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Abstract 

 

The design of spacecraft, and more broadly of space missions, can greatly benefit from LLM-based design 

assistants supporting engineers in the extraction of relevant information from past missions for its reuse in the new 

one, as well as in the automatic generation of system parameters or requirements in text at different levels. However, 

due to the mathematical nature of technical systems, many of the spacecraft parameters or requirements are 

numerical and involve calculations or the application of first principles. While Large Language Models excel at text 

generation, predicting the next words in a sequence with the highest probability, they are not suited, being statistical 

engines, to perform deterministic computations. 

In this paper, we present the architecture of a computation engine to which numerical calculations are outsourced 

during the process of generating parameters or requirements by an LLM-based design assistant. We present the 

integration with the LLM, measure its performance, and benchmark and discuss the improvement in parameters 

generation with a space mission as a use case. 

In particular, the computation engine hereby developed follows an object-oriented programming paradigm, 

mimicking through the classes the subsystems of a spacecraft, through the class properties their parameters, and 

through the class functions the equations and first principles used to calculate the parameters’ values, which can be 

then expressed by the LLM as numerical system parameters or requirements with natural language. A high-level 

programming language and a modular approach are followed in seek of high readability and modifiability, allowing 

the engine to be extended and its granularity increased in future iterations. Different alternatives for the integration of 

the computation engine with the LLM and in the design flow are evaluated and compared, and parameters such as 

the computation speed and error are measured and assessed along different computation platforms. 

By presenting this computation engine for spacecraft design, we aim at patching the shortcomings of LLM-based 

design assistants in numerical calculations, paving the way for their adoption and thus helping accelerate and 

simplify spacecraft design tasks for a broader range of institutions and individuals. 

Keywords: spacecraft design assistant, computation engine, numerical system parameters, Large Language Model, 

Generative AI 

 

Acronyms/Abbreviations 

Application Programming Interface (API) 

Artificial Intelligence (AI) 

Attitude Determination and Control System (ADCS) 

Commercial-Off-The-Shelf (COTS) 

Communication (COM) 

Computation Engine (CE) 

Computer-Aided Design (CAD) 

Electrical Power System (EPS) 

Generative Adversarial Network (GAN) 

Generative Pre-trained Transformer (GPT) 

Large Language Model (LLM) 

On-Board Computer (OBC) 

Open Source (OS) 

Payload (PLD) 

Propulsion (PRO) 

Structure (STR) 

Thermal Control System (TCS) 

 

1. Introduction 

We are living in times of constant technological and 

industrial transformation. Space exploration and 

utilization, historically performed by large, risk-averse, 

budget-hungry organizations and companies, is not 

extraneous to progress. The space industry has been 

disrupted in the last decade by the lowering cost and 

increased opportunities for access to space, the 

introduction of the CubeSat standard, and the increased 

utilization of Commercial-Off-The-Shelf (COTS) 

components. This has allowed a greater number of 

actors to realize a bigger number of missions at lower 

costs. As a general, enabling technology, Artificial 

Intelligence has also gone a long way in the last decade, 

and in the last years, Generative AI and Large Language 

Models (LLM) have taken over the public arena and are 

more and more used in support and automatization of a 
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myriad of tasks. The space industry has progressively 

incorporated AI technology, fundamentally into 

downstream tasks related to data processing, with Deep 

Learning models. Studies and demonstrations on how to 

apply AI to upstream tasks, for instance in mission 

operations, increasing spacecraft autonomy, are 

underway. Still, the application of Generative AI and 

LLMs is quite a recent topic of discussion for space 

activities, and one of the tasks to which it can naturally 

be applied is at the beginning of a space project: the 

design of a space mission and its spacecraft. 

 

Indeed, the design of spacecraft is a process or a set of 

tasks that is still performed in a very classical and 

manual manner, producing varied documentation and 

relying on heritage information to make decisions and 

make appropriate design choices. LLMs are very good 

both at producing documentation in different formats 

and tones, as well as ingesting heritage information and 

data and using it appropriately to generate responses to 

varied questions. Introducing LLMs can effectively 

support spacecraft designers, modernizing and 

automatizing the spacecraft design process, at least in its 

initial stages. However, the introduction of LLMs in the 

design process of any technical system faces a 

fundamental challenge: designing technical systems 

requires numbers to be produced, equations to be 

applied, first principles to be considered. LLMs, on the 

other hand, are fundamentally statistical engines made 

to work with text, predicting which is the word that 

comes next in a sentence with the highest probability – 

not deterministic engines that apply an equation or a 

first principle and faithfully generate a result 

transforming numerical inputs to numerical outputs. 

This prevents LLMs and other Generative AI 

technologies from being directly applicable, with 

trustworthiness, to problems related to the design of 

technical systems. 

 

Fortunately, external tools can be interfaced with LLMs 

to bridge their shortcomings. For instance, LLMs can 

call external functions, giving them some input, and 

collecting back their output to integrate it in the flow of 

natural language generation. More and more models, be 

them open-source or proprietary, are including function 

calling capabilities, and developers are creating tools to 

enhance the generation capabilities of the LLMs. In this 

sense, computation engines are one sort of tools that can 

be developed that are able to compute numerical values 

for technical systems. In this work, we present what, to 

the best of our knowledge, is the first computation 

engine to calculate spacecraft design parameters in the 

framework of an LLM-based design assistant. The 

computation engine, built with modularity and 

modifiability in mind, coded in Rust, is unit tested at the 

level of functions. When the LLM identifies the need to 

produce a numerical value, it calls the appropriate 

function from the computation engine with the required 

inputs, retrieves the output value, and includes it in its 

text generation. The improvement of accuracy in 

numerical system parameters or requirements 

generation is assessed. Given the increase of accuracy, 

reassurance and trustworthiness in an LLM-based 

design assistant is increased. This opens the way for 

future adoption by companies and institutions 

developing space missions.   

 

2. Related works 

Engineers working in different industries have long 

made use of software to support engineering design 

tasks, for instance, Computer-Aided Design (CAD) 

tools. Such tools greatly reduce the time spent in 

designing, help perform checkups and simulations and 

improve the overall quality of designs. However, even if 

they have progressed over the years, the degree to which 

they automate processes is still low.  

 

Little by little, CAD tools incorporate or give way to 

design assistants, able for instance, to provide 

recommendations to the user [1]. Fields such as 

software engineering have also introduced assistants 

along the design and development tasks [2], recently 

benefitting largely from developments in Large 

Language Models for coding tasks [3]. While LLMs are 

less used in engineering design for other fields, interest 

in them is also increasing, for instance in electronics 

design [4]. 

 

Moving to space, the creation of design assistants for 

space missions or spacecraft has been a matter of 

research for the past years. Particularly, there has been 

research and development creating a design assistant for 

Earth observation distributed missions [5], and more 

recently an exploration of the use of LLMs for 

tradespace exploration in space mission design [6], 

moving from rule-based to transformer-based systems. 

Others have explored the application of LLMs across 

different tasks of the space mission lifecycle, 

implementing the transformer architecture on 

requirements classification [7] or adding LLM for 

knowledge management and information reuse on space 

missions [8]. 

 

We have been exploring the usage of LLMs for the 

design of spacecraft. Already last year [9], we identified 

the necessity of implementing both systems engineering 

models that would structure inputs and outputs on the 

design assistant and provide ontologies for the models 

to learn, which we covered in a recent work [10], as 

well as the need to add a computation engine for 

numerical design parameters to be properly generated. 

The computation engine, for which an initial student 
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project was performed in our lab [11], is tackled in this 

work. 

 

Regarding calling functions or tools from LLMs, a 

variety of works tackling different tools for different 

applications have been performed recently. For instance, 

recent research trained a transformer model to be able to 

decide to call external Application Programming 

Interfaces (API) to interface tools such as a calculator, a 

question-and-answer system, a search tool, a translator, 

or a calendar [12]. An in-depth thesis covers particularly 

the fine-tuning of LLMs to learn them to use tools [13]. 

An improvement of performance of up to 2.8 times has 

been measured in the resolution of complex tasks by 

LLMs such as GPT-4 interfacing tools, with respect to 

the same LLM alone [14]. 

 

This work, with respect to the current state-of-the-art 

and published literature on the topic, differs in the 

following aspects: (a) with respect to spacecraft design 

assistants, the one we present in our work is an LLM-

based one, moving forward from more classical, rule-

based tools (b) with respect to other tools callable from 

LLMs, we develop one for the design of space missions 

and spacecraft, to the best of our knowledge a novel 

development. 

  

3. Methodology 

This section explains on the one hand how the 

computation engine has been developed, validated, and 

integrated into a bigger LLM-based spacecraft design 

assistant; and also, the performance of the overall 

integrated system and how we assess the improvement 

in requirement generation by the design assistant when 

incorporating the computation engine into the system, 

with respect to an assistant that does not have this 

computation engine. 

 

3.1 Development of the computation engine 

As previously stated, the computation engine is a 

compendium of functions that calculate different 

numerical parameters of a space mission or spacecraft. 

The functions do not need to be in a particular 

configuration or order. However, we follow a more 

structured approach that is outlined in this subsection. 

 

Before talking about the computation engine that has 

been developed, a series of considerations need to be 

explained. First, our computation engine is generic. This 

is because space missions and spacecraft can be very 

different. In many cases, there is little resemblance 

between a large telecommunications satellite in GEO, 

built by a large system integrator such as Airbus 

Defence and Space, and a small CubeSat in LEO built 

by a university or a research centre. Despite this, they 

all share some characteristics: there will be a physical 

Structure (STR), and you will have a bigger or smaller 

Attitude Determination and Control System (ADCS) for 

pointing, Communications (COM) system to talk to the 

spacecraft and receive data from it, Electrical Power 

System (EPS) for powering the spacecraft, On-Board 

Computer (OBC) and data handling to take decisions 

onboard. On top, you might have a Propulsion (PRO) 

system to change orbits, and a Thermal Control System 

(TCS) to maintain proper temperatures inside the 

spacecraft. And of course, each satellite will have one or 

more Payload (PLD) that capture the mission data or 

provide the mission service.  

 

By creating a generic Computation Engine (CE), we 

focus on these common systems and their main 

parameters, but we do not tackle systems that are 

specific to certain missions or spacecraft classes. 

Additionally, the PRO and TCS systems are not 

implemented in this early version of the CE, since they 

are not present in all satellites (especially on 

nanosatellites and CubeSats) and are more complex 

systems.  

 

Beyond being generic the computation engine hereby 

presented is also not exhaustive. This means that it does 

not compute all the numerical properties of all the 

subsystems present in a generic spacecraft, but only 

those that are of major importance and defining the 

global budgets of the system (e.g., mass budget, power 

budget, radiofrequency link budget, data budget, etc.). 

This is done, on the one hand for the sake of simplicity 

and saving time, as the focus of this work is having a 

functional prototype allowing to prove the suitability 

and benefits of such system in the framework of a 

spacecraft design assistant.  

 

As an example, the computation engine can cover some 

of the following details of interest for a space mission 

and spacecraft: 

 

• Space Mission: The required delta-V from an 

insertion orbit to a final orbit [m/s], the 

required delta-V for deorbiting the spacecraft 

[m/s], the lifetime [years]. 

• Spacecraft: The general parameters of the 

spacecraft, including total mass [kg], volume 

[U], power consumption [W], which are the 

main components of the mass budget and 

power budget. 

• AOCS: The pointing accuracy [deg], of the 

spacecraft, the required momentum [Nm], 

being the main components of the pointing 

budget. 

• COM: The transmitted power [W], the 

frequency [Hz], the bandwidth [Hz], and the 

maximum range [m] for the downlink, the 
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received power [W], the Signal-to-Noise Ratio 

[dB], and the Bit Error Rate for the uplink. 

• EPS: The power generated by a solar array 

[W], the required battery cells. 

• OBC: The required processor speed [MHz], 

the required data storage [MB]. 

 

For the reason of its limited scope and the need for 

extensions, the computation engine is built with 

modularity and modifiability in mind so that it can be 

improved in the future. Indeed, the base of the code* is 

released publicly in a Gitlab repository for the space 

community to use it, modify it, and expand it according 

to the needs of each user. 

 

The CE is programmed with a high-level programming 

language, the Rust language, creating modules for the 

spacecraft, and for each of its subsystems. Modules 

implement structs, containing the parameters of each 

subsystem as variables, and functions, that calculate the 

values of such parameters when called. We selected 

Rust because it is a compiled -and thus fast to execute-, 

cross-platform, and modern language with an increasing 

user community, being adopted more and more as the 

language where AI model inference is performed. The 

CE is composed, as depicted by Figure 1, a main file 

which imports all necessary modules, creates the system 

message, and handles user input/output. An llm.rs file 

takes care of the API calls to OpenAI, creating the 

necessary JSON structures for exchange of messages. 

functions_handler.rs creates the JSON structure with 

the callable functions and its parameters. It also 

 
* Available at: https://gitlab.lrz.de/rgalarcia/ce_base 

performs the calling of functions when requested by the 

LLM. ce.rs is an instrumental file to import all the CE 

classes. A spacemission class instantiates an orbit class 

and a spacecraft class. The spacecraft class instantiates 

multiple satellite subsystems. 

 

3.2 Integration of the computation engine with the LLM 

In what follows, we will explain the typical way in 

which a tool is integrated with an LLM, which is the 

one followed in this work as well. When interacting 

with an LLM, a JSON structure is normally exchanged. 

These structures include some prompts as well as 

parameters. Among the prompts, the most important is 

the response one, which is displayed to the user 

typically in a chat interface. Additionally, a typical 

prompt is the system one, which tells the LLM how it 

needs to behave -e.g., what tone to use in the responses-, 

and typical parameters are the temperature -which 

regulates the stochasticity and thus the creativity of the 

LLM-. When integrating external tools, the JSON 

structure contains a field for tools, making explicit to 

the LLM the existence of functions and sharing their 

name and their input parameters, as depicted by Code 1. 

The LLM, by having been exposed to the existence of 

these functions, decides to use them at discretion. 

 

When an LLM has decided to use one function, this is 

specified in the returned JSON structure, with the inputs 

that the LLM has decided to provide, as shown in Code 

2. The user’s system needs to read this, locally run the 

selected function with the provided response on the user 

side and return a JSON structure with the values 

Figure 1: Block diagram depicting the structure of the developed system. 
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outputted by the function. A JSON structure containing 

the output values is sent to the LLM. The LLM 

integrates that into its text and provides a message with 

the numerical value incorporated. 

 

Code 1: Portion of the JSON shared with the 

LLM, indicating the functions available for calling, 

with one function. 
{ 

    "type": "function", 

    "function": 

    { 

        "name": 

"calculate_orbital_period", 

        "description": "Calculate the 

orbital period of a satellite in 

Earth's orbit based on its altitude.", 

        "parameters": 

        { 

            "type": "object", 

            "properties": 

            { 

                "altitude_km": 

                { 

                    "type": "number", 

                    "description": "The 

altitude of the satellite in 

kilometers." 

                } 

            }, 

            "required": ["altitude_km"] 

        } 

    } 

} 

 

Code 2: Portion of the JSON in which the LLM 

requests the calling of a function. 

 

The behaviour explained before is typically the same for 

both open-source (OS), locally running LLMs, and 

proprietary, API-based LLMs. 

 

In our case, we use a closed-source, API-based LLM 

through OpenAI. The selected model when using the 

Computation Engine is the gpt-3.5-turbo-0125, due to 

the lower costs in comparison to more recent models 

such as gpt4 or gpt4o, and yet solid behaviour in 

understanding the available functions and calling 

whenever necessary. However, due to the need of 

additional general knowledge and reasoning 

capabilities, gpt-4o-2024-08-06 is used in this work’s 

evaluation when not using a CE. Both models are called 

setting their internal temperature parameter to zero, with 

the goal of obtaining more reproducible results by 

reducing the randomness of the answers. 

 

Due to the scarcity of internally available computational 

resources, it has not been possible in the frame of this 

initial work to use an open source, locally running 

LLM. The LLMs that can run on small consumer 

devices are those of small size, with a typical number of 

parameters ranging from 2 billion to 7 billion. 

Unfortunately, such small models are unable to properly 

understand the functions that are available to be called, 

and calling them with the correct name and arguments, 

and format. Only medium models, typically of 70 

billion parameters, can do this consistently. 

Unfortunately, such medium models are already unable 

to run on consumer devices and require a more powerful 

computational architecture. 

 

3.3 Usage of the system 

From a user’s perspective, it is rather simple to use the 

system. The user only needs to ask design questions, 

whether they involve the calculation of numerical 

parameters or requirements, or not. The system takes 

care of instantiating the appropriate Computation 

Engine classes with their parameters and functions, it 

creates the system prompt that is shared with the LLM 

informing of its intended behaviour and the availability 

of functions, and it also rotes queries from the user to 

the LLM and vice versa for the model responses, while 

keeping the conversation context and including it in 

each user-LLM exchange. Additionally, the system 

records performance metrics, such as the number of 

tokens that were sent to the LLM or retrieved from it. 

Naturally, the system is able to handle the LLM 

instructions of calling a specific function with a series 

of parameters, returning the result to the LLM and 

fetching the final text back from it. This operation 

happens in a completely transparent fashion to the user, 

who only sees the final result. The flowchart depicted 

by Figure 2 helps understand the actions and 

interactions happening when a user utilizes the system 

asking a design question, when it is not involving 

numerical calculations and when it requires so. 

 

{ 

"tool_calls": [ 

          { 

            "id": "call_ID123", 

            "type": "function", 

            "function": { 

              "name": 

"calculate_orbital_period", 

              "arguments": 

"{\"altitude_km\":1000}" 

            } 

          } 

        ] 

} 
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3.4 Assessment of the trustworthiness and performance 

of the system 

 

To assess the performance of the system, we measure 

the following two parameters: 

 

• Accuracy of the system without a Computation 

Engine, measured through the relative error 

between the output result and the ground truth 

for each of a series of questions. 

• Accuracy of the system with an integrated CE, 

measured as per above. 

• Number of input tokens (sent by the developed 

application to the LLM) without a CE 

• Number of output tokens (sent from the LLM 

to the developed application) without a CE 

• Number of input tokens with a CE 

• Number of output tokens with a CE 

 

On the one hand, we expect the accuracy of the system 

to greatly improve when incorporating the CE, since the 

numerical calculations, which as explained are not 

performed properly by an LLM, will be outsourced to 

functions. On the other hand, a slight increase in the 

number of tokens, both at input and at output, would be 

expected to be recorded when using a CE. 

 

Input tokens are expected to increase because, along 

with the conversation, the different functions available 

to the LLM to call must be included, with a lengthy text 

structure in JSON depicted before in Section 3.3. 

Additionally, the output tokens are expected to increase 

because when needing to call a function, the LLM will 

produce an additional response, an intermediary one, 

asking for the function to be called (before producing 

the final response, shown to the user, with the response 

text). 

 

Thus, a trade-off appears. One of the valuable 

conclusions of this work is to understand whether the 

benefits of including the CE outgrow the burden in 

terms of token usage (which incur a cost, either paid to 

the LLM provider with the LLM calls or paid internally 

by the usage of computational equipment for a longer 

time). We expect the benefits to be bigger than the 

drawbacks and the CE to be a useful and cost-effective 

tool in advancing LLMs and LLM-based design 

assistants in the context of space systems engineering. 

 

It is also important to mention that, when having locally 

running LLMs, which is not the case of this work, a 

broader set of metrics could be measured to better 

characterise the performance of the system. For 

instance, measuring the token generation speed 

Figure 2: Flowchart depicting the usage of the developed system. 
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(token/s), the CPU and GPU utilization (%), the RAM 

consumption (GB), or the power consumption (W), and 

how they change with and without the integration of the 

CE, would give a full picture that we are unable to give 

at this initial stage of our work presented here. 

 

For all the parameters mentioned before, measures are 

first taken during a conversation with a pure LLM, and 

then in a conversation with an LLM with the integrated 

computation engine, making use of it. We have devised 

a series of questions that request the activation of the 

CE to compute some numerical values, relating to 

different spacecraft subsystem designs. The questions 

are adapted from academic books and exams and 

created on our own. All questions are previously solved 

to have the correct numerical value, the ground truth. 

They aim to cover the different areas that the CE covers. 

 

During the evaluation, on the prompt side, there is an 

initial prompt, with a system role, which says: "You are 

a helpful spacecraft design assistant. If available, use 

supplied tools to assist the user”. Then, the evaluation 

starts by asking the LLM -with the user role- to open a 

design session and create a space mission with a 

spacecraft of certain characteristics. In particular, the 

following series of five prompts are used. First: “Let’s 

open a design session, create a new space mission with 

name EventSat”. Second: “The goal of the mission is to 

detect, classify, and identify objects in space”. Third: 

“The mission consists of one 6U CubeSat spacecraft”. 

Fourth: “The mission orbit is a 500 km altitude Sun-

Synchronous Orbit (SSO). Set the orbit parameters”. 

Fifth: “The CubeSat has a 2U payload consisting of an 

event camera coupled with a small telescopic optic for 

space-to-space imaging”.  Even if there is no ground 

truth for these answers to be checked, we expect the 

LLM to call the functions that instantiate the space 

mission class object and its sub-objects (e.g. orbit, 

spacecraft, and spacecraft subsystem classes). What 

follows in Table 1 are the questions, following in the 

design session, that do have a ground truth and that are 

used for the trustworthiness and performance 

evaluation. 

 

One of the things that can be noted by inspecting the 

Table, one of the benefits of using LLMs (with the 

preservation of the conversation context) is their 

understanding of the context when asked new questions. 

For instance, a user asking a question “And in GEO?” to 

a rule-based system would probably not produce any 

meaningful result. But when asked to an LLM that has 

the previous pieces of the conversation, knowing that it 

was asked to calculate the orbital period before, it is 

clear for the LLM that it now needs to call a function to 

compute the orbital period with a parameter altitude of 

35 786 km. A regular system would not understand that 

it must call a function, would not understand which 

specific function it needs to call, would not know that it 

needs to give an altitude in km as an input, and that 

satellites in GEO are in a specific and well-known 

altitude. 

 

Table 1: Evaluation questions and expected 

answers 

Question Ground truth 

MISSION - ORBIT 

What is its orbital period of 

EventSat? 

94.47 min 

What is the Delta_V required to go 

down to a circular orbit of 300 km 

for its disposal? 

113.32 m/s 

The satellite has a mass of 12 kg. 

What is its lifetime at its planned 

orbit? 

3.02 years 

And at 300 km? 0.041 years 

PAYLOAD 

Set the EventSat payload power 

consumption to 11.5 W and the 

EventSat payload mass to 2 kg. In 

application of the diffraction limit 

and assuming a visible light 

observation, focal length of 500 mm 

and an aperture of 90 mm, what is 

the maximum distance at which the 

payload will detect satellites of 2 m 

size? 

120.78 km 

ATTITUDE DETERMINATION AND CONTROL 

Set the ADCS power consumption to 

3.9 W and the ADCS mass to 0.62 

kg. What is the required momentum 

storage in the reaction wheels to 

counteract a maximum torque of 

3.7e-5 Nm, during 1/4 of the orbit? 

0.037 Nms 

COMMUNICATIONS 

The satellite is equipped with a UHF 

band transmitter. Set the 

communications system power to 2 

W and the communications system 

mass to 0.30 kg, transmitting at a 

frequency of 436.5 MHz. No antenna 

gains and system losses are 

considered. What is the power 

received by a ground station on 

Earth? 

-106.2 dBm 

The satellite is equipped with a UHF 

band receiver. It receives a signal of 

bandwidth 40 kHz and power -90 

dBm. The temperature of the 

receiving system is 700 K. What is 

the Signal to Noise Ratio? 

34.13 dB 

Assuming a digital modulation 0.256 
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QPSK and a symbol rate of 1 MBaud 

are used, what is the expected Bit 

Error Rate? 

ELECTRICAL POWER 

The satellite has solar arrays, their 

combined mass is 0.68 kg, add this to 

the EPS mass. The solar array area is 

of 0.125 square meters, with an 

efficiency of 25%. What is the 

amount of power that can be 

generated by the satellite? 

42.53 W 

The satellite has a battery of mass 

2.18 kg, add this to the EPS mass. 

The battery cells have a capacity of 

10.5 Wh. What is the number of cells 

required to accumulate the power 

generated for one orbit, assuming 

one third of the time the satellite is 

eclipsed?  

5 cells 

ON-BOARD COMPUTING AND DATA 

Set the OBC power consumption to 

2.15 W and the OBC mass to 0.13 

kg. The satellite is equipped with a 

payload of maximum speed 1.6 

Gbps. What is the required clock 

speed for a CPU of 32 bits? 

50 MHz 

The payload works for 20% of an 

orbital period. What is the required 

amount of data storage capacity for 

one orbit? 

226.73 GB 

SPACECRAFT 

What is the total mass of EventSat? 5.91 kg (partial 

knowledge) 

What is the peak power consumption 

of EventSat? 

19.55 W 

 

4. Results  

This section presents the results of the evaluation of 

the trustworthiness and the performance of the 

developed system, by following the strategy previously 

outlined in Section 3.4. 

 

The number of input tokens for the different questions, 

with the CE and without the CE, is presented in Figure 3. 

The same is done for the output tokens in Figure 4. 

 

Figure 3: Number of prompt tokens for the different 

evaluation questions, with the CE incorporated and 

without it.  

 

 
Figure 4: Number of completion tokens for the 

different evaluation questions, with the CE 

incorporated and without it. 

 

Figure 5 shows the relative error (in %) with respect to 

the ground truth, without and with the CE, for the 

different evaluation questions.  

 

 
Figure 5: Relative Error with respect to the ground 

truth for the different evaluation questions. 
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5. Discussion 

From the results, two clear observations, which can 

be directly traced back to our expectations or 

hypotheses, can be drawn. 

 

On the one hand, our expectation that the system with 

the Computation Engine integrated would deliver more 

accurate results, and thus be more trustworthy, is 

confirmed. The relative error of the results with respect 

to the ground truth is better for almost all the questions 

(except some which require the LLM to blend both 

information that is stored in the CE objects as well as in 

previous LLM prompts – an issue that can be improved 

by further development of the CE and better prompting 

strategies). This better accuracy is undoubtedly related 

to the fact that the LLM knows how to call the functions 

and integrate the result from them into the generated 

text. Without the CE, the system struggles to answer the 

more complex questions, or those for which an answer 

was not available in the training dataset, thus the 

relative error is increased significantly. 

 

On the other hand, our hypothesis of increased token 

consumption only partially holds true: for small 

conversations, the effect of the inclusion of a JSON data 

structure with the functions that can be called by the 

LLM is remarkable. However, since the answers with a 

CE integrated are significantly shorter (the LLM omits 

chain of thoughts and explanations), the effect over 

time, visible in large conversations, is that the inclusion 

of a CE results in more succinct and less token-costly 

conversations. Indeed, this behaviour can be seen in 

Figure 3 and Figure 4: in the first figure, we observe 

how the token advantage of not having an integrated CE 

is particularly significant (initial questions, 1-4), 

however the advantage is diluted over time (final 

questions, 12-15). This is because the answers with a 

CE are consistently less token-consuming, as seen in 

Figure 4. 

 

When accounting for the incurred cost, since we are 

using gpt-3.5 for when integrating the CE and gpt-4o 

without a CE, the advantage of using the CE is 

incontestable. The latter GPT model is around 4 times 

more expensive than the former in input tokens and 

about 8 times more expensive in output tokens. 

However, the former model is not capable of producing 

proper answers without a CE. Thus, when adding the 

cost variable in the equation, there is no doubt 

whatsoever in the benefit of integrating a CE, besides 

the trustworthiness and performance point of view that 

were already discussed. 

 

It should not be left out from this discussion what 

remains an intrinsic problem with LLMs interfacing 

CEs. This evaluation is only a simplified usage case for 

the system, and in reality, we cannot always compute 

the desired numerical parameters or requirements 

because inputs are missing. Assumptions need to be 

accepted and made, either by the user or the LLM 

during the conversation, and the outputs can only be 

within a range of accuracy depending on the number of 

inputs accurately provided and the number of 

assumptions made. The practitioner needs to properly 

understand what is the maturity of the design decisions 

that are being made by properly assessing the maturity, 

and coverage, of the information and data that is being 

provided. 

 

6. Future Work 

There is room for improvement of the initial work 

presented here. Clearly, the Computation Engine can be 

extended. Firstly, by adding implementing additional 

subsystems that were left out in this work due to them 

being complex and not present in all satellites (namely, 

the propulsion system and the thermal control system). 

Secondly, by adding more level of detail to the 

subsystems, with additional parameters and functions 

that calculate those parameters. Additionally, two 

important topics can be addressed. On the one hand, a 

modification should be made to allow the CE to process 

multiple function calls in single LLM responses -a 

capability of OpenAI’s LLMs that is currently not 

exploited-. On the other hand, and most importantly, the 

interfacing of newly created functions to the LLM is 

currently poorly scalable: after the coding of the 

function, it needs to be manually added to the JSON 

structure that is shared with the LLM, and a caller 

function needs to be created inside the function caller 

module. Automatic coding of such JSON structure and 

the piece of code in the function handler would greatly 

improve the usability of the CE. 

 

On the evaluation side, additional testing will provide a 

more comprehensive understanding of the 

trustworthiness and performance of the system. This 

includes, among others, fully running the system 

locally, with open source LLMs, and measuring 

hardware-related parameters that are not available for 

measurement with an API-served LLM. This additional 

testing phase can include a broader set of LLMs to 

better characterize the impact that the choice of a 

particular model has on the overall trustworthiness and 

performance. 

 

7. Conclusion 

In this work, the initial version of a Computation 

Engine for LLM-based spacecraft design assistants has 

been presented. The architecture as well as the 

methodology followed for the development and the 

evaluation of an early version of the system have been 

introduced. The results of the evaluation show that, with 
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the integration of the developed CE, a significant 

improvement is measured in the trustworthiness of 

LLM-based design assistants, with an impact on token 

usage that tends to dissipate with long conversations 

such as design conversations. 

 

To conclude, this work is an important stepping stone 

towards the consecution of reliable generative 

spacecraft design assistants, overcoming the limitations 

of LLMs by adding a trustworthy numerical 

computation block. 
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