
Diversity and Distributions. 2024;00:e13905.	 		 	 | 1 of 12
https://doi.org/10.1111/ddi.13905

wileyonlinelibrary.com/journal/ddi

Received:	10	December	2023  | Revised:	21	June	2024  | Accepted:	3	July	2024
DOI: 10.1111/ddi.13905  

R E S E A R C H  A R T I C L E

Soundscapes and airborne laser scanning identify vegetation 
density and its interaction with elevation as main driver of bird 
diversity and community composition

Sebastian Seibold1,2,3  |   Tobias Richter1,2 |   Lisa Geres2,4 |   Rupert Seidl1,2 |   
Ralph Martin5 |   Oliver Mitesser6 |   Cornelius Senf1,7 |   Lukas Griem8 |   Jörg Müller6,9

This is an open access article under the terms of the Creative	Commons	Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
©	2024	The	Author(s).	Diversity and Distributions	published	by	John	Wiley	&	Sons	Ltd.

Sebastian	Seibold	and	Tobias	Richter	contributed	equally	to	this	work.	

1School	of	Life	Sciences,	Ecosystem	
Dynamics and Forest Management Group, 
Technical University of Munich, Freising, 
Germany
2Berchtesgaden National Park, 
Berchtesgaden, Germany
3Forest Zoology, TUD Dresden University 
of Technology, Tharandt, Germany
4Faculty	of	Biological	Sciences,	Institute	
for	Ecology,	Evolution	and	Diversity,	
Conservation Biology, Goethe University 
Frankfurt, Frankfurt, Germany
5OekoFor GbR, Freiburg, Germany
6Ecological	Field	Station	
Fabrikschleichach,	Department	of	Animal	
Ecology	and	Tropical	Biology,	University	
of	Würzburg,	Rauhenebrach,	Germany
7School	of	Life	Sciences,	Earth	
Observation	for	Ecosystem	Management,	
Technical University of Munich, Freising, 
Germany
8Faculty	of	Agriculture,	Environment	&	
Chemistry,	University	of	Applied	Sciences	
HTW	Dresden,	Dresden,	Germany
9Bavarian Forest National Park, Grafenau, 
Germany

Correspondence
Sebastian	Seibold,	Forest	Zoology,	TUD	
Dresden University of Technology, 
Pienner	Str.	7,	Tharandt	01737,	Germany.
Email:	sebastian.seibold@tu-dresden.de

Funding information
Deutsche Forschungsgemeinschaft, 
Grant/Award	Number:	FOR	5375

Editor: Corey T. Callaghan

Abstract
Aim: Mountain ecosystems are hotspots of biodiversity due to their high variation in 
climate and habitats. Yet, above average rates of climate change and enhanced forest 
disturbance regimes alter local climatic conditions and vegetation structure, which 
should	impact	biodiversity.	We	here	investigated	the	impact	of	vegetation	and	eleva-
tion as well as their interactions on bird communities to improve our ability to predict 
climate change effects on bird communities.
Location: European	Alps,	Germany.
Methods: We	studied	patterns	and	drivers	of	bird	 communities	 at	213	plots	 along	
gradients in vegetation density and elevation using autonomous sound recorders. 
Bird species were identified from soundscapes by Convolutional Neural Networks 
(BirdNET)	and	taxonomists.
Results: Bird diversity and community metrics were moderately to strongly correlated 
for	data	based	on	either	identification	by	BirdNET	or	taxonomists	(Pearson's	r = .47–
.94),	and	ecological	findings	were	overall	similar	for	both	datasets.	Vegetation	density	
1–2 m	and	>2 m	above	ground	strongly	affected	bird	diversity	and	community	com-
position and mediated effects of elevation. Community composition changed with el-
evation more strongly in habitats with low than high vegetation density >2 m.	Species	
numbers	decreased	with	elevation	in	habitats	with	low	vegetation	density	1–2 m	and	
>2 m	above	ground,	but	increased	in	habitats	with	high	vegetation	density.	Overall,	
functional and phylogenetic diversity increased with elevation indicating lower habi-
tat filtering, but patterns were also mediated by vegetation density.
Main Conclusions: Our	results	indicate	that	bird	communities	in	the	German	Alps	
are determined by strong interactive effects of elevation and vegetation, under-
lining the importance to consider variation in vegetation in studies of biodiver-
sity patterns along elevational gradients and under climate change. Combining 
remote sensing data and biodiversity monitoring based on autonomous sampling 
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1  |  INTRODUC TION

Mountain regions are hotspots of biodiversity, including endemic 
and threatened species. High biodiversity in mountain ecosystems 
is the result of high habitat heterogeneity due to climatic differences 
between elevations, topographic heterogeneity and natural dy-
namics	initiating	successional	processes	(Körner,	2002).	In	addition,	
human land use has modified parts of the landscape, further increas-
ing habitat heterogeneity. However, mountain biodiversity is under 
pressure due to climate change in at least two ways. First, climatic 
conditions in mountain regions are changing at rates that are above 
the	global	average	(Schmeller	et	al.,	2022).	Second,	climate	change	
is	altering	disturbance	regimes,	for	example,	forest	disturbances	are	
becoming	more	frequent	and	severe,	 leading	to	long-	term	changes	
in	vegetation	dynamics	 (Albrich	et	al.,	2023;	Thom	&	Seidl,	2021).	
On top of these climate induced changes, land use practices are 
changing, including both intensification and abandonment, which 
is	further	altering	mountain	ecosystems	(Schmeller	et	al.,	2022).	As	
a response to climate and vegetation change, species have started 
to	shift	their	ranges,	but	patterns	are	variable	(Bässler	et	al.,	2013; 
Vitasse	 et	 al.,	 2021).	 To	 predict	 trends	 and	 patterns	 of	 mountain	
biodiversity, a more detailed understanding of the interactions of 
climate and vegetation characteristics with species communities is 
needed.

Birds	 are	 an	 emblematic	 and	 functionally	 important	 taxon	 in-
cluding	many	species	of	conservation	concern.	Consequently,	pat-
terns of bird communities along elevational gradients have been in 
focus	of	numerous	studies	 (McCain,	2009;	Quintero	&	Jetz,	2018; 
Terborgh, 1977).	 Different	 elevational	 patterns	 of	 bird	 species	
richness have been observed, such as monotonical decreasing and 
hump-	shaped	 pattern,	 and	 heavily	 debated	 (Rahbek,	 1995).	 One	
inherent problem is that several potential drivers change simulta-
neously	with	 elevation	 (McCain,	2009).	 Vegetation	 characteristics	
determine habitat conditions and resource availability for many 
bird	species	(Blondel	&	Farré,	1988;	MacArthur	&	MacArthur,	1961; 
Moning	&	Müller,	2008;	Müller	et	al.,	2009)	and	change	strongly	with	
elevation.	Changes	include	elevational	zones	dominated	by	different	
tree	species,	as	well	as	open	habitats	above	the	tree	line.	With	in-
creasing	elevation,	forests	usually	change	in	structure,	for	example,	
decrease	in	tree	height	and	canopy	cover	(Stritih	et	al.,	2023).	In	ad-
dition	to	these	zonal	changes	in	bird	habitat	characteristics,	natural	
forest disturbances create patchy mosaics of different forest devel-
opmental stages, which are inhabited by different bird communities 
(Hilmers	 et	 al.,	2018;	Moning	&	Müller,	2008; Thorn et al., 2016).	

Moreover, open habitats occur also below the timber line due to 
natural	ecosystem	dynamics,	such	as	avalanches	or	landslides	(Alba	
et al., 2023),	and	human	land	use,	such	as	pasturing	(Archaux,	2007; 
Laiolo et al., 2004).	Depending	on	 the	 type	 and	 range	of	habitats	
included in a study of bird diversity along elevational gradients, ele-
vational patterns of bird diversity may thus differ.

Standardized	bird	surveys	as	suggested	by	Bibby	et	al.	(2000)	
are methodologically challenging in mountain regions due to 
limited	 access	 for	 vehicles,	 steep	 terrain	 and	 quickly	 changing	
weather conditions. Under these conditions, it is often neither 
possible to visit remote sites early in the morning nor to ran-
domize	 the	 order	 at	which	 sites	 are	 visited,	 thus	 hampering	 the	
comparability	 between	 study	 sites.	 Autonomous	 bird	 sound	 re-
cording has been successfully applied in challenging study systems 
(Burivalova	et	al.,	2019; Ross et al., 2023;	Sugai	et	al.,	2018)	and	
thus, this approach appears promising for mountain ecosystems 
(Lauha	 et	 al.,	 2022).	 Simultaneous	 recording	 allows	 to	 compare	
vocalizing	bird	 communities	 from	exactly	 the	 same	 time	periods	
between	sites	and	thus	ensures	the	maximum	level	of	standardiza-
tion.	Species	can	be	identified	from	soundscapes	by	taxonomists	
or	deep	learning	algorithms	(Kahl	et	al.,	2021; Lauha et al., 2022; 
Stowell	 et	 al.,	 2019).	 As	 mountain	 ecosystems	 are	 particularly	
under	threat	from	climate	change	(Schmeller	et	al.,	2022)	and	birds	
are important indicator species for global change in mountain en-
vironments	(Fraixedas	et	al.,	2020),	bird	monitoring	methods	that	
are suitable for mountain regions need to be further refined.

To study how elevation and vegetation interactively shape bird 
communities and to evaluate the potential of using sound record-
ers and automated bird sound identification for ecological research, 
we	 collected	 soundscapes	 at	 213	 sites	 in	 the	 German	 Alps.	 Sites	
were	distributed	along	an	elevational	gradient	of	1600 m	and	–	in-
dependent	of	elevation	–	along	a	vegetation	gradient	from	anthro-
pogenic and natural open habitats to open and to very dense forest. 
Species	were	 identified	 from	 soundscapes	by	 taxonomists	 as	well	
as	 using	 the	 Convolutional	 Neural	 Network	 (CNN)	 BirdNET	 (Kahl	
et al., 2021).	Specifically,	we	asked:

	(i)	 How	 strongly	 are	Convolutional	Neural	Network	 (CNN)-	based	
metrics of community composition and diversity correlated to 
data	 generated	 by	 taxonomists,	 and	 are	metrics	 based	 on	 the	
two identification methods resulting in similar patterns along el-
evation and vegetation gradients?

	(ii)	 How	do	elevation	and	vegetation	cover	interactively	shape	char-
acteristics of bird communities?

and	AI-	based	 species	 identification	 opens	 new	 avenues	 for	 bird	monitoring	 and	
research in remote areas.

K E Y W O R D S
altitude,	bioacoustics,	BirdNET,	mountain,	soundscape,	succession
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2  |  METHODS

2.1  |  Study area and design

This study was conducted at Berchtesgaden National Park, south- 
eastern	 Germany,	 located	 in	 the	 northern	 Front	 Range	 of	 the	 Alps	
(Figure S1).	The	area	is	characterized	by	a	steep	elevational	gradient	
ranging	from	603 m	(Lake	Königssee)	to	2713 m	above	sea	level	(a.s.l.;	
Mt.	Watzmann)	and	a	high	variation	in	vegetation	cover	and	structure.	
Approximately	46%	of	 the	national	park	are	covered	by	forest,	with	
European	 beech	 (Fagus sylvatica)	 dominating	 the	 submontane	 zone	
(<850 m a.s.l.),	mixed	forests	of	European	beech,	Norway	spruce	(Picea 
abies)	and	Silver	fir	(Abies alba)	in	the	montane	zone	(850–1400 m a.s.l.),	
and	conifer	forests	of	Norway	spruce,	European	larch	(Larix decidua)	
and	 Swiss	 stone	 pine	 (Pinus cembra)	 in	 the	 subalpine	 zone	 (1400–
1900 m a.s.l.)	(Thom	&	Seidl,	2021;	Walentowski,	2004).	Conventional	
forest	 management	 ceased	 on	 75%	 of	 the	 area	 when	 the	 national	
park was founded in 1978, but due to historic land use, shares of 
Norway	spruce	are	 increased	 in	the	submontane	and	montane	zone	
(Zierl,	2009).	About	10%	of	the	area	are	covered	by	shrub	forest	types	
dominated	by	dwarf	mountain	pine	(Pinus mugo).	Moreover,	approxi-
mately	27%	of	the	area	are	permanently	open	habitats	including	alpine	
grasslands above the timber line as well as natural open habitats below 
the	timber	line,	for	example,	where	frequent	avalanches,	rock	slides	or	
flooding	prevent	forest	establishment.	Approximately	5%	of	the	area	
are anthropogenic grasslands managed as summer pastures.

In 2020, we selected 213 plots covering the full gradient in vege-
tation	cover	across	the	elevational	gradient	from	605	to	2255 m a.s.l.	
in	a	stratified	sampling	approach.	We	selected	plots	according	to	the	
vegetation	that	occurred	within	a	radius	of	12.6 m	around	the	central	
point	of	the	plot.	In	each	of	the	three	elevational	zones	below	the	tree	
line	 (i.e.	 submontane,	montane	and	subalpine),	we	selected	10	plots	
in	each	of	 five	 forest	development	 stages	 (gap,	 establishment,	opti-
mum,	plenter	and	terminal/decay;	 (Zenner	et	al.,	2016))	 to	cover	the	
full gradient of vegetation cover in forests. Forest plots were selected 
from the 3759 permanent forest inventory plots of the national park 
based	on	the	inventory	period	2010–2012,	as	well	as	site	visits	to	as-
sure that plots still represent the respective forest development stage. 
We	selected	five	plots	in	anthropogenic	open	habitats	(pastures)	in	the	
submontane,	 montane	 and	 subalpine	 zone,	 respectively.	 Finally,	 we	
selected four replicate plots in either rock, grass or shrub dominated 
natural	open	habitats	in	each	of	the	three	elevational	zones	below	the	
timber	 line	and	 in	 the	alpine	zone	above	the	timber	 line.	Plots	were	
distributed as evenly as possible over the national park, but for logistic 
reasons plots were often arranged along access roads and hiking trails 
resulting	in	moderate	spatial	clumping	(Figure S1).	The	minimum	dis-
tance	between	plot	centres	of	adjacent	plots	was	150 m.

2.2  |  Bird sampling

We	used	bioacoustic	audio	recorders	(BAR,	Frontier	Labs,	Salisbury,	
Australia;	 standard	 settings)	 to	 capture	 soundscapes	 in	 2021.	

Recorders had to be moved between plots and could not be installed 
permanently due to the limited availability of recorders. On each 
plot,	 recording	took	place	on	4–5 days	distributed	evenly	between	
late	winter	(mid	March)	and	late	summer	(mid	August)	in	the	submon-
tane,	montane	and	subalpine	zones.	In	the	subalpine	and	alpine	zone,	
only	three	to	four	recordings	were	conducted	between	late	April	and	
mid	August	due	 to	 snow	cover	 restricting	access	 in	 spring.	For	an	
overview of the recording times, see Table S1. Recording was limited 
to	days	with	no	or	negligible	rain	and	low	wind	speed.	We	placed	re-
corders	at	approximately	1.8 m	height	close	to	the	plot	centre,	either	
attached to a tree or wooden pole. Recorders were programmed to 
record for 2 min every 12 min from 2 h before to 4 h after sunrise 
and from 3 h before sunset to 3 h after sunset.

2.3  |  Bird identification

For	species	identification	by	taxonomists,	we	selected	the	first	2	min	
of every hour of the morning recording, that is, 12 min per plot and 
sampling day. However, since owls typically sing early in the season 
(Südbeck	 et	 al.,	2005),	we	omitted	 the	 recording	 from	2	 h	 before	
sunrise	from	the	second	sampling	on	and	only	used	the	subsequent	
five recordings, that is, 10 min per plot and sampling day. Ten min-
utes	per	plot	and	sampling	day	is	a	frequently	used	sampling	effort	
in classic point count surveys in which ornithologists record birds on 
a	plot	(Südbeck	et	al.,	2005).	Yet,	an	advantage	of	the	recorders	 is	
that the 10 min of recording were evenly distributed over a period 
of	5	h	 (6	h	on	 the	 first	 recording	day)	and	 recordings	covered	 the	
same time periods for all plots. In some cases, recordings could not 
be	used	because	of	noise	(e.g.	running	water,	cowbells	and	airplanes)	
masking bird sounds. In such cases, we selected another recording 
as	close	in	time	as	possible	to	the	original	one.	Taxonomists	(R.M.,	
Lu.G.	and	others	(see	acknowledgments))	 identified	vocalizing	spe-
cies and documented each species as presence and absence for each 
recording.	For	 further	analyses,	we	excluded	all	 species	which	are	
not breeding bird species of terrestrial habitats of the region to avoid 
spurious results due to species not associated with the environmen-
tal conditions of our plots.

For	 species	 identification	 with	 BirdNET	 (version	 2.4),	 a	
Convolutional	Neural	Network	 (Kahl	 et	 al.,	2021),	 we	 used	 all	 re-
cordings,	that	 is,	60 min	around	sunrise	and	sunset.	Each	recorded	
file	was	 split	 into	 segments	 of	 3 s	 before	 it	was	 presented	 to	 the	
recognition	algorithm	(settings:	overlap = 0,	sensitivity = 1).	All	spe-
cies that are not breeding bird species of terrestrial habitats of 
the	 region	were	 then	 excluded.	We	 validated	 7399	 classifications	
across	89	(out	of	98	species	identified	by	CNN)	in	order	to	identify	
species-	specific	confidence	thresholds	that	maximize	the	separation	
between correct and incorrect identifications. R.M. reviewed 5527 
3-	s	segments	and	categorized	the	BirdNET	classifications	either	as	
true	or	false	positive.	We	further	used	annotations	of	our	recordings	
done	by	Lu.G.	at	the	Bird	Sounds	Global	platform	(https://	bsg.	laji.	fi/	 )	
of	the	LIFEPLAN	research	programme	(https:// www. helsi nki. fi/ en/ 
proje cts/ lifeplan).	The	annotations	were	provided	with	a	timestamp	
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which	allowed	us	to	match	and	categorize	1874	additional	classifica-
tions. For all species with more than 30 true positive classifications, 
we	 fitted	 Conditional	 Inference	 Trees	 (function	 ‘ctree’	 in	 package	
‘partykit’	 (Hothorn	 &	 Zeileis,	 2015))	 to	 identify	 species-	specific	
confidence thresholds. For species with 5 to 30 true- positive clas-
sifications, we visually inspected the distribution of true and false 
positives	along	the	confidence	axis	(Figure S2).	If	the	distribution	of	
true and false positives showed a discriminable pattern, we assigned 
them	to	one	of	three	threshold	classes	(0.3,	0.5	and	0.8).	If	true	and	
false	positives	were	similarly	distributed	along	the	confidence	axis	
or if less than 5 true- positive classifications were available, we used 
the	highest	threshold	class	(0.8).	For	the	final	list	of	species-	specific	
confidence thresholds, see Table S2 and Figure S2.

2.4  |  Trait data and phylogeny

We	downloaded	the	bird	megatree	by	Jin	and	Qian	(2023)	based	on	
Jetz	et	al.	(2012),	which	was	pruned	to	the	species	identified	by	one	of	
the two methods applied in our study. Moreover, we compiled infor-
mation on 11 morphometric traits, two habitat- related traits, migra-
tory	behaviour	and	trophic	level	from	the	AVONET	database	(Tobias	
et al., 2022).	Morphometric	traits	were	corrected	for	their	relationship	
with	body	size	by	taking	residuals	from	linear	models	with	respective	
traits	 as	 response	 (log-	scale)	 and	 body	mass	 (log-	scale)	 as	 predictor	
(Hagge	et	al.,	2021).	Based	on	correlations	among	morphometric	traits	
we	selected	the	continuous	traits	body	mass,	hand	wing	index,	beak	
length, beak width, tail length and tarsus length for further analyses. 
In	 addition,	 analyses	 included	 preferred	 habitat	 (ordinal:	 1 = dense,	
2 = semi-	open,	 3 = open),	 migratory	 behaviour	 (ordinal:	 1 = seden-
tary,	2 = partially	migratory,	3 = migratory)	and	trophic	level	(categori-
cal:	 herbivore,	 carnivore	 and	 omnivore).	 The	 trait	 trophic	 level	was	
converted	 into	two	binary	traits	herbivore	(0/1)	and	carnivore	(0/1),	
whereas omnivores were binned 1 in both binary traits.

2.5  |  Environmental data

We	 measured	 the	 coordinates	 and	 elevation	 of	 each	 plot	 centre	
using	 a	 Trimble	 r12i	 GNSS	 receiver.	 To	 characterize	 vegetation	
at	 each	 plot,	 we	 used	 a	 high-	resolution	 LiDAR	 dataset	 acquired	
in	 September	 2021	 during	 leaf-	on	 conditions	 using	 a	 helicopter-	
mounted	Riegel	VQ-	780i	sensor	with	average	point	density	of	~50 
points m2	 (Mandl	et	al.,	2023).	Vegetation	parameters	were	calcu-
lated	within	 a	 25 m	 radius	 around	 the	 plot	 centre	 by	 clipping	 the	
point	 cloud	 to	 the	 plot	 area	 and	 normalizing	 it	 using	 an	 existing	
ground	 classification.	 Vegetation	 density	>2 m	 above	 ground	 and	
1–2 m	 above	 ground	were	 calculated	 as	 the	 proportion	 of	 returns	
within these height layers, and the variation in vegetation height 
was	characterized	as	the	standard	deviation	of	LiDAR	returns.	In	ad-
dition,	we	used	data	on	herb	 layer	cover	 (<1 m	above	ground)	and	
shrub	layer	cover	(1–5 m	above	ground)	from	ground-	based	vegeta-
tion	surveys	conducted	on	one	4 m	x	4 m	vegetation	survey	area	per	

plot	 (Braziunas	 et	 al.,	2024).	We	 tested	 for	 collinearities	 between	
vegetation	 characteristics	 calculating	 pairwise	 Pearson's	 correla-
tion coefficients and by conducting a principal component analysis. 
Based	on	these	results	(Figure S3),	we	selected	LiDAR-	based	vegeta-
tion density >2 m	above	ground	and	vegetation	density	1–2 m	above	
ground as predictors for bird analyses since they represent different 
vegetation layers, were not correlated strongly and reflected a larger 
area around the plot centre than the parameters derived from the 
vegetation surveys.

2.6  |  Statistical analyses

All	 statistical	 analyses	were	 conducted	 in	R	 version	4.3.2	 (R	Core	
Team, 2021).

All	 bird	 metrics	were	 calculated	 per	 plot	 separately	 for	 taxono-
mists´ and CNN data. The number of bird species per plot was cal-
culated as the total number of species observed per plot across all 
recordings. Community composition was derived using Non- metric 
Multidimensional	Scaling	(NMDS)	based	on	Bray–Curtis	distances	for	
abundance	data	using	the	function	‘metaMDS’	in	the	package	‘vegan’	
(Oksanen	et	al.,	2016)	with	two	dimensions	 (stress	values	<0.2).	We	
extracted	the	first	and	second	axes	as	measures	of	community	com-
position	 in	all	 further	analyses.	To	obtain	a	 standardized	measure	of	
species diversity accounting for differences in sampling effort, we used 
the	function	‘estimated’	from	the	‘iNEXT’	package	to	compute	species	
diversity	by	considering	Hill	 numbers	 for	 a	 sample	 coverage	of	80%	
(Hsieh	et	al.,	2016).	Results	for	standardized	species	diversity	are	only	
shown in Table S3, as they were similar to the raw species number.

Phylogenetic and functional diversity were calculated as stan-
dardized	 effect	 sizes	 of	 the	 mean	 pairwise	 distance	 between	 co-	
occurring species for each sample based on either the branch lengths 
of the phylogenetic tree or a Gower distance of the selected func-
tional traits. Phylogenetic distances were calculated as cophenetic 
distance	using	the	function	 ‘cophenetic.phylo’	 in	the	package	 ‘ape’	
(Paradis	&	Schliep,	2019).	Functional	distances	were	calculated	using	
the	function	‘daisy’	in	the	package	‘cluster’	accounting	for	categorial,	
ordinal	and	continuous	variables	(Gower,	1971).	To	obtain	measures	
of functional and phylogenetic diversity that are independent from 
species	number,	we	calculated	standardized	effect	sizes	by	compar-
ing the observed mean pairwise distance per plot with 999 artificial 
assemblages.	This	was	achieved	by	using	null	models	(function	‘ses.
mpd’	in	the	package	‘picante’;	(Kembel	et	al.,	2010))	created	via	ran-
domly	selecting	species	from	the	regional	species	pool	(i.e.	all	spe-
cies	recorded	by	either	one	of	the	two	identification	methods).

To test how strongly CNN- based metrics match the same metric 
based	on	data	generated	by	 taxonomists,	we	calculated	Pearson's	
correlation	coefficients	for	species	number,	both	NMDS	axes,	phylo-
genetic	diversity	and	functional	diversity	based	on	taxonomists´	and	
CNN data, respectively. In addition, we calculated R2	(functions	‘rsq.
glmm’	and	 ‘rsq.lmm’	 in	package	 ‘rsq’;	Zhang,	2022)	of	fixed	effects	
from	 (generalized)	 linear	 mixed	 models	 with	 the	 metric	 based	 on	
taxonomists´	data	as	response	and	the	same	metric	based	on	CNN	
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    |  5 of 12SEIBOLD et al.

data	 as	predictor.	A	negative	binomial	 error	distribution	was	used	
for	modelling	 species	 number	 (function	 ‘glmer.nb’,	 package	 ‘lme4’;	
Bates et al., 2015)	 and	 a	 gaussian	 error	 (function	 “lmer”)	 for	 both	
NMDS	axes,	phylogenetic	diversity	and	functional	diversity.	Models	
included	‘tour’	as	random	effect	to	account	for	spatial	clumping	of	
plots along access roads and hiking trails.

To test how elevation and vegetation density interactively shape 
characteristics	 of	 bird	 communities,	 we	 fitted	 (generalized)	 linear	
mixed	models	for	species	number,	standardized	bird	diversity	(q = 0,	
1	and	2),	NMDS	axis	1,	NMDS	axis	2,	phylogenetic	and	functional	
diversity	 separately	 for	 taxonomists´	and	CNN	data	with	negative	
binomial errors for species number and gaussian errors for all other 
metrics.	All	models	included	elevation,	vegetation	density	>2 m	and	
vegetation	density	1–2 m	above	ground	as	well	as	 the	 interactions	
between	elevation	and	each	vegetation	variable	as	fixed	effects	and	
‘tour’	as	random	effect.	Elevation	and	vegetation	density	variables	
were	z-	transformed	(mean = 0,	SD = 1).

3  |  RESULTS

Taxonomists	 identified	 76	 breeding-	bird	 species	 from	 a	 total	 of	
8662 min	of	recording	and	CNN	models	identified	84	breeding-	bird	
species with a confidence level above species- specific thresholds 
from	 a	 total	 of	 105,648 min	 of	 recording	 (Table S2).	 A	 total	 of	 71	
species	were	identified	by	both	approaches	and	five	and	13	uniquely	
by	 taxonomists	 and	CNN	models,	 respectively,	 resulting	 in	 a	 total	
of	89	species	across	both	datasets	 (Figure S4).	All	 five	species	 re-
corded	only	by	taxonomists	were	also	identified	by	CNN	models	but	
with	confidence	below	the	minimum	thresholds	 (Table S2).	Of	 the	
13	species	identified	exclusively	by	CNN	models,	three	species	were	
confirmed	by	expert	validation	(Anthus pratensis, Montifringilla nivalis 
and Delichon urbicum),	while	for	the	others	all	validated	records	were	
false	positives	 (note	that	the	number	of	validated	records	was	 low	
in some species and that not all records were validated; Table S2).

Bird	community	metrics	based	on	identification	by	taxonomists	and	
CNN	models	 showed	 intermediate	 to	 strong	 correlations	 (Pearson's	
r = .47–.94)	and	CNN-	based	metrics	explained	between	19%	and	88%	
of	the	variation	in	taxonomists´	data	(Figure 1).	The	strongest	relation-
ship	was	found	for	NMDS-	axis	1,	followed	by	NMDS-	axis	2,	species	
number, phylogenetic diversity and functional diversity. Patterns of 
bird species number, phylogenetic and functional diversity, and com-
munity composition along elevational and vegetation cover gradients 
were	 overall	 similar	 for	 data	 based	 on	 taxonomic	 identification	 and	
CNN	models	with	only	few	differences	 (Table 1).	Only	for	functional	
diversity, effects of elevation, vegetation density >2 m	and	their	inter-
action	were	weaker	for	CNN-	based	data	(see	below).

Bird species number for both identification methods increased with 
increasing vegetation density >2 m	(Figure 2; Table 1).	A	significant	in-
teraction between elevation and vegetation density >2 m	 indicated	
that species numbers decreased with elevation in open habitats with 
low vegetation density >2 m,	but	 increased	with	elevation	 in	 forests	
with high vegetation density >2 m,	resulting	in	a	non-	significant	main	

effect	of	elevation	(Figure 2; Table 1).	Vegetation	density	1–2 m	above	
ground had no significant overall effect on bird species number but 
mediated effects of elevation, as indicated by a significant interaction, 
similarly to vegetation density >2 m	(Figure 2; Table 1).	Results	for	stan-
dardized	bird	diversity	for	all	values	of	q	were	similar	to	those	of	raw	
species	number,	except	for	a	significant	negative	effect	of	vegetation	
density	1–2 m	above	ground	(Table S3).

Phylogenetic diversity increased with elevation and decreased 
with	vegetation	density	1–2 m	above	ground	 for	 taxonomists´	and	
CNN	based	data	 (Figure 2, Table 1).	A	 significant	 interaction	 term	
indicated that phylogenetic diversity increased more strongly with 
elevation in habitats with a high vegetation density >2 m,	but	only	
for	CNN-	based	data	(Figure 2, Table 1).

Functional diversity increased with elevation and decreased with 
increasing vegetation density >2 m.	 A	 significant	 interaction	 indi-
cated that the increase with elevation was stronger in open habitats 
with low vegetation density >2 m	(Figure 2, Table 1).	Yet,	these	ef-
fects	were	only	significant	for	taxonomists´	data.	Vegetation	density	
1–2 m	above	ground	had	no	overall	effect	on	functional	diversity,	but	
modified elevational pattern with stronger increases in habitats with 
high	vegetation	density	(Figure 2, Table 1).

Bird	 community	 composition	 for	 taxonomists´	 and	 CNN	 data	
was similarly affected by elevation and vegetation density >2 m	
and	1–2 m	above	ground	for	both	identification	methods	(Figure S5, 
Table 1).	Both	elevation	 and	vegetation	density	>2 m	 inversely	 af-
fected	NMDS	axis	1	(Figure 2 and S5, Table 1),	reflecting	that	vegeta-
tion	density	decreased	with	elevation	in	forests.	Effects	of	elevation	
on	NMDS	axis	1	were	significantly	stronger	in	open	habitats	with	low	
vegetation density >2 m	than	in	forests	with	high	vegetation	density	
>2 m,	but	note	that	the	elevational	gradient	was	longer	for	open	hab-
itats	extending	beyond	the	tree	line.	Vegetation	1–2 m	above	ground	
led	 to	 changes	 in	 community	 composition	 along	NMDS	 axis	 2	 for	
both	data	sets	and	along	NMDS	axis	1	for	CNN	data	(Table 1).

4  |  DISCUSSION

Studying	 bird	 communities	 using	 audio	 recorders	 along	 elevation	
and	vegetation	gradients	in	the	European	Alps,	we	found	that	bird	
diversity and community metrics were moderately to strongly cor-
related	for	data	based	on	identification	by	taxonomists	and	CNN	and	
that ecological patterns along elevation and vegetation gradients 
were	similar	for	both	datasets	(note	that	a	few	differences	occurred;	
Table 1).	 Species	 number,	 phylogenetic	 diversity,	 functional	 diver-
sity and composition of bird communities were driven by interactive 
effects of elevation and vegetation. In habitats with low density of 
vegetation >2 m,	that	is,	tall	shrubs	and	trees,	species	numbers	de-
creased with elevation and communities became functionally less 
clustered	 (i.e.	 less	 similar).	 In	 contrast,	 species	 numbers	 increased	
with elevation and remained functionally clustered in habitats with a 
high vegetation density >2 m.	In	habitats	with	high	vegetation	den-
sity	1–2 m	above	ground,	that	is,	herbs	and	shrubs,	bird	communities	
were	phylogenetically	more	clustered	(i.e.	more	closely	related)	than	
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6 of 12  |     SEIBOLD et al.

in	 habitats	 with	 low	 vegetation	 density	 1–2 m	 above	 ground.	 The	
composition of bird communities changed with increasing vegeta-
tion density >2 m	and	between	1	and	2 m	above	ground.	Moreover,	
vegetation density >2 m	 mediated	 effects	 of	 elevation	 leading	 to	
stronger changes in community composition along elevation in habi-
tats with low vegetation density >2 m	than	in	those	with	high	veg-
etation density >2 m.

4.1  |  Acoustic bird monitoring in 
mountain ecosystems

Bird monitoring in mountain ecosystem is inherently challenging, but 
this study shows that autonomous audio recorders combined with 
CNN- based species identification provide an operational solution. 
Technical and computational advances allowed for major improvements 
in the field of bioacoustics and species identification from soundscapes 
over	the	last	years	(Darras	et	al.,	2019; Pavan et al., 2022).	Direct	com-
parison showed that autonomous bird sound recorders outperform 
point	 counts	 by	 human	 observers	 (Darras	 et	 al.,	 2019).	 Moreover,	

audio recorders can operate autonomously for several months up to a 
full season, which makes them ideal for bird monitoring in remote and 
logistically	challenging	places,	such	as	tropical	rain	forests	 (Burivalova	
et al., 2019)	or	mountain	ecosystems	(this	study).

The high amounts of data generated by continuous monitoring, 
however,	cannot	be	analysed	by	human	taxonomists,	which	spurred	
the rapid development of methods to identify species automati-
cally	(Lauha	et	al.,	2022).	BirdNET,	the	current	state-	of-	the-	art	CNN	
method, allows to identify a large number of bird species worldwide 
(Kahl	 et	 al.,	 2021).	 Here,	 we	 applied	 BirdNET-	Analyzer	 v2.4,	 vali-
dated a subset of classifications, and compared the generated data 
to identification of birds from a subset of the same soundscapes 
by	taxonomists.	Our	aim	was	not	 to	evaluate	the	performance	for	
single bird species detections but rather to assess whether bird 
community	metrics	derived	from	BirdNET	data	as	well	as	ecological	
patterns	of	these	metrics	match	those	based	on	taxonomists´	data.	
We	found	moderate	to	very	strong	correlations	between	metrics	of	
the two datasets with strongest correlations for community com-
position, followed by species numbers and phylogenetic and func-
tional diversity. Moreover, the ecological patterns of bird species 

F I G U R E  1 Relationships	between	bird	community	metrics	based	on	species	identification	by	taxonomists	(‘TAX’)	and	CNN	models	
including	species	number,	standardized	effect	sizes	of	phylogenetic	diversity	(PD)	and	functional	diversity	(FD),	and	the	two	NMDS	axes	
describing community composition. R2	result	from	(generalized)	linear	mixed	models	with	the	respective	metric	for	taxonomists´	data	as	
response	and	CNN	data	as	predictor.	r	shows	Pearson's	correlation	coefficients.	Simple	regression	lines	(bold)	and	1:1	lines	shown	for	
illustrative purposes.
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    |  7 of 12SEIBOLD et al.

and community composition along elevation and vegetation gradi-
ents were very similar for both data sets. Patterns of phylogenetic 
and	functional	diversity	were	also	similar	but	effect	sizes	differed.	
Overall,	this	indicates	that	BirdNET	is	well	suited	to	be	used	for	eco-
logical	bird	monitoring	in	the	European	Alps.

Yet,	 the	 detection	 probability	 differs	 between	 species	 (Lauha	
et al., 2022)	and	thus,	if	certain	focal	species	are	to	be	monitored,	the	
performance of the specific CNN model for these particular species 
should	 be	 assessed.	To	 exclude	 identifications	with	 a	 high	 chance	of	
being false positives, we applied species- specific minimum confidence 
thresholds	which	can	essentially	improve	CNN-	based	datasets	(Singer	
et al., 2024).	These	thresholds	were	based	on	the	validation	of	>7000 
classifications and the distribution of true and false positives along a 
confidence gradient. This approach allowed to derive unambiguous 
thresholds for some species, such as the alpine accentor Prunella collaris, 
the pygmy owl Glaucidium passerinum	and	the	ring	ouzel	Turdus torqua-
tus. For other species, however, either the number of true positives was 
too low or a high rate of false positives occurred even at high levels 
of confidence and thus, we had to apply a generic high threshold of 
0.8. Because of this, a few species, such as the wall creeper Tichodroma 
muraria, the golden eagle Aquila chrysaetos and the crag martin 
Ptyonoprogne rupestris	–	all	 three	are	alpine	specialist	 species	–	were	
excluded	from	the	final	BirdNET	dataset	although	they	were	identified	
by	taxonomists	and	initially	by	BirdNET	but	at	confidence	levels	below	
the minimum thresholds. Future research should thus aim at improving 
CNN models for species for which the model performance is still low 
and at detecting non- generic species- specific thresholds.

A	major	 advantage	 of	 soundscape	 data	 is	 that	 it	 can	 be	 rean-
alysed anytime with improved algorithms, thus generating highly 
standardized	time-	series	data	(Kitzes	&	Schricker,	2019).	In	contrast	
to	time	series	generated	by	taxonomists	surveying	birds	in	the	field,	
soundscape time series are not sensitive to changes in personnel 
(Campbell	&	Francis,	2011; Farmer et al., 2014).	Moreover,	the	use	of	
automatic identification tools allows to analyse longer time periods 
than observer- based surveys could do, which increases the chance 
to	detect	rare	species	(Darras	et	al.,	2019).	In	our	study,	for	example,	
the snow finch Montifringilla nivalis,	was	only	detected	by	BirdNET	as	
it	was	not	present	in	the	fewer	recordings	analysed	by	taxonomists.

In this study, recorders could not be installed permanently at 
each plot due to the limited availability of recorders and the large 
number of plots and thus, recorders had to be moved between plots 
several times to record at each plot for at least three times between 
late winter and early summer. This approach was very labour inten-
sive and, since recording took place only at a subset of plots at the 
same	time,	less	standardized	than	simultaneous	recording	at	all	plots.	
Yet, we chose this approach to study spatial patterns of bird commu-
nities	along	environmental	gradients	with	a	sufficient	samples	size	
and environmental resolution. For long- term monitoring, we suggest 
to	permanently	equip	all	plots	with	autonomous	audio	recorders	and	
if necessary, reduce the number of plots while still covering full envi-
ronmental gradients. This does not only reduce efforts and increase 
the	level	of	standardization,	but	also	allows	to	analyse	phenological	
patterns and changes therein.

4.2  |  Patterns of bird communities along 
elevation and vegetation gradients

Globally, patterns of bird species number along elevational gradients 
differ	strongly,	particularly	between	climatic	regions	(McCain,	2009).	
Within	 a	 region,	 bird	 species	 patterns	 along	 elevational	 gradients	
are	partly	explained	by	differences	in	vegetation	structure	between	
elevational	 zones	 which	 typically	 include	 several	 different	 forest	
types and, in some studies, also open habitats above the tree line 
(Acharya	et	 al.,	2011;	Kattan	&	Franco,	2004; Terborgh, 1977).	 In	
our study, vegetation changed both across and within elevational 
zones,	 including	open	habitat	above	the	tree	line	as	well	as	below,	
with the latter including natural permanently open habitats, for-
est gaps after natural disturbances, and anthropogenic pastures. 
This high habitat diversity is typical for many mountain regions 
(Körner,	2002;	Schmeller	et	al.,	2022)	and	enabled	us	to	show	that	
vegetation strongly mediates patterns of bird communities along 
elevation. In habitats with low density of vegetation taller than 2 
m	(i.e.	pastures,	natural	open	habitats,	young	canopy	gaps)	species	
number decreased with elevation, whereas the opposite pattern was 
found	for	forests	with	high	density	of	tall	shrubs	and	trees.	Similar	
but	 weaker	 patterns	 were	 found	 also	 for	 lower	 vegetation	 1–2 m	
above ground. This indicates that elevational patterns of bird species 
number	 differ	 not	 only	 between	 regions	 (McCain,	2009),	 but	 also	
between vegetation types within regions. This is consistent with the 
findings that relationships between bird species number and eleva-
tion	in	North	America	and	the	Himalayas	are	partly	driven	by	habitat	
heterogeneity	(Dillon	&	Conway,	2021; Ding et al., 2021).	For	studies	
on elevation patterns, this implies that focusing on certain vegeta-
tion	types	(e.g.	the	main	zonal	vegetation	types,	such	as	forests)	may	
not reveal the full range of patterns and that, if various vegetation 
types are included in the data but not accounted for in the analyses, 
observed	overall	patterns	may	be	a	mix	of	various	different	underly-
ing patterns. In our study, it is striking that without considering the 
interaction of elevation and vegetation density >2 m,	the	overall	pat-
tern of species number against elevation resembles a mid- elevation 
peak	(Figure S6).	In	contrast,	when	considering	different	vegetation	
types separately, trends of species number with elevation are either 
monotonically	increasing	or	decreasing	(Figure 2).

Bird community composition changed strongly along elevation and 
vegetation	 gradients.	 The	 first	 NMDS	 axis	 represented	 a	 combined	
gradient of elevation and vegetation >2 m,	which	 reflects	 that	vege-
tation	structure	is	changing	with	elevation	(e.g.	lower	canopy	cover	in	
subalpine	forests	(Vandewiele	et	al.,	2023)).	The	effect	of	elevation	on	
community composition was strongly mediated by vegetation >2 m	
with stronger changes in open than in closed habitats. Our findings 
match	results	of	Blondel	and	Farré	(1988)	who	studied	bird	community	
composition along successional gradients in different climate regions 
across	Europe	and	found	that	communities	differ	strongly	between	re-
gions in early successional habitats but are highly similar in late succes-
sional	habitats.	While	dissimilarity	between	early	successional	habitats	
across	Europe	may	be	partly	explained	by	recolonization	history	after	
the	last	glaciation	(Blondel	&	Farré,	1988),	there	are	several	potential	
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8 of 12  |     SEIBOLD et al.

explanations	why	bird	community	composition	changed	more	strongly	
with elevation in open than closed habitats in our study. First, dense 
vegetation	and	especially	forests	buffer	microclimatic	conditions	 (De	
Frenne et al., 2019)	with	cooler	mean	temperatures	in	forests	than	in	
open habitats at lower elevation, but even warmer mean temperatures 
in	forests	and	tall	shrubs	than	in	open	habitats	in	the	subalpine	zone	
(Vandewiele	et	al.,	2023).	Thus,	stronger	microclimatic	differences	be-
tween open habitats at different elevations than in forests may cause 
stronger	differences	in	bird	communities.	Second,	habitat	structures	in	
forests	change	with	elevation	(Holeksa	et	al.,	2007;	Stritih	et	al.,	2023),	
but these changes may be less important for birds than elevational 
changes in habitat structure in open habitats. Open habitats at lower 
elevations	are	restricted	to	sites	with	low	soil	fertility	or	frequent	dis-
turbances that impede growth of forest vegetation, whereas open 
habitats at higher elevations are increasingly determined by climatic 
conditions.	And	third,	with	 increasing	elevation,	 land-	cover	composi-
tion shifts from forest- dominated to open- habitat- dominated above 
the tree line. Open- habitat patches at lower elevation may thus be too 
small for certain open- habitat species and favour forest- edge species 
due to the vicinity of forest habitats, whereas open- habitat patches at 
higher	elevation	host	species	that	are	specialized	to	high-	alpine	open	
habitats. In both forests and open habitats, the herb and shrub layer 
are an important foraging and nesting habitat for a large number of 
species	(Alba	et	al.,	2023;	Moning	&	Müller,	2008; Thorn et al., 2016)	
explaining	the	strong	effect	of	vegetation	density	1–2 m	above	ground	
–	 reflecting	 taller	herbs	and	shrubs	–	on	community	composition	as	
characterized	by	the	second	NMDS	axis.

Overall,	 bird	 communities	 were	 clustered,	 that	 is,	 standardized	
effects	 sizes	 of	 functional	 and	 phylogenetic	 diversity	 were	 mostly	

negative, indicating that species were functionally more similar or phy-
logenetically	more	closely	related	than	expected	from	null-	modelling.	
This pattern is regularly interpreted as the result of habitat filtering 
(Cadotte	&	Tucker,	2017;	Pausas	&	Verdú,	2010).	Although	stronger	
clustering due to harsher environmental conditions, lower productiv-
ity	and	shorter	seasons	at	high	elevations	may	be	expected,	a	global	
meta- analysis could not find consistent declines of functional or phy-
logenetic	diversity	with	elevation	(Montaño-	Centellas	et	al.,	2020).	In	
our	study,	standardized	effects	sizes	of	functional	diversity	(although	
only	 significantly	 for	 taxonomists´	 data)	 and	 phylogenetic	 diversity	
increased with elevation, indicating weaker clustering at higher eleva-
tions.	Stronger	functional	and	phylogenetic	clustering	despite	higher	
species	number	at	 low	elevations	may	indicate	higher	specialization	
and	 higher	 niche-	packing	 (Belmaker	 et	 al.,	 2012),	 in	 line	 with	 the	
altitudinal-	niche-	breadth	hypothesis	(Rasmann	et	al.,	2014).	However,	
further analyses of single traits and environmental variables are 
needed	to	address	this	hypothesis	(Cadotte	&	Tucker,	2017).

Bird communities were phylogenetically more strongly clustered 
in	habitats	with	a	dense	understorey	vegetation	(1–2 m	above	ground)	
which	could	be	explained	by	the	occurrence	of	several	closely	related	
species among shrub- associated species, such as within the genus 
Phylloscopus	(Moning	&	Müller,	2008).	Stronger	functional	clustering	
was observed in forests with high vegetation density >2 m	compared	
to open habitats without a tree layer. This pattern could be due to 
traits associated with breeding, foraging and navigating in forest 
habitats	(Campos-	Silva	&	Piratelli,	2021; Newbold et al., 2013; Thorn 
et al., 2016),	yet	further	analyses	of	single	traits	are	needed	to	explore	
this. Moreover, vegetation density mediated effects of elevation on 
phylogenetic and functional diversity. Functional diversity increased 

TA B L E  1 Results	from	(generalized)	linear	mixed	models	testing	effects	of	elevation,	vegetation	cover	and	their	interaction	on	bird	
community	metrics	based	on	identification	by	taxonomists	(TAX)	or	CNN	models.

Response

Elevation
Vegetation density 
>2 m

Vegetation density 
1- 2 m

Elevation * vegetation 
density >2 m

Elevation * vegetation 
density 1- 2 m

z- value p- value z- value p- value z- value p- value z- value p- value z- value p- value

Species

TAX −1.48 .14 2.92 <.001 −1.23 .22 5.72 <.001 4.12 <.001

CNN −.02 .99 4.83 <.001 .82 .41 7.13 <.001 2.47 .01

PD

TAX 2.16 .03 1.50 .13 −3.05 <.001 −.43 .67 −1.74 .08

CNN 2.05 .04 .48 .63 −3.62 <.001 2.06 .04 1.73 .08

FD

TAX 3.89 <.001 −4.03 <.001 .96 .34 −7.53 <.001 2.32 .02

CNN 1.16 .24 −1.93 .05 −1.24 .21 −.64 .52 2.03 .04

NMDS1

TAX −12.74 <.001 1.93 <.001 .13 .90 12.26 <.001 1.15 .25

CNN −12.66 <.001 16.11 <.001 3.21 <.001 9.63 <.001 .53 .59

NMDS2

TAX −.39 .70 .21 .83 4.50 <.001 .70 .49 −1.67 .09

CNN −1.69 .09 .68 .50 5.32 <.001 −.06 .95 −2.47 .01

Note:	Significant	effects	are	indicated	by	bold	typesetting.
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F I G U R E  2 Interactive	effects	of	elevation	and	vegetation	density	higher	than	2	m	above	ground	(blue)	and	of	elevation	and	vegetation	
density	between	1	and	2	m	above	ground	(green)	on	bird	community	metrics	based	on	species	identification	by	CNN	models	(columns	1	and	
3)	or	taxonomists	(columns	2	and	4).	Community	metrics	(rows)	include	species	number,	phylogenetic	(PD)	and	functional	diversity	(FD),	and	
the	first	and	second	NMDS	axes	describing	community	composition.	Regression	lines	were	derived	by	(generalized)	linear	mixed	models	
(Table 1).	Effects	of	elevation	are	shown	for	low,	medium	and	high	vegetation	density	for	both	vegetation	layers	representing	mean	–	SD,	
mean,	and	mean + SD,	respectively.	The	upper	end	of	the	tree	line	ecotone	is	indicated	by	dashed	lines	at	approximately	1900 m a.s.l.
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with elevation in open habitats when vegetation density >2 m	was	low,	
indicating weaker functional clustering, but did not change with ele-
vation	in	closed	forests.	Vegetation	density	1–2 m	above	ground	had	
the opposite effect leading to a stronger increase of functional clus-
tering	with	elevation	in	habitats	with	a	high	vegetation	density	1–2 m	
above ground. The observed patterns indicate that stronger abiotic or 
habitat filtering selecting for certain functional traits occurs at higher 
elevations only in closed forests without dense understorey vegeta-
tion. Yet, despite being functionally more similar, these communities 
in high- elevation forests are less closely related than species within 
communities	in	open	habitats	at	the	same	elevation.	Variable	patterns	
of functional and phylogenetic patterns along elevational gradients 
across	studies	globally	(Montaño-	Centellas	et	al.,	2020)	may	thus	be	
at least partly due to differences in vegetation types highlighting the 
need to account for vegetation in studies of elevation patterns.

5  |  CONCLUSION

Our	results	 indicate	that	bird	communities	 in	the	German	Alps	are	
determined by strong interactive effects of gradients in elevation 
and vegetation. Patterns of bird species number, functional diversity 
and community composition along elevation are strongly mediated 
by vegetation indicating that vegetation should be more strongly 
considered in studies on the elevational patterns of birds, as it could 
explain	differences	observed	between	studies.

Birds are target species for conservation and indicators for en-
vironmental change and thus, typical focal species of monitoring. 
Considering the interactive effects of elevation and vegetation on 
bird communities, bird monitoring in mountain regions should not 
only	cover	different	elevation	zones,	but	also	full	vegetation	gradi-
ents	 in	 each	elevation	 zone.	 Such	monitoring	data	would	 allow	 to	
assess,	for	example,	whether	effects	of	climate	change	on	bird	com-
munities	differ	between	elevational	zones	and/or	between	vegeta-
tion types, or how climate- change induced changes in vegetation, 
such	as	upslope	shifts	of	vegetation	zones	or	changes	in	natural	for-
est	dynamics	(Seidl	et	al.,	2017),	affect	bird	communities.

The combination of autonomous sound recorders and identi-
fication of species by deep learning approaches, such as BirdNet, 
represents an operational solution for bird monitoring in mountain 
regions	characterized	by	challenging	 terrain	and	 remote	 locations.	
This	opens	new	avenues	for	a	next	generation	of	highly	standardized	
bird monitoring time series across large areas.
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