Chair of Electrical Design Automation
TUM School of Computation, Information and Technology
Technical University of Munich

From Simulation to RVV Hardware: Evaluating the
MuURISCV-NN TinyML Inference Library on the CanMV
K230 Platform

Research practice

Author: Benedikt Witteler
Advisor: Philipp van Kempen
Supervisor: Prof. Dr.-Ing. Ulf Schlichtmann

Submission date: 15. October 2024



Abstract

The ratification of the RISC-V Vector Extension (RVV) is bringing new momentum to
the RISC-V ISA in the field of embedded machine learning. muRISCV-NN is a library of
efficient deep learning kernels that leverages RVV for inference on constrained edge devices.
With the CanMV K230 development board - the first commercial hardware implementing
RVV 1.0 - this study evaluates whether muRISCV-NN can perform as effectively on real
hardware as in an instruction set simulator (ISS). Porting muRISCV-NN to the CanMV
K230 involved addressing challenges like compiler issues and its integration within RTOS
and Linux environments. The results of this project show that muRISCV-NN meets its
performance expectations, achieving a 3.85x cycle count reduction during ResNet inference
through vectorization. Layer-wise benchmarking with the MLonMCU framework revealed
speedups of up to 6.68x in fully connected layers and up to 4.40x in Conv2D layers, with
larger layers profiting more from vectorization than smaller ones. These findings confirm
muRISCV-NN's effectiveness on physical hardware, supporting the broader adoption of
RISC-V in embedded Al



Contents

Contents 1
1 Introduction 2
2 State of the Art 4
2.1 RISC-V Vector Extension . . . . . . ... . ... ... ... ........ 4
2.2 CanMV K230 Board . . . . . . . . . .. ... ... 4
2.3 muRISCV-NN . . . . .. 5
2.4 MLonMCU . . . . . . . 7
3 Tasks and Challenges 8
3.1 Getting the K230 SDK Up and Running . . . . . . . ... ... ... ... 8
3.2 Porting muRISCV-NN to the CanMV K230 . ... ... ... ....... 9
3.2.1 Toolchain Issues . . . . . . . . . . ... ... ... ... ... ..., 9

3.3 Alternative Setup: Running muRISCV-NN in a Linux Environment on the
CanMV K230 . . . . . . . . 10
3.4 Experimental Setup . . . . . .. .. 10
3.4.1 RTOS . . . 10
3.4.2 Linux . . . ... 11
4 Experimental Results 12
4.1 Setup. . . . .o 12
4.2 RTOS . . . e 12
4.3 Linux . . ... e e e e 14
5 Conclusion 16
A Figures 17
List of Figures 24
List of Tables 25
Bibliography 26



Chapter 1

Introduction

In recent years, the increased need for efficient machine learning on the edge has driven
innovations in the embedded domain. With its open-source nature and flexibility, the
RISC-V instruction set architecture (ISA) has become an attractive choice for developing
embedded machine learning solutions. The recent ratification of the RISC-V Vector Ex-
tension (RVV) 1.0 brings notable improvements in vector processing capabilities, which
can significantly enhance the performance of machine learning inference on constrained
platforms. Until now, however, there has been a lack of practical evaluations on actual
hardware to verify these potential benefits.

Canaan Inc.’s CanMV K230 development board is the first commercial hardware to fea-
ture a processor with a vector processing unit (VPU) supporting the ratified RVV 1.0. The
muRISCV-NN library offers a suite of efficient deep learning kernels optimized for RVV
and provides a lightweight, platform-independent alternative to existing machine learn-
ing inference libraries. The primary goal of this research is to evaluate the effectiveness
of muRISCV-NN on the CanMV K230 platform and to assess whether its performance
matches the results observed in an instruction set simulator (ISS). The project aims to ad-
dress the challenges of porting muRISCV-NN to the CanMV K230 and provides a detailed
performance analysis of neural network inference utilizing vectorization on this platform.
Specifically, the tasks involved configuring the K230 software development kit (SDK), over-
coming toolchain compatibility issues, and setting up an experimental framework to bench-
mark various neural network models in both real-time operating system (RTOS) and Linux
environments.

Through this project, the performance of muRISCV-NN was tested for anomaly detec-
tion, image classification, visual wake word, and keyword spotting neural network models,
providing insights into how RVV vectorization impacts different neural network layers.
The experimental results demonstrate significant cycle and instruction count reductions,
supporting the broader adoption of RISC-V for embedded artificial intelligence (Al) appli-
cations.

The remainder of this report is structured as follows. In Chapter 2 the backgrounds of
this work are explained by introducing RVV, the CanMV K230 development board, the
muRISCV-NN library, and the MLonMCU benchmarking framework. Chapter 3 outlines



how muRISCV-NN was ported to the CanMV K230 to obtain a hardware and software
setup for benchmarking. The different performed tasks as well as the faced challenges are
detailed in this section and the respective experimental results are presented in Chapter 4.
Finally, this work is concluded in Chapter 5.



Chapter 2

State of the Art

2.1 RISC-V Vector Extension

The RISC-V ISA was introduced in 2010 by the computer science team at UC Berkley.
Unlike proprietary ISAs such as Intel’s 86 or the ones of the arm family, RISC-V is
offered under the BSD license and free to use. RISC-V follows the reduced instruction set
computer (RISC) principle, making it very minimal in its base configuration. The ISA is
very modular, however, and can easily be extended. Next to custom extensions designed
by vendors for their RISC-V implementations, there exist numerous standard extensions
ratified by RISC-V International [4].

The RISC-V vector extension proposed in [5] was ratified in November 2021 [4]. It
extends the scalar RISC-V ISA by 32 new vector registers of length VLEN bits each and
further introduces seven control and status registers (CSRs). One of RVVs strengths is
that it is inherently vector length agnostic [13]. This means that the same compiled code
can be executed on different implementations of RISC-V processors with different vector
register lengths VLEN. Additionally, the size of vector elements as well as the number
of elements in a vector can be changed at runtime. This is archived by introducing the
selected element width (SEW) and length multiplier (LMUL) parameters that are stored
in the vtype CSR. The SEW specifies the size of a vector element in bits and the LMUL is
an integer value indicating how many vector registers are grouped to form a single vector,
allowing it to span over multiple registers. If LMUL holds a fractional values (1/2, 1/4,
1/8, ...), multiple vectors are stored inside a single vector register.

2.2 CanMV K230 Board

The CanMV K230 development board released in 2023 is the first commercial hardware
featuring a processor that implements the ratified RISC-V vector extension version 1.0.
The Canaan Inc. board comes with the Kendryte K230 Dual-Core C908 64-bit processor
with two differently configured XuanTie C908 cores. This 64-bit core was presented in
2022 by T-Head Semiconductor. It implements a nine-stage dual-issue in-order pipeline, a



two-level cache system and supports branch prediction [14]. Manufactured under TSMC'’s
12 nm process, the core can be clocked with a maximum frequency of 2 GHz resulting in a
dynamic power consumption of 52.8 mW /GHz per core. Additionally, the XuanTie C908
includes an optional vector processing unit that is compatible with RVV 1.0. While its
2020 predecessor XuanTie C906 featured VPU support as well, it was not compatible with
RVV 1.0 but only with version 0.7.1 [13].

From the two cores inside the CanMV K230’s CPU, only the more powerful one im-
plements RVV 1.0 with a vector register length of 128 bits. Its maximum clock frequency
is 1.6 GHz. The second core clocks with up to 800 MHz and does not have a VPU. With
this configuration the Kendryte K230 Dual-Core C908 64-bit is not a multiprocessor in
the common sense with two synchronized cores. Instead, the two cores work mostly in-
dependently of each other. In the boards standard development kit, the K230 SDK, the
800 MHz core runs a Linux system as a convenient way to access the board while the 1.6
GHz core runs the RTOS RT-Thread, inside which compute intensive applications such
as machine learning inference can be executed. Following the naming convention in the
board’s documentation, the 1.6 GHz core implementing RVV will be called big core and
the 800 MHz core not implementing RVV will be called small core in this report.

Next to the aforementioned CPU, the CanMV K230 is equipped with 512 MiB of
LPDDR3 RAM and a micro SD card serving as permanent memory. It further comes with
a built-in knowledge processing unit (KPU), dedicated graphics hardware acceleration units
and a multimedia subsystem supporting 1080p HDMI output and an integrated camera
[1]. Various peripherals such as USB 2.0, UART and 12C are also provided. Complete
technical specifications of the CanMV K230 are detailed in [1] and an overview is illustrated
in Figure 2.1. The focus of this work, however, is on the RVV 1.0 VPU of the XuanTie
C908 core and most other features are not further examined.

2.3 muRISCV-NN

muRISCV-NN [15] is a suite of optimized deep learning kernels designed specifically for
embedded systems and microcontrollers. Created by the Chair of Electronic Design Au-
tomation at the Technical University of Munich, this library addresses the need for a
lightweight, open-source, and platform-independent compute library that can fully utilize
RVV 1.0 and the RISC-V packed "P” extension for machine learning loads. muRISCV-
NN is based on arm’s CMSIS-NN inference library [11] but targets the RISC-V platform
instead of arm Neon or Helium processors. It can act as a drop-in replacement for the
latter since bit-accuracy to CMSIS-NN is ensured. As such, muRISCV-NN can be used
with embedded machine learning frameworks like TensorFlow Lite for Microcontrollers
(TFLM) [10] and microTVM [9]. The library is compatible with both the RISC-V GNU
Compiler and LLVM [12]. While both compilers offer autovectorization, the resulting code
does not take full advantage of RISC-V’s length agnostic vector capabilities, as illustrated
in [8]. Through its manually optimized operator implementations, muRISCV-NN achieves
up to a 60% runtime improvement for convolutional models compared to LLVM’s built-in



Figure 2.1:

High Speed Security PMU
Subsystem SYSCTL Subsystem Al Subsystem
USB 2.0 AES/SHA/RSA Timer x5 RTC KPU
O7G x2 JECC INT8 7 INT16
WDT x1
SD/eMMC | SM2/SM3/SM4 | Mailbox | CLK & POR | | SRAM 2MB |
HC x2 TS 1
SDR104/HS200 TRNG oTP X Power on FFT
160Mbps | 32KB CRP Enable 4096 FFT/IFFT
SPI OPI "
Al 2D Engine
DRIZ00 Affine/Crop
CPU1 CcPUO Resize/Padding/Shift
SP1 QPI x2 1.6GHz 800MHz
SDR100 Vector RVV1.0 Kz 30 Storage
L1 32KB D L1 32KB /D M t
12 256KB L2 128KB anagemen
DDR Subsystem
DDR3L/LPDDR3
Low Speed /LPDDRA4
Multi-Media Subsystem X165E2b
UART x 5 1600/2133/2667M
vi Display
12C x5 SO0k Share Memory
PWM x 6 2K@01ps — SDMA/PDMA
DwW MIPI DSI 8 Channels
4K@3I0Ms 1xd/12 lane
oS
Down Scale 1.5Gbps 2': GI_JMA
| 4 Paths ngine
GPIO x 64 alhs 3D sL 50 )
MIPI CSI Depth Engine 2.5D GPU
e + 1 X ane
500MBps Input

CanMV K230 block diagram from https://github.com/kendryte/k230_
docs/blob/main/en/CanMV_K230_Tutorial.md.



https://github.com/kendryte/k230_docs/blob/main/en/CanMV_K230_Tutorial.md
https://github.com/kendryte/k230_docs/blob/main/en/CanMV_K230_Tutorial.md

autovectorization when tested on an instruction set simulator.

2.4 MLonMCU

MLonMCU [16] is a tool designed to benchmark TinyML frameworks on microcontrollers,
streamlining the process of comparing various frameworks and configurations. It allows
users to perform comprehensive evaluations efficiently, with minimal manual intervention,
by automating the benchmarking flow. By supporting a range of platforms and the leading
TinyML frameworks TFLM and TVM, MLonMCU provides valuable insights into analyz-
ing and optimizing machine learning applications for constrained edge devices.



Chapter 3

Tasks and Challenges

3.1 Getting the K230 SDK Up and Running

To enable custom software execution on the CanMV K230, the first step of the project
was to get the vendor’s standard development kit up and running on the board. In this
so-called K230 SDK, the small 800 MHz core of the CPU runs a Linux system providing
convenience functionalities, for example, for interfacing with the board. The big 1.6 GHz
RVYV core runs an RTOS inside which the benchmarks of this project have been measured.

While a lot of documentation is provided for the board and its firmware, working
with it was not easy. Firstly, large amounts of the materials are in Chinese and the
English translations are often not very good. More problematic, however, is the way the
documentation is structured. The repository [7] is quite messy and not intuitive to work
with. While some tutorials are provided, it is very hard to find specific pieces of information
in the poorly structured list of Markdown pages.

Following the instructions in [2], the K230 SDK could be built using the cumbersome
Docker build provided by the vendor. The produced image file was written to a micro SD
card to get the CanMV K230 running without having to make changes to the firmware.
To control the two individual cores of the board, both the Linux system on the small core
as well as the RTOS on the big core offer a UART interface. Basic operations such as the
program launch for a benchmark can be performed in separate command line interfaces.

The initial way to transfer a cross-compiled application to the CanMV K230 is by
physically removing its micro SD card, copying the application from the host PC to a
reserved partition on the card, re-inserting it into the CanMV K230, and relaunching the
board. This procedure is very time consuming and prohibits any automated benchmarking.
To improve this, a LAN connection and an SSH server were established on the Linux
system of the CanMV K230. This allows sending application binaries to the small core
via the secure copy protocol (SCP). By storing them in a memory location that is also
accessible to the big core, the benchmark applications of this project could be executed on
the RVV hardware. The functionality of the setup was verified by running a demo image
scaling application on the big core [3]. In this demo, enabling RVV already showed a 1.45x



execution time reduction compared to pure scalar execution.

3.2 Porting muRISCV-NN to the CanMV K230

Porting the muRISCV-NN inference library to the CanMV K230 platform involved several
key steps. The process required modifications to the library’s build setup, addressing
toolchain compatibility issues, and coming up with a two-step build to successfully run the
muRISCV-NN benchmark code on physical hardware rather than an ISS.

The first task was to adapt the muRISCV-NN CMake build system to the CanMV
K230 specifics. Following the example of different build configurations of muRISCV-NN
for ISS, a suitable configuration for the CanMV K230 hardware was implemented. It was
important to make sure that compiler and linker flags for the library build were identical to
the ones used in K230 SDK demo projects. Compiler flags: -march=rv64gcv -mabi=Ilp64d
-mcemodel=medany. Linker flags: —static -T link.lds (with link.lds the vendor linker script).

3.2.1 Toolchain Issues

The first major toolchain issue was encountered when using the vendor-provided toolchain,
which utilizes GCC version 12.0.1, to build a muRISCV-NN benchmark with vectorization
enabled. GCC version 12.0.1 does not fully support the explicit vector instructions required
by muRISCV-NN, as vector intrinsics have undergone changes in GCC 13. The muRISCV-
NN library relies on these updated intrinsics for leveraging RVV. As a result, attempting
to compile the library with the vendor’s GCC resulted in compilation errors due to the
absence of the necessary intrinsic functions.

To circumvent this problem, compiling with standard GCC 13 was considered, which
successfully built the vectorized code due to its support for the updated C intrinsics.
However, this led to a second problem: the executables built with GCC 13 could not be
run on the CanMV K230. This incompatibility was traced back to specific system calls
used by the RTOS running on the CanMV K230. These system calls are built into the
vendor toolchain but their source code is not available for integration. As a result, using
GCC 13 directly to compile the entire application meant that the necessary RTOS-specific
system calls were missing, which rendered the resulting binaries unusable on the K230
hardware.

To resolve these issues, a two-step build process was developed. First, muRISCV-NN
was compiled using standard GCC 13 and stored as a static library libmuriscunn.a. This
allowed using the updated vector intrinsics and enabled full utilization of RVV capabilities
during the library’s build process. The second step involved building the final executable,
containing benchmarking code, for example, using the vendor’s GCC 12.0.1 toolchain,
which linked the previously compiled static libmurisconn.a. This approach leveraged the
specific system calls and runtime environment embedded within the vendor’s toolchain,
thus ensuring the final executable was compatible with the K230’s RTOS. By linking the



library built with GCC 13 to the main application compiled with the vendor toolchain, it
was possible to achieve the best of both worlds.

3.3 Alternative Setup: Running muRISCV-NN in a
Linux Environment on the CanMV K230

While the two-step build process provides a functional way to run muRISCV-NN bench-
marks within an RTOS on the big core of the CanMV K230, it has certain limitations. A
key downside is the inability to leverage the potential of MLonMCU for deployment and
extensive benchmarking of TinyML applications on the CanMV K230. MLonMCU is a
tool for benchmarking, offering automated deployment and analysis with minimal manual
effort. However, it does not support applications that require multiple toolchains during
the build process, as was necessary in the RTOS setup. To address this challenge, an alter-
native firmware setup was implemented. Instead of relying on the vendor’s K230 SDK, a
minimal Debian Linux environment was installed on the big core, allowing the benchmarks
to run directly within a Linux environment. This setup provides a consistent toolchain
environment, simplifying the benchmarking process and making it fully compatible with
MLonMCU.

The official vendor SDK for the CanMV K230 includes a Linux system only for the small
core. Therefore, getting Linux to run on the big core required following the instructions
provided in [6]. The main steps involved flashing a custom system image to the micro
SD card and using Debootstrap to bootstrap Debian on the system. The resulting system
consists of a bootloader and a Debian Linux kernel running exclusively on the big core. This
configuration makes all 512 MiB of RAM and the entire micro SD card storage available
to the big core, with the small core disabled and no operating system running on it. While
WiFi is not present in this setup, a LAN interface is available for communication.

3.4 Experimental Setup

For the experiments of this study, the neural network inference benchmarks were executed
either within an RTOS or within a minimal Linux environment. While the results in
an RTOS come closer to true bare metal performance, more extensive benchmarking is
possible in the Linux environment thanks to MLonMCU. The experimental setup differs
slightly in both cases.

3.4.1 RTOS

For benchmarks executed within the RTOS, first the source code of muRISCV-NN and
then the source code of the benchmark itself are compiled in the previously discussed two-
step build process. The resulting ELF file is then transferred to the CanMV K230 via
SCP. Control of the big core is achieved through a UART interface from the host PC,

10



which allows the execution of the benchmark remotely. Once it completes, the results are
transmitted back to the host for analysis. All steps are automated using a script.

3.4.2 Linux

For the Linux environment benchmarks, MLonMCU is used to streamline the entire pro-
cess, from compilation to execution. In this case, both muRISCV-NN and the benchmark
application are built consecutively in a single build process. The resulting ELF file is
transferred to the big core of the CanMV K230, where it is executed. Both transfer and
execution are managed automatically via SCP and SSH, respectively. This is not possible
in the RTOS configuration, in which only the small core is connected to a network via
LAN, while the big core is only accessible via UART.

11



Chapter 4

Experimental Results

4.1 Setup

For this project, the same MLPerfTiny neural network models were used for benchmarking
as those used in [15]. All models have been quantized to int§ format. The models have
different use cases and varying quantized sizes (values as reported in [15]):

e toycar: anomaly detection, 270 kB
e resnet: image classification, 96.2 kB
e vww: visual wake words, 325 kB

e aww: keyword spotting, 58.3 kB

For all experiments, GCC’s compiler auto-vectorization feature was deactivated. All
vector operations in the benchmarks go back to the explicit RVV instruction used in
muRISCV-NN.

4.2 RTOS

Using compiler optimization level -Os, instruction counts for benchmarks run on CanMV
K230 hardware and the ISS were nearly identical, with only minor differences attributable
to different compiler versions.

Vectorization led to notable reductions in both cycle count and instruction count as
can be seen in Figure 4.1. The toycar benchmark achieved the highest cycle reduction
(5.43x), while the ic benchmark had the largest instruction count reduction (5.63x). These
improvements highlight the effectiveness of vector execution with RVV 1.0 in reducing both
computation complexity and runtime on real hardware. The Clock Cycles Per Instruction
(CPI) was generally higher for vector execution compared to scalar execution (for toycar
exception see next section) as illustrated in the table in Table 4.1. This is logical since

12



toycar

2.50E+07 1.20E+08 4.00E+06 8.00E+07
- 1.00E+08
g 200807 8 00507 3.00E+06 6.00E+07
Q 1.50E+07 :
% 6.00E+07 2.00E+06 4.00E+07
g 100Er7 4.00E+07
& 500406 5 00407 1.00E+06 2.00E+07

0.00E+00 0.00E+00 0.00E+00 0.00E+00
. 200E+07 1.00E+08 2.50E+06 6.00E+07
(=

5.00E+07
§ 1.50E+07 8.00E+07 2.00E+06 el
.
c 6.00E+07 1.50E+06 00E+0
S 1.00E+07 3.00E+07
=1
5 - oomeos 4.00E+07 1.00E+06 2 00E+07
‘2‘ : 2.00E+07 5.00E+05 1.00E+07
= 0.00E+00 0.00E+00 0.00E+00 0.00E+00
B canMv K230 Scalar canMV K230 Vector [l 1SS Scalar ISS Vector

Figure 4.1: Cycle and instruction counts for aww, ic, toycar, and vww benchmarks with
vectorization enabled and disables. The instruction count on the CanMV K230 hardware
platform is also compared to the results on the ISS.

Reduction Cycles Reduction Instructions CPlScalar CPIVector

aww 2.83 4.47 1.16 1.83
ic 3.85 5.63 1.24 1.81
toycar 5.43 4.95 1.75 1.6
vww 2.53 4.03 1.14 1.81

Table 4.1: Cycle and instruction count reductions for the four different benchmarks as well
as the CPIs comparing vector to scalar execution.

13



vector instructions combine multiple scalar operations into one, resulting in fewer overall
instructions that often execute for more than one clock cycle.

The same benchmarks have been executed with compiler optimization level -O3. In
this configuration as well, instruction counts could be reduced through vectorization. Cy-
cle counts, however, increased when both aggressive level -O8 optimizations and explicit
vectorization in muRISCV-NN were activated. It can be concluded that both features
interfere with each other.

4.3 Linux

With the help of MLonMCU, layer-wise benchmarking was possible within the Linux envi-
ronment. This revealed further insights. All benchmarks in this section have been recorded
with compiler optimization level -Os. With the Linux kernel running in the background
during all benchmarks, utilizing more resources than the RTOS in the previous section,
there are higher inaccuracies in all measurements. Fortunately, no particular errors oc-
curred that could be traced back to extensive Linux kernel loads.

The toycar model only consists of ten dense layers of different sizes as depicted in
Figure A.2. Vectorization yielded significant speedups, with an overall cycle count reduc-
tion of 5.44x and an instruction count reduction of 5.73x. The chart in Figure A.1 reveals
that the extent of speedup for the individual layers varied depending on their sizes. Larger
layers demonstrated strong performance improvements of up to 6.68x (cycle count) and
6.31x (instruction count), while smaller layers showed only modest gains. Layer 5, for
example, configured with 128x8 weights, experienced no to minimal speedups - 0.96x for
cycle count and 1.77x for instruction count - due to its small size. This limited performance
boost is attributed to the short input feature vectors (8 elements), which are insufficient
to fully leverage RVV vector execution. Further optimization efforts for layer 5 would
be ineffective, however, as it constitutes only about 3% of the overall runtime. To some
extent, the layer-wise benchmark re-exhibits the aforementioned CPI reduction with vec-
torization enabled that only occurred in the RTOS toycar benchmark. While the overall
CPI with vectorization enabled is higher in this benchmark (1.98 compared to 1.86), the
generally low CPI stems from the relatively low CPI for dense layers with vectorization
enabled. At this point, it is unclear why dense layers achieve particularly low CPIs while
using vectorization.

As depicted in Figure A.4, the aww model comprises a sequence of alternating point-
wise Conv2D and DepthwiseConv2D layers (pairs also known as Pointwise Conv2D), along
with one AveragePool2D, one Reshape, one dense, and a final softmax layer in the end.
Figure A.3 highlights that both types of convolutional layers benefit from vectorization,
with regular Conv2D layers achieving maximum speedups of 2.74x for cycle count and
4.21x for instruction count. The speedups are even more pronounced in DepthwiseConv2D
layers, which realize reductions of up to 4.05x and 7.38x for cycle and instruction counts,
respectively, indicating a greater potential for vectorization in this layer type. In contrast,
the single AveragePool2D layer showed limitations when vectorization was enabled. Fur-

14



ther optimization of this layer was not prioritized, as it contributes to only about 3% of
the overall runtime.

For the most part, the resnet model is constituted of Conv2D layers that are sometimes
traversed by parallel data streams, as illustrated in Figure A.6. Figure A.5 demonstrates
that the speedups for those layers are similar to the ones exhibited for aww, reaching up
to 4.40x and 6.24x for cycle count and instruction count, respectively for the particularly
large layer 9. The three Add layers in this model can be vectorized particularly efficiently,
reaching reductions of up to 5.59x and 23.3x for cycle and instruction counts, respectively.

Since the vww model has the same structure as aww, only with more repetitions of
Conv2D and DepthwiseConv2D layers, its layer-wise analysis does not provide new insights
and is therefore ommitted in this report.

15



Chapter 5

Conclusion

This project has successfully demonstrated the performance of the muRISCV-NN library
on the CanMV K230 development board, validating its efficient deep learning inference
capabilities using RVV not only on an ISS but also on physical hardware. Detailed bench-
marking revealed substantial performance improvements. Through vectorization, cycle
counts as well as instruction counts could be reduced for four different neural network
model benchmarks. These results support the wider adoption of RISC-V for embedded Al
applications.

Porting the muRISCV-NN inference library to the CanMV K230 presented several
challenges, such as toolchain compatibility issues and insufficient vendor software support.
However, these challenges were mitigated by implementing a two-step build process to
enable RVV vectorization and running the benchmarks not only in an RTOS but also in a
Linux environment.*

In future work, this research can be further expanded. Firstly, the recently introduced
Banana PI BPi-F3 SpacemiT K1 presents a hardware platform implementing RVV 1.0 that
is far more suitable for machine learning applications as it comes with eight vector cores
as opposed to a single one in the CanMV K230 as well as up to 16 GB of RAM. Porting
muRISCV-NN to a multicore platform promises even larger improvements in runtime than
presented in this work. Secondly, building a real-world application based on muRISCV-
NN would provide deeper insights into its practical utility and allow for testing under
real-world constraints. Finally, continued optimization of specific neural network layers
based on hardware benchmark results could yield even greater performance gains.

LCode changes are not upstreamed yet. A pull request will follow.

16



Appendix A

Figures

17



(uaai8) dnpaads (uaaid) dnpaads

o o o o o o o o o o o o o o o

S S S S S S S S S S S S S S S

0 ~ © wn < o o~ - Il ~ © wn < (3] o~ i '
()] n
1] ©
© wn

Go+38y'T NN 1X3N\ 70+39T'c I 1X3A

(2]
S0+3v'e I [ XIAON G0+387° I [ X3IAON
~ o
— ©
< s
@
v0+356'C M 1X3A g v0+368°T M LX3A
©
G0+3¢8'T N 1X3/\ON G0+390°T NN |X3AON
~ ~
n ©o
© wn
>
v0+3v8C M LX3IA g ¥0+3/8T M 1X3A
©
G0+3/8°T N |X3AON G0+390°T I [X3AON
bl o
Q §
< wn
]
v0+3v6’c Ml LX3A g ¥0+320C M 1X3A
©
G0+328°T M 1X3\ON S0+390°T NN |X3AON
© ~
] N
o -~
2 -
¥0+3e6'T B 1X3IA g c €0+352°2 1 1X3aA
= = >3
c o
g ¥0+398'T W 1X3IAON (&) v0+38¢'T W LX3AON
(&) © 5 o
N — ©
2 s 5 =
o <
> . ps 2 .
&) €0+396C | 1XaA ) 2 €0+32£°T | 1X3A
- c
#0+358'T W LX3AON - 70+3€0°'T W LX3AON
o (2]
© <
[T 0
@
vo+3cee M IX3IA g vo+3r6'T M LX3A
©
G0+3/8'T N |X3\ON G0+390'T NN |X3AON
~ o]
wn <
wn wn
N
vo+3zee M LX3A g vo+3ar6'T M LX3A
©
G0+358°'T NN 1X3/\ON G0+390'T NN [X3AON
o] o
© ~
© I}
o
v0+358C M IX3A g v0+3/8'T M LX3A
©
G0+376'7T N 1X3\ON G0+3/0°T NN 1X3AON
~ —
(2] [}
[t} ©
1=
G0+395'T NN 1X3A g ¥0+320' MM 1X3A
©
s0+36c'6 I | X3AON 50+390°S I | XIAON
© wn wn wn wn wn wn wn wn wn o wn wn wn wn wn wn o
o o o o o o o o o o o o o o o o o o
F ¥ F ¥ F F ¥ F F F F F F F F F ¥ F
w w w w w w w w w w w w w w w w w w
o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o
— o © ~N © 0 < ™ o — o © 0 < ™ o — o
(amq) 1unog 81240 (ama) uno? uonannsu|

Figure A.1: Layer-wise benchmark results of the toycar model.

18

layer9

layer8

layer7

layer6

layer5

layerd

layer3

layer2

layer1

layer0



FullyConnected

weights (128x640)
as (128)

Relu

FullyConnected

ights (128x128)
as (128)

Relu

FullyConnected

weights (128x128)
bias (128)

Relu

FullyConnected

weights (128x128)
as (128)

Relu

FullyConnected

weights (8x128)
bias (8)

Relu

FullyConnected

weights (128x8)
bias (128)

Relu

FullyConnected

weights (128x128)
as (128)

Relu

FullyConnected

weights (128x128)
bias (128)

G

FullyConnected

weights (128x128)
bias (128)

Relu

?x128

FullyConnected

weights (640x128)
bias (640)

?x640

Identity

Figure A.2: toycar model architecture.
19



(uaai8) dnpaads

° ° ° °
S S S S
@ 3 < o
P
@
"
©
~
o

=)
<
BN

o
<
=i

o
=]
-

Y0+39€°T |

¥0+38E°T |

£0+325°C

v0+32y'T |

o
o
=1

20+3eVY

20+310'7

<
N
=]

S0+3sv'c MM

0+368°S I

90+3veT N

90+399°¢ N

Cycle Count

0
=
<

so+31ez W

so+39c'c NN

90+3ve’T N

©
=3
¥
w
N
©
@
3.90 |

DepthwiseConv2D

<
~
o

S0+3tv'z Ml

So+36c'c NN

o0+3ve’T N

90+3,9°¢ I

o
<
<

®
I3
o

so+3tec MM

S0+38z'c NEEEG—

90+3veT N

90+399°¢

4.00E+06

3
bl
©

So+3zyz Ml

so+36z'c NN

<
-
o

90+3/y'T I

©
=3
?
o
54
-
]

3.50E+06
3.00E+06

50E+06
2.00E+06

1.50E+06

o
(amq)unog 81949

1.00E+06

5.00E+05

0.00E+00

1Xan

1X3AON

1Xan

1X3AON

1X3an

1X3AON

1X3aA

1X3AON

1X3an

1X3AON

IXan

1X3AON

1X3A

1X3AON

1Xan

1X3AON

1X3n

1X3AON

1Xan

IX3AON

1X3A

1X3AON

1Xan

1X3AON

1X3A

1X3AON

Softmax

DepthwiseConv2D Conv2D AveragePool2D Reshape FullyConnected

Conv2D

DepthwiseConv2D Conv2D DepthwiseConv2D Conv2D

Conv2D

layer12

layerl layer2 layer3 layerd layer5 layer6 layer7 layer8 layer9 layer10 layer1l

layer0

Instruction Count

8.00

7.00

o
<
©

(uaa.3) dnpaadg

s o
s 2
w <
@

]

<

°

S

<

=)
<
©

=)
<
o

o
<
=i

=)
S
-

0+3£0°T | LX3A

0+340°T

£0+3€9'T
€0+39T°L
=)
<
-
20+39v°E
20+39v°E

@
*
=]

vo+3e8'Z Il

0+316'9

S0+39T°Z

90+310°¢

@
«Q
~

s0+31v'T M

90+370'T N

421

S0+35T°Z

90+310°¢

s0+3ev'T M

90+350°T G

4.20

S0+391T°Z N

90+310°c

@
Q
~

S0+31v'T M

90+3v0°1

4.20

S0+397°Z I

90+310°¢

3.50E+06

~
R
~

so+3er'T M

90+3v0'T N

©
e
o

S0+35v'Z N

90+385C N

3.00E+06

.00E+06

©
8
&
]
i
I o
(ama)unog u

1.50E+06
1.00E+06

ononnsu

5.00E+05

0.00E+00

1X3AON

1X3an

1X3AON

1Xan

1X3AON

1Xan

IX3AON

1Xan

1X3AON

IX3an

1X3AON

1Xan

1X3AON

LXan

1IX3AON

1X3an

1IX3AON

1X3an

1X3AON

XA

1X3AON

XA

1X3AON

1Xan

1X3AON

Figure A.3: Layer-wise benchmark results of the aww model.

20

Softmax

DepthwiseConv2D Conv2D DepthwiseConv2D Conv2D DepthwiseConv2D Conv2D DepthwiseConv2D Conv2D AveragePool2D Reshape FullyConnected

Conv2D

layer12

layerl layer2 layer3 layerd layer5 layer6 layer7 layer8 layer9 layer10 layer1l

layer0



?x49x10x1

Conv2D

ter (64x10x4x1)
ias (64)

Relu

?x25x5x64

DepthwiseConv2D

weights (1x3x3x64)
bias (64)

Relu
?x25x5x64

Conv2D
filter (64x1x1x64)

?x25x5x64

DepthwiseConv2D

weights (1x3x3x64)
bias (64)

Relu
?x25x5x64
Conv2D

ter (64x1x1x64)
bias (64)

Relu

?x25x5x64

DepthwiseConv2D

weights (1x3x3x64)
bias (64)

Relu
?x25x5x64
Conv2D

filter (64x1x1x64)
as (64)

Relu

?x25x5x64

DepthwiseConv2D
weights (1x3x3x64)

?x25x5x64

Conv2D

ter (64x1x1x64)
bias (64)

Relu
?x25x5x64

AveragePool2D

?x1x1x64

Reshape

FullyConnected

weights (12x64)
s (12)

Softmax

Figure A.4: aww model architecture.
21



Cycle Count

(uaai8) dnpaadg
8 8
< )

7.00
6.00
5.00
2.00
1.00

1.30

¥0+38T°T

Y0+3vS'T

5.92

£0+360°C

v0+3rT'T
©
2]
o

20431V

20+3€T Y

)
-

o
S0+3T€T |

v0+3vST

5.59

0+397'8 |

S0+3eLy B

2.78

S0+32sv

90+392°T WM

4.40

90+325V I

£0+366'T

4.23

90+3S€°C .

90+326'c I

5.02

S0+38S°T |

S0+396'Z W

2.08

S0+3/89 W

90+3¢v'T WM

4.22

90+3eLv

£0+366°T I
®
<
]

90+3€9C N

£0+320°T

5.07

S0+360°€ I

90+3/S'T WM

3.79

90+325°S I

£0+360°C

3.81

90+305°S IEEG—

£0+360°C I —
9
S
o

90+39€°C .

90+32L'v

2.50E+07
2.00E+07
1.50E+07
1.00E+07
5.00E+06
0.00E+00

(ama) wno9 21949

Figure A.5: Layer-wise benchmark results of the resnet model.

1X3A

1X3AON

XA

1X3AON

XA

1X3AON

1X3A

1X3AON

XA

IX3AON

XA

1X3AON

1X3A

1X3AON

1X3aA

1X3AON

1XAaA

1X3AON

XA

1X3AON

XA

1X3AON

XA

1X3AON

an

1X3AON

1X3A

1X3AON

XA

1X3AON

XA

1X3AON

FullyConnected Softmax

Conv2D Conv2D Add Conv2D Conv2D Conv2D Add Conv2D Conv2D Conv2D Add AveragePool2D Reshape

Conv2D

layer15

layer1 layer2 layer3 layerd layer5 layer6 layer7 layer8 layer9 layer10 layer11 layer12 layer13 layer14

layer0

Instruction Count

£0+369'T

£0+369°T

(uaai8) dnpaads

25.00
20.00
15.
10.00
5.00

I}
<
=i

£0+320'6
€0+305°6

-

o

©
£0+32v'T

£0+307'S

o
<
=i

20+39v°

20+391'€

©
@
o

0+3£9'€

Y0+3rT'e

22.02

0+356'T
So+30ev W
©
]
<
S0+36€C I

90+320°T W

8

©
90+32v'C

L0+31S°T

o
=]
©

90+3/2T

90+359°/

2264

¥0+38L°€

50+395's WM

)
<

©
50+309°¢ N
90+3¢2°T W
w0
S
©

90+385°C NN

£0+395°T

o
©
w

90+3vy'T N

90+390'8 I

23.33

0+32€°L |

90+3TL°T W

~
[}

w
90+370°C

1
~
0
0

90+370°C —

0
N
©

90+3/Z°T W

90+3CT'y I

1.80E+07
1.60E+07
1.40E+07
1.20E+07
1.00E+07
8.00E+06
6.00E+06
4.00E+06
2.00E+06
0.00E+00

(amq) unod uonannsuy

1Xan

1X3anON

LAan

1X3AON

1Xan

IX3AON

1Xan

1X3anON

LDAan

1X3AON

X3

1X3InON

LDAan

1X3AON

XA

1X3AON

1Xan

1X3nON

LAan

1X3AON

LDAan

IX3AON

1Xan

1X3AON

1Xan

IX3AON

1Xan

1X3AON

1Xan

1X3INON

LDAan

1X3AON

FullyConnected Softmax

Conv2D Conv2D Add Conv2D Conv2D Conv2D Add Conv2D Conv2D Conv2D Add AveragePool2D Reshape

Conv2D

layer15

layerl layer2 layer3 layerd layer5 layer6 layer7 layer8 layer9 layer10 layer1l layer12 layer13 layer14

layer0



input_1_int8

?7x32x32x3

Conv2D
filter (16x3x3x3)

?x32x32x16

Conv2D

er (16x3x3x16)
bias (16)
Relu

?x32x32x16 ?x32x32x16

Conv2D
er (16x3x3x16)

?x32x32x16

Conv2D

?x32x32x16

?x16x16x32

Conv2D

filter (32x3x3x32)
bias (32)

filter (32x1x1x16)
bias (32)

?x16x16x32

?x16x16x32

Conv2D

Iter (64x3x3x32)
bias (64)

Relu

?x16x16x32

?7x8x8x64

Conv2D

filter (64x1x1x32)
bias (64)

filter (64x3x3x64)
bias (64)

?x8x8x64

?7x8x8x64

AveragePool2D

?x1x1x64

Reshape

FullyConnected

hts (10x64)
as (

Figure A.6: resnet model architecture.
23



List of Figures

2.1 CanMV K230 block diagram from https://github.com/kendryte/k230_
docs/blob/main/en/CanMV_K230_Tutorial.md. . . . . .. .. .. .. ..

4.1 Cycle and instruction counts for aww, ic, toycar, and vww benchmarks with
vectorization enabled and disables. The instruction count on the CanMV
K230 hardware platform is also compared to the results on the ISS.

A.1 Layer-wise benchmark results of the toycar model. . . . . . . . . . . .. ..
A.2 toycar model architecture. . . . . . . ...
A.3 Layer-wise benchmark results of the aww model. . . . . . . . .. ... ...
A4 aww model architecture. . . . . . . ... ...
A.5 Layer-wise benchmark results of the resnet model. . . . . . . . . .. .. ..
A.6 resnet model architecture. . . . . . .. ..o

24


https://github.com/kendryte/k230_docs/blob/main/en/CanMV_K230_Tutorial.md
https://github.com/kendryte/k230_docs/blob/main/en/CanMV_K230_Tutorial.md

List of Tables

4.1 Cycle and instruction count reductions for the four different benchmarks as
well as the CPIs comparing vector to scalar execution. . . . . . ... ...

25



Bibliography

[1]

[10]

K230_docs/en/00-hardware/K230_datasheet.md at main
kendryte,/k230_docs. https://github.com/kendryte/k230_docs/blob/ maln/ en
/00_hardware/K230_datasheet.md.

K230_docs/en/01_software/board /K230_SDK_User_Manual.md at main
kendryte/k230_docs. https://github.com/kendryte/k230_docs/blob/main/en
/01 _software /board /K230_SDK_User_Manual.md.

K230_docs/en/02_applications/tutorials/K230_RVV_In_Action.md  at  main
kendryte/k230_docs. https://github.com/kendryte/k230_docs/blob/main/en
/02_applications/tutorials/K230_RVV _In_Action.md.

Ratified  Extensions - Home - RISC-V  Tech Hub. https://1f-
riscv.atlassian.net /wiki/spaces/HOME /pages/16154732 /Ratified+Extensions.

Release Vector Extension 1.0, frozen for public review - riscv/riscv-v-spec.
https://github.com /riscv/riscv-v-spec/releases/tag/v1.0.

Remlab: Installing Debian on the K230-CanMV. https://www.remlab.net/op/k230-
canmv-debian.shtml.

Kendryte/k230_docs. Kendryte, September 2024.

Neil Adit and Adrian Sampson. Performance left on the table: An evaluation of
compiler autovectorization for risc-v. IEEE Micro, 42(5):41-48, September 2022.

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. Tvm: an automated end-to-end optimizing compiler for deep
learning. In Proceedings of the 15th USENIX Conference on Operating Systems Design
and Implementation, OSDI'18, page 579-594, USA, 2018. USENIX Association.

Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li,
Nick Kreeger, lan Nappier, Meghna Natraj, Tiezhen Wang, Pete Warden, and Rocky
Rhodes. Tensorflow lite micro: Embedded machine learning for tinyml systems. In
A. Smola, A. Dimakis, and 1. Stoica, editors, Proceedings of Machine Learning and
Systems, volume 3, pages 800-811, 2021.

26



[11]

[12]

[16]

Liangzhen Lai, Naveen Suda, and Vikas Chandra. CMSIS-NN: efficient neural network
kernels for arm cortex-m cpus. CoRR, abs/1801.06601, 2018.

Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-Directed and Runtime Optimization, CGO
'04, page 75, USA, 2004. IEEE Computer Society.

Joseph K. L. Lee, Maurice Jamieson, Nick Brown, and Ricardo Jesus. Test-driving
risc-v vector hardware for hpc. In Amanda Bienz, Michele Weiland, Marc Baboulin,
and Carola Kruse, editors, High Performance Computing, pages 419-432, Cham, 2023.
Springer Nature Switzerland.

RISC-V. Community News. XuanTie C908: High-performance RISC-V Processor
Catered to AloT Industry | Chang Liu, Alibaba Cloud — RISC-V International.

Philipp van Kempen, Jefferson Parker Jones, Daniel Mueller-Gritschneder, and Ulf
Schlichtmann. muriscv-nn: Challenging zve32x autovectorization with tinyml infer-
ence library for risc-v vector extension. In Proceedings of the 21st ACM International
Conference on Computing Frontiers Workshops and Special Sessions, CF '24 Compan-
ion, page 75-78, New York, NY, USA, 2024. Association for Computing Machinery.

Philipp van Kempen, Rafael Stahl, Daniel Mueller-Gritschneder, and Ulf Schlicht-
mann. Mlonmcu: Tinyml benchmarking with fast retargeting. In Proceedings of the
2023 Workshop on Compilers, Deployment, and Tooling for Edge AI, CODAI 23,
page 32-36, New York, NY, USA, 2024. Association for Computing Machinery.

27



	Contents
	Introduction
	State of the Art
	RISC-V Vector Extension
	CanMV K230 Board
	muRISCV-NN
	MLonMCU

	Tasks and Challenges
	Getting the K230 SDK Up and Running
	Porting muRISCV-NN to the CanMV K230
	Toolchain Issues

	Alternative Setup: Running muRISCV-NN in a Linux Environment on the CanMV K230
	Experimental Setup
	RTOS
	Linux


	Experimental Results
	Setup
	RTOS
	Linux

	Conclusion
	Figures
	List of Figures
	List of Tables
	Bibliography

