approx.. (Example (3.2).

This motivates to approximate the true
ANM by the following linear Gaussian
ANM, X1 ⇠ N (0, 1) and X2 := X1 +
N2 with N2 ⇠ N (0, 0.1). The corre-
sponding backward ANM (2.48) is X̃2 ⇠
N (0, 1.1) and X̃1 := 10

11X̃2 + Ñ1 with

Ñ1 ⇠ N (0, 1/11). Thus, when we choose
✏1 ⇠ N (0, 0.1) and ✏2 ⇠ N (0, 1) in G2 we
define a very plausible, competitive hy-
pothesis about the true causal relation
(for the initial data). In G3 we choose
both variances to be N (0, 1).

We will always present numerical results for (3.1) first and if it is more illustrative we
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will present numerical results for (3.2) and study the behavior of the implementation
thereof.

3.2.2. Causal Discovery with Random Independent Interventions

Let x1 and x2 denote vectors of N i.i.d. observations of a bivariate ANM, where the
noise terms are mutually independent. We assume acyclicity and causal su�ciency. The
task of causal discovery comes down to decide between two models (listed in the table
below).

Graph ANM

G1 X1 X2
X1 := ✏1,
X2 := f

(2)(X1) + ✏2

G2 X1 X2
X1 := f

(1)(X2) + ✏1,
X2 := ✏2

For each graph we assume that we have chosen specific values for each �2
i in ✏i ⇠ N (0, �2

i )
and that we have chosen specific kernel parameters for k in f̂

(·) ⇠ GP(0, k). In order
to perform model selection with a Bayesian approach we need to calculate the (joint)
marginal likelihoods for observational data and interventional data. According to (2.6)
we can calculate the likelihood for observational data, (x1, x2), given the graph, e.g. G1,
in closed form,

p(x1, x2|G1) = p(x2|x1, G1)p(x1|G1)

=

Z

RN

p(x2|f (2)
x1

, x1, G1)p(f
(2)
x1

|x1, G1) df
(2)
x1

| {z }
N (0,kX1X1+�2

2IN )

p(x1|G1)

= (2⇡)�
N
2 det(kX1X1 + �

2
2IN)

�
1
2 exp


�1

2
x2

|(kX1X1 + �
2
2IN)

�1x2

�
p(x1|G1).

Assume we choose an intervention X1 = x
(X1)
1 , independent from our initial data and

observe the interventional data point (x(X1)
1 , x

(X1)
2 ). Let x̃1 := (x|

1, x
(X1)
1 )| and x̃2 :=

(x|
2, x

(X1)
2 )|. Based on our assumptions, the joint marginal likelihood of the available

30



3. Active Bayesian Causal Discovery

data is

p(x1, x2, x
(X1)
1 , x

(X1)
2 |G1)

= p(x1, x2|G1)p(x
(X1)
1 , x

(X1)
2 |x1, x2, G1)

= p(x2|x1, G1)p(x
(X1)
2 |x(X1)

1 , x1, x2, G1)p(x1|G1) p(x
(X1)
1 |x1, x2, G1)| {z }
=�

x
(X1)
1

⇣
x
(X1)
1

⌘

=

Z

RN+1

p(x̃2|f (2)
x̃1

, x̃1, G1)p(f
(2)
x̃1

|x̃1, G1) df
(2)
x̃1

| {z }
N (0,kX̃1X̃1

+�2
2IN+1)

p(x1|G1)

= (2⇡)�
N+1

2 det(kX̃1X̃1
+ �

2
2IN+1)

�
1
2 exp


�1

2
x̃2

|(kX̃1X̃1
+ �

2
2IN+1)

�1x̃2

�
p(x1|G1).

Thus, we can calculate the joint marginal likelihood by augmenting the initial data
with the (given the graph) relevant interventional data, fit a GP model on the augmented
data (i.e. data that contain new information about the functional relation), obtain the
marginal likelihood thereof and multiply it with the marginal likelihood of the initial
source node observations. Further interventional data points can be included analogously.
We can include a data point (x(X2)

1 , x
(X2)
2 ) obtained by an intervention onX2 as follows.

p(x1, x2, x
(X2)
1 , x

(X2)
2 |G1)

= p(x1, x2|G1)p(x
(X2)
1 , x

(X2)
2 |x1, x2, G1)

= p(x2|x1, G1)p(x1|G1) p(x
(X2)
2 |x(X2)

1 , x1, x2, G1)| {z }
=�

x
(X2)
2

⇣
x
(X2)
2

⌘
p(x(X2)

1 |x1, x2, G1)

=

Z

RN

p(x2|f (2)
x1

, x1, G1)p(f
(2)
x1

|x1, G1)df
(2)
x1

p(x1|G1)p(x
(X2)
1 |x1, x2, G1)

= (2⇡)�
N
2 det(kX1X1 + �

2
2IN)

�
1
2 exp


�1

2
x2

|(kX1X1 + �
2
2IN)

�1x2

�
p(x1|G1)p(x

(X2)
1 |G1).

Here we do not have to fit another GP model since we do not have any new relevant
information about the functional relationship given our graph. Instead we just multiply
the likelihood of obtaining x

(X2)
1 to the marginal likelihood of our initial data. Every

further interventional data point can be included analogously.
We can also easily combine both types of interventions and obtain a closed form like

p(x1, x2, , x
(X1)
1 , x

(X1)
2 , x

(X2)
1 , x

(X2)
2 |G1)

= (2⇡)�
N+1

2 det(kX̃1X̃1
+ �

2
2IN+1)

�
1
2 exp


�1

2
x̃|
2(kX̃1X̃1

+ �
2
2IN+1)

�1x̃2

�
p(x1|G1)p(x

(X2)
1 |G1).

Example 3.3 (Independent Random Interventions (3.1)). Consider a situation, where
we are given five i.i.d. observations of the true data generating process,
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Graph ANM

Gtrue X1 X2
X1 := ✏1,
X2 := 2 tanh(X1)+ ✏2,

where ✏1 ⇠ N (0, 1) and ✏2 ⇠ N (0, 1). Assume that we specify for G1, ✏1 ⇠ N (0, 1) and
✏2 ⇠ N (0, 1) and for G2, ✏1 ⇠ N (0, 1) and ✏2 ⇠ N (0, 1) (see 3.1). Further assume that we
decided on an interval where we uniformly draw interventions for each random variable.
In this example we draw x

(X1)
1 from U [�3, 3] and x

(X2)
2 from U [�2.1, 2.1] and observe 10

intervention samples alternating between interventions on X1 and X2; starting with an
intervention on X1. Note that we chose another interval for interventions on X2 because
the true deterministic function is bounded in [�2, 2]. We choose the Squared Exponential
(SE) kernel with � = 1.75 for each graph and calculate P (Gi|D) in the following way,

P (Gi|D) =
p(x1, x2, , x

(X1)
1 , x

(X1)
2 , x

(X2)
1 , x

(X2)
2 |Gi)P (Gi)P2

j=1 p(x1, x2, , x
(X1)
1 , x

(X1)
2 , x

(X2)
1 , x

(X2)
2 |Gj)P (Gj)

.

The experiment was repeated 10, 000 times with di↵erent random seeds. Further, a sim-
ilar experiment where only interventions on X1 were performed and a third experiment
where only interventions on X2 were performed. In (3.1) histograms of 10, 000 observa-
tions of P (Gtrue|D) for each respective experiment and iteration are shown.

It.
Alternating Random In-
terventions

Only Random Interven-
tions on X1

Only Random Interven-
tions on X2

0
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1

2

3
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10

Table 3.1.: Comparison of the empirical distributions of the posterior probability of the
true data generating graph, P (G1|D), for the three di↵erent experiments
assuming known variance. (Example 3.3).

In the following table the most important numbers rounded to four decimals are
summarized.

Mean Std. Deviat P (G1|D) � 0.95 P (G1|D)  0.5

“Alternating Rnd. Interv.” 0.9087 0.2217 0.7815% 0.0745%
“Only Rnd. Interv. on X1” 0.9528 0.1624 0.8836% 0.0372%
“Only Rnd. Interv. on X2” 0.8810 0.2426 0.707% 0.0963%

The results indicate that the best strategy to reveal the underlying causal relation is to
intervene on the cause, i.e. on X1 in the example.

Next, we consider a similar example where the behavior of the implementation can be
illustrated well.

Example 3.4 (Independent Random Interventions (3.2)). Consider a situation, where
we are given five i.i.d. observations of the true data generating process,

Graph ANM

Gtrue X1 X2
X1 := ✏1,
X2 := 2 tanh(X1)+ ✏2,

where ✏1 ⇠ N (0, 1) and ✏2 ⇠ N (0, 0.1). Assume that we specify for G1, ✏1 ⇠ N (0, 1) and
✏2 ⇠ N (0, 0.1) and for G2, ✏1 ⇠ N (0, 0.1) and ✏2 ⇠ N (0, 1) (see 3.2). Further assume
that we decided on an interval where we uniformly draw interventions for each random
variable. In this example we draw x

(X1)
1 from U [�3, 3] and x

(X2)
2 from U [�2.1, 2.1] and

observe 10 intervention samples alternating between interventions onX1 andX2; starting
with an intervention on X1. Note that we chose another interval for interventions on X2

because the true deterministic function is bounded in [�2, 2]. We choose the Squared
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Exponential (SE) kernel with � = 1.75 for each graph and calculate P (Gi|D) in the
following way,

P (Gi|D) =
p(x1, x2, , x

(X1)
1 , x

(X1)
2 , x

(X2)
1 , x

(X2)
2 |Gi)P (Gi)P2

j=1 p(x1, x2, , x
(X1)
1 , x

(X1)
2 , x

(X2)
1 , x

(X2)
2 |Gj)P (Gj)

.

A typical result of this experiment is presented in the figures below.

Figure 3.2.: Obs. from initial-, do(x1)-
and do(x2)-distribution. (Ex-
ample 3.4)

Figure 3.3.: DAG posterior probability,
P (G|D). kSE with � = 1.75.
(Example 3.4)

While the “intervention on X1” data fits quite good to the initial observations, the
“intervention on X2” data does not. Since we calculate the GP regression for graph G2

by augmenting the initial data with the do(x2)-data, it becomes clear, that the marginal
likelihood of the data P (G2|D) should become low relative to P (G1|D) (where we include
the do(x1)-data for GP regression). In other words, it is much more di�cult to find a
regression function for the initial data combined with the do(x2)-data, than for the initial
data combined with the do(x1)-data. This explains the result in Figure 3.3, where less
than ten interventions are needed to ”converge” to the true graph, G1. In the beginning,
the occurrence of a sawblade pattern is typical in this setup, because we have only little
data and the GP regression finds well fitting function describing the wrong direction
X2 ! X1. The purpose of Figures 3.4 and 3.5 is to provide some more intuition on the
impact of the GP regressions’ marginal likelihood on the quantity of interest P (G|D).
The 95% confidence interval depicted in the plots relates to the GP fit. Every domain
point inferred with GP regression is normally distributed. The blue line is the mean
of every such point and the orange area is the 95% confidence interval based on the
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variance at each respective point. So the confidence band contains information on how
sure we are about our estimate in the corresponding area.

Figure 3.4.: GP fit (kSE,�=1.75) on initial-
and do(x1)-data. (Example
3.4).

Figure 3.5.: GP fit (kSE,�=1.75) on initial-
and do(x2)-data. (Example
3.4).

In order to evaluate the performance of this approach, 10, 000 repetitions of the same
experiment were repeated with di↵erent random seeds. The mean of P (G1|D) after the
tenth intervention was ⇡ 0.9913 with a standard deviation of ⇡ 0.0614. If we decided
for graph G1 only if P (G1|D) � 0.95, the success rate was 0.9719. If we defined failure
as P (G1|D)  0.5, the failure rate was 0.0052.
Since adding “intervention on X1” data is very similar to augmenting the initial data set
with more i.i.d. samples from the data generating process, it is a reasonable question to
ask at this point, if interventions make a di↵erence. To answer this question we change the
experiment such that we only do interventions onX1. And further do another experiment
where we, instead of doing interventions on X1, in each step augment our data by one
more i.i.d observation. In the “only interventions on X1” case, the mean of P (G1|D)
after 10, 000 experiments was ⇡ 0.9953, while in the “i.i.d. union” case it was ⇡ 0.9375
after the tenth observation has been added. Thus, for this example we have numerical
support that interventional data is more informative than purely observational data.
To compare the three di↵erent methods for adding a new data point, it is insightful to
consider how the histograms of the posterior distribution from the true graph given the
respective data evolves over the iterations. In (3.2) histograms of 10, 000 observations of
P (Gtrue|D) for each respective experiment and iteration is shown. We will later consider
a similar study for the case of optimal interventions. Histograms of the case, where we
only perform interventions on X2 are not presented. The corresponding histograms are
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very similar to the first two columns of the below table.

It.
Alternating Random In-
terventions

Only Random Interven-
tions on X1

Additional i.i.d. Sample

0

1

2
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3

10

Table 3.2.: Comparison of the empirical distributions of the posterior probability of the
true data generating DAG, P (G1|D), for the three di↵erent experiments.
(Example 3.4)

For this example we illustrate the properties of Matérn kernels, when changing the
parameter ⌫. We keep the setting from above fixed and only change the SE kernel to
Matérn kernels with di↵erent ⌫’s but always the same �. We propose to use the fixed
value ⌫ = 2.5 for all settings since the results for causal discovery are similar in all cases.
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Case ⌫ = 2.5 :
We can expect a smooth fit of the regression function and the confidence interval to be
rather smooth too. An important aspect of this example is that the fit is very similar
to the case of the SE kernel, which is infinitely many often mean square di↵erentiable
compared to the employed Matérn kernel which is only two times mean square di↵eren-
tiable.

Figure 3.6.: Obs. from initial-, do(x1)-
and do(x2)-distribution. (Ex-
ample 3.4, ⌫ = 2.5).

Figure 3.7.: DAG posterior probability,
P (G|D). (Example 3.4, ⌫ =
2.5).

Figure 3.8.: GP fit (k⌫=2.5,�=1.75) on
initial- and do(x1)-data.
(Example 3.4, ⌫ = 2.5).

Figure 3.9.: GP fit (k⌫=2.5,�=1.75) on
initial- and do(x2)-data.
(Example 3.4, ⌫ = 2.5).
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Case ⌫ = 1.5 :
We can expect a rougher fit compared to the previous case, what also implies wider
confidence intervals.

Figure 3.10.: Obs. from initial-, do(x1)-
and do(x2)-distribution.
(Example 3.4, ⌫ = 1.5).

Figure 3.11.: DAG posterior probability,
P (G|D). (Example 3.4, ⌫ =
1.5).

Figure 3.12.: GP fit (k⌫=1.5,�=1.75) on
initial- and do(x1)-data.
(Example 3.4, ⌫ = 1.5).

Figure 3.13.: GP fit (k⌫=1.5,�=1.75) on
initial- and do(x2)-data.
(Example 3.4, ⌫ = 1.5).
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Case ⌫ = 0.5 :
We can expect a rough fit compared to the previous cases, what also implies heavily
inflated confidence bands in areas where we do not have any observations.

Figure 3.14.: Obs. from initial-, do(x1)-
and do(x2)-distribution.
(Example 3.4, ⌫ = 0.5).

Figure 3.15.: DAG posterior probability,
P (G|D). (Example 3.4, ⌫ =
0.5).

Figure 3.16.: GP fit (k⌫=0.5,�=1.75) on
initial- and do(x1)-data.
(Example 3.4, ⌫ = 0.5).

Figure 3.17.: GP fit (k⌫=0.5,�=1.75) on
initial- and do(x2)-data.
(Example 3.4, ⌫ = 0.5).
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3.2.3. Causal Discovery with Optimal Interventions

Let x1 and x2 denote vectors of N i.i.d. observations of a bivariate ANM, where the noise
terms are mutually independent and assume acyclicity and causal su�ciency, as before.
In the following we include the empty graph as a possible model choice, compared to the
previous section, where we only had the two graphs containing a directed edge. This is
motivated because we want to avoid situations where the hypothesis space is too narrow.
For example, G1 is a far better explanation for the observations than G2 but in reality
both are poor explanations because the truth is, that the variables are not dependent at
all. If we do not include the empty graph as a possible hypothesis, we would have a high
posterior probability for G1 and would make wrong inference. Especially, since we will
use flat priors for the graphs, this may prevent us to end up in such situation (similar
to what is known as Lindley’s paradox [22]).When we compare the posteriors in both
cases the latter one has one summand more in the denominator (the DAGs are defined
just below)

P (G1|D) =
p(D|G1)P (G1)

p(D|G1)P (G1) + p(D|G2)P (G2) + p(D|G3)P (G3)

Thus, we decide between the following models

Graph ANM

G1 X1 X2
X1 := ✏1,
X2 := f

(2)(X1) + ✏2

G2 X1 X2
X1 := f

(1)(X2) + ✏1,
X2 := ✏2

G3 X1 X2
X1 := ✏1,
X2 := ✏2

For each graph we assume that we have chosen specific values for each �2
i in ✏i ⇠ N (0, �2

i )
and that we have chosen specific kernel parameters for k in f̂

(·) ⇠ GP(0, k). The (joint)
marginal likelihoods for the observational data can be calculated using (2.6) and are
given by

p(x1, x2|G1)| {z }
=:CG1

= (2⇡)�
N
2 det(kX1X1 + �

2
2IN)

�
1
2 exp


�1

2
x2

|(kX1X1 + �
2
2IN)

�1x2

�

| {z }
N (0,kX1X1+�2

2IN )

p(x1|G1),

p(x1, x2|G2)| {z }
=:CG2

= (2⇡)�
N
2 det(kX2X2 + �

2
1IN)

�
1
2 exp


�1

2
x1

|(kX2X2 + �
2
1IN)

�1x1

�

| {z }
N (0,kX2X2+�2

1IN )

p(x2|G2) and

p(x1, x2|G3)| {z }
=:CG3

= p(x1|G3)p(x2|G3).
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The posterior probabilities are

P (Gi|D) =
p(x1, x2|Gi)P (Gi)P3
j=1 p(x1, x2|Gj)P (Gj)

for i 2 {1, 2, 3}.

Next, we want to answer the question what is the most informative intervention that
we can perform, i.e., we try to find (j⇤, x⇤) from (3.8). For this we need to calculate
P (x�j|G, do(Xj = x)) and P (G|x�j, do(Xj = x)), given our initial observations. To ease
the notational burden a little bit, we denote x

1
1 a value of an intervention on X1 and x

2
2

an intervention value on X2. At this stage of our sequential approach, the estimator for
the functional value at a respective intervention value is

f
(2)
X1

(x1
1)|x1, x2, x

1
1 ⇠ N (kx1

1X1
(kX1X1 + �

2
2G1

IN)
�1
x2

| {z }
:=µ̃G1 (x

1
1)

, kx1
1x

1
1
� kx1

1X1
(kX1X1 + �

2
2G1

IN)
�1
kX1x1

1| {z }
:=�̃2

G1
(x1

1)

),

f
(1)
X2

(x2
2)|x1, x2, x

2
2 ⇠ N (kx2

2X2
(kX2X2 + �

2
1G2

IN)
�1
x1

| {z }
:=µ̃G2 (x

2
2)

, kx2
2x

2
2
� kx2

2X2
(kX2X2 + �

2
1G2

IN)
�1
kX2x2

2| {z }
:=�̃2

G2
(x2

2)

).

For the calculation of P (G|x�j, do(Xj = x)) define D1 := x
1
2, x

1
1, x1, x2 and D2 :=

x
2
1, x

2
2, x1, x2. Below, we do an exemplary calculation of P (D1|G1).

p(D1|G1) = p(x1, x2|G1)p(x
1
2, x

1
1|x1, x2, G1)

= p(x1
2|x1

1, x1, x2, G1)p(x
1
1|x1, x2, G1)p(x1, x2|G1)
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(3.10)

The other likelihoods are given by

p(D1|G2) = (2⇡)�
1
2�
�1
2G2

exp

 
(x1

2)
2

2�2
2G2
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(3.11)
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p(D2|G1) = (2⇡)�
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(3.12)

and the respective posterior quantities can be computed as follows

P (Gi|Dk) =
p(Dk|Gi)P (Gi)P3
j=1 p(Dk|Gj)P (Gj)

for i 2 {1, 2, 3}, k 2 {1, 2}.

Since this calculation already revealed how to sample from P (x�j|G, do(Xj = x)), we
have all necessary ingredients in place to solve our optimization problem. Before we let
the Bayesian Optimization algorithm work for us, it is worth to consider the problem
more closely to simplify the optimization.
Define gj(x) :=

P
G2G P (G)

R
P (x�j|G, do(Xj = x)) logP (G|x�j, do(Xj = x)) dx�j. In

case of j = 1, we have
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We can use the linearity of the integral, the fact that additive constants are irrelevant
for optimization and that, e.g., the following holds
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to obtain an equivalent objective function
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with
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1
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.

The solution of the optimization problem for j = 1 can thus be written as

⇤
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12X1

g̃1(x
1
1). (3.14)

We can e�ciently calculate g̃1(x1
1) using a Monte Carlo method and then use the deriva-

tive free Bayesian Optimization to find an approximation of ⇤x1
1.

For j = 2 we analogously get that,
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Having the optimizers from above, we decide for the j⇤, that is the index of max{g2(⇤x2
2),

g1(⇤x1
1)}. If j⇤ = 1, we perform the optimal intervention ⇤x1

1. Suppose we obtain the in-
terventional data sample (⇤x1

1, x
1
2). For this data point we can compute the likelihood

given our current believes. Based on these likelihoods we can compute the posterior
probability of the graphs. Since the sample stems from the true intervened data gener-
ating process, it does, depending on the DAG, contain new relevant information about
f
(1) or f

(2). Therefore, we update the GP fits in all DAGs accordingly at the end of
each iteration . For the next iteration we will use the new fit exactly the same way and
perform the calculations analogously to them described above. Further, we can make
use of the sequential setup and safe the p(Dj, Gi)’s after every iteration and compute
only the one new factor for every quantity in (3.11).
Next, we re-consider the 2 tanh-example from above and study the behavior of the im-
plemented algorithm in detail.

Example 3.5 (Sequential Optimal Interventions (3.1)). Similar as in (3.4), consider a
situation, where we are given five i.i.d. observations of the true data generating process,

Graph ANM

Gtrue X1 X2
X1 := ✏1,
X2 := 2 tanh(X1)+ ✏2,

where ✏1 ⇠ N (0, 1) and ✏2 ⇠ N (0, 1).
Assume that we specify for G1, ✏1 ⇠ N (0, 1) and ✏2 ⇠ N (0, 1); for G2, ✏1 ⇠ N (0, 1) and
✏2 ⇠ N (0, 1) and for G3, ✏1 ⇠ N (0, 1) and ✏2 ⇠ N (0, 1) (see 3.1). Further, for the kernel
we choose the Matérn kernel with ⌫ = 2.5 and � = 1.75 in both models G1 and G2. A
typical result of this experiment is summarized in the following figures.
The implemented algorithm is able to arrive at the true graph very quickly and

achieves very high posterior probability of the true DAG after only 3 interventions.
It did no intervention on X2. Thus, in our example it is most informative about the
causal directions, to test if our beliefs about the functional relation f

(2) are true. The
algorithm chooses a location, where we have observations and where the data points im-
ply a nonlinear curvature of the GP fit of f (2). Further, it is remarkable that it chooses
interventions always in the same region of the function support. To investigate this be-
havior further, we consider the objective functions subject to optimization. Below we
plot the objective functions for an intervention on X1 (left) and for an intervention on
X2 (right). The overall minimum is obtained by comparing the two minima g1(x1⇤

1 ) and
g2(x2⇤

2 ). We also report the corresponding interventional data point, that was sampled
based on the intervention value of the optimization procedure. The true objectives and
the simplified objectives fit together very well up to scaling and have a almost quadratic
shaped unique minimum (inside the box constraints). In the following table the first
row corresponds to the first optimization inside the procedure and the second row to
the second. If we compare the figures row wise, we can see that that the minimizer is
approximately equal in both iterations. This also holds for the remaining optimizations
of the procedure. This is a clear hint, that we can find an easier procedure to obtain the
next intervention variable and intervention value.
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Figure 3.18.: Obs. from initial- and
do(x1)-distribution. (Exam-
ple 3.5).

Figure 3.19.: DAG posterior probabil-
ity, P (G|D). (Example 3.5).
k⌫=2.5,�=1.75 (Matérn).

Intervention
Sample

Objective function(s) for an inter-
vention on X1

Objective function(s) for an inter-
vention on X2

(x1
1, x

1
2) =

(1.27, 0.55)
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(x1
1, x

1
2) =

(0.86, 2.37)

Table 3.3.: Detailed depiction of the optimization procedure for the bivariate case in the
model Gtrue : X1 ! X2, where X1 ⇠ N (0, 1) and X2 = 2 tanh(X1) + ✏2

with ✏2 ⇠ N (0, 1). For the Monte Carlo approximation of the integrals, 5000
sampling points were used.

Next, we illustrate the performance of the implementation on the problem similar as
before using histograms of the posterior probabilities of the DAGs. The histograms are
build from 1,000 repetitions of the above described experiment.

0
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1

2

5

Table 3.4.: Comparison of the empirical distributions of the posterior probabilities of the
three di↵erent DAGs. (Example 3.6).

In this experiment, the mean of P (G1|D) after the tenth intervention was ⇡ 0.9505
with a standard deviation of⇡ 0.1467. If we decided for graphG1 only if P (G1|D) � 0.95,
the success rate was 0.843. If we defined failure as P (G1|D)  0.5, the failure rate was
0.032. The results are similar to the results of the best performing approach in (3.3) but
already after the fifth intervention rather than the tenth intervention.
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Now, we first re-consider the experimental setup from the previous section (3.4) and
afterwards summarize the most important observations of both presented examples.

Example 3.6 (Sequential optimal interventions (3.4)). Similar as in (3.4), consider a
situation, where we are given five i.i.d. observations of the true data generating process,

Graph ANM

Gtrue X1 X2
X1 := ✏1,
X2 := 2 tanh(X1)+ ✏2,

where ✏1 ⇠ N (0, 1) and ✏2 ⇠ N (0, 0.1).
Assume that we specify for G1, ✏1 ⇠ N (0, 1) and ✏2 ⇠ N (0, 0.1); for G2, ✏1 ⇠ N (0, 0.1)
and ✏2 ⇠ N (0, 1) and for G3, ✏1 ⇠ N (0, 1) and ✏2 ⇠ N (0, 1) (see 3.2). Further, for the
kernel we choose the Matérn kernel with ⌫ = 2.5 and � = 1.75 in both models G1 and
G2. A typical result of this experiment is summarized in the following figures.

Figure 3.20.: Obs. from initial- and
do(x1)-distribution. (Exam-
ple 3.6).

Figure 3.21.: DAG posterior probabil-
ity, P (G|D). (Example 3.6).
k⌫=2.5,�=1.75 (Matérn).

The algorithm is able to arrive at the true graph very quickly and achieves very high
probability after only 2 interventions. It did no intervention on X2 like in the previous
example (3.3). So it seems that in our example it is most informative about the causal
directions, to test if our beliefs about the functional relation f

(2) are indeed correct. The
algorithm chooses a location for the intervention values, where we have observations, the
regression function suggests some nonlinearity and it seems to be close to the maximum
of the regression function (3.22). It is remarkable, that the implementation intervenes
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inside a small region of the X1 domain in every iteration, because with the chosen model
variance parameters it would also be “easy” to cast out G2 as the chosen model variance
and the observed variance from an intervention on X2 data point would be far o↵ (see
3.2). This can be interpreted as further evidence that it is most informative to confirm
the correct functional relation.
We can also see in (3.23) that the confidence band of the ”wrong” functional relation
is wider compared to the one in (3.22), what is one reason for the higher likelihood
of the true graph. Further we can see, that the empty graph has very little posterior
probability already before the first intervention happened. Overall the GP fits and the
posterior probabilities are plausible given the available data.

Figure 3.22.: GP fit (k⌫=2.5,�=1.75) on
initial- and do(x1)-data.
(Example 3.6).

Figure 3.23.: GP fit (k⌫=2.5,�=1.75) on
initial- and do(x2)-data.
(Example 3.6).

We can investigate the optimization procedure more closely. Below we plot the ob-
jective functions for an intervention on X1 (left) and for an intervention on X2 (right).
The overall minimum is obtained by comparing the two minima g1(x1⇤

1 ) and g2(x2⇤
2 ).

We also report the corresponding interventional data point, that was sampled based on
the intervention value of the optimization procedure. We can see that the true objective
and the simplified objective approximately have the same minimizer. Further they agree
very well up to some scaling. Similar as in (3.5), the objective from an intervention
on X1 does not change much during the process and we always intervene at the same
X1 domain point. One possible explanation for this behavior is that we can e�ciently
decide on a causal direction based on good knowledge of the regression function on a
small region of the domain. The figures also suggest, that there might be a more e�cient
procedure to find the optimal intervention than approximating the information gain via
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Monte Carlo simulations, since the objective functions are extremely similar and have
their minimum always in the same region. The following figures are ordered, i.e. the first
row of the table corresponds to the optimization based on only the initial observations,
the second row corresponds to the optimization based on the initial observations and
the first interventional observation and so on.

Intervention
Sample

Objective function(s) for an inter-
vention on X1

Objective function(s) for an inter-
vention on X2

(x1
1, x

1
2) =

(1.63, 1.49)

(x1
1, x

1
2) =

(1.6, 2.15)

Table 3.5.: Detailed depiction of the optimization procedure for the bivariate case in the
model Gtrue : X1 ! X2, where X1 ⇠ N (0, 1) and X2 = 2 tanh(X1) + ✏2 with
✏2 ⇠ N (0, 0.1). For the Monte Carlo approximation of the integrals, 5000
sampling points were used.
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The algorithm was tested repeating the experiment described above 1,000 times and
report the posterior probabilities for each graph after each optimal intervention. We
already have very concentrated posterior probability for the true DAG, after the second
intervention. If we decided for graph G1 only if P (G1|D) � 0.95, the success rate was
⇡ 0.98 after the fifth intervention. Note in (3.2) we had ⇡ 0.9714 after ten alternating
interventions. If we consider it to be a failure, if the posterior probability of a graph
is less than 0.5, then we would have failed in four out of thousand cases after the fifth
intervention. The overall mean of the posterior distribution of the true graph after the
fifth intervention was ⇡ 0.9928 with a standard deviation of 0.0554. After the second
intervention we had a 95%-success rate of 0.729, a mean (of the posterior distribution
of the true graph) of ⇡ 0.9382 and a standard deviation of ⇡ 0.1191. The results are
summarized in the following table.

0

1
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2

5

Table 3.6.: Comparison of the empirical distributions of the posterior probabilities for
the three di↵erent DAGS. (Example 3.6).

The implementation also kept track of the confidence bound violations of the true
functional relation estimate, i.e. for each experiment 100 X1-support points were checked
on how often the true function, 2 tanh, lies outside of the 95% confidence bands of the
respective estimate f̂ (2). The plot of the confidence bound violations has two peaks that
are somewhat symmetric around zero and one minimum at zero. This is the case because
the algorithm intervenes always somewhere around one of the two peaks. Since the true
function has rather high curvature in these two areas, the regression fit, where we do
not intervene, is rather poor. The minimum at zero can be explained because it is near
enough at the intervention spots in both cases. The following plot shows the confidence
bound violations. The result is another hint that the most e�cient way of determining
causal relations is to focus on a small domain area, rather than have a good estimate of
the functional relation for the whole domain.
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Figure 3.24.: Empirical 95% confidence bound violations of f̂ (2) in example (3.6).

But what is still an open question which does not become clear from the example so
far, when does the algorithm perform interventions on X2. In the following we present
one of the rare cases, where the algorithm performed interventions on X2.

Figure 3.25.: Obs. from initial-, do(x1)-
and do(x2)-distribution.
(Example 3.6).

Figure 3.26.: DAG posterior probabil-
ity, P (G|D). (Example 3.6).
k⌫=2.5,�=1.75 (Matérn).
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The initial observations seem to be perfectly linear and thus (for the initial data)
there exists a plausible backward model. The posterior probability given the initial
observations suggest, that G2 is the most plausible model at the initial stage of the
algorithm. Then, the green point in line with the (linear) black points was sampled
from an intervention on X2. This seems to confirm that G2 is the correct model. But
then the green point that is far of was sampled and suddenly G2 became completely
implausible. But for this example the implementation finds the true graph based on the
“miss specified” variance parameter in G2. The two data point outside the confidence
band in (3.28) nicely illustrate this.

Figure 3.27.: GP fit (k⌫=2.5,�=1.75) on
initial- and do(x1)-data.
(Example 3.6).

Figure 3.28.: GP fit (k⌫=2.5,�=1.75) on
initial- and do(x2)-data.
(Example 3.6).

To conclude the two above considered examples, we summarize the most important
findings.

• When using optimal interventions, the algorithm needs five interventions to have
a very concentrated posterior probability on the true data generating DAG. In the
case of random independent interventions it needed 10 interventions for a similar
result.

• The objective functions of the procedure are very similar in every iteration.

• The algorithm chooses intervention values mostly on one and the same variable in
a small domain region, where the regression function has nonlinear curvature.

• The algorithm chooses intervention values at locations where we already have at
least one observation. But it does not necessarily choose the location where we
have most observations.
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Based on the theory on additive noise models, it is possible, that interventions are most
informative if they are chosen in areas of the function support, where the true underlying
function is shaped very nonlinear. The idea is, that the algorithm chooses intervention
values at locations where it currently believes no backward model is possible. This would
explain why in the previous example it is enough to intervene only on one variable always
at the same domain area. This would imply that for every ANM which is identifiable from
purely observational data, it should be enough to intervene only on parent (cause) nodes.

We now consider a linear Gaussian Case which is non-identifiable from purely obser-
vational data (2.48). This case is in particular interesting because we can see how the
algorithm chooses interventional observations that provide the little bit of more infor-
mation, compared to purely observational data, we need to infer the correct causal
direction.

Example 3.7 (Linear Gaussian). Consider a situation, where we are given five i.i.d.
observations of the true data generating process,

Graph ANM

Gtrue X1 X2
X1 := ✏1,
X2 :=

X1
2 + ✏2,

where ✏1 ⇠ N (0, 1) and ✏2 ⇠ N (0, 1).
Assume that we specify for G1, ✏1 ⇠ N (0, 1) and ✏2 ⇠ N (0, 1); for G2, ✏1 ⇠ N (0, 1) and
✏2 ⇠ N (0, 1) and for G3, ✏1 ⇠ N (0, 1) and ✏2 ⇠ N (0, 1) (see 3.1). Further for the kernel
used in the models G1 and G2 we choose the Matérn kernel with ⌫ = 2.5 and � = 1.75.
A result of this experiment is summarized in the following figures.
The implemented algorithm tends to the correct graph with high probability. In the
plots of the regression estimates, we can see that the success relies on balancing between
“rule out that it is DAG G2” (by intervening at a value of X2 where we are rather sure
about the functional relation) and “make sure the functional relation in the first DAG
is correct” (by testing the regression function). We can also see that the goal of the
optimization is to determine the causal direction and not to get a good estimate of the
underlying functional relation.
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Figure 3.29.: Obs. from initial-, do(x1)-
and do(x2)-distribution.
(Example 3.7).

Figure 3.30.: DAG posterior probabil-
ity, P (G|D). (Example 3.7).
k⌫=2.5,�=1.75 (Matérn).

Figure 3.31.: GP fit (k⌫=2.5,�=1.75) on
initial- and do(x1)-data.
(Example 3.7).

Figure 3.32.: GP fit (k⌫=2.5,�=1.75) on
initial- and do(x2)-data.
(Example 3.7).

To conclude the example, we augment the summary of the most important finding
about the behavior of the implementation.
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• Whenever there is a valid backward model for a parent child relation of two random
variables, it is beneficial (for the implemented algorithm) to intervene on both.

We have evaluated the algorithm on its ability to find functional relations between
random variables. What is left is the ability to detect independence between the random
variables. The following examples tries to close this gap.

Example 3.8 (Independent Random Variables). Consider a situation, where we are
given five i.i.d. observations of the true data generating process,

Graph ANM

Gtrue X1 X2
X1 := ✏1,
X2 := ✏2,

where ✏1 ⇠ N (0, 1) and ✏2 ⇠ N (0, 1) independent.
Assume that we specify for each DAG all noise terms to be N (0, 1). Further for the
kernel used in the models G1 and G2 we choose the Matérn kernel with ⌫ = 2.5 and
� = 1.75. We conducted the same simulation study as in (3.6) to check if the algorithm
can identify when there is no relation between the two random variables.
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5

Table 3.7.: Comparison of the empirical distributions of the posterior probabilities for
the three di↵erent DAGs. (Example 3.6).

The implementation tends to detect that the empty graph is likely to be the data
generating model. But it does perform significantly worse than in examples where we
had a functional relation between the random variables. The mean of the posterior
distribution of the true DAG after the fifth intervention was only ⇡ 0.2323 with a
standard deviation of ⇡ 0.1344. There seems to be an upper bound for the posterior
probability. If we apply this method in practice we should always use another method
to double-check for independence (for example the one described in [33]).

We conclude the section on the bivariate case and summarize the most important
findings. Despite for the information gain we have closed forms for all quantities we need
in the implementation. If interventional observations are possible to perform, we can infer
the causal direction based on a comparably low number of observations. In the section on
random independent interventions we found hints, that it is most informative to intervene
on causes. We found more experimental evidence for it in the section on optimal random
interventions. Based on the considered examples, the implemented algorithm tries to
intervene on the causes in areas where it already has observational evidence; it tries to
confirm likely causal relations (in areas where no backward models are possible). If there
exist valid backward models it tends to intervene on parent and child. We also observed
that the objective functions of the optimization in each iteration are very similar. This
can be seen as a hint that there is an equivalent but much simpler way to choose the
optimal intervention value, than optimizing the information gain. We have also seen that
the algorithm only performs okay in detecting independencies.

60



3. Active Bayesian Causal Discovery

3.3. Fourvariate Case

In this section we generalize the procedure from the bivariate case to the fourvariate
case. We go through all necessary computation steps of the procedure by considering an
example and a corresponding pseudo code. The pseudo code can easily be transferred to
settings with more than four variables and it provides a solid foundation for the basic
idea of the approach. We conclude the section by describing the calculations for the
optimization procedure in detail. From these considerations the computational burden
becomes clear which is a primer to the last section of this Chapter, that deals with
strategies to overcome the computational burden.

3.3.1. Generate a list of DAGs

Before we can start with the computations in our approach we must have a procedure
that generates us a list with all 543 possible DAGs containing four variables [31, Ap-
pendix B]. We do so naively, by sampling a candidate, check if it is a valid DAG and
include it to our list, if the candidate is not already included. This works just fine in the
case of only four variables.
We can depict a DAG in a matrix representation (usually called adjacency matrix). The
variables are enumerated, the first row stands for the first variable and so on, the same
for the columns. We encode incoming edges by a 1 and read the matrix row wise, i.e. if
we have a 1 in the second column of the first row, then the corresponding DAG has a
directed edge from variable 2 to variable 1. The following shows an example.

DAG Matrix

X2

X1

X3 X4

0

BB@

0 1 0 0
0 0 0 0
1 1 0 0
0 0 1 0

1

CCA

Matrices corresponding to valid DAGs are permutation similar to a lower triangular
binary matrix (having ones on the lower triangular). They have a zero diagonal, must
not be symmetric, must have at least one source node (row of zeros) and at least one sink
node (column of zeros). Further, any sub-matrix we obtain from deleting the ith column
and row must also satisfy the previously mentioned conditions. Based on this simple
rules we can already form our control agent algorithm, who checks the four conditions
for every sub-matrix.
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Algorithm 3 DAG Control Agent
Require: Gcandidate, Glist . candidate matrix and list of already accepted matrices
for G in {Gcandidate [ all sub-matrices} do

if G is symmetric return false . Check symmetry
if sum of tr(G) 6= 0 return false . Check diagonal entries
if all row sums of G are > 0 return false . Check for a source node
if all column sums of G are > 0 return false . Check for a sink node
if G 2 Glist return false . Check if the candidate is already in our list

end for
return true

As previously mentioned, it was possible to generate all graphs by randomly generating
candidates and check if they are valid proposals. The following random matrix generator
exploits the characterizations of DAG matrices and that there are more graphs having a
relatively low number of edges than graphs having a high number of edges. While there
are more e�cient methods exploiting permutation matrices, the proposed procedure can
be easily implemented and is su�cient for the low dimension case.

Algorithm 4 Generate DAG Candidate
Require: h1, h2 . Parameters for the Bernoulli distribution
Gcandidate = 0 2 R4⇥4

ind = list of index tuples, (i1, i2), of lower triangular matrix
count-ones = 0
for i in ind do

sample = Bernoulli

⇣
6�count-ones

h1

⌘

count-ones = sample + count-ones
Gcandidate(i1, i2) = sample
if sample = 1 then

Gcandidate(i2, i1) = |sample� 1|
else

sample = Bernoulli

⇣
6�count-ones

h2

⌘

count-ones = sample + count-ones
Gcandidate(i2, i1) = sample

end if
end for

return Gcandidate

Because we know the total number of DAGs for a given number of variables, we can
sample a new candidate graph and check if we can include it to our list in each iteration
and while loop until we reach the respective total number of possible DAGs. To speed
up the procedure a little bit we can start the procedure with a list of graphs containing
the extreme cases, i.e. the empty graph and the two graphs having ones on the upper
resp. lower triangular matrix.
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3.3.2. Likelihood given a DAG

Before we start with an example DAG and compute the likelihood thereof, note that
we can infer regression functions with any (finite) number of inputs easily using GP
regression. More precisely for our setting, for any finite natural number l we can infer
functions of the form f : Rl 7! R. The relevant information we input into the Matérn
kernel is the distance between the input data points. Close points have high covariance
and distant points have a low covariance. Therefore, lifting the functional estimation
part from two to any number of variables is straight forward.
Consider the DAG form the previous section, define it as G and consider the following
ANM, where noise terms are normally distributed, i.e. ✏i ⇠ N (0, �2

i ) for i 2 {1, . . . , 4}.

G ANM

X2

X1

X3 X4

X1 := f
(1)(X2) + ✏1

X2 := ✏2

X3 := f
(3)(X1, X2)

X4 := f
(4)(X3) + ✏4

Suppose we have N i.i.d. (initial) observations of the above ANM, x = (x1, x2, x3, x4) 2
R4⇥N . Similar as before we can very e�ciently compute the likelihood as a product of
Gaussian likelihoods,

p(x1, x2, x3, x4|G) = p(x2|G)| {z }
N (0,�2

2)

p(x1|x2, G)| {z }
N (0,kX2X2+�2

1IN )

p(x3|x1, x2, G)| {z }
N (0,k(X1,X2)(X1,X2)

+�2
3IN )

p(x4|x3, G)| {z }
N (0,kX3X3+�2

4IN )

.

Now consider an intervention on X2 where we observed the data point from the interven-
tion distribution, x2 = (x2

1, x
2
2, x

2
3, x

2
4). Because we assume to obtain data sequentially,

the likelihood of the intervention data can be computed e�ciently since we know the
distributions of the GP fits. The fits are estimated from all previously obtained data
that is relevant for the respective functional relation. We consider an intervention data
point relevant for the estimation of the regression function, if it contains information
about the functional relation. For one specific node j, that are all observations obtained
from intervention distributions except from the distribution where we intervene on j.
In the above example, for f (3), this would be all data points obtained from intervention
distributions except do(X3 = x

3
3) samples. We signal that a functional estimate depends

on all currently available relevant data by a tilde, i.e., f (4)

X̃3
. Coming back to our example,
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for a given x
2
2 we have the following distribution of the functional estimates

f
(1)

X̃2
(x2

2)|x̃1, x̃2, x
2
2 ⇠ N (kx2

2X̃2
(kX̃2X̃2

+ �
2
1IÑ)

�1
x̃1

| {z }
:=µ̃

G(1) (x
2
2)

, kx2
2x

2
2
� kx2

2X̃2
(kX̃2X̃2

+ �
2
1IÑ)

�1
kX̃1x2

2| {z }
:=�̃2

G(1) (x
2
2)

),

f
(3)

(X̃1,X̃2)
(x2

1, x
2
2)|x̃1, x̃2, x̃3, x

2
2, x

2
1 ⇠ N

�
µ̃G(3)(x2

1, x
2
2), �̃

2
G(3)(x

2
1, x

2
2)
�
,

f
(4)

X̃3
(x2

3)|x̃3, x̃4, x
2
3 ⇠ N

�
µ̃G(4)(x2

3), �̃
2
G(4)(x

2
3)
�
.

And we can calculate the likelihood via

p(x2
, x̃|G) = p(x2

1|x̃1, x̃2, x
2
2, G)| {z }

N

⇣
µ̃
G(1) (x

2
2),�̃

2

G(1) (x
2
2)+�2

1

⌘
p(x2

3|x̃1, x̃2, x̃3, x
2
2, x

2
1, G)| {z }

N

⇣
µ̃
G(3) (x

2
1,x

2
2),�̃

2

G(3) (x
2
1,x

2
2)+�2

3

⌘
p(x2

4|x̃3, x̃4, x
2
3, G)| {z }

N

⇣
µ̃
G(4) (x

2
3),�̃

2

G(4) (x
2
3)+�2

4

⌘
p(x̃|G).

Since we assume the sequential factorization of the likelihood, we can store the current
likelihood after each iteration for each graph and use it to compute the next likelihood.
Thus, given a graph, in each step of the procedure, we fit a GP model based on one
observation more than the previous fit, compute the likelihoods of the new data point
(which is not yet included for the GP fit) and obtain the overall likelihood as a product
of the respective previous likelihood with the likelihood (given the functional relation
estimate based on the previous observations) of the new data point. Since all likelihoods
involved are Gaussian and the GP prediction relies on function evaluations and solving
one matrix equation, the computation is very e�cient. The following pseudo code is one
possibility to implement the procedure. We work with graph objects, that contain the
matrix representing the DAG, the relevant parameters for the ANM (error variances
and parameters for the Matérn kernel). Further, for each possible intervention we must
store the corresponding samples separately. During the process we keep track of the
likelihoods up to the current iteration with a list CG containing the likelihoods of the
respective iteration. All this information is stored in the graph object.
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Algorithm 5 Likelihood p(Dj, D̃|G)

Require: x
j, j, Gobject . intervention data point, intervention variable & graph object

G = graph . stored as matrix in Gobject

CG = likelihood for the graph before seeing x
j

. stored in Gobject

ind = list of variable indices
res = list of zeros with same length as ind
for i in ind do

dim = row sum of ith row of G
if dim > 0 _ i 6= j then

covariates = relevant data for GP fit given G

x
j
pred = intervention observations of same variables as in covariates

target = relevant observations of ith variable for GP fit given G

Fit GP model with covariates and target
µ̃G(i)(xj

pred), �̃
2
G(i)(x

j
pred) = GP prediction of xj

pred

res[i] = likelihood of xj
i w.r.t. N

�
µ̃G(i)(xj

pred), �̃
2
G(i)(x

j
pred) + �

2
i

�

else
if i 6= j then

res[i] = 1 . perfect intervention has Dirac density, could be generalized
else

res[i] = likelihood of xj
i w.r.t. N (0, �2

i ) . Source node density
end if

end if
end for
p(Dj, D̃|G) = prod(res) · CG

return Gobject augmented with p(Dj, D̃|G) and x
j

Recall the posterior has the form,

p(G|Dj, D̃) =
p(Dj, D̃|G)p(G)

P
G̃2G p(Dj, D̃|G̃)p(G̃)

. (3.16)

In this work we always assume to have no prior believes about the true underlying graph
and therefore model the graph prior using a uniform distribution. Thus, we must compute
the above likelihood for all graphs. This still runs fairly e�cient and is not causing any
computational trouble in the four variable case. But because the number of graphs grows
super exponentially with the number of nodes this approach becomes computationally
intractable quickly. At this point we may realize that it could be possible to obtain a
closed form of the posterior when we use a normal distribution as prior for the graphs
(because we know the likelihood is a product of Gaussians). But since the graph space
is discrete this will most probably cause some serious measurability problems. Though,
it may be possible to develop some closed form for the posterior starting from this idea.
Up to this point the procedure is computationally very e�cient and very well suitable
for causal discovery. We can e�ciently include intervention data and compute posteriors
quickly, even for larger systems.
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3.3.3. Sample from the Intervention Distribution

We can approximate the information gain in graphs using Monte Carlo simulations.
For this we must sample from the intervention distribution PX�j |Gobj.,do(Xj=x). In our
approach we have (updated) beliefs about the underlying ANMs in every iteration. Each
graph implies a topological ordering of the random variables [3, Proposition 1.4.3.], [10,
Topological sort 22.4]. For the example from the previous section we have

G Topological Ordering

X2 X1 X3 X4
⌧ = [2, 1, 3, 4]

We can sample from the underlying ANM by first simulating source nodes, then simulate
the nodes that have incoming edges only from source nodes using our current beliefs
about the functional relation and the respective error term. With these observations of
the first order we proceed through the topological order until we reach the sink nodes.
When we sample from a (perfect) intervention distribution (given a graph), we can use
the same procedure, but with a manipulated graph that has all incoming edges removed
from the intervention variable and setting the value of the intervention variable to the
chosen value of x.
Consider again the setting from above. The following example presents how to sample
from the intervention distribution do(X3 = x). The data points are sampled sequentially
top to bottom.

G Sample Distribution

X2

X1

X3 X4

x
3
2 ⇠ N (0, �2

2)
x
3
1 ⇠ N

�
µ̃G(1)(x2

2), �̃
2
G(1)(x

2
2) + �

2
1

�

x
3
3 = x

x
3
4 ⇠ N

�
µ̃G(4)(x), �̃2

G(4)(x) + �
2
4

�

Note that we need the same mean and variance functions that shape the distributions
as in the previous section. There we have used the corresponding distributions to com-
pute likelihoods. Here we use the corresponding distributions to sample data points. In
the following, one possible way to implement the procedure is presented.

66



3. Active Bayesian Causal Discovery

Algorithm 6 Sample from PX�j |Gobj.,do(Xj=x)

Require: x, j, Gobject . intervention value, intervention variable & graph object
G = graph . stored as matrix in Gobject

ind = list of variable indices
x
j
sample = list of zeros with same length as ind

x
j
sample[j] = x

dim = row sum of ith row of G
⌧ = topological ordering of G
for i in ⌧ do

if dim[i] = 0 _ i 6= j then
x
j
sample[i] = sample from N (0, �2

i )
else

if i 6= j then
cov = indices from incoming edges of variable i

µ̃G(i)(xj
sample[cov]), �̃

2
G(i)(x

j
sample[cov]) = GP prediction of xj

sample[cov]

x
j
sample[i] = sample from N

�
µ̃G(i)(xj

sample[cov]), �̃
2
G(i)(x

j
sample[cov]) + �

2
i

�

end if
end if

end for
return x

j
sample

Note that sampling from the intervention distribution is very tractable for our ap-
proach since we only sample from Gaussian distributions, for which there exist very
e�cient algorithms readily implemented.

3.3.4. Optimization

In the previous sections we prepared all ingredients necessary for the optimization pro-
cedure. Recall, that we want to solve

(j⇤, x⇤) = argmax
j2{1,...,d}, 2Xj

EG

⇥
EX�j |G,do(Xj=x)

⇥
log
�
pG|X�j ,do(Xj=x)(G|x�j, do(Xj = x))

�⇤⇤
.

We approximate the nested expectation with a Monte Carlo simulation, sampling m

samples D(m)
j from PX�j |Gobj.,do(Xj=x) using (6) and calculate, for a given graph G̃,

1

M

MX

m=1

log(pG|X�j ,do(Xj=x)(G̃|D(m)
j , D̃))

using (5). The evaluation of p(G̃|D(m)
j , D̃)) requires the computation of p(D(m)

j , D̃|G) for
all graphs in our hypothesis space. And we must repeat the computation for every single
sample D

(m)
j . To have a reasonable estimate we should use a relatively large number of

samples m. In total the computational burden of a single evaluation of the objective
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function is already immense. In the case of only four variables it requires 543*m times
the execution of (6) and 543*m*543 times the execution of (5). The procedure can be
parallelized, but still my computer was not able to perform an optimization of the ob-
jective function in acceptable time.
The results that were presented for the bivariate case suggest, that there may be a pro-
cedure which is approximately equivalent to maximizing the information gain and can
be obtained much cheaper in terms of required computations. Since the only computa-
tional problem of the procedure really is the optimization part, there is hope to get the
approach working for a large number of variables. The next section presents strategies
to overcome the computational challenges.

3.4. Heuristic Strategies to Overcome Computational
Challenges

We here discuss possible strategies to overcome the computational challenges pointed
out in (3.3.4). The following ideas evolved during the work on the thesis and are pre-
sented in a heuristic way. The first strategy is motivated by the literature on Bayesian
Optimization and tries to exploit the information nested in the regression fits. The sec-
ond strategy is to use a well known and widely used statistical technique for computing
expectations, Monte Carlo Markov Chain integration (MCMC). The third strategy is
more practical and does almost the same computations as the original approach but
restricts the DAG space in the optimization. The general approach itself and the pro-
posed strategies to improve the computation time are hard to implement since they not
only require lengthy computations but also require an e�cient way to keep track of the
computed quantities and the interventional data points. In the implementation we used
Python dictionaries. This can work for larger DAGs as well using sparse matrices.

3.4.1. Strategy based on GP fits

This strategy is motivated by some observations of the behaviour of the optimization in
the bivariate case (3.6). Namely,

• interventions are most informative in regions where we have observations already,

• it is more informative to confirm good estimates in areas with high nonlinearity
than rejecting bad ones (i.e. if we currently belief that one parent child relation is
likely to be there, it is more informative to intervene on the parent node than on
the child node), and

• sometimes (like in the linear Gaussian case) we must rule out a possible backward
model (i.e. intervene on a child node and hopefully obtain a sample which allows
to confirm that the child actually is a child of its parent).
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We try to pour these observations into a procedure using the information of the GP
regression fits, based on similar ideas as in the Bayesian Optimization. To confirm good
functional relations in areas where we already have observations, we minimize the vari-
ance of the functional relation estimate w.r.t. the prediction value, i.e. the variance of
a GP prediction at some point in the input domain. For the next intervention value we
choose the minimizer across all graphs and functional relations. Fortunately, this does
not increase the computational burden, because we must calculate GP estimates in ev-
ery iteration anyway (for the computation of the current likelihood of the data in each
DAG). This procedure evolves around optimizing a quantity that has, given a DAG G,
the form

�̃
2
G(j)(x) = k(x, x)| {z }

=constant

�kxX̃pa(j)
(kX̃pa(j)X̃pa(j)

+ �
2
j I)
�1
kX̃pa(j)x

, x 2 Xpa(j). (3.17)

Since this is a quadratic chained with kernel evaluations, we can calculate closed forms
for the derivative of �2

G(j)(x) w.r.t. x and apply common minimization algorithms (a
nonlinear conjugate gradient method [25, Chapter 5.2] suits well to the problem) to find
a minimizer e�ciently. If we have more than one input for the function, we take the node
which is closest to the source node in the topological ordering (this can be an advantage,
if the chosen intervention node is a parent of another input of the function).
To include the curvature information, we aim to maximize the absolute value of the
second derivative of the inferred regression function. This works extremely well because
the GP fit is very smooth such that a simple finite di↵erence approximation already
approximates extremely good. This calculation comes at very little computational cost.
We define our objective the following way

f
(j)
obj.(x) := �

2
G(j)(x)� | @

2

@x2
µ̃G(j)(x)| (3.18)

Up to this point this would be a greedy strategy, because we focus to confirm one graph.
We have seen in the linear Gaussian Case, that it can be beneficial to challenge current
beliefs by testing competing graphs where the causal relation is reversed. Therefore, we
sometimes switch roles in the parent child relation and minimize the objective function
over the subset of graphs, for which the child node, that currently corresponds to the
overall minimizer, is closer to the source node in topological order, than its parents. Since
we observed in the bivariate case that three interventions are approximately enough to
have a relatively concentrated posterior distribution, we also restrict our procedure to do
at most three interventions on one and the same node. Thus we do interventions at most
three times the number of nodes. A pseudo code for the procedure, without restricting
the number of interventions on each variable, could look as follows.
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3. Active Bayesian Causal Discovery

Algorithm 7 Strategy based on GP fits
Require: Gobject, 
sample = Bernoulli()

(G⇤, j⇤, x⇤) = argminG2G,j2{1,...,d},x2Xpa(Xj)
f
(j)
obj.(x)

if sample = 0 then
Get (j⇤, xj⇤) from (G⇤, j⇤, x⇤)

else
Gsub = Graphs where pa(j⇤) have lower topological order than j

⇤

(Ḡ, j̄, x̄) = argminG2Gsub,j2{1,...,d},x2Xpa(Xj)
f
(j)
obj.(x)

Get (j⇤, xj⇤) from (Ḡ, j̄, x̄)
end if
return (j⇤, xj⇤)

3.4.2. Monte Carlo Markov Chain

In the following, we quickly summarize the idea of MCMC integration and then point
out how this technique can help to overcome our computational challenges. We follow
[35, Markov Chain Monte Carlo Integration 11.1.2], where also a detailed description
of the famous Metropolis-Hastings Sampler can be found.
Recall that the Monte Carlo estimator of EX [g(X)] for a general function g is

ḡ =
1

m

mX

i=1

g(xi), (3.19)

where x1, . . . , xm is a sample from the distribution of X. If the sample is independent
ḡ converges in probability to EX [g(X)] by the law of large numbers. The following
generalization of the strong law of large numbers can be proven: If {X0, X1, X2, . . . } is a
realization of an irreducible, ergodic Markov Chain with stationary distribution ⇡, then

¯g(X)m =
1

m

mX

t=0

g(Xt)
a.s.! E⇡[g(X)] as m!1, (3.20)

where X has the stationary distribution ⇡.
In Bayesian statistics we are often faced with the problem of finding the posterior distri-
bution and we usually know that the posterior distribution p(x) is proportional to some
likelihood times prior function f(x), i.e. p(x) / f(x). The idea of MCMC methods is
to design a Markov Chain with stationary distribution p(x). To generate the sample we
need for the approximation of the integral we start with some initial point and then sam-
ple a candidate for the next point according to some proposal distribution, from which
we can sample e�ciently. We accept the new point if it satisfies the so called “detailed
balance condition”, which the stationary distribution satisfies. Inside this condition our
problem, that we only know p(x) up to proportionality, disappears because we have the
same proportionality factor on both sides of the detailed balance equation. We should
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3. Active Bayesian Causal Discovery

only use later sampling points and ignore early observations (sometimes called ”burn in
phase”) because they are very likely not distributed according to our target distribution.
When the Markov chain converged to its stationary distribution, we can take all later
sampled points for the estimation of the integral. In practice often visual criterion are
used to determine, when the chain has converged.
Recall, that we want to calculate

(j⇤, x⇤) = argmax
j2{1,...,d},x2Xj

EG

⇥
EX�j |G,do(Xj=x)

⇥
log
�
pG|X�j ,do(Xj=x)(G|x�j, do(Xj = x))

�⇤⇤
.

In our approach we could use the MCMC method for the computation of

pG|X�j ,do(Xj=x)(G|D(m)
j , D̃),

what would at least avoid the computation of all graph posterior probabilities for every
MC sampling point D

(m)
j . Thus it would reduce the number of executions of (5) from

543*m*543 to 543*m*l, where l is the number of di↵erent DAGs visited by the Markov
chain. This approach is only worth considering when l is lower than 543 and we have
an e�cient procedure to move around in the DAG space. Thus, for four variables it
might be, that an MCMC approach is not worth considering yet. If we would employ
the MCMC method, we would consider pG|X�j ,do(Xj=x)(G|D(m)

j , D̃) as E
G|D

(m)
j ,D̃

[ G] and

apply the MCMC method for the latter expectation. This technique has proven itself
successful in many practical applications and there is a huge body of literature about it.
See for example [50, 7, 36].

3.4.3. Narrow Down DAG Space

This approach is the most practical one. The idea is, that after we calculated the posterior
probabilities for the DAGs, we restrict our optimization on a subset of graphs that
are most likely to be the data generating ones. The larger the subset, the longer the
optimization procedure will take. If we intervene based on the maximized information
gain for the subset of graphs, we can use the interventional data to compute likelihoods
for all graphs again (because we can do it very e�ciently) and in the next step choose
a new subset based on the updated posterior probabilities. It might be wise to always
include the empty graph to take into account the independence hypothesis. Note that
this approach has only computational advantage if we calculate the posterior over graphs
based on the subset, i.e. in the optimization procedure we calculate di↵erent posteriors
than in the main loop, namely, for DAG G in the subset Gsub,

p(G|Dj, D̃) =
p(Dj, D̃|G)p(G)

P
G̃2Gsub

p(Dj, D̃|G̃)p(G̃)
.

It might be possible to choose the subsets in a way such that we approximately do the
same as maximizing information gain over the whole graph space with high probability.
This idea is left for future research. In the following, we present a possible pseudo code
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3. Active Bayesian Causal Discovery

to summarize the procedure. Note that the following pseudo code is almost the same as
in (2) but restricts the DAG space in the beginning of the for loop.

Algorithm 8 Narrow Down DAG Space
Require: D, Glist, ninterventions . data, list of graphs with corr. parameters
D0 = D
d = number of nodes
Compute p(D0|G) for all G in Glist and store.
Compute p(G|D0) for all G in Glist and store.
for i = 1, . . . , ninterventions do

Method to get subset Gsub based on p(G|Di�1)

(j⇤, xj⇤) = argmaxj2{1,...,d},x2Xj

P
G̃2Gsub

pG(G̃) 1
M

PM
m=1 log(p(G̃|x(m)

�j , do(Xj = x)))

Get sample Di = (xj⇤ ,x�j⇤) . perform intervention experiment
Compute p(Di|Di�1, G) for all G in Glist and store . likelihood based on

estimates of Di�1

Store p(Di,Di�1|G) = p(Di|Di�1, G)p(Di�1|G) for all G in Glist

Compute p(G|Di) for all G in Glist and i = 0, 1, . . . , ninterventions and store
Di = {Di,Di�1}

end for
return p(G|Di) for all G in Glist and i = 0, 1, . . . , ninterventions; Di for i =
1, . . . , ninterventions

72



4. Conclusion

In this thesis we considered an active Bayesian causal discovery algorithm that optimizes
the information gained on the causal structure from performing an intervention experi-
ment and then updates the current beliefs. The strength of this approach is that we have
closed forms for the likelihoods without imposing restrictive assumptions. The idea was
proposed in [49]. Therein the authors provided numerical results for the bivariate case
with independent interventions. We were able to reproduce similar results and extended
the results to the case of optimal interventions. The transition from independent inter-
ventions to optimal interventions is not obvious, because optimal interventions lead to
complex dependencies between initial observations and interventional observations. We
assume a sequential way of generating the data, that allows us to factorize the likelihood
and maintain the closed form.

The great potential of including interventional data for causal inference was illustrated
in (3.7). This motivates to find the interventional experiment that is most informative
about the true underlying causal structure. We studied the behaviour of the implemented
algorithm for the bivariate case in much detail. We found that the objective functions
of the optimization in each step are very similar. This can be seen as a hint that there
is an equivalent but much simpler way to choose the optimal intervention value, than
optimizing the information gain. Through a detailed study of many examples we gained
some plausible behavioral characteristics of the algorithm. Based on the considered ex-
amples, the algorithm always intervenes in areas where we already have observational
evidence, it tries to confirm likely causal relations in regions where no backward models
are possible. If there exist valid backward models it can be beneficial to intervene on
parent and child to rule out one direction. Depending on the data generating distribu-
tion this may take some intervention experiments until one very implausible data point
for one causal direction is sampled. We have also seen that the algorithm only performs
okay in detecting independencies. We conclude that optimizing the information gain in
the DAG space is well suited for causal discovery in the considered Bayesian setup. But
we have also seen that there may be an easier way to get a approximately equivalent
procedure.
In the four variable case, the super exponentially growing number of DAGs already
made the optimization too time consuming. We anyway presented pseudo code for the
procedure because really only the optimization part is too time consuming but the com-
putation of the posterior probabilities is still very quick. The considerations of this work
are concluded by heuristic proposals to overcome the computational challenges. The
first proposal is motivated by the findings about the behavior of the implementation
in the bivariate case. We draw the connection to the Bayesian Optimization procedure.
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4. Conclusion

In Bayesian optimization we estimate an unknown function using GP regression and
choose the next point at which we evaluate the function based on the mean and covari-
ance function obtained from the regression. In the considered causal discovery approach
we estimate the functional relations between the variables with GP regression and calcu-
late posterior probabilities based on them. Then we aim to choose the next intervention
value such that the posterior distribution is most concentrated. The proposed idea is
that we can find the next intervention value based on the information nested in the GP
fits. This has the potential of saving lots of computation time.
The second and third proposals aim at saving computation time inside the general logic
of the algorithm. They both aim to approximate the logarithmic posterior DAG proba-
bility. The MCMC proposal approximates the posterior distribution. The third proposal
basically is a subspace optimization. For larger systems probably a combination of both
is required.

Overall, we gained very interesting insight about interactive experimental causal struc-
ture learning, in this work. The idea proposed in [49] to use the Gaussian Process Re-
gression and optimize information gain in the DAG space seem to lead into the right
direction. But still there are many open questions and computational obstacles that
must be overcome.
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A. Basic Statistics

At first we state Bayes theorem, following the lectures notes of “Foundations of
Mathematical Statistics” taught by Prof. Mathias Drton. The Theorem was first
mentioned in [4] and follows from the definition of conditional probabilities and the law
of total probability.

Theorem A.1 (Bayes Theorem). Consider an observation modeled as
X ⇠ P✓, ✓ 2 ⇥ ⇢ Rk. Suppose prior distribution has density ⇡ w.r.t. a measure ⌫ and
P✓ ⌧ ⌫

0 8✓ with densities p✓(x) = p(x|✓). Then the posterior distribution has density
(w.r.t. ⌫) :

✓
p(x, ✓)

p(x)
=

◆
p(✓|x) = p(x|✓)⇡(✓)

p(x)
(A.1)

where p(x) =
R
⇥ p(x|✓)⇡(✓) d⌫(✓) is prior predictive density of X.

Remark A.2. The posterior density is proportional to the likelihood of the i.i.d. data
x 2 Rn times the prior distribution, i.e. p(✓|x) / Lx(✓)⇡(✓) where Lx(✓) =

Qn
i=1 p✓(xi).

Bayes estimators of ✓ are obtained as characteristics of the posterior distribution. Most
frequently, the posterior mean is used:

✓̂ = E[✓|X = x] =

Z
✓p(✓|x) d⌫(✓).

Next we describe mean square continuity and di↵erentiability of stochastic processes
following [34, Section 4.1.1], [1].

Definition A.3. Let x1,x2, . . . be a sequence of points and x⇤ be a fixed point in Rd

such that kxk � x⇤k ! 0 as k !1. then a process f(x) is continuous in mean square
at x⇤ if E[kf(xk)� f(x⇤)k2] as k !1. A random field is continuous in mean square at
x⇤ if and only if its covariance function (kernel) k(x,x0) is continuous at the point
x = x0 = x⇤.
If the mean square derivative of f(x) in the i

th direction exists, it is implicitly defined
as

@f(x)

@xi
:= lim

h!0
E
"����

f(x+ hei)� f(x)

h
� @f(x)

@xi

����
2
#
= 0, (A.2)

where ei is the unit vector in i
th direction. The covariance function (kernel) of @f(x)

@xi
is

given by @2k(x,x0)
@xi@x0

i
.
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A. Basic Statistics

Because in Bayesian Experimental design it can happen that we mix discrete and
continuous distributions, we make a short note on the product measures of Counting
and Lebesgue measure. In the following we denote by P(·) the power set of the
argument. Recall, that (N,P(N), ⌫) with ⌫ : P(N)! [0,1];A 7!

P
k2N A is a

measurable space and ⌫ is �-finite on (N,P(N)).
Define the half open intervals in Rn as (a, b] := {x 2 Rn|aj < xj  bj for j = 1, . . . , n}.
Recall, that (Rn

,
Nn

i=1 B(R),�) with � :
Nn

i=1 B(R)! [0,1]; (a, b] 7!
Qn

j=1(bj � aj) is
a measurable space and � is �-finite on (Rn

,
Nn

i=1 B(R)).

Lemma A.4. Let (Xi,Ai, µi), i = 1, 2, be �-finite measurable spaces. Then there
exists a unique product measure µ1 ⌦ µ2 on A1 ⌦A2. It holds for all A 2 A1 ⌦A2 that

(µ1 ⌦ µ2)(A) =

Z ✓Z
A(x, ·) dµ2

◆
dµ1(x) =

Z ✓Z
A(·, y) dµ1

◆
dµ1(y).

Proof. See [13, Hilfssatz 3.7.].

Thus, (⌫ ⌦ �) is a unique well defined product measure on P(N)
N

B(Rn) with
(⌫ ⌦ �)(A1 ⇥ A2) = ⌫(A1)�(A2).

A.1. Multivariate Normal (Gaussian) Distribution

The Definition A.5 and Theorem A.6 closely follow the ones in the lecture notes of
“Stochastic Analysis” taught by Prof. Nina Gantert.

Definition A.5. A real-valued random variable Z1 is Gaussian or normal if it has the
density

f(z1) =
1p
2⇡�2

exp�(z1 �m1)2

2�2
(A.3)

for some m1 2 R and � > 0 [Z1 ⇠ N (m1, �
2)]. Z1 is generalized Gaussian if either Z1 is

Gaussian or IP(Z1 = m1) = 1 for some m1 2 R, i.e., ”Z1 ⇠ N (m1, 0)”. Let
X = (X1, X2, . . . , Xn) be a random variable with values in Rn. We say that X is a
(multivariate) Gaussian random variable if for every vector ↵ = (↵1, . . . ,↵n) 2 Rn, the
real-valued random variable X↵ = h↵, Xi =

Pn
k=1 ↵kXk is generalized Gaussian. We

write m(X) = E [X] = (E [X1] , . . . ,E [Xn]) and denote by ⌃ = ⌃(X) the covariance
matrix given by ⌃ij = Cov(Xi, Xj), 1  i, j  n. The random variable X ⇠ Nn(m,⌃)
has the density

p(x) = (2⇡)�
n
2 det(⌃)�

1
2 exp

✓
�1

2
(x�m)|⌃�1(x�m)

◆
(A.4)

for some m 2 Rn and positive semidefinite ⌃ 2 Rn⇥n.

Theorem A.6. (i) For every vector m = (m1, . . . ,mn) and every positive
semidefinite matrix ⌃ 2 Rn⇥n, there exists a multivariate Gaussian random
variable X such that E [X] = (m1, . . . ,mn) and ⌃(X) = ⌃.
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A. Basic Statistics

(ii) If X and Y are multivariate Gaussian random variables and E [X] = E [Y ] and
⌃(X) = ⌃(Y ), then X and Y have the same distribution.

Proof. (i) For every symmetric positive semidefinite matrix ⌃ we can find a
symmetric matrix such that ⌃ = A

2. Let Z1, Z2, . . . , Zn be i.i.d. with law N (0, 1)
and let Z = (Z1, Z2, . . . , Zn). Take X = AZ +m. Then X is multivariate
Gaussian and E[X] = m. We calculate

⌃(X)ij = Cov(Xi, Xj) = E[(AZ)i(AZ)j]

= E
"

nX

k=1

AikZk

nX

l=1

AjlZl

#

=
nX

k=1

nX

l=1

AikAjl E[ZkZl]

=
nX

k=1

AikAjk =
nX

k=1

AikAkj = (A2)ij.

(ii) Since X and Y are multivariate Gaussian wit same mean and variance, their
characteristic functions agree for any t 2 Rn.

Remark A.7. The characteristic function of a multivariate normal distribution,
X ⇠ N(µ,⌃) is given by

'X(t) = e
ihµ,ti� 1

2 ht,⌃ti
. (A.5)

Lemma A.8. Let X ⇠ N(µ,⌃1) and µ ⇠ N(µ̃,⌃2) for µ̃ 2 Rd and positive
semi-definite ⌃1,⌃2 2 Rn⇥n with d 2 N. Then X ⇠ N(µ̃,⌃1 + ⌃2).

Proof.

'X(t) = E
⇥
E
⇥
e
iht,Xi|µ

⇤⇤
= E

h
e
ihµ,ti� 1

2 ht,⌃1ti
i
= e

ihµ̃,ti� 1
2 ht,(⌃1+⌃2)ti. (A.6)

Matrix Algebra

Lemma A.9. Let A,B 2 Rn⇥n invertible matrices for some n 2 N. Then it holds

(A�1 +B
�1)�1 = A� A(A+B)�1A = B � B(A+B)�1B (A.7)

Proof. Basic linear algebra yields:

A
�1 +B

�1 = B
�1(A+B)A�1

,(A�1 +B
�1)�1 = A(A+B)�1B = A(A+B)�1((A+B)� A)

,(A�1 +B
�1)�1 = A� A(A+B)�1A.

Switching roles of A and B provides the last equality of the lemma.
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Lemma A.10. For n,m 2 N let Z 2 Rn⇥n, W 2 Rm⇥m and U, V 2 Rn⇥m, it holds

(Z + UWV
|)�1 = Z

�1 � Z
�1
U(W�1 + V

|
Z
�1
U)�1V |

Z
�1
, (A.8)

given the respective inverses exist.

Proof. Basic linear algebra yields:

(Z + UWV
|)(Z�1 � Z

�1
U(W�1 + V

|
Z
�1
U)�1V |

Z
�1)

= I � U(W�1 + V
|
Z
�1
U)�1V |

Z
�1 + UWV

|
Z
�1 � UWV

|
Z
�1
U(W�1 + V

|
Z
�1
U)�1V |

Z
�1

= I + UWV
|
Z
�1 � (U + UWV

|
Z
�1
U)((W�1 + V

|
Z
�1
U)�1V |

Z
�1)

= I + UWV
|
Z
�1 � UW (W�1 + V

|
Z
�1
U)((W�1 + V

|
Z
�1
U)�1V |

Z
�1)

= I + UWV
|
Z
�1 � UWV

|
Z
�1
.

Lemma A.11. For n,m 2 N let Z 2 Rn⇥n, W 2 Rm⇥m and U, V 2 Rn⇥m, it holds

det(Z + UWV
|) = det(Z) det(W ) det(W�1 + V

|
Z
�1
U), (A.9)

given the respective inverses exist.

Proof. In order to prove the claim, we need the so called ”Weinstein-Aronszajn
identity”, which states that

det(Im + V
|
U) = det(In + UV

|). (A.10)

To see this consider a matrix M consisting of the four blocks B, �A, Im and In and
note that the identity matrix is invertible, such that we can use the formula for the
determinant of a block matrix:

(i) : det

✓
Im �V |

U In

◆
= det(Im) det(In � UI

�1
m (�V |)) = det(In + UV

|),

(ii) : det

✓
Im �V |

U In

◆
= det(In) det(Im � (�V |)I�1n U) = det(Im + V

|
U).

Further note that we have

det(Z + UV
|) = det(Z(In + Z

�1
UV

|)) = det(Z) det(In + Z
�1
UV

|).

An application of the Weinstein-Aronszajn identity yields

det(Z + UV
|) = det(Z) det(Im + V

|
Z
�1
U).

Now we replace U by UW in the above equation and obtain

det(Z + UWV
|) = det(Z) det(Im + V

|
Z
�1
UW )

= det(Z) det((W�1 + V
|
Z
�1
U)W ))

= det(Z) det(W ) det(W�1 + V
|
Z
�1
U).
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B. (Simple) Bayesian Optimization
Regret Bound

The theorem and proof presented here closely follow [41, Theorem 1, Appendix A].
Consider the setting of (2.4.2). But we restrict to the case where |D| <1. Before
establishing the main proof we work through some preliminary results.
The informativeness of a set of sampling points A ⇢ D about f is measured by the
information gain, i.e. the mutual information between f and observations yA = fA + ✏A

at these points, where fA := (f(x))x2A and ✏A ⇠ N (0, �2
I|A|). If we define by KA the

Gram matrix of the points in A and use (2.17) we obtain for the information gain

I(yA; fA) =
1

2
log
�
det(I|A| + �

�2
KA)

�
. (B.1)

This quantity will show up in the regret bound, but we need to express it in terms of
the predictive variances in order to be able to use it later.

Lemma B.1. Let T � 1 denote the index of the last point we already visited with our
algorithm. The information gain for the points selected can be expressed in term of the
predictive variances. If fT = (f(xt))t2{1,...,T} 2 RT , then

I(yT ; fT ) =
1

2

TX

t=1

log(1 + �
�2
�
2
t�1(xt)). (B.2)

Proof. Note, that for T � 1 it holds yT |yT�1 ⇠ N (µT�1(xT ), �2 + �
2
T�1(xT )) (see (3.10).

For readability we write only �2
T�1. We have

(i) : I(yT ; fT ) = h(yT )�
1

2
log(det(2⇡e�2

IT )) = h(yT )�
1

2
log((2⇡e)T�2T )

(ii) : h(yT ) = h(yT�1) + h(yT |yT�1) = h(yT�1) +
1

2
log(2⇡e(�2 + �

2
T�1(xT ))

= · · · = 1

2
log((2⇡e)T

TY

t=1

(�2 + �
2
t�1(xt))),

and thus,

I(yT ; fT ) =
1

2
log

 
(2⇡e)T

QT
t=1(�

2 + �
2
t�1(xt))

(2⇡e)T�2T

!
=

1

2

TX

t=1

log(1 + �
�2
�
2
t�1(xt)).
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B. (Simple) Bayesian Optimization Regret Bound

We also need the following inequality.

Lemma B.2. Let r ⇠ N (0, 1) and c > 0. Then it holds that

P (r > c)  1

2
e
�

c2

2 . (B.3)

Proof. Let r ⇠ N (0, 1) and c > 0. First note that

�r
2

2
= �r

2

2
+ rc� c

2

2
� rc+ c

2 � c
2

2

= �(r � c)2

2
� c(r � c)� c

2

2
.

Using this, we can establish the assertion,

P (r > c) = (2⇡)�
1
2

Z
1

c

e
�

r2

2 dr

= e
�

c2

2 (2⇡)�
1
2

Z
1

c

e
�

(r�c)2

2 �c(r�c)
dr

= e
�

c2

2 (2⇡)�
1
2

Z
1

0

e
�

r2

2 �cr dr

 e
�

c2

2 P (r > 0) =
1

2
e
�

c2

2 .

We can now establish a convergence result in the case of a finite function domain.

Theorem B.3. Let � 2 (0, 1) and �t = 2 log(|D|t2⇡2
/6�). Running GP-UCB with �t

for a sample f ⇠ GP(0, k), we obtain a regret bound of O⇤(
p
T�T log(|D|) with high

probability. Precisely,

P (RT 
p
C1T�T�T 8T � 1) � 1� �, (B.4)

where C1 =
8

log(1+��2) .

Proof. Let � 2 (0, 1) and set �t = 2 log(|D|⇡t
� ), where ⇡t can be any sequence satisfying

(⇡t)t2N > 0 and
P

t�1 ⇡
�1
t = 1. Fix t � 1 and x 2 D. Conditioned on yt�1 (and x,xt�1)

we have, according to theorem (2.6), f(x) ⇠ N (µt�1(x), �2
t�1(x)). Define

r := f(x)�µt�1(x)
�t�1(x)

, use (B.3) with c =
p
�t to bound r and �r, and apply Boole’s

inequality to obtain

P (|f(x)� µt�1(x)| >
p
�t�t�1(x) 8x 2 D)  |D|21

2
e
�

�t
2 =

|D|�
|D|⇡t

=
�

⇡t
. (B.5)

We again union bound this quantity over the iterations t and obtain

P (|f(x)� µt�1(x)| 
p
�t�t�1(x) 8x 2 D 8t � 1) � 1�

X

t�1

�

⇡t
= 1� �. (B.6)
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B. (Simple) Bayesian Optimization Regret Bound

The choice of ⇡t = ⇡
2
t
2
/6 we use in the theorem is valid, since

P
t�1

1
t2 = ⇡2

6 [12,
Folgerung 9.35.].
For the following let x⇤ denote an optimizer of f and again fix t � 1. By definition of
xt, (B.5) and the above result it holds with probability 1� �

⇡t
that

µt�1(xt) +
p
�t�t�1(xt) � µt�1(x

⇤) +
p
�t�t�1(x

⇤) � f(x⇤)

, rt = f(x⇤)� f(xt)  µt�1(xt)� f(xt) +
p
�t�t�1(xt)  2

p
�t�t�1(xt).

Thus, we can bound the squared instantaneous regret with high probability

P (r2t  4�t�
2
t�1(xt) 8t � 1) � 1� �. (B.7)

Since �t is non-decreasing in t we have

4�t�
2
t�1(xt)  4�T�

2(��2�2
t�1(xt))

 4�T�
2
C2 log(1 + �

�2
�
2
t�1(xt)),

with C2 =
��2

log(1+��2) � 1, since s
2  C2 log(1 + s

2) for s 2 [0, ��2], and

�
�2
�
2
t�1(xt�1)  �

�2
k(xt, xt)  �

�2.
Note that C1 =

8
log(1+��2) = 8�2

C2. Using (B.2) we can bound the sum of squared
instantaneous regrets with probability larger than 1� �, for all T � 1

TX

t=1

r
2
t  �T8�

2
C2

1

2

TX

t=1

log(1 + �
�2
�
2
t�1(xt))

= �TC1I(yT ; fT )  �TC1�T ,

(B.8)

where �T will be specified later.
Putting all together and using the Cauchy-Schwarz inequality (in RT ) we have

R
2
T = (

TX

t=1

rt)
2  T (

TX

t=1

r
2
t ),

so that we have

P (RT 
p
C1T�T�T 8T � 1) � 1� �.

The only thing left to specify is how to bound the maximum information gain after T
iterations, �T . Below a result for the Matérn kernel is stated from [41, Theorem 5].

Theorem B.4. Let D ⇢ Rd be compact and convex, d 2 N. Assume the kernel
function satisfies k(x, x0)  1. For Matérn kernels with ⌫ > 1:

�T = O(T
d(d+1)

2⌫+d(d+1) log(T )). (B.9)

Proof. See [41, Appendix C.1.].
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C.1. Sobolev spaces

Definition C.1 (Weak Di↵erentiability). Let ⌦ ⇢ Rd, f 2 L
1
loc(⌦) and ↵ 2 Nd

0 a multi
index. We say that f has a weak derivative of order ↵ in L

1
loc(⌦), if there exists a

function g 2 L
1
loc(⌦) such that for all ' 2 C

1

c (⌦) it holds

Z

⌦

f@
↵
' dx = (�1)|↵|

Z

⌦

g' dx. (C.1)

We call g the weak derivative of f of order ↵ and we write @↵f := g.

Definition C.2 (Sobolev Space). Let ⌦ ⇢ Rd open, 1  p  1 and k 2 N. The
Sobolev space W

k,p(⌦) is defined as the set of all functions f 2 L
p(⌦) that for all

↵ 2 Nk
0 with |↵|  k have a weak derivative @↵f 2 L

1
loc(⌦). We define the Sobolev norm

||f ||k,p as

||f ||k,p :=

0

@
X

↵2Nk
0 :|↵|k

||@↵f ||pp

1

A

1
p

for 1  p <1 and
||f ||k,1 := sup

↵2Nk
0 :|↵|k

||@↵f ||1.

C.2. Integral Operator and its Eigensystem

We introduce an integral operator and investigate its eigensystem. We will follow the
simplified considerations in [19, Section 4.1.1], where we assume that X ⇢ Rd is a
compact metric space and k is a continuous kernel on X .
Let µ be a finite Borel measure on X and L2(µ) be the Hilbert space of
square-integrable functions w.r.t. µ. Define an integral operator with the kernel k and
the measure µ as

Tk : L2(µ)! L2(µ); f 7!
Z

k(·, x)f(x) dµ(x). (C.2)

Since we only consider positive definite kernels and consider the simplified setting
where X is compact, it is well known that Tk is a compact, positive and self-adjoint
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operator. Thus we can apply the spectral theorem (see [43, Theorem A.5.13]) which
guarantees us an eigen-decomposition of Tk in the form

Tkf =
X

i2I

�ih�i, fiL2(µ)�i, (C.3)

where the convergence is in L2(µ), I ⇢ N is a set of indices and
(�i,�i)i2I ⇢ L2(µ)⇥ (0,1) are (countable) eigenfunctions and the associated
eigenvalues of Tk such that �1 � �2 � · · · > 0:

Tk�i = �i�i, i 2 I.

Further it holds that h�i,�jiL2(µ) = �ij, with �ij = 1 if i = j and �ij = 0 otherwise, i.e.,
the eigenfunctions (�i)i2N form an orthonormal system in L2(µ).

C.3. Reproducing Kernel Hilbert Space (RKHS)

We here present the results relevant for this work from [19, Section 2.3]. That is, a
definition of (RKHS), a way to construct the function space for a given kernel and as
an example the RKHS when using a Matérn kernel.

Definition C.3 (RKHS). Let X be a nonempty set and k be a positive definite kernel
on X . A Hilbert space Hk of functions on X equipped with an inner-product h·, ·iHk

is
called a reproducing kernel Hilbert space (RKHS) with reproducing kernel k, if the
following are satisfied:

1. For all x 2 X , we have k(·, x) 2 Hk;

2. For all x 2 X and for all f 2 Hk,

f(x) = hf, k(·, x)iHk
(Reproducing Property).

Remark C.4. For each kernel k there exists a uniquely associated RKHS and vice
versa (see Moore-Aronszajn theorem [2]).

Construction of RKHS Hk given a kernel k

Let k be a positive definite kernel on X . Then,

H0 := span{k(·, x) : x 2 X} =

(
f =

nX

i=1

cik(·, xi) : n 2 N, c1, . . . , cn 2 R, x1, . . . , xn 2 X
)
,

is a pre-Hilbertspace, if we define the inner-product as

hf, giH0 :=
nX

i=1

mX

j=1

aibjk(xi, yj).
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The RKHS Hk associated with k is defined as the closure of H0 with respect to the
norm ||f ||Hk

=
p
hf, fiH0 , i.e. Hk := H0. That is,

Hk =

(
f =

1X

i=1

cik(·, xi) :(c1, c2, . . . ) ⇢ R, (x1, x2, , . . . ) ⇢ X , such that

||f ||2
Hk

:= lim
n!1

�����

nX

i=1

cik(·, xi)

�����

2

Hk

=
1X

i,j=1

cicjk(xi, xj) <1
)
.

(C.4)

We now state a result for Matérn kernels [19, Example 2.6].

Example C.5. Let k⌫,� be the Matérn kernel on X ⇢ Rd with Lipschitz boundary with
parameters ⌫ > 0 and h > 0 such that s := ⌫ + d

2 is an integer. Then the RKHS Hk⌫,�

of k⌫,� is norm-equivalent to the Sobolev space W (X )s,2 of order s. That is, we have
Hk⌫,� = W (X )s,2 as a set of functions, and there exist constants c1, c2 > 0 such that

c1 kfkW (X )s,2  kfkHk⌫,�
 c2 kfkW (X )s,2 , 8f 2 Hk⌫,� . (C.5)

Proof. See Wendland [51, Corollary 10.48] and [34, Eq. 4.15].

We below state [19, Theorem 2.4], which provides us with an explicit characterization
of the RKHS in terms of Fourier transforms in the case of shift-invariant kernels.

Theorem C.6. Let k be a shift-invariant kernel on X = Rd such that
k(x, y) := �(x� y) for � 2 C(Rd) \ L1(Rd). Then the RKHS Hk of k is given by

Hk =

(
f 2 L2(Rd) \ C(Rd) : kfk2

Hk
=

1

(2⇡)d/2

Z |F [f ](!)|2
F [�](!)

d! <1
)
, (C.6)

with the inner-product being

hf, giHk
=

1

(2⇡)d/2

Z F [f ](!)F [g](!)

F [�](!)
d!, f, g 2 Hk,

where F [g](!) denotes the complex conjugate of F [g](!).

Proof. See Wendland [51, Theorem 10.12].

Finally we sate [19, Example 2.8], a full characterization of the RKHS of Matérn
kernels.

Example C.7 (RKHS of Matérn kernels). Let k⌫,� be the Matérn kernel on Rd with
parameters ⌫ > 0 and � > 0, and let Hk⌫,� of k⌫,� be the associated RKHS. Then
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k⌫,�(x, y) = �⌫,�(r) with r := kx� yk2 and �⌫,�(r) :=
21�⌫

�(⌫)

⇣p
2⌫r
�

⌘⌫
K⌫

⇣p
2⌫r
�

⌘
and the

Fourier transform of �⌫,� is given by

F [�⌫,� ](!) = C⌫,�,d

✓
2⌫

�2
+ 4⇡2 k!k22

◆�(⌫+ d
2)

, ! 2 Rd
, (C.7)

where C⌫,�,d :=
2d⇡d/2�(⌫+d/2)(2⌫)⌫

�(⌫)�2⌫ [34, Eq. 4.15]. Therefore the RKHS Hk⌫,� can be
written as

Hk⌫,� =

(
f 2 L2(Rd) \ C(Rd) :

kfk2
Hk⌫,�

=
1

(2⇡)d/2C⌫,�,d

Z
|F [f ](!)|2

✓
2⌫

�2
+ 4⇡2 k!k22

◆(⌫+ d
2)

d! <1
)
,

which shows that, for any f 2 Hk⌫,� , the magnitude of its Fourier transform |F [f ](!)|
decays polynomially fast as |!|!1, and the speed of decay gets quicker as ⌫
increases. Moreover, from C.7 and [51, Corollary 10.48], it follows that Hk⌫,� is
norm-equivalent to the Sobolev space of order ⌫ + d/2.

C.4. GP Sample Space

We first give three definitions and then present the central theorem, that allows us to
characterize GP sample spaces with slightly modified versions of their respective
RKHSs.

Definition C.8 (A Version of a GP). Let f ⇠ GP(m, k) be a Gaussian process with
mean function m : X ! R and covariance kernel k : X ⇥ X ! R, where X is a
nonempty set. Then a stochastic process f̃ on X is called a version of f , if f(x) = f̃(x)
holds with probability 1 for all x 2 X .

Definition C.9 (Interior cone Condition). A set X ⇢ Rd is said to satisfy an interior
cone condition if there exist an angle ✓ 2 (0, 2⇡) and a radius R > 0 such that every
x 2 X is associated with a unit vector ⇠(x) so that the cone C(x, ⇠(x), , R) is
contained in X , where

C(x, ⇠(x), , R) := {x+ ay : y 2 Rd
, kyk = 1, hy, ⇠(x)i � cos , s 2 [0, R]}.

Definition C.10 (Powers of RKHSs and kernels). Let X be a compact metric space, k
be a continuous kernel on X with Hk being its RKHS, and ⌫ be a finite Borel measure
whose support is X . Let 0 < ✓  1 be a constant, and assume that

P
i2I �

✓
i�

2
i (x) <1

holds for all x 2 X , where (�i,�i)i2I is the eigensystem of integral operator in (C.2).
Then the ✓-th power of RKHS Hk is defined as

H✓
k :=

(
f =

X

i2I

ai�
✓/2
i �i :

X

i2I

a
2
i <1

)
, (C.8)
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where the inner-product is given by

hf, gi
H

✓
k
=
X

i2I

↵i�i for f :=
X

i2I

↵i�
✓/2
i �i 2 Hk, g :=

X

i2I

�i�
✓/2
i �i 2 Hk.

The ✓-th power of kernel k is a function k
✓ : X ⇥ X ! R defined by

k
✓(x, y) :=

X

i2I

�
✓
i�i(x)�i(y), x, y 2 X . (C.9)

For a more intuitive understanding of the power parameter in the definition, we state
[19, Remark 4.11] below.

Remark C.11. The power of the RKHS is an intermediate space (or more precisely,
an interpolation space) between L2(⌫) and Hk, and the constant 0 < ✓  1 determines
how close H✓

k is to Hk [45, Theorem 4.6]. For instance, if ✓ = 1 we have H✓
k = Hk, and

H✓
k approaches L2(⌫) as ✓ ! +0. Indeed, H✓

k is nesting with respect to ✓:

Hk = H1
k ⇢ H✓

k ⇢ H✓0

k ⇢ L2(⌫), for all 0 < ✓
0
< ✓ < 1.

In other words, H✓
k gets larger as ✓ decreases. If Hk is an RKHS consisting of smooth

functions (such as Sobolev spaces), then H✓
k contains less smooth functions than those

in Hk.

Next we quote [19, Theorem 4.12] which is a special case of [44, Theorem 5.2]. It
provides us with a characterization of GP sample spaces.

Theorem C.12. Let X be a compact metric space, k be a continuous kernel on X with
Hk being its RKHS, and ⌫ be a finite Borel measure whose support is X . Let 0 < ✓ < 1
be a constant, and assume that

P
i2I �

2
i�

2
i (x) <1 holds for all x 2 X , where (�i,�i)i2I

is the eigensystem of integral operator in (C.2). Consider f ⇠ GP(0, k). Then the
following statements are equivalent.

1.
P

i2I �
1�✓
i <1.

2. The inclusion operator Ikk✓ : Hk ! H✓
k is Hilbert-Schmidt.

3. There exists a version f̃ of f such that f̃ 2 H✓
k with probability 1.

Proof. See [19, Theorem 4.12].

Finally we can quote [19, Corollary 4.15], which provides us with a characterization of
the sample path properties for Matérn kernels.

Lemma C.13 (Sample path properties for Matérn kernels). Let X ⇢ Rd be a bounded
open set such that the boundary is Lipschitz and an interior cone condition is satisfied,
and k⌫,� be the Matérn kernel on X with parameters ⌫ > 0 and � > 0 such that
⌫ + d/2 2 N. Then for a given f ⇠ GP(0, k⌫,�), there exists a version f̃ such that
f̃ 2 Hk⌫0,�0 with probability 1 for all ⌫ 0, �0 > 0 satisfying ⌫ > ⌫

0 + d/2 2 N, where Hk⌫0,�0

is the RKHS of the Matérn kernel k⌫0,�0 with parameters ⌫ 0 and �0.

Proof. See [19, Corollary 4.15].
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[30] Jonas Peters and Peter Bühlmann. Identifiability of gaussian structural equation
models with equal error variances. Biometrika, 101(1):219–228, 2014.

[31] Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. Elements of Causal Infer-
ence: Foundations and Learning Algorithms. The MIT Press, 2017.

[32] Jonas Peters, Joris M. Mooij, Dominik Janzing, and Bernhard Schölkopf.
Causal discovery with continuous additive noise models. J. Mach. Learn. Res.,
15(1):2009–2053, jan 2014.
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