
75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.

Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-D1,6,8,x86846 Page 1 of 10

IAC-24-D1,6,8,x86846

A computation engine for numerical system requirements generation in LLM-based spacecraft design

assistants

Ramón María García Alarciaa*, Alessandro Golkara

a Department of Aerospace and Geodesy, Technical University of Munich, Lise-Meitner-Strasse 9, 85521 Ottobrunn,

Germany, ramon.garcia-alarcia@tum.de, golkar@tum.de

* Corresponding Author

Abstract

The design of spacecraft, and more broadly of space missions, can greatly benefit from LLM-based design

assistants supporting engineers in the extraction of relevant information from past missions for its reuse in the new

one, as well as in the automatic generation of system parameters or requirements in text at different levels. However,

due to the mathematical nature of technical systems, many of the spacecraft parameters or requirements are

numerical and involve calculations or the application of first principles. While Large Language Models excel at text

generation, predicting the next words in a sequence with the highest probability, they are not suited, being statistical

engines, to perform deterministic computations.

In this paper, we present the architecture of a computation engine to which numerical calculations are outsourced

during the process of generating parameters or requirements by an LLM-based design assistant. We present the

integration with the LLM, measure its performance, and benchmark and discuss the improvement in parameters

generation with a space mission as a use case.

In particular, the computation engine hereby developed follows an object-oriented programming paradigm,

mimicking through the classes the subsystems of a spacecraft, through the class properties their parameters, and

through the class functions the equations and first principles used to calculate the parameters’ values, which can be

then expressed by the LLM as numerical system parameters or requirements with natural language. A high-level

programming language and a modular approach are followed in seek of high readability and modifiability, allowing

the engine to be extended and its granularity increased in future iterations. Different alternatives for the integration of

the computation engine with the LLM and in the design flow are evaluated and compared, and parameters such as

the computation speed and error are measured and assessed along different computation platforms.

By presenting this computation engine for spacecraft design, we aim at patching the shortcomings of LLM-based

design assistants in numerical calculations, paving the way for their adoption and thus helping accelerate and

simplify spacecraft design tasks for a broader range of institutions and individuals.

Keywords: spacecraft design assistant, computation engine, numerical system parameters, Large Language Model,

Generative AI

Acronyms/Abbreviations

Application Programming Interface (API)

Artificial Intelligence (AI)

Attitude Determination and Control System (ADCS)

Commercial-Off-The-Shelf (COTS)

Communication (COM)

Computation Engine (CE)

Computer-Aided Design (CAD)

Electrical Power System (EPS)

Generative Adversarial Network (GAN)

Generative Pre-trained Transformer (GPT)

Large Language Model (LLM)

On-Board Computer (OBC)

Open Source (OS)

Payload (PLD)

Propulsion (PRO)

Structure (STR)

Thermal Control System (TCS)

1. Introduction

We are living in times of constant technological and

industrial transformation. Space exploration and

utilization, historically performed by large, risk-averse,

budget-hungry organizations and companies, is not

extraneous to progress. The space industry has been

disrupted in the last decade by the lowering cost and

increased opportunities for access to space, the

introduction of the CubeSat standard, and the increased

utilization of Commercial-Off-The-Shelf (COTS)

components. This has allowed a greater number of

actors to realize a bigger number of missions at lower

costs. As a general, enabling technology, Artificial

Intelligence has also gone a long way in the last decade,

and in the last years, Generative AI and Large Language

Models (LLM) have taken over the public arena and are

more and more used in support and automatization of a

mailto:ramon.garcia-alarcia@tum.de
mailto:golkar@tum.de

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.

Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-D1,6,8,x86846 Page 2 of 10

myriad of tasks. The space industry has progressively

incorporated AI technology, fundamentally into

downstream tasks related to data processing, with Deep

Learning models. Studies and demonstrations on how to

apply AI to upstream tasks, for instance in mission

operations, increasing spacecraft autonomy, are

underway. Still, the application of Generative AI and

LLMs is quite a recent topic of discussion for space

activities, and one of the tasks to which it can naturally

be applied is at the beginning of a space project: the

design of a space mission and its spacecraft.

Indeed, the design of spacecraft is a process or a set of

tasks that is still performed in a very classical and

manual manner, producing varied documentation and

relying on heritage information to make decisions and

make appropriate design choices. LLMs are very good

both at producing documentation in different formats

and tones, as well as ingesting heritage information and

data and using it appropriately to generate responses to

varied questions. Introducing LLMs can effectively

support spacecraft designers, modernizing and

automatizing the spacecraft design process, at least in its

initial stages. However, the introduction of LLMs in the

design process of any technical system faces a

fundamental challenge: designing technical systems

requires numbers to be produced, equations to be

applied, first principles to be considered. LLMs, on the

other hand, are fundamentally statistical engines made

to work with text, predicting which is the word that

comes next in a sentence with the highest probability –

not deterministic engines that apply an equation or a

first principle and faithfully generate a result

transforming numerical inputs to numerical outputs.

This prevents LLMs and other Generative AI

technologies from being directly applicable, with

trustworthiness, to problems related to the design of

technical systems.

Fortunately, external tools can be interfaced with LLMs

to bridge their shortcomings. For instance, LLMs can

call external functions, giving them some input, and

collecting back their output to integrate it in the flow of

natural language generation. More and more models, be

them open-source or proprietary, are including function

calling capabilities, and developers are creating tools to

enhance the generation capabilities of the LLMs. In this

sense, computation engines are one sort of tools that can

be developed that are able to compute numerical values

for technical systems. In this work, we present what, to

the best of our knowledge, is the first computation

engine to calculate spacecraft design parameters in the

framework of an LLM-based design assistant. The

computation engine, built with modularity and

modifiability in mind, coded in Rust, is unit tested at the

level of functions. When the LLM identifies the need to

produce a numerical value, it calls the appropriate

function from the computation engine with the required

inputs, retrieves the output value, and includes it in its

text generation. The improvement of accuracy in

numerical system parameters or requirements

generation is assessed. Given the increase of accuracy,

reassurance and trustworthiness in an LLM-based

design assistant is increased. This opens the way for

future adoption by companies and institutions

developing space missions.

2. Related works

Engineers working in different industries have long

made use of software to support engineering design

tasks, for instance, Computer-Aided Design (CAD)

tools. Such tools greatly reduce the time spent in

designing, help perform checkups and simulations and

improve the overall quality of designs. However, even if

they have progressed over the years, the degree to which

they automate processes is still low.

Little by little, CAD tools incorporate or give way to

design assistants, able for instance, to provide

recommendations to the user [1]. Fields such as

software engineering have also introduced assistants

along the design and development tasks [2], recently

benefitting largely from developments in Large

Language Models for coding tasks [3]. While LLMs are

less used in engineering design for other fields, interest

in them is also increasing, for instance in electronics

design [4].

Moving to space, the creation of design assistants for

space missions or spacecraft has been a matter of

research for the past years. Particularly, there has been

research and development creating a design assistant for

Earth observation distributed missions [5], and more

recently an exploration of the use of LLMs for

tradespace exploration in space mission design [6],

moving from rule-based to transformer-based systems.

Others have explored the application of LLMs across

different tasks of the space mission lifecycle,

implementing the transformer architecture on

requirements classification [7] or adding LLM for

knowledge management and information reuse on space

missions [8].

We have been exploring the usage of LLMs for the

design of spacecraft. Already last year [9], we identified

the necessity of implementing both systems engineering

models that would structure inputs and outputs on the

design assistant and provide ontologies for the models

to learn, which we covered in a recent work [10], as

well as the need to add a computation engine for

numerical design parameters to be properly generated.

The computation engine, for which an initial student

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.

Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-D1,6,8,x86846 Page 3 of 10

project was performed in our lab [11], is tackled in this

work.

Regarding calling functions or tools from LLMs, a

variety of works tackling different tools for different

applications have been performed recently. For instance,

recent research trained a transformer model to be able to

decide to call external Application Programming

Interfaces (API) to interface tools such as a calculator, a

question-and-answer system, a search tool, a translator,

or a calendar [12]. An in-depth thesis covers particularly

the fine-tuning of LLMs to learn them to use tools [13].

An improvement of performance of up to 2.8 times has

been measured in the resolution of complex tasks by

LLMs such as GPT-4 interfacing tools, with respect to

the same LLM alone [14].

This work, with respect to the current state-of-the-art

and published literature on the topic, differs in the

following aspects: (a) with respect to spacecraft design

assistants, the one we present in our work is an LLM-

based one, moving forward from more classical, rule-

based tools (b) with respect to other tools callable from

LLMs, we develop one for the design of space missions

and spacecraft, to the best of our knowledge a novel

development.

3. Methodology

This section explains on the one hand how the

computation engine has been developed, validated, and

integrated into a bigger LLM-based spacecraft design

assistant; and also, the performance of the overall

integrated system and how we assess the improvement

in requirement generation by the design assistant when

incorporating the computation engine into the system,

with respect to an assistant that does not have this

computation engine.

3.1 Development of the computation engine

As previously stated, the computation engine is a

compendium of functions that calculate different

numerical parameters of a space mission or spacecraft.

The functions do not need to be in a particular

configuration or order. However, we follow a more

structured approach that is outlined in this subsection.

Before talking about the computation engine that has

been developed, a series of considerations need to be

explained. First, our computation engine is generic. This

is because space missions and spacecraft can be very

different. In many cases, there is little resemblance

between a large telecommunications satellite in GEO,

built by a large system integrator such as Airbus

Defence and Space, and a small CubeSat in LEO built

by a university or a research centre. Despite this, they

all share some characteristics: there will be a physical

Structure (STR), and you will have a bigger or smaller

Attitude Determination and Control System (ADCS) for

pointing, Communications (COM) system to talk to the

spacecraft and receive data from it, Electrical Power

System (EPS) for powering the spacecraft, On-Board

Computer (OBC) and data handling to take decisions

onboard. On top, you might have a Propulsion (PRO)

system to change orbits, and a Thermal Control System

(TCS) to maintain proper temperatures inside the

spacecraft. And of course, each satellite will have one or

more Payload (PLD) that capture the mission data or

provide the mission service.

By creating a generic Computation Engine (CE), we

focus on these common systems and their main

parameters, but we do not tackle systems that are

specific to certain missions or spacecraft classes.

Additionally, the PRO and TCS systems are not

implemented in this early version of the CE, since they

are not present in all satellites (especially on

nanosatellites and CubeSats) and are more complex

systems.

Beyond being generic the computation engine hereby

presented is also not exhaustive. This means that it does

not compute all the numerical properties of all the

subsystems present in a generic spacecraft, but only

those that are of major importance and defining the

global budgets of the system (e.g., mass budget, power

budget, radiofrequency link budget, data budget, etc.).

This is done, on the one hand for the sake of simplicity

and saving time, as the focus of this work is having a

functional prototype allowing to prove the suitability

and benefits of such system in the framework of a

spacecraft design assistant.

As an example, the computation engine can cover some

of the following details of interest for a space mission

and spacecraft:

• Space Mission: The required delta-V from an

insertion orbit to a final orbit [m/s], the

required delta-V for deorbiting the spacecraft

[m/s], the lifetime [years].

• Spacecraft: The general parameters of the

spacecraft, including total mass [kg], volume

[U], power consumption [W], which are the

main components of the mass budget and

power budget.

• AOCS: The pointing accuracy [deg], of the

spacecraft, the required momentum [Nm],

being the main components of the pointing

budget.

• COM: The transmitted power [W], the

frequency [Hz], the bandwidth [Hz], and the

maximum range [m] for the downlink, the

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.

Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-D1,6,8,x86846 Page 4 of 10

received power [W], the Signal-to-Noise Ratio

[dB], and the Bit Error Rate for the uplink.

• EPS: The power generated by a solar array

[W], the required battery cells.

• OBC: The required processor speed [MHz],

the required data storage [MB].

For the reason of its limited scope and the need for

extensions, the computation engine is built with

modularity and modifiability in mind so that it can be

improved in the future. Indeed, the base of the code* is

released publicly in a Gitlab repository for the space

community to use it, modify it, and expand it according

to the needs of each user.

The CE is programmed with a high-level programming

language, the Rust language, creating modules for the

spacecraft, and for each of its subsystems. Modules

implement structs, containing the parameters of each

subsystem as variables, and functions, that calculate the

values of such parameters when called. We selected

Rust because it is a compiled -and thus fast to execute-,

cross-platform, and modern language with an increasing

user community, being adopted more and more as the

language where AI model inference is performed. The

CE is composed, as depicted by Figure 1, a main file

which imports all necessary modules, creates the system

message, and handles user input/output. An llm.rs file

takes care of the API calls to OpenAI, creating the

necessary JSON structures for exchange of messages.

functions_handler.rs creates the JSON structure with

the callable functions and its parameters. It also

* Available at: https://gitlab.lrz.de/rgalarcia/ce_base

performs the calling of functions when requested by the

LLM. ce.rs is an instrumental file to import all the CE

classes. A spacemission class instantiates an orbit class

and a spacecraft class. The spacecraft class instantiates

multiple satellite subsystems.

3.2 Integration of the computation engine with the LLM

In what follows, we will explain the typical way in

which a tool is integrated with an LLM, which is the

one followed in this work as well. When interacting

with an LLM, a JSON structure is normally exchanged.

These structures include some prompts as well as

parameters. Among the prompts, the most important is

the response one, which is displayed to the user

typically in a chat interface. Additionally, a typical

prompt is the system one, which tells the LLM how it

needs to behave -e.g., what tone to use in the responses-,

and typical parameters are the temperature -which

regulates the stochasticity and thus the creativity of the

LLM-. When integrating external tools, the JSON

structure contains a field for tools, making explicit to

the LLM the existence of functions and sharing their

name and their input parameters, as depicted by Code 1.

The LLM, by having been exposed to the existence of

these functions, decides to use them at discretion.

When an LLM has decided to use one function, this is

specified in the returned JSON structure, with the inputs

that the LLM has decided to provide, as shown in Code

2. The user’s system needs to read this, locally run the

selected function with the provided response on the user

side and return a JSON structure with the values

Figure 1: Block diagram depicting the structure of the developed system.

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.

Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-D1,6,8,x86846 Page 5 of 10

outputted by the function. A JSON structure containing

the output values is sent to the LLM. The LLM

integrates that into its text and provides a message with

the numerical value incorporated.

Code 1: Portion of the JSON shared with the

LLM, indicating the functions available for calling,

with one function.
{

 "type": "function",

 "function":

 {

 "name":

"calculate_orbital_period",

 "description": "Calculate the

orbital period of a satellite in

Earth's orbit based on its altitude.",

 "parameters":

 {

 "type": "object",

 "properties":

 {

 "altitude_km":

 {

 "type": "number",

 "description": "The

altitude of the satellite in

kilometers."

 }

 },

 "required": ["altitude_km"]

 }

 }

}

Code 2: Portion of the JSON in which the LLM

requests the calling of a function.

The behaviour explained before is typically the same for

both open-source (OS), locally running LLMs, and

proprietary, API-based LLMs.

In our case, we use a closed-source, API-based LLM

through OpenAI. The selected model when using the

Computation Engine is the gpt-3.5-turbo-0125, due to

the lower costs in comparison to more recent models

such as gpt4 or gpt4o, and yet solid behaviour in

understanding the available functions and calling

whenever necessary. However, due to the need of

additional general knowledge and reasoning

capabilities, gpt-4o-2024-08-06 is used in this work’s

evaluation when not using a CE. Both models are called

setting their internal temperature parameter to zero, with

the goal of obtaining more reproducible results by

reducing the randomness of the answers.

Due to the scarcity of internally available computational

resources, it has not been possible in the frame of this

initial work to use an open source, locally running

LLM. The LLMs that can run on small consumer

devices are those of small size, with a typical number of

parameters ranging from 2 billion to 7 billion.

Unfortunately, such small models are unable to properly

understand the functions that are available to be called,

and calling them with the correct name and arguments,

and format. Only medium models, typically of 70

billion parameters, can do this consistently.

Unfortunately, such medium models are already unable

to run on consumer devices and require a more powerful

computational architecture.

3.3 Usage of the system

From a user’s perspective, it is rather simple to use the

system. The user only needs to ask design questions,

whether they involve the calculation of numerical

parameters or requirements, or not. The system takes

care of instantiating the appropriate Computation

Engine classes with their parameters and functions, it

creates the system prompt that is shared with the LLM

informing of its intended behaviour and the availability

of functions, and it also rotes queries from the user to

the LLM and vice versa for the model responses, while

keeping the conversation context and including it in

each user-LLM exchange. Additionally, the system

records performance metrics, such as the number of

tokens that were sent to the LLM or retrieved from it.

Naturally, the system is able to handle the LLM

instructions of calling a specific function with a series

of parameters, returning the result to the LLM and

fetching the final text back from it. This operation

happens in a completely transparent fashion to the user,

who only sees the final result. The flowchart depicted

by Figure 2 helps understand the actions and

interactions happening when a user utilizes the system

asking a design question, when it is not involving

numerical calculations and when it requires so.

{

"tool_calls": [

 {

 "id": "call_ID123",

 "type": "function",

 "function": {

 "name":

"calculate_orbital_period",

 "arguments":

"{\"altitude_km\":1000}"

 }

 }

]

}

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.

Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-D1,6,8,x86846 Page 6 of 10

3.4 Assessment of the trustworthiness and performance

of the system

To assess the performance of the system, we measure

the following two parameters:

• Accuracy of the system without a Computation

Engine, measured through the relative error

between the output result and the ground truth

for each of a series of questions.

• Accuracy of the system with an integrated CE,

measured as per above.

• Number of input tokens (sent by the developed

application to the LLM) without a CE

• Number of output tokens (sent from the LLM

to the developed application) without a CE

• Number of input tokens with a CE

• Number of output tokens with a CE

On the one hand, we expect the accuracy of the system

to greatly improve when incorporating the CE, since the

numerical calculations, which as explained are not

performed properly by an LLM, will be outsourced to

functions. On the other hand, a slight increase in the

number of tokens, both at input and at output, would be

expected to be recorded when using a CE.

Input tokens are expected to increase because, along

with the conversation, the different functions available

to the LLM to call must be included, with a lengthy text

structure in JSON depicted before in Section 3.3.

Additionally, the output tokens are expected to increase

because when needing to call a function, the LLM will

produce an additional response, an intermediary one,

asking for the function to be called (before producing

the final response, shown to the user, with the response

text).

Thus, a trade-off appears. One of the valuable

conclusions of this work is to understand whether the

benefits of including the CE outgrow the burden in

terms of token usage (which incur a cost, either paid to

the LLM provider with the LLM calls or paid internally

by the usage of computational equipment for a longer

time). We expect the benefits to be bigger than the

drawbacks and the CE to be a useful and cost-effective

tool in advancing LLMs and LLM-based design

assistants in the context of space systems engineering.

It is also important to mention that, when having locally

running LLMs, which is not the case of this work, a

broader set of metrics could be measured to better

characterise the performance of the system. For

instance, measuring the token generation speed

Figure 2: Flowchart depicting the usage of the developed system.

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.

Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-D1,6,8,x86846 Page 7 of 10

(token/s), the CPU and GPU utilization (%), the RAM

consumption (GB), or the power consumption (W), and

how they change with and without the integration of the

CE, would give a full picture that we are unable to give

at this initial stage of our work presented here.

For all the parameters mentioned before, measures are

first taken during a conversation with a pure LLM, and

then in a conversation with an LLM with the integrated

computation engine, making use of it. We have devised

a series of questions that request the activation of the

CE to compute some numerical values, relating to

different spacecraft subsystem designs. The questions

are adapted from academic books and exams and

created on our own. All questions are previously solved

to have the correct numerical value, the ground truth.

They aim to cover the different areas that the CE covers.

During the evaluation, on the prompt side, there is an

initial prompt, with a system role, which says: "You are

a helpful spacecraft design assistant. If available, use

supplied tools to assist the user”. Then, the evaluation

starts by asking the LLM -with the user role- to open a

design session and create a space mission with a

spacecraft of certain characteristics. In particular, the

following series of five prompts are used. First: “Let’s

open a design session, create a new space mission with

name EventSat”. Second: “The goal of the mission is to

detect, classify, and identify objects in space”. Third:

“The mission consists of one 6U CubeSat spacecraft”.

Fourth: “The mission orbit is a 500 km altitude Sun-

Synchronous Orbit (SSO). Set the orbit parameters”.

Fifth: “The CubeSat has a 2U payload consisting of an

event camera coupled with a small telescopic optic for

space-to-space imaging”. Even if there is no ground

truth for these answers to be checked, we expect the

LLM to call the functions that instantiate the space

mission class object and its sub-objects (e.g. orbit,

spacecraft, and spacecraft subsystem classes). What

follows in Table 1 are the questions, following in the

design session, that do have a ground truth and that are

used for the trustworthiness and performance

evaluation.

One of the things that can be noted by inspecting the

Table, one of the benefits of using LLMs (with the

preservation of the conversation context) is their

understanding of the context when asked new questions.

For instance, a user asking a question “And in GEO?” to

a rule-based system would probably not produce any

meaningful result. But when asked to an LLM that has

the previous pieces of the conversation, knowing that it

was asked to calculate the orbital period before, it is

clear for the LLM that it now needs to call a function to

compute the orbital period with a parameter altitude of

35 786 km. A regular system would not understand that

it must call a function, would not understand which

specific function it needs to call, would not know that it

needs to give an altitude in km as an input, and that

satellites in GEO are in a specific and well-known

altitude.

Table 1: Evaluation questions and expected

answers

Question Ground truth

MISSION - ORBIT

What is its orbital period of

EventSat?

94.47 min

What is the Delta_V required to go

down to a circular orbit of 300 km

for its disposal?

113.32 m/s

The satellite has a mass of 12 kg.

What is its lifetime at its planned

orbit?

3.02 years

And at 300 km? 0.041 years

PAYLOAD

Set the EventSat payload power

consumption to 11.5 W and the

EventSat payload mass to 2 kg. In

application of the diffraction limit

and assuming a visible light

observation, focal length of 500 mm

and an aperture of 90 mm, what is

the maximum distance at which the

payload will detect satellites of 2 m

size?

120.78 km

ATTITUDE DETERMINATION AND CONTROL

Set the ADCS power consumption to

3.9 W and the ADCS mass to 0.62

kg. What is the required momentum

storage in the reaction wheels to

counteract a maximum torque of

3.7e-5 Nm, during 1/4 of the orbit?

0.037 Nms

COMMUNICATIONS

The satellite is equipped with a UHF

band transmitter. Set the

communications system power to 2

W and the communications system

mass to 0.30 kg, transmitting at a

frequency of 436.5 MHz. No antenna

gains and system losses are

considered. What is the power

received by a ground station on

Earth?

-106.2 dBm

The satellite is equipped with a UHF

band receiver. It receives a signal of

bandwidth 40 kHz and power -90

dBm. The temperature of the

receiving system is 700 K. What is

the Signal to Noise Ratio?

34.13 dB

Assuming a digital modulation 0.256

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.

Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-D1,6,8,x86846 Page 8 of 10

QPSK and a symbol rate of 1 MBaud

are used, what is the expected Bit

Error Rate?

ELECTRICAL POWER

The satellite has solar arrays, their

combined mass is 0.68 kg, add this to

the EPS mass. The solar array area is

of 0.125 square meters, with an

efficiency of 25%. What is the

amount of power that can be

generated by the satellite?

42.53 W

The satellite has a battery of mass

2.18 kg, add this to the EPS mass.

The battery cells have a capacity of

10.5 Wh. What is the number of cells

required to accumulate the power

generated for one orbit, assuming

one third of the time the satellite is

eclipsed?

5 cells

ON-BOARD COMPUTING AND DATA

Set the OBC power consumption to

2.15 W and the OBC mass to 0.13

kg. The satellite is equipped with a

payload of maximum speed 1.6

Gbps. What is the required clock

speed for a CPU of 32 bits?

50 MHz

The payload works for 20% of an

orbital period. What is the required

amount of data storage capacity for

one orbit?

226.73 GB

SPACECRAFT

What is the total mass of EventSat? 5.91 kg (partial

knowledge)

What is the peak power consumption

of EventSat?

19.55 W

4. Results

This section presents the results of the evaluation of

the trustworthiness and the performance of the

developed system, by following the strategy previously

outlined in Section 3.4.

The number of input tokens for the different questions,

with the CE and without the CE, is presented in Figure 3.

The same is done for the output tokens in Figure 4.

Figure 3: Number of prompt tokens for the different

evaluation questions, with the CE incorporated and

without it.

Figure 4: Number of completion tokens for the

different evaluation questions, with the CE

incorporated and without it.

Figure 5 shows the relative error (in %) with respect to

the ground truth, without and with the CE, for the

different evaluation questions.

Figure 5: Relative Error with respect to the ground

truth for the different evaluation questions.

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.

Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-D1,6,8,x86846 Page 9 of 10

5. Discussion

From the results, two clear observations, which can

be directly traced back to our expectations or

hypotheses, can be drawn.

On the one hand, our expectation that the system with

the Computation Engine integrated would deliver more

accurate results, and thus be more trustworthy, is

confirmed. The relative error of the results with respect

to the ground truth is better for almost all the questions

(except some which require the LLM to blend both

information that is stored in the CE objects as well as in

previous LLM prompts – an issue that can be improved

by further development of the CE and better prompting

strategies). This better accuracy is undoubtedly related

to the fact that the LLM knows how to call the functions

and integrate the result from them into the generated

text. Without the CE, the system struggles to answer the

more complex questions, or those for which an answer

was not available in the training dataset, thus the

relative error is increased significantly.

On the other hand, our hypothesis of increased token

consumption only partially holds true: for small

conversations, the effect of the inclusion of a JSON data

structure with the functions that can be called by the

LLM is remarkable. However, since the answers with a

CE integrated are significantly shorter (the LLM omits

chain of thoughts and explanations), the effect over

time, visible in large conversations, is that the inclusion

of a CE results in more succinct and less token-costly

conversations. Indeed, this behaviour can be seen in

Figure 3 and Figure 4: in the first figure, we observe

how the token advantage of not having an integrated CE

is particularly significant (initial questions, 1-4),

however the advantage is diluted over time (final

questions, 12-15). This is because the answers with a

CE are consistently less token-consuming, as seen in

Figure 4.

When accounting for the incurred cost, since we are

using gpt-3.5 for when integrating the CE and gpt-4o

without a CE, the advantage of using the CE is

incontestable. The latter GPT model is around 4 times

more expensive than the former in input tokens and

about 8 times more expensive in output tokens.

However, the former model is not capable of producing

proper answers without a CE. Thus, when adding the

cost variable in the equation, there is no doubt

whatsoever in the benefit of integrating a CE, besides

the trustworthiness and performance point of view that

were already discussed.

It should not be left out from this discussion what

remains an intrinsic problem with LLMs interfacing

CEs. This evaluation is only a simplified usage case for

the system, and in reality, we cannot always compute

the desired numerical parameters or requirements

because inputs are missing. Assumptions need to be

accepted and made, either by the user or the LLM

during the conversation, and the outputs can only be

within a range of accuracy depending on the number of

inputs accurately provided and the number of

assumptions made. The practitioner needs to properly

understand what is the maturity of the design decisions

that are being made by properly assessing the maturity,

and coverage, of the information and data that is being

provided.

6. Future Work

There is room for improvement of the initial work

presented here. Clearly, the Computation Engine can be

extended. Firstly, by adding implementing additional

subsystems that were left out in this work due to them

being complex and not present in all satellites (namely,

the propulsion system and the thermal control system).

Secondly, by adding more level of detail to the

subsystems, with additional parameters and functions

that calculate those parameters. Additionally, two

important topics can be addressed. On the one hand, a

modification should be made to allow the CE to process

multiple function calls in single LLM responses -a

capability of OpenAI’s LLMs that is currently not

exploited-. On the other hand, and most importantly, the

interfacing of newly created functions to the LLM is

currently poorly scalable: after the coding of the

function, it needs to be manually added to the JSON

structure that is shared with the LLM, and a caller

function needs to be created inside the function caller

module. Automatic coding of such JSON structure and

the piece of code in the function handler would greatly

improve the usability of the CE.

On the evaluation side, additional testing will provide a

more comprehensive understanding of the

trustworthiness and performance of the system. This

includes, among others, fully running the system

locally, with open source LLMs, and measuring

hardware-related parameters that are not available for

measurement with an API-served LLM. This additional

testing phase can include a broader set of LLMs to

better characterize the impact that the choice of a

particular model has on the overall trustworthiness and

performance.

7. Conclusion

In this work, the initial version of a Computation

Engine for LLM-based spacecraft design assistants has

been presented. The architecture as well as the

methodology followed for the development and the

evaluation of an early version of the system have been

introduced. The results of the evaluation show that, with

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.

Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-D1,6,8,x86846 Page 10 of 10

the integration of the developed CE, a significant

improvement is measured in the trustworthiness of

LLM-based design assistants, with an impact on token

usage that tends to dissipate with long conversations

such as design conversations.

To conclude, this work is an important stepping stone

towards the consecution of reliable generative

spacecraft design assistants, overcoming the limitations

of LLMs by adding a trustworthy numerical

computation block.

Acknowledgments

I want to thank my student Roberto Aldea Velayos,

who first developed a prototype in Python of the

computation engine [11] and who, through his

supervision and discussions, helped mature ideas in the

area. Additionally, I want to express gratitude to my

supervisor and lab colleagues for the many insightful

discussions that we have had during the development of

this work.

References

[1] A. Huet, R. Pinquié, F. Segonds, and P. Véron, “A

cognitive design assistant for context-aware

computer-aided design,” Procedia CIRP, vol. 119,

pp. 1029–1034, Jan. 2023, doi:

10.1016/j.procir.2023.03.146.

[2] A. F. Del Carpio and L. B. Angarita, “Assistant

Solutions in Software Engineering: A Systematic

Literature Review,” in 2023 IEEE 14th

International Conference on Software Engineering

and Service Science (ICSESS), Oct. 2023, pp. 93–

100. doi: 10.1109/ICSESS58500.2023.10293029.

[3] J. Jiang, F. Wang, J. Shen, S. Kim, and S. Kim, “A

Survey on Large Language Models for Code

Generation,” Jun. 01, 2024, arXiv:

arXiv:2406.00515. doi:

10.48550/arXiv.2406.00515.

[4] Z. He and B. Yu, “Large Language Models for

EDA: Future or Mirage?,” in Proceedings of the

2024 International Symposium on Physical Design,

in ISPD ’24. New York, NY, USA: Association for

Computing Machinery, Mar. 2024, pp. 65–66. doi:

10.1145/3626184.3639700.

[5] A. V. i Martin and D. Selva, “Daphne: A Virtual

Assistant for Designing Earth Observation

Distributed Spacecraft Missions,” IEEE Journal of

Selected Topics in Applied Earth Observations and

Remote Sensing, vol. 13, pp. 30–48, 2020, doi:

10.1109/JSTARS.2019.2948921.

[6] G. Apaza and D. Selva, “Leveraging Large

Language Models for Tradespace Exploration,”

Journal of Spacecraft and Rockets, vol. 0, no. 0,

pp. 1–19, doi: 10.2514/1.A35834.

[7] A. Berquand, P. Darm, and A. Riccardi,

“SpaceTransformers: Language Modeling for

Space Systems,” IEEE Access, vol. 9, pp. 133111–

133122, 2021, doi:

10.1109/ACCESS.2021.3115659.

[8] M. Henriquez, A. Herd, P. Danènas, D. Dilijonas,

and J. Ontiveros, “CLARK: Building

Conversational Intelligence for Knowledge

Management in the Space Domain,” ECKM, vol.

24, no. 1, Art. no. 1, Sep. 2023, doi:

10.34190/eckm.24.1.1792.

[9] R. M. Garcia Alarcia and A. Golkar, “Architecture

of a generative design tool for spacecraft and user

front-end implementation through a chatbot smart

design assistant,” presented at the IAC 2023

Congress Proceedings, 74th International

Astronautical Congress, 2023. Accessed: Aug. 28,

2024. [Online]. Available:

https://mediatum.ub.tum.de/node?id=1724403&cha

nge_language=en

[10] R. M. Garcia Alarcia, P. Russo, A. Renga, and A.

Golkar, “Bringing Systems Engineering Models to

Large Language Models: An Integration of OPM

with an LLM for Design Assistants,” in

Proceedings of the 12th International Conference

on Model-Based Software and Systems

Engineering-MBSE-AI Integration, Rome, Italy:

INSTICC, 2024. doi: 10.5220/0012621900003645.

[11] R. Aldea Velayos, “Development and assessment

of a computation engine module for an LLM-

enhanced spacecraft design assistant,” 2024,

Accessed: Oct. 16, 2024. [Online]. Available:

https://mediatum.ub.tum.de/node?id=1755552&cha

nge_language=en

[12] T. Schick et al., “Toolformer: Language Models

Can Teach Themselves to Use Tools,” Advances in

Neural Information Processing Systems, vol. 36,

pp. 68539–68551, Dec. 2023.

[13] S. G. Patil, “Teaching Large Language Models to

Use Tools at Scale”.

[14] Y. Gu et al., “Middleware for LLMs: Tools Are

Instrumental for Language Agents in Complex

Environments,” Feb. 22, 2024, arXiv:

arXiv:2402.14672. doi:

10.48550/arXiv.2402.14672.

